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The topology of structural brain networks shapes brain dynamics,
including the correlation structure of brain activity (functional con-
nectivity) as estimated from functional neuroimaging data. Empiri-
cal studies have shown that functional connectivity fluctuates
over time, exhibiting patterns that vary in the spatial arrangement
of correlations among segregated functional systems. Recently, an
exact decomposition of functional connectivity into frame-wise
contributions has revealed fine-scale dynamics that are punctu-
ated by brief and intermittent episodes (events) of high-amplitude
cofluctuations involving large sets of brain regions. Their origin is
currently unclear. Here, we demonstrate that similar episodes
readily appear in silico using computational simulations of whole-
brain dynamics. As in empirical data, simulated events contribute
disproportionately to long-time functional connectivity, involve
recurrence of patterned cofluctuations, and can be clustered into
distinct families. Importantly, comparison of event-related pat-
terns of cofluctuations to underlying patterns of structural connec-
tivity reveals that modular organization present in the coupling
matrix shapes patterns of event-related cofluctuations. Our work
suggests that brief, intermittent events in functional dynamics are
partly shaped by modular organization of structural connectivity.

connectomics j resting state j fMRI j brain dynamics j computational
neuroscience

S tructural and functional brain networks exhibit complex
topology, and functional brain networks display rich tem-

poral dynamics (1–3). The topological organization of struc-
tural connectivity (SC; the connectome) is characterized by
broad degree distributions, hubs linked into cores and rich
clubs, and multiscale modularity (4–6). Functional connectivity
(FC), as measured with resting-state functional MRI (fMRI),
displays consistent system-level architecture (7–9) as well as
fluctuating dynamics (10–12) and complex spatiotemporal state
transitions (13, 14). Resting brain dynamics exhibit metastable
behavior. The lack of a fixed attractor allows for exploration of
a large repertoire of network states and configurations
(15–17).

Recent work has uncovered fine-scale dynamics of FC as
measured with fMRI during rest and passive movie watching
(18, 19). The approach leverages an exact decomposition of
averaged FC estimates into patterns of edge cofluctuations
resolved at the timescale of single image frames (20). These
studies reveal that ongoing activity is punctuated by brief, inter-
mittent, high-amplitude bursts of brain-wide cofluctuations of
the blood-oxygenation level–dependent (BOLD) signal. The
approach is reminiscent of an earlier approach proposed for
electroencephalography (EEG) data in which an exact frame-
wise analysis of modeled and human scalp EEG data using the
Hilbert transform revealed brief large-scale desynchronous
bursts (21). In the BOLD literature, episodes of high-amplitude
cofluctuations, referred to as “events,” drive long-time estimates
of FC and represent patterns with consistent topography across

time and across individuals (18, 19, 22). The occurrence of
events appears unrelated to nonneuronal physiological pro-
cesses, head motion, or acquisition artifacts. A better under-
standing of how events originate may illuminate the basis for
individual differences in FC and its variation across cognitive
state, development, and disorders. Here, we aim to provide a
generative model for the origin of events in neuronal time series
and uncover potential structural bases for their emergence in
fine-scale dynamics.

The relationship of structure to function has been a central
objective of numerous empirical and computational studies,
leveraging cellular population recordings (23, 24), electrophysio-
logical (25), and neuroimaging techniques (26–28). While there is
broad consensus that “structure shapes function” on long time-
scales (29, 30), relating specific dynamic features to the topology
of the underlying structural network is an open problem. Compu-
tational models have made important contributions to under-
standing how SC (31, 32), time delays, and noisy fluctuations (33)
contribute to patterns of FC as estimated over long and short
timescales. Model implementations range from biophysically
based neural mass models to much simpler phase oscillators such
as the Kuramoto model (34). Despite their overt simplicity, phase
oscillator models can generate a wide range of complex
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synchronization and coordination states, and they reproduce pat-
terns of empirical FC (35), including temporal dynamics at inter-
mediate timescales (36). These modeled dynamics reproduce
ongoing fluctuations between integrated (less modular) and segre-
gated (more modular) network states (37, 38), a key characteristic
of empirical fMRI resting-state dynamics (39).

Here, we pursue a computational modeling approach that
seeks to relate high-amplitude cofluctuations to whole-brain
network structure. We simulate spontaneous BOLD signal
dynamics on an empirical SC matrix of the human cerebral cor-
tex using an implementation of a coupled phase oscillator
model incorporating phase delays, the Kuramoto–Sakaguchi
(KS) model (40). The KS model is well suited for this purpose
because its parsimonious parametrization allows for drawing
specific links between network structure and synchronization
patterns. The KS model also allows simulation focused on a
specific frequency band of interest so that it can more closely
replicate the oscillatory behavior of neural populations often
found in the gamma band (41). We find that over broad param-
eter ranges, BOLD signals exhibit significant high-amplitude
network-wide fluctuations strongly resembling intermittent
events observed in empirical data. Model dynamics reproduce
several key characteristics of empirical events, including their
strong contribution to long-time averages of FC as well as
recurrent patterns across time. Simulated events are signifi-
cantly related to network structure. They fall into distinct
clusters aligned with different combinations of modules in
underlying SC. Disruption of structural modules largely abol-
ishes the occurrence of events in BOLD dynamics. These find-
ings suggest a modular origin of high-amplitude cofluctuations
in fine-scale FC dynamics.

Results
Empirical data were derived from 95 subjects included as part
of the Human Connectome Project (HCP), with SC recon-
structed from diffusion imaging and tractography and FC
derived from four resting-state scans (792 s, 1,100 frames). The
brain was parcellated into 200 functionally defined regions of
approximately equal size (42), covering both cerebral hemi-
spheres but excluding subcortical or cerebellar structures. SC
data comprised estimates of connection weights as well as tract
lengths used to compute time delays based on a uniform con-
duction velocity. Connection weights were retained in all simu-
lations reported in this article. Most simulations employed a
consensus average of SC across all 95 subjects that preserved
mean density as well as the distance distribution of tracts (43).
A total of 10 structural modules (labeled M1, M2, … M10; SI
Appendix, Fig. 1) were derived from an implementation of mul-
tiresolution consensus clustering (Methods).

The computational model implemented the KS phase-delay
oscillator (ref. 40; Fig. 1 A and B) simulated at 1 ms time reso-
lution. A frustration matrix derived from empirical connection
lengths carried phase delays computed from connection lengths
and a biophysically realistic conduction velocity. Oscillator sig-
nal amplitudes (Fig. 1C) were convolved with a standard hemo-
dynamic response function (HRF; Fig. 1D) to yield simulated
BOLD signals, which were then low-pass filtered (cutoff at 0.25
Hz) and down-sampled to match the fMRI sampling rate used
in the HCP data. For a single simulation run, the resulting time
series extended over 792 s, composed of 1,100 time steps (720
ms). An initial transient of 20 s was discarded. Simulated
BOLD time courses were processed into edge time series com-
puted as the element-wise product of the edge’s BOLD time

Fig. 1. KS model schematic, computational workflow, and event detection. (A) SC weight and length matrix. (B) Node pair ði, jÞ linked by an edge ij and
its corresponding phases θðtÞ. (C) Oscillator time series sinðθðtÞÞ. (D) HRF used for convolving oscillator time series to yield BOLD time series (E).
(F) Elementwise product of normalized BOLD time series yields edge time series. (G) RSS of all edge time series yields RSS amplitude time series. The null
model consists of a distribution of null RSS amplitudes computed from randomly shifted node time series. Gray dots show amplitudes from 100 null
models, stippled line indicates the P < 0:001 cutoff derived from 1,000 permutation nulls. Peaks exceeding the cutoff indicated by inverted triangles
correspond to events. Data shown here computed from a representative run (k¼ 280, 12 events detected).
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series standard scores (Fig. 1 E and F). The mean across all
time steps of a single edge in the edge time series corresponded
exactly to that edge’s FC (18–20, 22). The “root sum square”
(RSS) of edgewise cofluctuations, computed across all edges on
each time step, recorded system-wide instantaneous cofluctua-
tions (Fig. 1G). Events were detected by applying a nonparamet-
ric permutation-based null model that randomly offset time
series relative to each other (Fig. 1G), thus preserving (approxi-
mately) each time series’ autocorrelation while randomizing
their temporal alignment (cross-correlation).

Most simulations were carried out using a group-averaged SC
coupling matrix (Fig. 2A) while varying the global coupling
parameter k, yielding simulated BOLD time series and average
FC patterns. Comparison of empirical (Fig. 2A) to simulated FC
(Fig. 2B) exhibited modest levels of similarity (Fig. 2 B and C), in
line with previous studies. A single value of the coupling parame-
ter (k¼ 280), which provided a near-optimal match with empiri-
cal FC, was selected for further detailed analysis. Empirical FC
was significantly correlated with the strengths of the SC weights
(Pearson correlation, all node pairs: ra ¼ 0:214, P¼ 0; Pearson
correlation, intrahemispheric node pairs: ri ¼ 0:343, P¼ 0; Fig.
2C) as well as the coclassification matrix summarizing multiscale
modular organization of SC (Fig. 2B). The latter finding agrees
with prior observations in modeling studies that have linked
structural to functional modules (31, 35) and expands on these
observations by demonstrating that SC multiscale coclassification
alone can significantly predict the long-time covariance structure
of FC derived from empirical (ra ¼ 0:257, P¼ 0; ri ¼ 0:359,
P¼ 0) and modeled time series (ra ¼ 0:756, P¼ 0; ri ¼ 0:732,
P¼ 0;k¼ 280). Model fit remained significant when simulations
were carried out on SC matrices of individual participants
(ra ¼ 0:200, P¼ 0; ri ¼ 0:341, P¼ 0; 10 randomly selected sub-
jects, 4 simulations each; correlations computed against the mean
of the same subject’s empirical FC). Realistic FC patterns
emerged with only partial synchronization of phase oscillators, as
documented by relatively low means of the order parameter
[meanðRðtÞÞ ¼ 0:0825 6 0:0002; SD; 12 runs, k¼ 280], accompa-
nied by consistently high SDs [std

�
RðtÞ

�
¼ 0:0414 60:0001; SD;

12 runs, k¼ 280], indicative of persistent variability in synchroni-
zation patterns and metastability.

Examining the RSS of simulated edge time series reveals brief,
intermittent, high-amplitude peaks, or events, over a wide range
of the coupling parameter k (Fig. 3). In empirical data, events
exhibit several characteristic features, including their dispropor-
tionate contributions to long-time estimates of FC and somewhat
stereotypic topography (18). Simulations reproduced these fea-
tures (Fig. 4). We tested whether the simulated edge time series
exhibited some of the same features attributed to empirical edge
time series. First, we constructed FC separately using either
high- or low-RSS frames. We found that FC components con-
structed from high-RSS frames exhibited much greater similarity
to the full FC estimate than those obtained from low-RSS frames
and that high-RSS FC components were significantly more mod-
ular (Fig. 4 A and B). Additionally, the cofluctuation patterns
expressed during high-RSS frames were more similar to each
other than low-RSS patterns, and these frames exhibited signifi-
cant stereotypy across distant time points (Fig. 4 C and D).

We performed a principal components analysis (PCA) of edge
time series, which yielded a distribution of principal components
(PCs) that differed in spatial pattern and temporal expression. The
score (level of expression across time) of the largest PC (PC1) was
significantly correlated with global RSS amplitude (Fig. 4E), sug-
gesting that the PC1 captured a consistent component associated
with high-RSS time steps. Consistent with the emergence of a sig-
nificant PC1 component, the structure of the FC covariance matrix
indicated the presence of low-dimensional dynamics (low participa-
tion ratio, PR) over most of the parameter range, coinciding with
the occurrence of high numbers of events.

Next, we assessed the relationship of simulated events with
the underlying SC. Data from 12 simulation runs (k¼ 280)
were aggregated to explore the topography of events and their
temporal recurrence in greater detail (Fig. 5). A total of 161
events, each represented by a vector of 19,900 edge cofluctua-
tion values, were extracted, and their mutual similarity (Pearson
correlation) matrix was clustered to detect distinct sets of event
patterns (Fig. 5A). We tested whether patterns for the four
largest event clusters were significantly aligned with SC consen-
sus module boundaries (Fig. 5B). The test employed a null
model that rotates the structural modules on the cortical sur-
face, thus approximately preserving their spatial contiguity
(spin test, 100,000 rotations; ref. 44). Total cofluctuation magni-
tude within all SC modules significantly exceeded that obtained
for 100,000 null model rotations (event cluster 1: P ¼ 2 � 10�5;
event cluster 2: P ¼ 0; event cluster 3: P ¼ 10�5; event cluster
4: P ¼ 0.02). Testing for contributions of individual SC modules
confirmed significant coalignment of specific modules with
cofluctuation patterns (all P < 0.01, uncorrected; event cluster
1: M6, P ¼ 2.3 � 10�4; event cluster 2: M2, P ¼ 0.0026; M6;
P ¼ 1.7 � 10�4; event cluster 3: M7, P ¼ 0.0039; M8, P ¼ 0.006;
event cluster 4: M1, P ¼ 1.7 � 10�4; M7, P ¼ 6 � 10�5). Differ-
ent classes of events aligned with different subsets of structural
modules and exhibited different time courses of cofluctuations
(Fig. 5C). Our findings suggest that events belonging to different
clusters are shaped by different combinations of modules present
in the underlying SC.

Several additional analyses were carried out to establish the
robustness of these findings. Simulations employing different set-
tings of the conduction velocity were analyzed to examine the
frequency of events as well as the match between empirical and
simulated FC (SI Appendix, Fig. 2A). Findings indicated that
events occurred over a wide range of velocities (6 m/s to 21 m/s),
covering a range of plausible conduction velocities for interre-
gional projections in primate cortex (45). Events did not occur
when simulations were carried out using a randomized SC
matrix with near-absent modular organization (SI Appendix, Fig.
3). In contrast, events were readily observed in simulations that
employed a synthetic (manually configured) SC matrix with
strongly modular organization spanning specific node sets, and
these events appear aligned to the provided SC modular archi-
tecture (SI Appendix, Fig. 4). Finally, simulated BOLD time
courses were generated by implementing a neural mass model
(NMM, as employed in ref. 31) using the same SC consensus
matrix and processed identically as implemented for the KS
model (SI Appendix, Fig. 5). The model matched empirical FC,
exhibited robust structure–function correlations, and showed
events over a range of coupling parameters. NMM model events
exhibited characteristics very similar to those found in empirical
as well as KS model data. Importantly, as for the KS model,
NMM event clusters were significantly aligned with structural
consensus modules (SI Appendix, Fig. 5). Total cofluctuation
magnitude within all SC modules significantly exceeded that
obtained for 100,000 null model rotations for three out of four
event clusters (event cluster 1: P ¼ 0.0508; event cluster 2: P ¼
1.1 � 10�4; event cluster 3: P ¼ 0; event cluster 4: P ¼ 0). Test-
ing for contributions of individual SC modules confirmed signifi-
cant coalignment of specific modules with cofluctuation patterns
(all P < 0.01, uncorrected; event cluster 1: M3, P ¼ 2.1 � 10-4;
M7, P ¼ 0.0035; event cluster 2: M2, P ¼ 1.2 � 10�4; event clus-
ter 3: M4, P ¼ 9.8 � 10�4; M6, P ¼ 0.0056; M9 P ¼ 2.4 � 10�4;
event cluster 4: M2, P ¼ 5.5 � 10�4; M7, P ¼ 0.0032).

Discussion
Here, we show that computational models of large-scale
brain dynamics exhibit brief, intermittent, high-amplitude
bursts of edge cofluctuations (events) across broad ranges of
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coupling and conduction velocity parameters. Simulated
events exhibit several characteristics that match those
observed in empirical data, including a strong similarity to
full-length FC and recurrence across time. We find that sim-
ulated events display brain-wide patterns of cofluctuation
that are significantly aligned with network communities

(consensus modules) present in the underlying SC. This rela-
tionship is reproduced in simulations that employ synthetic
SC with defined modular architecture, is absent in random-
ized SC in which modular structure has been degraded, and
is replicated in an independent model implementation. Over-
all, our study suggests a significant role for SC network

Fig. 2. SC and FC. (A) Empirical data. (Left) SC consensus weight matrix; (Middle) SC connection lengths (conduction delays); (Right) FC, average of 95
subjects, four runs each; all panels shown in FC module node order (FC modules marked at Left, cf. SI Appendix, Fig. 1A). (B) SC consensus and simulated
FC. (Left) Coclassification (agreement) matrix derived from the consensus SC matrix; (Right) simulated FC, average of 12 runs, k¼ 280; both panels shown
in SC consensus module node order (SC consensus modules marked at Left, cf. SI Appendix, Fig. 1B). (Right) Scatter plot showing comparison of empirical
and simulated FC (orange: all node pairs; blue: intrahemispheric node pairs only). (C) (Left) Similarity (Pearson correlation) between empirical and simu-
lated FC across all values of k; (Middle) Spearman’s rho between empirical SC weights (Kij) and simulated FC; (Right) similarity (Pearson correlation)
between empirical SC coclassification matrix and simulated FC. All panels in C show data for the full range of the coupling parameter k, with orange dots
indicating full-brain coverage (both cerebral hemispheres and their interconnections) and blue dots indicating intrahemispheric connections only. Large
dots indicate data for k¼ 280 (stippled vertical lines) averaged over 12 runs.

4 of 11 j PNAS Pope et al.
https://doi.org/10.1073/pnas.2109380118 Modular origins of high-amplitude cofluctuations in fine-scale functional connectivity dynamics

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

In
di

an
a 

U
ni

ve
rs

ity
 L

ib
ra

rie
s o

n 
Se

pt
em

be
r 1

3,
 2

02
2 

fr
om

 IP
 a

dd
re

ss
 1

29
.7

9.
19

7.
12

5.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109380118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109380118/-/DCSupplemental


modules in driving and shaping brief burst-like events that
occur in fine-scale FC dynamics.

Recent studies have demonstrated that cofluctuations of spon-
taneous brain activity as measured with fMRI exhibit brief, inter-
mittent, and high-amplitude events (18–20, 22). These patterns
contribute disproportionately to time-averaged FC, contain
participant-specific information, and amplify brain–behavior cor-
relations. However, their origins are poorly understood. We

address this question using computational models, which have a
long-established history as generative models of resting-state FC
and FC dynamics (34). Prior work has shown that their ability to
match empirical data depends on the topology and weights of the
underlying coupling matrix (31), noisy or chaotic dynamics, and
time delays (33), as well as the lack of fixed attractors, giving rise
to metastable dynamics and forming a rich repertoire of func-
tional patterns (11). Here, we build on this body of work by

Fig. 3. Events in simulated edge time series. (A) Number of events (Left) and event amplitudes (RSS; Right) over the full range of k. Application of the
null model for event detection suppresses low RSS-amplitude peaks. (B) Example of simulated edge time series (k¼ 280) and RSS amplitudes, with event
peaks surviving null model comparison indicated by inverted triangles.

Fig. 4. Properties of simulated edge time series. (A) Comparison of FC components derived from the top 10% (“high RSS,” blue dots) or bottom 10%
(“low RSS,” orange dots) RSS frames. (Left) Similarity (Pearson correlation) with full FC; (Right) modularity. Both panels show data across the full range of
k. (B) Example FC matrix (all frames, Top; cf. Fig. 2) and FC components (high-RSS frames, Middle; low-RSS frames, Bottom). Data averaged over 12 simula-
tion runs of KS model at k¼ 280. (C) Similarity of frame sets sampled during high-/low-RSS epochs and during events. (Left) Mean similarity (Pearson cor-
relation) of frames within high-/low-RSS sets (110 frames each). Red dots indicate values of k for which significant differences between distributions were
detected (Wilcoxon rank-sum test, one-sided, P < 0:0001, uncorrected). (Right) Mean similarity (Pearson correlation) of event frames compared to mean
of 250 randomly offset frame sets. Red dots indicate values of k with P < 0:01 (uncorrected). (D) Example plot of similarity of edge time series (Pearson
correlation) across all frames within one simulation run (KS model, k¼ 280; Left: frames in original time sequence; Right: frames sorted by RSS amplitude).
(E) (Left) Correlation of the largest PC (PC1) of the edge time series with the RSS amplitude across all values of k. (Right) Participation ratio (dimensionality)
computed from the FC covariance matrix. Stippled vertical line marks k¼ 280 in panels A, C, and E.
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extending model performance and analysis to fine temporal scales
in BOLD time series. We show that model dynamic matches sev-
eral recently described characteristics of empirically observed
BOLD dynamics, including the recurrence of high-amplitude
events in edge time series that drive full FC. Importantly, analyz-
ing simulated FC with respect to the SC shows that specific pat-
terns recurring in high-amplitude events are aligned with modu-
lar boundaries in the underlying SC matrix, suggesting a
mechanistic basis of events in the topology of structural modules.
This finding, in conjunction with the fact that events drive aver-
age long-time FC, may account for the observation that modules
form a consistent “core structure” in FC (46). Previous work has
implicated “cluster synchronization” in patterning of FC (35)
and in temporal fluctuations related to near-critical and metasta-
ble dynamics (47). A recent model (48) adopted the FC decom-
position approach to track fine-scale cofluctuation patterns link-
ing them to neuronal cascades and nodal network structure. The
model demonstrated that node centrality highly influences the
node’s likelihood to participate in coordinated activations that
may, in turn, spread within structurally densely connected clus-
ters or communities. These findings are compatible with the role,
proposed in the present study, of structural modules in shaping
spatially organized coactivity and burst-like events.

The relationship between modular network topology and
synchrony has been extensively investigated in the complex sys-
tems and networks literature (49–54). In agreement with previ-
ous simulation studies, our model produced metastable

dynamics and partial synchronization (as measured by the Kur-
amoto order parameter), which has been shown to manifest
within clusters contained in the connectivity matrix (47).
Applied to brain models, previous work demonstrated that slow
fluctuations in modular FC topology on slower time scales
(tens of seconds) depended on the integrity of structural mod-
ules (31) and that modular metastable states were driven by
“cluster synchronization” (36). Our findings suggest that these
structural factors can act on fast timescales, yielding burst-like
events that carry signatures of SC. At intermediate coupling,
networks with a strong community structure are conducive to
fast, local synchronization but not global synchronization (52).
Additionally, when moving toward full synchronization, smaller,
more highly connected communities synchronize before larger
communities, creating a mechanism by which network structure
may impose different timescales on the system (55, 56). More
generally, the finding that events are related to synchronization
along the underlying modular structure resonates with this
larger body of literature and supports the notion that the
brain’s modular network architecture facilitates communication
within modules while preventing global synchronization.

What causes events to occur? In simulations, we can confi-
dently exclude scanner artifacts, spurious physiological signals,
head movement, or variations in internal state as drivers of
events. Indeed, analysis of empirical data has not found any sig-
nificant correlation of timings or frequencies of events with nui-
sance variables related to acquisition, motion, or physiology

Fig. 5. Event clusters and relation to SC consensus modules. (A) Clustered correlation matrix of event patterns (k = 280, 161 events). Matrix is reordered
to show event clusters from largest to smallest. The top four clusters are delineated and contain 37, 30, 26, and 15 events, respectively. (B) Means of the
events clusters (cluster centroids) displayed in matrix form, with nodes arranged in SC consensus order (cf. Fig. 2). (C) Mean time courses of RMS, com-
puted for each SC consensus module, with time courses aligned to the event peak for each of the four main event clusters (means of 37, 30, 26, and 15
events, respectively). Time courses show mean cofluctuation amplitude for each SC consensus module.
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(18). Notably, in both KS and NMM models, the origin of
events does not require a specific “built-in” driving mechanism
that triggers events at specific times. This observation is remi-
niscent of the emergence of complex dynamics on multiple
timescales in high-dimensional neuronal systems (57). While no
forcing mechanisms are needed for events to occur, they are
shown to depend critically on the topology of the SC matrix.
We demonstrate that events are enabled by the presence of
modular SC and that the modular topology is imprinted in the
specific dynamic patterns that manifest as events. We also
emphasize that the model as presented here is implemented as
a fully deterministic high-dimensional system of coupled differ-
ential equations that capture how elementary (microscale) pro-
cesses give rise to emergent and collective (macroscale) system
behavior. While many stochastic processes necessarily contain
extremal events, our model is generative in a mechanistic,
rather than purely stochastic, sense: observed fluctuations are
localized in space and time, and their origin is rooted in the
structure of the underlying anatomical network.

Our focus has been on extremal events, sharp excursions of
global cofluctuation amplitudes that drive FC. The cognitive
relevance of such events is a current subject of investigation,
with studies suggesting that fMRI event profiles carry subject-
specific information (22). Intriguing links may emerge between
fMRI events and transient phase-locking of BOLD signals (58)
and activity pulses (59), stereotypic patterns of propagation of
intrinsic activity (60), and brain-wide traveling waves (61, 62). If
events do support adaptive function, then we may speculate
that specific network topological features have been selected to
facilitate events. More work is needed to determine whether
events have adaptive roles in promoting specific neuronal func-
tions. For example, the brief and system-wide nature of events
suggests relations to episodic synchronous neuronal activity,
such as avalanches (63) or ripples (64, 65), that involve large
multiregional neuronal populations and may facilitate distribu-
tion of packets of neural information. The generative model
furnished in this article may prove useful for examining and
testing these and other hypotheses.

Recent research (66) has shown that many characteristics of
the edge time series, including high-amplitude cofluctuations,
can be reproduced with a null model using independently and
identically distributed Gaussian random variables derived from
the static node FC (nFC). This is an important contribution to
any work using edge time series and touches on the present
work in two important ways. First, the authors take an analytic
approach, working backward from the covariance (FC) matrix.
Our generative model is complementary, as it suggests a spe-
cific structural mechanism by which high-amplitude cofluctua-
tions might occur and thus goes beyond describing statistical
characteristics of the nFC. While the Gaussian null model
requires prior knowledge of the nFC, our model generates this
connectivity from the underlying structure, capturing how fluc-
tuations across time accumulate to yield the observed nFC. Sec-
ond, the authors suggest that the size of the cofluctuations is
directly related to the eigenspectrum of the FC matrix, with
larger modules allowing for larger eigenvalues and so produc-
ing cofluctuations of the greatest amplitude. Though this rea-
soning is not a causal chain, it complements our findings so far
as the structural modules and the functional modules are highly
correlated. As disrupting modules in the SC will disrupt both
functional modules and events in our generative model, dis-
rupting empirical functional modules will likewise disrupt
events in the Gaussian null model. Broadly, we view ref. 66 as
supporting some of our key findings, since they show that brief
fluctuations are an intrinsic part of the RSS time series and
that FC modules are analytically related to these fluctuations.

Limitations of the study should be discussed. Both model
implementations documented in this article represent major

simplifications of real anatomy and physiology. The models do
not include subcortical regions and are carried out on connec-
tivity data that is processed into a specific nodal parcellation at
intermediate spatial resolution (200 nodes). Finer spatial scales
of connectivity, more realistic dynamics, inclusion of region-
specific model parameters (67), the addition of neuromodula-
tory systems (68), individualized connectomes, and geometric
embedding of connectivity (69) may improve model perfor-
mance and match with empirical data. These limitations can be
addressed in more accurate and data-driven multiscale imple-
mentations (e.g., linking microscale anatomy and physiology to
large-scale population responses). Future work may also
include implementation of more conservative null models for
edge time series, for example by preserving both the auto- and
cross-correlation linear statistics while preserving higher-order
statistics such as irregular joint desynchronization (70).

Additional directions for future work, beyond increasing
model realism, include application to task-driven dynamics,
extrinsic perturbations, and the analysis of individual differ-
ences. Further understanding of the possible structural origins
of events in empirical data may come from comparing empirical
event patterns to SC modules. Because models give access not
only to observed BOLD patterns but also to the underlying
(phase-oscillator or neural population) time series sampled at
millisecond resolution, fine-scale BOLD dynamics could be
traced to fast fluctuations in synchrony at the microscale. These
directions may provide additional valuable insights into the net-
work basis of neuron-level dynamics that drive and shape FC.

Methods
Dataset and Acquisition. All empirical data used for this study were derived
from the set of 100 unrelated subjects acquired by the HCP (71). Informed con-
sent was obtained from all participants, and all study protocols and procedures
were approved by the Washington University Institutional Review Board.
A detailed description of HCP data acquisition protocols can be found in refs.
71 and 72. All data were collected on a Siemens 3T Connectom Skyra equipped
with a 32-channel head coil. SC was derived from diffusion imaging and trac-
tography. Briefly, subjects underwent two diffusion MRI scans, which were
acquired with a spin-echo planar imaging sequence (repetition time [TR] =
5520 ms, echo time [TE] = 89.5 ms, flip angle = 78°, 1.25 mm isotropic voxel res-
olution, b-values = 1,000, 2,000, 3,000 s/mm2, 90 diffusion weighed volumes for
each shell, 18 b = 0 volumes). These two scans were taken with opposite phase
encoding directions and averaged. FC was derived from resting-state functional
MRI (rs-fMRI), acquired with a gradient-echo echo-planar imaging (EPI)
sequence over four scans on two separate days (scan duration: 14:33 min; eyes
open). Main acquisition parameters were TR = 720 ms, TE = 33.1ms, flip angle
of 52°, 2 mm isotropic voxel resolution, and a multiband factor of 8. Both SC
and FC were mapped to regions (nodes) using a common parcellation scheme
[n = 200 nodes in cerebral cortex (42)], mapped to canonical resting state net-
works derived from ref. 9.

For inclusion in the present study, we selected a subset of 95 (out of 100
total) subjects. Subjects were considered for exclusion based on the mean and
mean absolute deviation of the relative root mean square (RMS) motion across
either four resting-state MRI scans or one diffusion MRI scan, resulting in four
summary motion measures. If a subject exceeded 1.5 times the interquartile
range (in the adverse direction) of the measurement distribution in two or
more of thesemeasures, the subject was excluded. These exclusion criteria were
established before the current study. Four subjects were excluded based on
these criteria. One subject was excluded for software error during diffusionMRI
processing. The remaining subset of 95 subjects had the following demographic
characteristics: 56% female, mean age= 29.296 3.66, age range = 22 to 36.

Structural Preprocessing. Diffusion images were minimally preprocessed
according to the description provided in ref. 40. Briefly, these data were nor-
malized to the mean b0 image, corrected for EPI, eddy current, and gradient
nonlinearity distortions, corrected for motion, and aligned to the subject ana-
tomical space using a boundary-based registration (73). In addition to this
minimal preprocessing, images were corrected for intensity nonuniformity
with N4BiasFieldCorrection (74). FSL’s (FMRIB Software Library) dtifit was used
to obtain scalarmaps of fractional anisotropy, mean diffusivity, andmean kur-
tosis. The Dipy toolbox (version 1.1) (75) was used to fit a multishell,
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multitissue constrained spherical deconvolution (76) to the diffusion data
with a spherical harmonics order of 8, using tissue maps estimated with FSL’s
fast (77). Tractography was performed using Dipy’s Local Tracking module.
Multiple instances of probabilistic tractography were run per subject (78),
varying the step size and maximum turning angle of the algorithm. Tractog-
raphy was run at step sizes of 0.25 mm, 0.4 mm, 0.5 mm, 0.6 mm, and 0.75
mm with the maximum turning angle set to 20°. Additionally, tractography
was run at maximum turning angles of 10°, 16°, 24°, and 30° with the step
size set to 0.5 mm. For each instance of tractography, streamlines were ran-
domly seeded three times within each voxel of a white matter mask, retained
if longer than 10mm and with valid endpoints, following Dipy’s implementa-
tion of anatomically constrained tractography (79), and errant streamlines
were filtered based on the cluster confidence index (80).

The number of streamlines between nodes of the volumetric parcellations
was recorded for each tractography instance. Fractional anisotropy, mean dif-
fusivity, and mean kurtosis maps were sampled from the middle 80% of each
streamline’s path, which were averaged within the streamline and then across
all streamlines between each pair of nodes. Streamline counts were normal-
ized by dividing the count between nodes by the geometric average volume of
the nodes. Since tractography was run nine times per subject, edge values had
to be collapsed across runs. To do this, the weighted mean was taken, with
weights based on the proportion of total streamlines at that edge. This opera-
tion biases edge weights toward larger values, which reflect tractography
instances better parameterized to estimate the geometry of each connection.

A single group-averaged SCmatrix was constructed by forming a consensus
average preserving the length distribution of fiber tracts as well as matching
the global connection density to the mean over all individual subjects (43).
The resulting matrix (200 nodes, 6,040 connections, 30.4% density, and 72.4
mm mean connection length) was used as a coupling matrix for the simula-
tions. In addition to these group averages, some simulations used SC matrices
estimated on data from single participants.

Functional Preprocessing. Minimal preprocessing of rs-fMRI data included the
following steps (72): 1) distortion, susceptibility, andmotion correction; 2) reg-
istration to subjects’ respective T1-weighted data; 3) bias and intensity nor-
malization; 4) projection onto the 32k_fs_LR mesh; and 5) alignment to
common space with a multimodal surface registration (81). This preprocessing
resulted in ICA+FIX time series in the CIFTI grayordinate coordinate system.
Additional preprocessing steps included: 6) global signal regression and 7)
detrending and band pass filtering (0.008 to 0.08 Hz) (82). Following confound
regression and filtering, the first and last 50 frames of the time series were
discarded, resulting in a final scan length of 13.2min (1,100 frames).

For comparing simulated to empirical FC, a single group-averaged FC
matrix was derived by computing the mean FC over all 95 subjects and all four
scans. When reporting correlations of full FC against other metrics, raw FC
values werefirst passed through the Fisher z-transform.

SC Consensus Clusters. Human connectome SC displays modular organization.
To detect network communities in our SC consensus matrix, we employed
multiresolution consensus clustering (83), which allowed us to capture com-
munities across multiple scales. The algorithm for modularity maximization
was based on the Louvainmethod, employed a spatial resolution parameter γ,
and operated in three stages. First, a coarse sweep (1,000 steps) of the resolu-
tion parameter established outer bounds that yielded between two and N
communities. Second, a finer sweep (10,000 steps) over this range collected
partitions across the full range. These partitions were aggregated into a
coclassification matrix, followed by subtracting a null model (constant across
all node pairs) corresponding to an expected level of coclassification based on
number and size of modules (83). Finally, this null-adjusted coclassification
matrix was reclustered under a variable consensus threshold τ (84). Resulting
consensus partitions for different values of τ were collected. The most fre-
quently sampled consensus partition contained 10 modules and was selected
for subsequent analysis (SI Appendix, Fig. 1).

KS Model Implementation. We implemented a version of the model that gen-
erates fast oscillatory dynamics and incorporates a coupling structure consist-
ing of weighted undirected connections and the corresponding time delays,
encoded in a phase delay (frustration) matrix. The fundamental equation of
this KS model (Fig. 1) is given as

dθi
dt

¼ 2πf þ k ∑
N

j¼1
Kij sinðθjðt � dijÞ � θiðtÞÞ:

The global coupling parameter k was systematically varied. The mean natural
frequency f was set to 40 Hz, with variability at each node (SD = 0.1 Hz). The
coupling matrix Kij corresponded, in most simulations, to the empirical SC

consensus matrix. A global scaling constant was applied to normalize Kij for
use in the simulations. The matrix of phase delays was derived from the physi-
cal lengths of each SC connection, computed as the group-averaged mean of
its constituent streamlines, expressed in millimeters. Each SC connection
length was converted to a time delay dij computed from a constant conduc-
tion velocity v. Most simulations in the paper use v ¼ 12 ms, resulting in a
mean time delay of 6:1 ms, averaged over all connections in Kij. The conduc-
tion velocity was varied between v ¼ 3 ms and v ¼ 24 ms, a range that was
systematically explored in prior work (36) and roughly corresponds to the
plausible physiological range for cortico-cortical projections in primates (45).
Because the unique nature of oscillators allows time to be expressed as phase,
time delays can be introduced without the extra computational load of using
delay differential equations. Accordingly, each time delay was converted to a
phase delay aij using the average intrinsic frequency to calculate the amount
of phase change expected per unit time. It should be noted that this method
is only valid for phase delays less than half a rotation. At an average intrinsic
frequency of 40 Hz, the phase delay is greater than half a rotation on less than
0.05% of all connections, with no discernable impact on RSS events or system
dynamics. Simulations have been tested for a range of frequencies from 15 to
50 Hz, and the core phenomenon of events in RSS time series is observed over
all frequencies in this range (SI Appendix, Fig. 2B). Notably, at slower intrinsic
frequencies, all connections are less than half a rotation, further confirm-
ing that the very few above that mark at 40 Hz are negligible. We have
chosen 40 Hz as the main frequency for analysis following the example of
previous literature that both uses this frequency for simulation (85) and
demonstrates population activity in this range (41). No noise was added to
the phase time series.

The system of N coupled equations was integrated (using MATLAB’s
ode45 solver) at 1 ms time resolution, based on an implementation of the
KS model in the Brain Dynamics Toolbox (86). For each simulation, the ini-
tial condition consisted of phases drawn randomly and uniformly
between ½0, 2π�. Simulations proceeded for 812 s, which resulted, after
removal of an initial 20-s transient, in 792 s of simulated time. Synchroni-
zation behavior of the system was tracked by computing the global order
parameter

RðtÞ ¼ 1
N

∑
N

n¼1
eiθnðtÞ:

RðtÞ quantifies the global phase synchronization, with RðtÞ ¼ 0 indicting com-
plete asynchrony and RðtÞ ¼ 1 indicating complete synchrony. After convert-
ing phases into signal amplitudes sinðθðtÞ (Fig. 1C), the time series were
convolved with a canonical HRF (ref. 86; Fig. 1D) resulting in synthetic BOLD
time series (Fig. 1E). These were low-pass filtered [0.25 Hz (36)] and down-
sampled at intervals of 720 ms, corresponding to the empirical TR in rs-fMRI
acquisitions, thus yielding an ½N × T� simulated BOLD activity matrix, with T =
1,100 time points (“frames”). Finally, the global mean of these BOLD time
series was regressed out, and the residuals were retained for computing edge
time series and FC (Pearson correlation).

NMM Implementation. To demonstrate the robustness of our principal find-
ings, we configured a second dynamic model closely based on earlier work
(31). Briefly, the NMM equations were adopted from a conductance-based
model of neuronal dynamics designed to capture local population activity.
Local populations of densely interconnected inhibitory and excitatory neurons,
whose behaviors are determined by voltage- and ligand-gated membrane
channels, were placed at each node, and the SCmatrix provided internode cou-
plings between excitatory neuronal populations. Parameter values were identi-
cal to those reported in ref. 31. No time delays were implemented, nor was sto-
chastic noise added to the voltage time series. While other work has shown
contributions made by time delays and noise to BOLD dynamics (33), here, we
were interested in whether a minimal set of ingredients (the SC weights and
their modular network structure) could yield realistic event-like patterns. Only
the global coupling parameter kwas varied across runs.

Following numerical integration of the system of Nx3 coupled differential
equations (using MATLAB’s ode45 solver) and removal of a 20-s initial tran-
sient, the remaining time series were down-sampled and converted to 792 s
and 1,100 frames of synthetic BOLD data, as described for the KS model. All
analyses were carried out identically for BOLD time series derived from both
KS and NMMmodels.

Edge Time Series and Cofluctuation Amplitude. Simulated BOLD time series
were processed into edge time series as previously described for empirical
fMRI data (18–20, 22). Nodal BOLD signals were z-scored, and edge time series
(one for each node pair) were computed as the element-wise product of the
respective node time series:
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EijðtÞ ¼ ziðtÞ � zjðtÞ:
The mean of each edge time series is exactly equal to the corresponding Pear-

son correlation (FC) [i.e., FCij ¼ 1
T�1∑

T
t¼1EijðtÞ]. Edge time series, representing

edge cofluctuations, formed a ½K × T� matrix, with K ¼ 19,900 (for N¼ 200)
and T ¼ 1,100. The system-wide amplitude of all cofluctuations was com-
puted as the RSS or, in cases in which different-sized node sets were com-
pared, as the RMS.

Prior work in empirical fMRI data established that FC components derived
from high RSS frames have higher similarity to full FC and have higher modu-
larity than those derived from low-RSS frames (18). We computed FC compo-
nents for subsets of frames corresponding to the top and bottom deciles of
RSS (“high” and “low” RSS) by taking the means across the respective subsam-
ples of the edge time series. Modularity was computed on the resulting FC
component matrix by applying modularity maximization (Louvain algorithm)
adapted for use with matrices that contain both positive and negative edges
(87). ThemodularitymetricQ� summed contributions by positive and negative
edges as

Q� ¼ 1
vþ

∑
i, j
ðwþ

i,j � eþi,jÞδci ,cj �
1

vþ þ v�
∑
i, j
ðw�

i,j � e�i,jÞδci ,cj ,

where δci ,cj ¼ 1 if nodes i and j are within the same community and δci ,cj ¼ 0
otherwise. The positive and negative superscripts to the edge weight wi,j

between nodes i and j are used for separating positive and negative edge
weights, where wþ

i,j ¼wi,j and w�
i,j ¼ 0 if wi,j > 0 andwþ

i,j ¼ 0 and w�
i,j ¼�wi,j

otherwise. The term e6i,j ¼ s6i s
6
j =v

6, where s6i ¼∑jw
6
i,j and v6 ¼∑i,jw

6
i,j , is the

expected positive or negative edge weight between nodes i and j if edges
were randomly distributed. All edges were retained, and the value of the
modularity metric was computed while setting the resolution parameter to
the default of γ ¼ 1. Very similar results were obtained for other (higher and
lower) settings of γ.

Another previous finding indicated that frames obtained when RSS is high
weremore similar (stereotypic) across time than low-RSS frames (18, 20, 22). In
the simulation data, two related tests were performed to examine the similar-
ity of high-/low-RSS frames as well as the similarity of event frames versus a
time-shifted null. High-/low-RSS frame sets were extracted and the distribu-
tion of all pairwise Pearson correlations among their constituent edge cofluc-
tuation patterns was compared (Wilcoxon rank-sum test for equal medians,
one-tailed, P < 0:0001, uncorrected). Event peaks were extracted and the set
of all Pearson correlations among these events was compared against 250 sets
computed from an equal number of randomly shifted time points, with off-
sets chosen uniformly from the interval ½�1100 1100�. The mean correlation of
the actual events was compared against these 250 random values and consid-
ered significant if P < 0:01 (uncorrected; actual value exceeds null model at
least 247/250 times).

Two additional analyses delivered insights on the relation of edge
time series patterns and RSS as well as on the dimensionality of the edge
dynamics. First, performing PCA on edge time series yields a series of PCs.
The correlation between the scores of the largest PC (PC1; taken to repre-
sent its expression over time) and the RSS is computed as Spearman’s ρ.
Second, the eigen-decomposition of the covariance matrix of the neural
activity (BOLD time series) yields a series of eigenvalues fλig from which
the participation ratio (PR) can be computed as a measure of the dimen-
sionality of the system (88):

PR¼ ð∑ iλiÞ2
∑ iλi

2 :

The value of PR is highly correlated with the cumulative explained variance of
the largest PCs of a PCA decomposition of the BOLD covariancematrix.

Event Detection and Statistics. Peaks in the RSS statistic that exceed a statisti-
cal criterion are termed events. To determine statistical significance, we per-
formed nonparametric permutation tests on each model run (ref. 22; Fig. 1G).
BOLD time series were randomly shifted (using MATLAB’s circshift operator),
each separately with an offset chosen uniformly from the interval
½�1100 1100�, thus approximately preserving each node’s autocorrelation
while randomizing the cross-correlation between nodes. This null model was
applied 1,000 times to each model run, and edge time series and RSS were
computed for each instance. Time points in the original time series for which
the empirically observed RSS amplitude exceeded all RSS values for all null
model instantiations (P < 0:001) were retained. The intersection between all
peaks in the original RSS and these time points constituted significant events
in the model run. Event amplitudes corresponded to the RSS value at the time
each such peaks occurred.

At very low coupling (k ≤ 35 in the KS model), we observed occasional
excursions in single-node time series, which resulted in sharply fluctuating
BOLD signal amplitudes and extremal z-scores. Extreme z-scores in single or
very few nodes can result in sharp RSS spikes at the system level due to the
transitive and multiplicative nature of the edge time series calculation. This
phenomenon did not match characteristics of events observed in empirical
fMRI data. Hence, RSS peaks that coincided with excursions of at least one
BOLD time series above or below z¼64:5 (the 99.99th percentile of empiri-
cally observed BOLD signal amplitudes) were excluded from the analysis. Such
peaks occurred infrequently (at most once per 1,100 frames) at couplings
k > 35.

Event Clustering. Once statistically valid events were detected, their corre-
sponding edge cofluctuation patterns were extracted and aggregated across
multiple runs (k¼ 280 for the KS model; k¼ 0:175 for the NMM model; 12
runs each). The Pearson correlation matrix for these event patterns was clus-
tered using a version of modularity maximization (employing the Potts
model) and multiresolution consensus clustering (83). The resolution param-
eter was stepped through a range of 10,000 values covering modular parti-
tions yielding between two and N modules. All partitions were aggregated
into a single coclassification matrix, which was scaled between ½0 1� followed
by subtraction of the analytic null (83) and subjected to consensus clustering
with τ¼ 0.

The four largest clusters were retained for subsequent analyses (labeled
event clusters 1 through 4). A single mean edge cofluctuation pattern (cluster
centroid) was computed for each cluster. Applying the SC consensus module
partition to the four centroids yields a representation of how event-related
cofluctuations distribute relative to the SC. To test whether mean cofluctua-
tions within each of the structural modules were significantly above or below
chance, the modular components of edge cofluctuations were recomputed
using the spin test (44), which rotates the structural modular partition 100,000
times on the cortical surface. This procedure preserves not only the number
but also (approximately) the spatial proximity of nodes contained in the origi-
nal SC consensus modules.

SC Randomization and Synthetic SC. The SC consensus matrix was randomized
using a rewiring algorithm (89) that preserved the degree sequence exactly
and the strength sequence approximately. Connection lengths (delays) were
preserved at each connection such that the connection weight/delay relation-
ship was retained. The resulting randomizedmatrix matched the SC consensus
in all summary statistics pertaining to weight or delays while comprising a
globally randomized architecture. The modular architecture, as revealed
through multiscale consensus clustering (SI Appendix, Fig. 3), was signifi-
cantly muted.

A synthetic SC matrix was constructed such that the modular arrangement
of the connections was predetermined (four modules in the case of the matrix
displayed in SI Appendix, Fig. 4) while retaining some summary statistics of
the empirical SC consensus matrix. Specifically, the synthetic matrix approxi-
mately (maximal deviation less than 0.1%) retained connection density, total
sum of connection weights, mean connection weight, and mean connection
length. Weights and lengths were inversely related, with the strongest
weights and shortest lengths assigned to within-module connections. Simula-
tion parameters (e.g., intrinsic frequency and conduction velocity) matched
those employed for simulations with the empirical SC matrix. The matrix was
used in KS model simulations with a rescaled coupling parameter of k¼ 25.
This rescaling ensured that the global coupling strength provided by the syn-
thetic SC matrix approximately matched that provided by the empirical SC
consensus at k¼ 280.

Data Availability. Data and code, including a package to carry out simulations
of the KS model, have been deposited in GitHub: https://github.com/brain-
networks/KSmodel_fMRIdynamics.
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