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The interaction between brain regions changes over time, which can be characterized using time-varying func-
tional connectivity (tvFC). The common approach to estimate tvFC uses sliding windows and offers limited tem-
poral resolution. An alternative method is to use the recently proposed edge-centric approach, which enables
the tracking of moment-to-moment changes in co-fluctuation patterns between pairs of brain regions. Here, we
first examined the dynamic features of edge time series and compared them to those in the sliding window tvFC
(sw-tvFC). Then, we used edge time series to compare subjects with autism spectrum disorder (ASD) and healthy
controls (CN). Our results indicate that relative to sw-tvFC, edge time series captured rapid and bursty network-
level fluctuations that synchronize across subjects during movie-watching. The results from the second part of the
study suggested that the magnitude of peak amplitude in the collective co-fluctuations of brain regions (estimated
as root sum square (RSS) of edge time series) is similar in CN and ASD. However, the trough-to-trough duration
in RSS signal is greater in ASD, compared to CN. Furthermore, an edge-wise comparison of high-amplitude co-
fluctuations showed that the within-network edges exhibited greater magnitude fluctuations in CN. Our findings
suggest that high-amplitude co-fluctuations captured by edge time series provide details about the disruption of

functional brain dynamics that could potentially be used in developing new biomarkers of mental disorders.

1. Introduction

The human brain is fundamentally a complex system and can be
modeled as a network of functionally connected brain regions (Bassett
and Sporns, 2017; Bullmore and Sporns, 2009). In practice, func-
tional connectivity (FC) is estimated as the Pearson correlation of
brain regions’ functional magnetic resonance imaging (fMRI) blood oxy-
gen level-dependent (BOLD) time courses, often recorded in the ab-
sence of explicit task instructions, i.e. the resting state (Friston, 1994;
Horwitz, 2003). A growing number of studies have used FC to link
inter-individual variation in brain network organization with cognition
(Shirer et al., 2012), development (Gu et al., 2015), and disease (Fornito
et al., 2015).

In most applications, FC is estimated using data from an entire
scan session, resulting in a single connectivity matrix whose weights
express the average connection strength between pairs of brain re-
gions (Rogers et al., 2007). However, the brain’s macro-scale functional

organization varies over shorter timescales on the order of seconds
(Gao et al., 2020; Hutchison et al., 2013; Zalesky et al., 2014). To cap-
ture these changes, many studies have estimated FC over shorter inter-
vals using dynamic or time-varying FC (tvFC) (Lurie et al., 2020). In
most cases, tvFC is estimated using a sliding window method. In this
approach, FC is estimated using only frames that fall within a window
of fixed duration. The window is advanced by some amount, and the
process repeated. In the end, the result is a sequence of FC estimates.
Sliding window time-varying FC (sw-tvFC) has been used widely in
order to characterize time-varying changes in brain network organiza-
tion in general, but also to study how fluctuations in brain network
architecture accompany cognitive processes across time (Gonzalez-
Castillo and Bandettini, 2018; Kucyi and Davis, 2014). In addition, tvFC
has proven useful for generating novel biomarkers (Barttfeld et al., 2015;
Kucyi and Davis, 2014; Rashid et al., 2014; Scheid et al., 2021).
Despite its success and continued application, sliding-window meth-
ods have a number of limitations. First, they require users to choose a
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Fig. 1. The general procedure for constructing sliding window time varying FC (sw-tvFC) networks and edge time series (ETS). (a) ETS are calculated as the dot
product of activity of two nodes, while in the sw-tvFC, first time series is divided into equal parts (windows) and edges are estimated by calculating the correlation
between time samples within each window. (b) After calculating ETS for all pairs of brain regions, we obtain [w x T1 matrix. For ETS, this matrix provides
detailed picture of the moment-to-moment co-fluctuations between all pairs of brain regions, whereas for sw-tvFC, this estimation is blurry due to the windowing
procedure. (c) Whole-brain co-fluctuations can be estimated as root sum square (RSS) of all the edges fluctuations at every given time point. In ETS, the high-amplitude

co-fluctuations are captured more precisely compared to sw-tvFC.

series of parameters, including window duration, shape, and the amount
of overlap between successive windows (Hindriks et al., 2016; Leonardi
and De Ville, 2015; Shakil et al., 2016; Zalesky and Breakspear, 2015).
These decisions are non-trivial and, in general, impact the inferred pat-
terns of connectivity. They can also introduce artifacts into estimates
of time-varying FC, e.g., through aliasing effects. Perhaps most seri-
ous, sliding window methods make it impossible to precisely localize
changes in FC to a specific instant in time. The very nature of a window
means that FC receives contributions from all points within that inter-
val. This limitation can be addressed by alternative approaches such as
kernel-based time varying functional connectivity (e.g., Gaussian ker-
nel) (Faghiri et al., 2021; Iraji et al., 2020) which allows considering
the contribution of neighboring time points to the specific instant in
time. Nevertheless, this approach is not parameter free and is dependent
on the choice of kernel width (variance). Collectively, these limitations
present challenges, both in estimating and interpreting time-varying FC
estimated using sliding window techniques (Iraji et al., 2020; Lurie et al.,
2018).

Recently, we proposed a novel, edge-centric method for estimating
time-varying FC (Esfahlani et al., 2020; Faskowitz et al., 2020). This
method precisely decomposes FC into its framewise contributions, yield-
ing a frame-by-frame account of interregional co-fluctuations across
time, which we refer to as co-fluctuation or edge time series (ETS). A
key feature of this approach is that ETS are estimated without specify-
ing parameters or the need to perform any windowing. Consequently,
many of the limitations associated with sliding window methods are
not applicable. While ETS and sw-tvFC both estimate the time vary-
ing changes of FC, they are two different constructs: one measuring
the instantaneous co-fluctuations between brain regions (ETS) and the
other measuring the interregional correlations between brain regions
(sw-tvFC). Since its introduction, ETS has been used to study individ-
ual differences (Betzel et al., 2021) and the origins of brain systems
(Sporns et al., 2021), and its anatomical underpinnings have been ex-

amined using in silico models (Pope et al., 2021). However, the perfor-
mance of ETS has not been systematically compared with that of sliding
window techniques. Additionally, because edge time series represent a
new construct, their utility for linking brains with behavior remains un-
clear.

Here, we address these gaps in knowledge. In the first section of the
paper, we conduct a systematic comparison of temporal properties of
ETS and sw-tvFC. Our findings show two main features of ETS that can
not be seen in sw-tvFC. First, ETS exhibits rapid and bursty fluctuations
at rest, as evidenced by reduced autocorrelation and more frequent tran-
sitions from one brain state to another. In addition, these co-fluctuations
were synchronized across subjects during movie-watching condition.
Second, collective fluctuations of ETS showed less similarity between
their high and low-amplitude, which was indicated by higher peak am-
plitudes and shorter trough-to-trough duration (number of frames be-
tween two local minima) compared to sw-tvFC. Building on these two
important features of ETS, in the second part of the paper, we studied
differences in the co-fluctuations of brain regions between autism spec-
trum disorder (ASD) and healthy control (CN) subjects during movie-
watching condition. Our findings suggested that overall, the peak am-
plitude of collective co-fluctuations of brain regions is similar in ASD and
CN, however the trough-to-trough duration is greater in ASD. Addition-
ally, a detailed analysis of individual ETS suggested that compared to
ASD, within-network edges showed higher peak co-fluctuations in CN.

2. Results

We applied ETS and sw-tvFC to fMRI data of 29 CN and 23 ASD
subjects that were collected multiple times in resting state and dur-
ing passive movie-watching conditions (Byrge and Kennedy, 2020). The
overall procedures for estimating ETS and sw-tvFC and their differences
are shown in Fig. 1. After estimating ETS and sw-tvFC, first, in Com-
parison of edge time series and sliding window-tvFC, we used data from
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the CN group and compared the properties of ETS with sw-tvFC, in-
cluding whole-brain co-fluctuation dynamics, synchronization of these
co-fluctuations across subjects, and relationship between high and low-
amplitude edge fluctuations. Next, in Edge time series in autism spectrum
disorder, we used ETS to examine differences in the co-fluctuation pat-
terns of brain regions in ASD and CN groups.

2.1. Comparison of edge time series and sliding window-tvFC

2.1.1. Whole-brain co-fluctuation dynamics

To examine differences in the global properties of ETS and sw-tvFC,
we first asked how similar are the whole-brain co-fluctuation patterns
estimated by these two methods? To answer this question, we calcu-
lated ETS and sw-tvFC for every subject based on their resting-state
fMRI BOLD time series. Then we vectorized the complete set of time-
varying edge weights and, after resampling via linear interpolation to
ensure that ETS and sw-tvFC estimates contained the same numbers of
time points, we vectorized the entire edge by time matrix and com-
puted the similarity between methods (Fig. 2(a)). We repeated this pro-
cedure for sw-tvFC constructed using window sizes ranging from 10
to 100 frames in increments of 10 (each frame = 0.813 s). We found
that sw-tvFC and ETS were moderately correlated (r = 0.35; window
size = 20; details for other window sizes can be found in Fig. 2(a))
suggesting that while these two methods broadly capture similar pat-
terns of co-fluctuations, there remains considerable amounts of un-
explained variance. The results for individual scans are available in
Fig. S1.

To better understand why the global correlation between ETS and
sw-tvFC is not stronger and why their correspondence is peaked at an
intermediate window size, we conducted a more detailed examination,
focusing on the role of window length. We hypothesized that two dis-
tinct and competing factors caused the peak correlation to occur at an
intermediate window size. Specifically, we hypothesized that when the
window size was very small, the sw-tvFC would be able to capture fast
fluctuations in connectivity, but due to a relatively small number of
samples, the estimate of connection weights would be inaccurate. Con-
versely, longer windows provide more accurate estimates of connec-
tion weights but at the expense of temporal specificity. To test this,
we systematically varied the duration of windows and found that, for
very short windows, the histogram of connection weights was highly
bimodal for all frames (Fig. 2(b)). This is in contrast to typical connec-
tion weights of ETS, which are unimodal and generally centered around
zero (Fig. 2(b)). This mismatch of distributions likely explains why, for
short windows, ETS and sw-tvFC exhibit a poor correspondence. On the
other hand, as increased the length of windows, the estimated networks
exhibited little variation across time, suggesting they are incapable of
capturing the “burst” dynamics observed in ETS. Collectively, these re-
sults explain both the overall weak correspondence between sw-tvFC
and ETS at the global scale and why the peak similarity occurs at an
intermediate window size (see Fig. S2 for details). We have conducted
a similar comparison between ETS and smoothed-tvFC (using Gaussian
kernel) which is available in Fig. S3.

Next, we asked to what extent there is a memory of previous
network states in sw-tvFC versus ETS. To answer this question, we
used the k-means clustering algorithm to cluster the time frames into
non-overlapping clusters based on the similarity of whole-brain co-
fluctuation patterns at different points in time (Allen et al., 2014; Bart-
tfeld et al., 2015). Since our analysis is conducted at individual sub-
ject level, we conducted our analysis using several k values (see details
for optimal number of k for individual subjects in Fig. S6. Here we re-
port results for k=5 and using subjects from all the scans; results are
qualitatively similar for other values of k shown in Fig. S4). We used
these clusters to estimate the transition probabilities between all pairs of
brain states (example of cluster patterns for one subject using these two
methods are shown in Fig. S7), finding that ETS transitioned from one
brain state to another more frequently than sw-tvFC (s-test, p < 0.001;
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Fig. 2(b); results for individual scans are shown in Fig. S4). This could
be due to the presence of rapid and bursty network-level fluctuations
in ETS expected by reduced averaged autocorrelation and higher rates
of power spectrum density for larger frequencies compared to sw-tvFC
(Figs. S4 and S5).

Collectively, these results suggest that compared to sw-tvFC, ETS
capture distinct patterns of co-fluctuations between brain regions. Our
results also suggest that ETS capture a faster and more “bursty” network
dynamics, in which network states change abruptly, more frequently,
and over faster timescales compared to sw-tvFC. Further, these results
are in line with the hypothesis that the use of sliding windows may in-
duce smoothness in network trajectories across time, possibly obscuring
rapid reconfigurations of the network over short timescales.

2.1.2. Synchronization of the whole-brain co-fluctuation patterns across
subjects

In the previous section, we examined the presence of rapid and
bursty fluctuations in ETS, highlighting this property as one of its
main ways it differs from sw-tvFC. These high-amplitude fluctua-
tions — referred to as “events” in previous papers (Esfahlani et al.,
2020) - are infrequent and, in previous work, were shown to be un-
correlated with in-scanner head motion (Esfahlani et al., 2020; Bet-
zel et al., 2021). Therefore, they may be important in providing in-
sights into the ongoing cognitive processes at rest and movie-watching
conditions.

In this section, we examined how well co-fluctuation patterns cap-
tured by these two methods are synchronized across subjects. To address
this question, we calculated the inter-subject similarity based on the col-
lective co-fluctuations of brain regions during rest and movie-watching
conditions. More specifically, the collective co-fluctuations of brain re-
gions were estimated as the root sum square (RSS) of co-fluctuations
between all pairs of brain regions (edges) at every given time point. We
found that compared to sw-tvFC, the collective co-fluctuation patterns
in ETS (specifically those with high-amplitude) were aligned across sub-
jects during movie-watching condition verus resting state, (Fig. 3(a)).
This was indicated by higher inter-subject similarity in ETS, compared
to sw-tvFC during movie-watching condition (t-test; p < 0.001; Fig. 3(b)
and (c)).

2.1.3. Whole-brain co-fluctuation patterns at peaks and troughs

In the previous section, we demonstrated that ETS provide a syn-
chronized estimation of the co-fluctuation patterns, specifically high-
amplitude ones across subjects which indicates their unique contribu-
tion to the overall connectivity patterns. In this section, we further ex-
amined the role of these high-amplitude co-fluctuations and their dis-
tinction with low-amplitude ones. To do this, we defined measures of
trough-to-trough duration and the peak co-fluctuation amplitude be-
tween two troughs of the RSS signal (Fig. 4(a)) which allows evaluating
the relationship between the high- and low-amplitude co-fluctuations.
We found that, compared to sw-tvFC, ETS exhibited higher peaks and
shorter trough-to-trough duration (s-test, p < 0.001; Fig. 4(c)), which
further indicated that ETS reflects rapid fluctuations over time. More-
over, we calculated the similarity between peaks and troughs as the
correlation coefficient between whole-brain co-fluctuations at peaks and
troughs. Our results suggested that there is a lower similarity between
peaks and trough in terms of collective co-fluctuations in ETS than sw-
tvFC (t-test, p < 0.001; Fig. 4(c)). We have conducted a similar compar-
ison between ETS and smoothed-tvFC (using Gaussian kernel) which is
available in Fig. S9.

2.2. Edge time series in autism spectrum disorder

2.2.1. Edge fluctuations in autism spectrum disorder vs. healthy controls

In the previous section, we discussed differences between ETS and
sw-tvFC in terms of their ability to capture time-varying features of func-
tional brain networks. Our findings suggested the effectiveness of ETS in
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Fig. 2. Relationship between edge time series (ETS) and sliding window-time varying functional connectivity (sw-tvFC). (a) ETS and sw-tvFC are calculated for
every subject in resting state. ETS and sw-tvFC are resampled to ensure they contain the same numbers of time points. Then, the complete set of time-varying edge
weights estimated by these two methods are vectorized and their similarity are computed. Bar plot represents the averaged Pearson correlation between all the
edges in ETS and sw-tvFC. (b) The probability distribution of connection weights in ETS and sw-tvFC. In ETS, the histogram of connection weights is unimodal (each
line represents one subject), while in sw-tvFC (averaged probability distribution across subjects for all scans), for very small windows, the histogram of connection
weights is bimodal and dissimilar of ETS. (c) The state transition of whole-brain co-fluctuations over time. ETS show higher between-state transitions and lower
within-state transitions compared to the sw-tvFC suggesting the presence of high-amplitude co-fluctuations. States at each given time point were defined based on

the whole-brain co-fluctuations.

tracking rapid transitions in the magnitude of collective co-fluctuations,
as evidenced by greater co-fluctuation amplitude and shorter trough-
to-trough duration relative to sw-tvFC. In this section, we used ETS to
examine the collective, i.e. whole-brain, and edge-level co-fluctuations
over time. More specifically, we used the two previously defined mea-
sures of trough-to-trough duration and the peak co-fluctuation ampli-
tude to examine the differences of ASD and CN during passive viewing
of naturalistic movies.

First, we examined differences in collective co-fluctuations of brain
regions between ASD and CN in terms of trough-to-trough duration and
the peak co-fluctuation amplitude. To this end, we calculated the aver-
age trough-to-trough duration and the peak amplitude of the RSS signal
for each subject in both the ASD and CN groups. Our results, as shown
in Fig. 5(a), suggested similar patterns of peak co-fluctuations between
CN and ASD (¢-test, p = 0.97). However, a close examination revealed
subtle distinctions between the two groups. Specifically, we found that

trough-to-trough duration was greater in ASD, compared to CN (¢-test,
p = 0.005; Fig. 5(a)). To ensure that these differences were not driven
by head motion, we conducted a posthoc motion correction analysis
in which we regressed out the mean head motion (e.g., derivative of
in-scanner motion and framewise displacement) from trough-to-trough
duration and the peak co-fluctuation amplitude measures and compared
the obtained residuals between ASD and CN. The results of this analy-
sis were in line with the original findings, suggesting that ASD and CN
are different in terms of the trough-to-trough duration (s test, p = 0.01),
but not in terms of peak amplitude (7 test, p = 0.35; Fig. S11).We have
conducted a similar analysis using the sw-tvFC method (Fig. S10). We
found that, when using data from all-scan sessions, the peak height was
significantly greater in the CN group for all the window sizes (w) ex-
cept w = 10 (s-test; p < 0.05). However, the trough-to-trough duration
was not significantly different between ASD and CN groups for any win-
dow sizes except w = 50. After conducting a posthoc motion correction



F. Zamani Esfahlani, L. Byrge, J. Tanner et al.

Neurolmage 263 (2022) 119591

a b c) ) .
) ETS ; ) Movie 1 Movie 2
Rest Movie 6, e
>200 T P >200 Movie1l ‘MDV!EZ Movie3 Movied 5 . 4
: 2 o] 0.4 =4 T 1 3l
= = { @ 3
2 i 02 ¢ 53 2
g= A g £ 0, 1
100 T 3 5 |
3 @ 5= ¢ 00 § o L N\ j
] @3 £ - o7 00 03
£ ) h
g -0.20 Movie 3 6 Movie 4
! 25 25 = RN 4 - &
i ' x | -
' ; : H : 0.4 .
1007 200 300 2 ; >3 4 A
i Time (Seconds; T i
Time (Seconds) ( ) Subj g 3 ;
o o
Rest sw-tvFC Movie __Movie1 Movie2_Movied Movie 0 1
T s 0.4 500 03 0—5% 00 02 07
0 0 é : Correlation Correlation
o 0.2 )
3 o T3 § ‘AII Scans (Movies)
@ 50 Q@ 3= 007
g g . =ETS
= 023 % = SW-tvFC
30 30 3 3
o s & 0.4 *p<0.001
100" 2 300 =

Time (Windows) Time (Windows)

Subj

Correlation

Fig. 3. Comparison of edge time series (ETS) and sliding window-time varying functional connectivity (sw-tvFC) in identifying consistent co-fluctuation patterns
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where ISS is higher in ETS (p < 0.0001). (c) Shows the distribution of ISS values (elements in the upper diagonal of matrices shown in panel b) for individual movie
scans and all the movie scans together where ETS shows higher ISS compared to sw-tvFC.

analysis and regressing out the mean of head motion variables from
the trough-to-trough duration and peak height measures, the trough-to-
trough duration was only significantly different between ASD and CN
groups using some of the window sizes (20, 40, 50, 90, (¢-test; p < 0.05)).
Overall, the sliding window method was not consistent in capturing the
differences of ASD and CN groups across scans and before and after mo-
tion correction analysis.

Next, we examined the correlation and community structure of peaks
in terms of their spatial similarity (whole-brain co-fluctuations) in ASD
and CN for individual scans at the group level. Specifically, we identified
peak amplitudes in an averaged edge time series across subjects per scan
session. Then we calculated their spatial similarities and clustered them
using a community detection algorithm (i.e., modularity maximization).
We found that there are three clusters in both CN and ASD groups (scan
2) and that overall edges show higher mean peak fluctuations (averaged
amplitudes across time points in each cluster) in CN compared to ASD
(Fig. 5(f) and (g)). The results for other scan sessions are provided in
the supplementary section (Figs. S14-S16).

Finally, we conducted an edge-wise comparison of high-amplitude
co-fluctuations between ASD and CN. Our results showed that the
within-network edges, i.e. those that link nodes belonging to the same
brain system, exhibited greater magnitude fluctuations in CN (z-test,
Padjustea < 0-008, false discovery rate (FDR) = 0.05; Fig. 5(b)-(e)). The
results presented in this section were generated using data from all sub-
jects pooled across all scans. The results for individual scans are avail-
able in the supplementary section (Figs. S12 and S13).

3. Discussion

In this paper, we compared dynamic properties of ETS with the com-
monly used method for estimating tvFC: sliding window analysis. We
conducted our comparisons in several steps including state transition,
co-fluctuation synchrony across subjects, and so on. We found that ETS
capture faster and bursty network dynamics, which is often not feasible
in sw-tvFC due to the blurring effect induced by windowing procedure.
Building on this important feature of ETS, we used ETS to compare co-
fluctuation patterns between ASD and CN groups. We found that at the
whole-brain co-fluctuation level, while CN and ASD show similar levels
of peak amplitude co-fluctuations, ASD shows higher trough-to-trough
duration.

3.1. Edge time series characterize fast and bursty network dynamics

A growing number of studies have modeled time-varying changes in
network structure to study fast changes in network dynamics and link-
ing their features to inter-individual variation in traits, cognition, and
clinical status (Betzel et al., 2016; Cohen, 2018; Liu and Duyn, 2013).
Although many techniques are available for estimating and studying
time-varying networks, the most common is the sliding window method.
This approach, however, requires the user to define several key param-
eters, each of which impact the character of the estimated networks.
Additionally, the use of a sliding window, which includes multiple suc-
cessive samples, prohibits the localization of networks to a specific point
in time.

However, there exists several methods that can be used to partially
address this issue (Li et al., 2021; Liu and Duyn, 2013; Liu et al., 2018).
Among these methods is the recently-proposed “edge time series”. This
method decomposes FC into its exact framewise contributions, gener-
ating an estimate of the co-fluctuation magnitude between node pairs
at each point in time, thereby obviating the need for a sliding window.
Although this method has been used in several papers (Esfahlani et al.,
2020; Sporns et al., 2021; Betzel et al., 2021), which have documented
characteristics not usually reported in sliding window estimates of tvFC,
e.g., bursts of co-activity, no direct comparison of edge time series and
sliding-window tvFC has been carried out.

Our study fills this gap in the literature, measuring several commonly
reported variables in both edge time series and sliding-window tvFC. We
find that, broadly, these two methods yield estimates of time-varying
networks that are globally similar, with the similarity peaking when
sliding-window tvFC is estimated using short (but not the shortest) win-
dow duration. This location of this peak may reflect tradeoffs between
ability to network reconstruction accuracy, which improves with many
samples, and temporal precision, which increases with fewer samples.
We also found that edge time series have a shorter “memory” than sw-
tvFC, demonstrating that not only does temporal autocorrelation decay
to a baseline value faster than sw-tvFC, the baseline itself is established
at a lower level. Finally, we used a common clustering technique to de-
fine network “states” and calculated the probabilities of transitions from
one state to another. We found that recurrent transitions were more
common in sw-tvFC compared to edge time series and that transitions
to other states is more common in edge times series.
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Fig. 4. Peak-trough relationship in the whole-brain co-fluctuation patterns measured by root sum square (RSS) signal. (a) Shows the procedure for calculating peak
amplitude and duration measures in the RSS signal. Troughs are identified as time points where their amplitudes are lower than their two direct neighbors. (b) Shows
an example of peak-trough relationship in one subject. (c¢) Comparing the peak-trough relationship in ETS and sw-tvFC (w = 10-100 frames with increments of 10).

These results were expected and are potentially due to several key
differences in the estimation of time varying changes using the sw-tvFC
and ETS methods. First, in the sw-tvFC method, the strength of func-
tional connectivity between pairs of brain regions is calculated based on
the correlation coefficient using all the samples within every window.
This minimizes the contribution of sharp and short-lived co-fluctuations
between brain regions resulting in a smooth estimation of the time vary-
ing functional connectivity and state transitions over time. Second, sw-
tvFC uses the original, unstandardized nodal time series as inputs. While
this might help to identify statistically different brain states over time
(Leonardi and De Ville, 2015), it does not provide accurate information
of timing of state transitions (Shakil et al., 2016). In ETS, these issues
are resolved by estimating the magnitude of co-fluctuations between
brain regions as the dot products of standardized (z-scored) nodal time
series at a framewise scale. This allows utilizing the temporal informa-
tion (i.e., mean and variance) from the entire scan session and estimate
how much two nodes are jointly deflected above or below their respec-
tive means. This results in a more reliable estimation of time varying

changes, and a more precise estimation of state transitions over time
(e.g., transition from high to low amplitude co-fluctuations with infor-
mation about their specific timing). Nonetheless, it also should be noted
that ETS does not benefit from the averaging across multiple samples
as present in the sw-tvFC method and thus might be noisier. Although
here we compare ETS and sw-tvFC directly, we note that, given how
each is calculated, they implicitly measure distinct time-varying con-
structs, which might explain the relatively poor agreement between the
two measures. Specifically, sw-tvFC aims to measure interregional corre-
lations, which are bounded to the interval [0,1] and necessarily require
(at minimum) three samples. ETS, on the other hand, calculates instan-
taneous co-fluctuations. That is, it estimates at a timescale of individual
frames, the unbounded magnitude by which the activity of two regions
deflects above or below their respective means.

Overall, there is a tradeoff between the specificity and sensitivity of
the estimated time varying changes using both sw-tvFC and ETS meth-
ods. sw-tvFC uses a moderate number of samples per window to re-
duce the effect of sampling variability while minimizing the contribu-
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Fig. 5. Edge time series (ETS) in autism spectrum disorder (ASD) and control (CN) subjects during movie-watching condition.(a) Average of peaks and trough-
to-trough duration between ASD and CN group. Each point in the box plot shows the average of peaks/trough-to-trough duration measure for one subject across
scans.(b) Averaged differences of edges in peak fluctuation amplitude between CN and ASD (CN minus ASD). (c) Edges that are different in peak fluctuation amplitude
between ASD and CN (p,, justed = 0-0075, false discovery rate (FDR)= 0.05). (d) Edges shown in panel c sorted based on Yeo 17 functional networks (Yeo et al., 2011).
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tion of single point co-fluctuations; on the other hand, ETS captures
co-fluctuations at individual sample level, but does not benefit from the
averaging and potentially be noisier.

One of the ways that time-varying estimates of networks have been
used in the past is for brain state detection, i.e. clustering time points
based on the similarity of connectivity to identify network ‘states’ that
approximately reoccur across time. In principle, the procedures used
to construct ETS and sw-tvFC as well as decisions about the analysis
pipeline could have implications for the character of the detected states
and should be investigated further in future studies. Using ETS, con-
nection weight is determined based on deviations from the expected
behavior over the entire scan (z-scoring is performed with respect to
scan-averaged mean and standard deviation). In contrast, sw-tvFC con-
nections are determined based on local correlations, using temporally
proximal frames. Consequently, large deviations from the scan-averaged
mean/variance may be, effectively, corrected for via local z-scoring in
sw-tvFC, leading to dissimilar estimates of time-varying connectivity,
which impact estimates of network states.

Another way that ETS and sw-tvFC may yield dissimilar and poten-
tially complementary estimates of network states is based on the param-
eters of the clustering algorithm itself. Many of the popular clustering
algorithms determine clusters based on the distance between network
patterns at different frames. When network patterns are similar (dis-
tance is small), they are likely to be assigned to the same state. The
metric is selected by the user, with correlation distance being the most
common. Correlation distance, however, z-scores whole-brain patterns
of connectivity before calculating their distance from one another, ef-
fectively removing any differences in mean connectivity and variance.
While this decision may have little impact on sw-tvFC estimates, which
exhibit relatively little variation from frame-to-frame in terms of co-
fluctuation amplitude, ETS frames exhibit “bursty” behavior, yielding a
heavy-tailed distribution of co-fluctuation amplitude across time. Con-
sequently, z-scoring frames may artificially make a frame with relatively
low amplitude more similar to an “event” frame with high-amplitude.
In short, care must be taken in estimating brain states in ETS and com-
paring them to states estimated from sw-tvFC. One possible soluation
is to investigate other metrics, including concordance, which assesses
similarity and distance by balancing pattern similarity and differences
in amplitude (Betzel et al., 2022; Betzel et al., 2022).

These findings inform our understanding and interpretation of brain
dynamics. Sliding-window estimates paint a picture in which the brain
tends to slowly traverse a high-dimensional state space, with its state
at 7+ 1 highly dependent on its previous state at time 7. In contrast,
edge time series exhibit faster rate of change, rapidly reconfiguring over
short timescales with punctuated, high-amplitude bursts. Notably, how-
ever, both techniques operate on the same input data — nodal time se-
ries. That they offer dissimilar insight highlights the potential for ETS to
serve as a complementary approach to the conventional sliding-window
method.

3.2. Relevance of high-amplitude co-fluctuations to cognition and behavior

Previous studies have examined edge time series and characterized
some of their basic properties (Esfahlani et al., 2020; Betzel et al., 2021),
speculating that these properties might serve as potent biomarkers for
comparing individuals in terms of their cognitive or clinical states. How-
ever, with limited exceptions, these speculations have not been inves-
tigated. Here, as part of an exploratory analysis, we performed two
analyses. First, we compared edge time series and sw-tvFC in terms of
their ability to capture inter-subject correlations across individuals dur-
ing passive viewing of movies. To this end, we found that when using
ETS, whole-brain co-fluctuation patterns (RSS values across time) are
more similar across subjects during movie-watching condition compared
to sw-tvFC. This observation highlights a strength of ETS in capturing
shared responses across subjects to the mutual stimuli. Nevertheless, ad-
ditional studies are required to understand the origins of these synchro-
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nized events during the movie-watching condition, whether they are
driven by the underlying physiological processes or represent the corre-
lation structure. One potential way to address this question would be by
conducting statistical tests to remove the effect of mean evoked activity
from the original signal and investigate if these synchronized events can
still be observed (Cole et al., 2019). Another possibility to address this
question is by studying the link between the movie contents in natural-
istic movie-watching conditions with evoked activities, and the inter-
subject synchronization of events. There are several studies suggesting
the importance of the timing of events (at the boundaries of movies in
response to the contextual shifts in movies) (Tanner et al., 2022) and
their relevance to cognitive processes and reactivation of past informa-
tion (Hahamy et al., 2022). On the other hand, we also found that, by
examining whole-brain connectivity profiles during peaks and troughs,
the similarity between peaks and troughs was lower using ETS com-
pared to sw-tvFC. Collectively, these results suggest that the temporal
precision afforded by edge time series may allow us to better track when
brains respond to stimuli, while exposing heterogeneity of response pro-
files (connectivity patterns) across individuals. We speculate that these
two features could be taken advantage of by future studies investigating
brain-behavior relationships (Betzel et al., 2022¢; Esfahlani et al., 2020;
Jo et al., 2021). Nevertheless, it should be noted that conducting brain-
behavior studies at single point co-fluctuation level is a challenging task
given the complexity of understanding the origin of co-fluctuations at
framewise level (e.g., whether they are driven by the underlying phys-
iological processes or represent the underlying correlation structure),
heterogeneity of neural time series and behavioral measures across indi-
viduals and often small number of samples in these studies (Marek et al.,
2022).

3.3. Edge time series disclose differences between ASD and healthy control
dynamics

Another key finding of this paper is that ASD, compared to CN,
shows longer trough-to-trough duration, but similar peak amplitudes
in the whole-brain co-fluctuation patterns (RSS signal) during movie-
watching. This observation suggests that, although ASD patients respond
similarly to stimuli as controls, their network dynamics are systemati-
cally “stickier” than those of controls — taking longer to rise to peak ac-
tivity and then return to baseline. These stickier dynamics may have im-
portant implications for the understanding of disorders and disease. For
instance, slower dynamics could impede or delay transitions between
brain states and, to the extent that brain states are of cognitive rele-
vance, could impact the timing of ongoing cognitive processes (Cocchi
et al., 2017; Liu et al., 2020; Medaglia et al., 2018; Taghia et al., 2018).

More generally, these observations underscore the possibility that
population-level differences, if they exist, may be encoded not in the
structure of a network, but in its dynamics and changes across time.
Indeed, a growing number of studies have shown that features such
as transition rate and occupancy time of dynamic network states vary
with age and differ between clinical conditions (Chen et al., 2019; Ezaki
etal., 2018; Tseng and Poppenk, 2020). Higher-order network structure,
including its system- and module-level architecture, also vary across
time, and has been shown in previous studies to track with individual
differences in a variety of measures (Hilger et al., 2017; Liao et al.,
2017).

4. Limitations and future work

In this work, we compared sliding window and ETS methods for esti-
mating tvFC, further using ETS to investigate inter-subject correlations
during movie-watching and group differences between ASD and control
populations. Although the results of this paper help contextualize ETS
with respect to existing methods for estimating tvFC and highlight its
potential as a method for studying inter-individual differences, it has a
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number of limitations. At the same time, it presents exciting opportuni-
ties for future work.

One way to broaden our findings is to extend the analysis of net-
work states reported in the first part of the paper and compare the
control and ASD groups in terms of these states. Previous studies have
shown that these states undergo individualization and may present use-
ful and subject-specific information for comparing groups (Betzel et al.,
2021). Additionally, the framework applied here to an ASD popula-
tion could be extended to other clinical populations. Indeed, there exist
many large, publicly available datasets that include both clinical groups
(Gorgolewski et al., 2017) and massive control populations that are ac-
companied by sub-clinical responses to assessments of different neu-
ropsychiatric disorders (Essen et al., 2013; Satterthwaite et al., 2016).

Another possible extension includes exploring edge functional con-
nectivity (eFC), which refers to the correlation structure of edge time
series. Previous studies demonstrated that this higher-order construct
is both highly reliable and can readily identify overlapping communi-
ties in networks. Yet another opportunity for future work includes more
detailed benchmarking of ETS using synthetic examples with the aim
of clearly distinguishing features that are genuinely “dynamic” from
those can be explained by time-invariant features of the static FC ma-
trix (Ladwig et al., 2022; Novelli and Razi, 2021). This question is of-
ten examined by conducting statistical null models where the statistical
properties of the data except the features under study are preserved.
There are several null models for studying the dynamic features of fMRI
such as independent and identically distributed (i.i.d) Gaussian, multi-
variate autoregressive, and phase randomization null models that allows
preserving different properties of fMRI data such as kurtosis, covariance
structure, autocorrelation of the data (Liégeois et al., 2021). While there
have been several efforts to study the dynamic versus time-invariant fea-
tures of the static FC (Ladwig et al., 2022; Novelli and Razi, 2021), the
conducted models often suffer from the proper representation of the
physical properties of brain and mainly focus on the correlation struc-
ture observed in the fMRI BOLD signals (Betzel et al., 2016; Thompson
and Fransson, 2015). Our work clearly demonstrates that it returns dis-
similar results relative to sliding window methods, however, it remains
unclear whether those dissimilarities necessarily mean that ETS is out-
performing the other approach.

Another direction for future research involves comparing ETS
against, not only sw-tvFC, but other methods for estimating changing of
connection patterns, including kernel-based approaches (Faghiri et al.,
2021; Iraji et al., 2020).

Finally, while our work demonstrates that there are systematic dif-
ferences in trough-to-trough duration and, possibly, the height of peaks,
it does not speak to when those differences occur. Nor does it speak to
the character of the stimulus present at those instants. Future work us-
ing annotated naturalistic stimuli could be undertaken to help address
these questions.

5. Materials and methods
5.1. Dataset

We analyzed fMRI data of 29 CN and 23 ASD individuals that are
scanned multiple times during resting-state and movie-watching condi-
tions. The number of subjects used in this study for scan 1, 2, 3 and 4
were subsequently 29 CN, 23 ASD; 29 CN, 23 ASD; 26 CN, 20 ASD; and
25 CN, 21 ASD. The details for this dataset including participant char-
acteristics, data acquisition, and preprocessing pipeline can be found in
Byrge and Kennedy (2020).

5.2. Image preprocessing
5.2.1. MRI acquisition and processing

MRI images were acquired using a 3T whole-body MRI system (Mag-
netom Tim Trio, Siemens Medical Solutions, Natick, MA) with a 32-
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channel head receive array. Both raw and prescan-normalized images
were acquired; raw images were used at all preprocessing stages and
in all analyses unless specifically noted. During functional scans, T2*-
weighted multiband echo planar imaging (EPI) data were acquired us-
ing the following parameters: TR/TE = 813/28 ms; 1200 vol; flip angle
= 60 ; 3.4 mm isotropic voxels; 42 slices acquired with interleaved order
covering the whole brain; multi-band acceleration factor of 3. Preced-
ing the first functional scan, gradient-echo EPI images were acquired
in opposite phase-encoding directions (10 images each with P-A and A-
P phase encoding) with identical geometry to the EPI data (TR/TE =
1175/39.2 ms, flip angle = 60) to be used to generate a fieldmap to cor-
rect EPI distortions, similar to the approach used by the Human Connec-
tome Project (Smith et al., 2013). High-resolution T1-weighted images
of the whole brain (MPRAGE, 0.7 mm isotropic voxel size; TR/TE/TI =
2499/2.3/1000 ms) were acquired as anatomical references. All func-
tional data were processed according to an in-house pipeline using
FEAT (v6.00) and MELODIC (v3.14) within FSL (v. 5.0.9; FMRIB’s Soft-
ware Library, www.fmrib.ox.ac.uk/fsl), Advanced Normalization Tools
(ANTs; v2.1.0) (Avants et al., 2011), and Matlab R2014b. This pipeline
was identical to the GLM + MGTR procedure described in Byrge and
Kennedy (2018).

In more detail, individual anatomical images were bias corrected
and skull-stripped using ANTs, and segmented into gray matter, white
matter, and CSF partial volume estimates using FSL FAST. A midspace
template was constructed using ANTs’ buildtemplateparallel and subse-
quently skull-stripped. Composite (affine and diffeomorphic) transforms
warping each individual anatomical image to this midspace template,
and warping the midspace template to the Montreal Neurological Insti-
tute MNI152 1mm reference template, were obtained using ANTs.

For each functional run, the first five volumes (~ 4 s) were discarded
to minimize magnetization equilibration effects. Framewise displace-
ment traces for this raw (trimmed) data were computed using fsl motion
outliers. Following (Burgess et al., 2016; Byrge and Kennedy, 2020), we
performed FIX followed by mean cortical signal regression. This proce-
dure included rigid-body motion correction, fieldmapbased geometric
distortion correction, and non-brain removal (but not slice-timing cor-
rection due to fast TR Smith et al., 2013). Preprocessing included weak
highpass temporal filtering (> 2000 s FWHM) to remove slow drifts
(Smith et al., 2013) and no spatial smoothing. Off-resonance geometric
distortions in EPI data were corrected using a fieldmap derived from
two gradient-echo EPI images collected in opposite phase-encoding
directions (posterior-anterior and anterior-posterior) using FSL
topup.

We then used FSL-FIX (Salimi-Khorshidi et al., 2014) to regress out
independent components classified as noise using a classifier trained
on independent but similar data and validated on handclassified func-
tional runs. The residuals were regarded as ‘cleaned’ data. Finally, we
regressed out the mean cortical signal (mean BOLD signal across gray
matter partial volume estimate obtained from FSL FAST). All analyses
were carried out on these data, which were registered to subjects’ skull-
stripped T1-weighted anatomical imaging using Boundary-Based Regis-
tration (BBR) with epi reg within FSL. Subjects’ functional images were
then transformed to the MNI152 reference in a single step, using ANTS to
apply a concatenation of the affine transformation matrix with the com-
posite (affine + diffeomorphic) transforms between a subject’s anatom-
ical image, the midspace template, and the MNI152 reference. Prior to
network analysis, we extracted mean regional time series from regions of
interest defined as sub-divisions of the 17-system parcellation reported
in Yeo et al. (2011) and used previously (Betzel et al., 2014; Byrge et al.,
2015; Betzel et al., 2015). Wakefulness during movie and rest scans was
monitored in real-time using an eye tracking camera (Eyelink 1000).

5.2.2. Naturalistic stimuli

All movies were obtained from Vimeo (https://vimeo.com). They
were selected based on multiple criteria. First, to ensure that movies
represented novel stimuli, we excluded any movie that had a wide the-
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atrical release. Secondly, we excluded movies with potentially objec-
tionable content including nudity, swearing, drug use, etc. Lastly, we
excluded movies with intentionally startling events that could lead to
excessive in-scanner movement.

Each movie lasted approximately 1 to 5 min. Each movie scan com-
prised between four and six movies with genres that included documen-
taries, dramas, comedies, sports, mystery, and adventure. See Table S1
for more details.

5.3. Edge (Co-fluctuation) time series

Functional brain networks are constructed by estimating the statisti-
cal dependency between fMRI BOLD activity of brain regions. The mag-
nitude of these dependencies reflects the strength of functional con-
nection between brain regions. One of the most common measures to
estimate the dependency between brain regions is the Pearson corre-
lation coefficient. The overall procedure for calculating Pearson coeffi-
cient is as follows: Let x; = [x;(1), ..., x;(T)] and x; = [x;(1), ..., x;(T)] be
the time series recorded from voxels or parcels i and j, respectively. We
can calculate the correlation of i and j by first z-scoring each time series,
suchthatz; = x";”" , where y; = % Y, x;(andoi = % >, [x;(t) — p;lare
the time averaged mean and standard deviation. Then, the correlation
of i with j can be calculated as r;; = ﬁ > lzi(0).z ;(0]. Repeating this
procedure for all pairs of parcels results in a node-by-node correlation
matrix, i.e., an estimate of FC. If there are N nodes, this matrix has di-
mensions [N X N]. To estimate edge-centric networks, we modify the
above approach such that we only calculate the element-wise product
of two time series and remove the step for calculating the mean. This op-
eration would result in a vector of length T whose elements encode the
moment-by-moment co-fluctuation magnitude of parcels i and j. More
specifically, the positive values in the vector reflect the simultaneous
increase or decrease in the activity of parcels i and j, while negative
values reflect the opposite direction (one increasing while the other de-
creasing and vice versa) of the magnitude of their activity. Similarly, if
either i or j increased or decreased while the activity of the other was
close to baseline, the corresponding entry would be close to zero. An
analogous vector can easily be calculated for every pair of parcels (net-
work nodes), resulting in a set of edge time series. With N parcels, this
results in w pairs, each of length 7.

5.4. Sliding window time series

To estimate tvFC using sliding window method, we divided every
fMRI BOLD time series into several consecutive equal-sized segments
(windows) and calculated correlation coefficient between time points
within each window. We repeated this procedure for every window
and for all pairs of time series. This results in a [w X W] where
N is the total number of brain regions and W is the total number of
windows used to for sw-tvFC estimation (for every time series). We
have normalized obtained sw-tvFC values (i.e., r) using Fisher trans-
form F = % X ln(:—f:). We used window sizes (w) of 10-100 with in-
crements of 10; and offset (value for shifting window) = 1 to estimate
sw-tvFC where the results for w = 20 are in provided in the main text
and results for other window sizes are available in the supplementary
section.

The obtained tvFC based on the sliding window is shorter than the
actual fMRI BOLD time series, while ETS is exactly the same length as
fMRI BOLD time series. Therefore, in order to compare the whole-brain
co-fluctuation and inter-subject similarity between sw-tvFC and ETS, we
used linear interpolation technique to resample (i.e., 350 time points)
time series and calculate the similarity between the two interpolated
time series.

10
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5.5. Kernel-based time varying functional connectivity

Kernel-based time varying functional connectivity uses kernel func-
tions (i.e., Gaussian kernel) to obtain smoothed tvFC by considering the
contribution of the neighboring time points on the estimation of instan-
taneous correlation at each time point. Here, we used Gaussian kernel
with the width = 10-100, with increments of 10 to obtain smoothed
tvFC.

5.6. Autocorrelation

For every subject, we calculated the autocorrelation (i.e., lag = 100)
in ETS/sw-tvFC as the similarity of whole-brain co-fluctuation patterns
at time 7 with the patterns at times ¢ + 1,7 + 2, ..., + 99,7 + 100. We com-
pared the averaged autocorrelation across subjects in ETS and sw-tvFC.

5.7. K-means clustering and state transitions

We have used k-means clustering algorithm with Euclidean distance
to cluster ETS/sw-tvFC. More specifically, we clustered time points
based on the similarity of whole-brain co-fluctuation patterns at a given
time point. For every subject, we obtained a clustered time series (1 x T)
where every element represents a cluster index (i.e., brain state) at that
given time point. After obtaining the clustered edge time series, we
quantified the number of transitions between/within states over time.
We used k = 5, 10, and 15 as the initial number of clusters where results
for k = 5 is provided in the main text and k = 10 and k = 15 are provided
in the supplementary section.

5.8. Trough-to-trough duration and peak amplitude measures

For every subject, we calculated the root sum square (RSS) of all the
edge time series at every given time point resulting in a single time se-
ries. Next, we identified troughs in RSS signal and defined two measures
of peak amplitude (highest peak between two troughs) and duration of
trough-to-trough. Troughs (here, referring local minima) in RSS signal
were defined as time points where their values were lower than the
amplitude of their two direct neighbors. We used the mean peak ampli-
tudes and trough-to-trough duration in RSS signal to compare ETS and
sw-tvFC across subjects. The same approach was used to compare CN
and ASD in terms of these measures.

5.9. Correlation between confounding variables and tvFC

We conducted a posthoc motion correction analysis to examine the
effect of head motion and noise in calculating trough-trough duration
and peak amplitude measures in RSS signal. For every subject, we re-
gressed out the mean of two head motion variables (e.g., derivative of
scanner motion and framewise displacement) from trough-to-trough du-
ration and the peak co-fluctuation amplitude measures and compared
the obtained residuals between ASD and CN. More specifically, we re-
gressed out the mean of head motion variables from peak amplitude
measures at time points corresponding to peaks. For trough-to-trough
duration measure, we took the average of head motions between every
two troughs and regressed out those from the trough-trough duration
measure. Finally, we compared the obtained residuals between ASD and
CN groups.

5.10. Modularity maximization

Modularity maximization is a computational heuristic for detecting
community structure in networked data. It defines communities (clus-
ters) as groups elements whose internal density of connections maxi-
mally exceed what would be expected. In this context, we defined the
expected weight of connections to be equal to the mean similarity be-
tween all pairs of patterns. Modularity maximization with the Louvain
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algorithm is non-deterministic and, depending upon initial conditions,
can yield dissimilar results. Accordingly, we ran the algorithm 1000
times with different random seeds. We resolved variability across these
different seeds using a consensus clustering algorithm in which we it-
eratively clustered the module co-assignment matrix until convergence.
The resulting consensus partition assigned each co-fluctuation pattern
to non-overlapping clusters.
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