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a b s t r a c t 

The interaction between brain regions changes over time, which can be characterized using time-varying func- 

tional connectivity (tvFC). The common approach to estimate tvFC uses sliding windows and offers limited tem- 

poral resolution. An alternative method is to use the recently proposed edge-centric approach, which enables 

the tracking of moment-to-moment changes in co-fluctuation patterns between pairs of brain regions. Here, we 

first examined the dynamic features of edge time series and compared them to those in the sliding window tvFC 

(sw-tvFC). Then, we used edge time series to compare subjects with autism spectrum disorder (ASD) and healthy 

controls (CN). Our results indicate that relative to sw-tvFC, edge time series captured rapid and bursty network- 

level fluctuations that synchronize across subjects during movie-watching. The results from the second part of the 

study suggested that the magnitude of peak amplitude in the collective co-fluctuations of brain regions (estimated 

as root sum square (RSS) of edge time series) is similar in CN and ASD. However, the trough-to-trough duration 

in RSS signal is greater in ASD, compared to CN. Furthermore, an edge-wise comparison of high-amplitude co- 

fluctuations showed that the within-network edges exhibited greater magnitude fluctuations in CN. Our findings 

suggest that high-amplitude co-fluctuations captured by edge time series provide details about the disruption of 

functional brain dynamics that could potentially be used in developing new biomarkers of mental disorders. 
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. Introduction 

The human brain is fundamentally a complex system and can be

odeled as a network of functionally connected brain regions ( Bassett

nd Sporns, 2017; Bullmore and Sporns, 2009 ). In practice, func-

ional connectivity (FC) is estimated as the Pearson correlation of

rain regions’ functional magnetic resonance imaging (fMRI) blood oxy-

en level-dependent (BOLD) time courses, often recorded in the ab-

ence of explicit task instructions, i.e. the resting state ( Friston, 1994;

orwitz, 2003 ). A growing number of studies have used FC to link

nter-individual variation in brain network organization with cognition

 Shirer et al., 2012 ), development ( Gu et al., 2015 ), and disease ( Fornito

t al., 2015 ). 

In most applications, FC is estimated using data from an entire

can session, resulting in a single connectivity matrix whose weights

xpress the average connection strength between pairs of brain re-

ions ( Rogers et al., 2007 ). However, the brain’s macro-scale functional
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rganization varies over shorter timescales on the order of seconds

 Gao et al., 2020; Hutchison et al., 2013; Zalesky et al., 2014 ). To cap-

ure these changes, many studies have estimated FC over shorter inter-

als using dynamic or time-varying FC (tvFC) ( Lurie et al., 2020 ). In

ost cases, tvFC is estimated using a sliding window method. In this

pproach, FC is estimated using only frames that fall within a window

f fixed duration. The window is advanced by some amount, and the

rocess repeated. In the end, the result is a sequence of FC estimates. 

Sliding window time-varying FC (sw-tvFC) has been used widely in

rder to characterize time-varying changes in brain network organiza-

ion in general, but also to study how fluctuations in brain network

rchitecture accompany cognitive processes across time ( Gonzalez-

astillo and Bandettini, 2018; Kucyi and Davis, 2014 ). In addition, tvFC

as proven useful for generating novel biomarkers ( Barttfeld et al., 2015;

ucyi and Davis, 2014; Rashid et al., 2014; Scheid et al., 2021 ). 

Despite its success and continued application, sliding-window meth-

ds have a number of limitations. First, they require users to choose a
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Fig. 1. The general procedure for constructing sliding window time varying FC (sw-tvFC) networks and edge time series (ETS). ( a ) ETS are calculated as the dot 

product of activity of two nodes, while in the sw-tvFC, first time series is divided into equal parts (windows) and edges are estimated by calculating the correlation 

between time samples within each window. ( b ) After calculating ETS for all pairs of brain regions, we obtain [ ( 𝑁 ×( 𝑁 −1)) 
2 

× 𝑇 ] matrix. For ETS, this matrix provides 
detailed picture of the moment-to-moment co-fluctuations between all pairs of brain regions, whereas for sw-tvFC, this estimation is blurry due to the windowing 

procedure. ( c ) Whole-brain co-fluctuations can be estimated as root sum square (RSS) of all the edges fluctuations at every given time point. In ETS, the high-amplitude 

co-fluctuations are captured more precisely compared to sw-tvFC. 
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eries of parameters, including window duration, shape, and the amount

f overlap between successive windows ( Hindriks et al., 2016; Leonardi

nd De Ville, 2015; Shakil et al., 2016; Zalesky and Breakspear, 2015 ).

hese decisions are non-trivial and, in general, impact the inferred pat-

erns of connectivity. They can also introduce artifacts into estimates

f time-varying FC, e.g., through aliasing effects. Perhaps most seri-

us, sliding window methods make it impossible to precisely localize

hanges in FC to a specific instant in time. The very nature of a window

eans that FC receives contributions from all points within that inter-

al. This limitation can be addressed by alternative approaches such as

ernel-based time varying functional connectivity (e.g., Gaussian ker-

el) ( Faghiri et al., 2021; Iraji et al., 2020 ) which allows considering

he contribution of neighboring time points to the specific instant in

ime. Nevertheless, this approach is not parameter free and is dependent

n the choice of kernel width (variance). Collectively, these limitations

resent challenges, both in estimating and interpreting time-varying FC

stimated using sliding window techniques ( Iraji et al., 2020; Lurie et al.,

018 ). 

Recently, we proposed a novel, edge-centric method for estimating

ime-varying FC ( Esfahlani et al., 2020; Faskowitz et al., 2020 ). This

ethod precisely decomposes FC into its framewise contributions, yield-

ng a frame-by-frame account of interregional co-fluctuations across

ime, which we refer to as co-fluctuation or edge time series (ETS). A

ey feature of this approach is that ETS are estimated without specify-

ng parameters or the need to perform any windowing. Consequently,

any of the limitations associated with sliding window methods are

ot applicable. While ETS and sw-tvFC both estimate the time vary-

ng changes of FC, they are two different constructs: one measuring

he instantaneous co-fluctuations between brain regions (ETS) and the

ther measuring the interregional correlations between brain regions

sw-tvFC). Since its introduction, ETS has been used to study individ-

al differences ( Betzel et al., 2021 ) and the origins of brain systems

 Sporns et al., 2021 ), and its anatomical underpinnings have been ex-
 p  

2 
mined using in silico models ( Pope et al., 2021 ). However, the perfor-

ance of ETS has not been systematically compared with that of sliding

indow techniques. Additionally, because edge time series represent a

ew construct, their utility for linking brains with behavior remains un-

lear. 

Here, we address these gaps in knowledge. In the first section of the

aper, we conduct a systematic comparison of temporal properties of

TS and sw-tvFC. Our findings show two main features of ETS that can

ot be seen in sw-tvFC. First, ETS exhibits rapid and bursty fluctuations

t rest, as evidenced by reduced autocorrelation and more frequent tran-

itions from one brain state to another. In addition, these co-fluctuations

ere synchronized across subjects during movie-watching condition.

econd, collective fluctuations of ETS showed less similarity between

heir high and low-amplitude, which was indicated by higher peak am-

litudes and shorter trough-to-trough duration (number of frames be-

ween two local minima) compared to sw-tvFC. Building on these two

mportant features of ETS, in the second part of the paper, we studied

ifferences in the co-fluctuations of brain regions between autism spec-

rum disorder (ASD) and healthy control (CN) subjects during movie-

atching condition. Our findings suggested that overall, the peak am-

litude of collective co-fluctuations of brain regions is similar in ASD and

N, however the trough-to-trough duration is greater in ASD. Addition-

lly, a detailed analysis of individual ETS suggested that compared to

SD, within-network edges showed higher peak co-fluctuations in CN. 

. Results 

We applied ETS and sw-tvFC to fMRI data of 29 CN and 23 ASD

ubjects that were collected multiple times in resting state and dur-

ng passive movie-watching conditions ( Byrge and Kennedy, 2020 ). The

verall procedures for estimating ETS and sw-tvFC and their differences

re shown in Fig. 1 . After estimating ETS and sw-tvFC, first, in Com-

arison of edge time series and sliding window-tvFC , we used data from
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s  

t  
he CN group and compared the properties of ETS with sw-tvFC, in-

luding whole-brain co-fluctuation dynamics, synchronization of these

o-fluctuations across subjects, and relationship between high and low-

mplitude edge fluctuations. Next, in Edge time series in autism spectrum

isorder , we used ETS to examine differences in the co-fluctuation pat-

erns of brain regions in ASD and CN groups. 

.1. Comparison of edge time series and sliding window-tvFC 

.1.1. Whole-brain co-fluctuation dynamics 

To examine differences in the global properties of ETS and sw-tvFC,

e first asked how similar are the whole-brain co-fluctuation patterns

stimated by these two methods? To answer this question, we calcu-

ated ETS and sw-tvFC for every subject based on their resting-state

MRI BOLD time series. Then we vectorized the complete set of time-

arying edge weights and, after resampling via linear interpolation to

nsure that ETS and sw-tvFC estimates contained the same numbers of

ime points, we vectorized the entire edge by time matrix and com-

uted the similarity between methods ( Fig. 2 (a)). We repeated this pro-

edure for sw-tvFC constructed using window sizes ranging from 10

o 100 frames in increments of 10 (each frame = 0.813 s). We found

hat sw-tvFC and ETS were moderately correlated ( 𝑟 = 0 . 35 ; window
ize = 20 ; details for other window sizes can be found in Fig. 2 (a))

uggesting that while these two methods broadly capture similar pat-

erns of co-fluctuations, there remains considerable amounts of un-

xplained variance. The results for individual scans are available in

ig. S1. 

To better understand why the global correlation between ETS and

w-tvFC is not stronger and why their correspondence is peaked at an

ntermediate window size, we conducted a more detailed examination,

ocusing on the role of window length. We hypothesized that two dis-

inct and competing factors caused the peak correlation to occur at an

ntermediate window size. Specifically, we hypothesized that when the

indow size was very small, the sw-tvFC would be able to capture fast

uctuations in connectivity, but due to a relatively small number of

amples, the estimate of connection weights would be inaccurate. Con-

ersely, longer windows provide more accurate estimates of connec-

ion weights but at the expense of temporal specificity. To test this,

e systematically varied the duration of windows and found that, for

ery short windows, the histogram of connection weights was highly

imodal for all frames ( Fig. 2 (b)). This is in contrast to typical connec-

ion weights of ETS, which are unimodal and generally centered around

ero ( Fig. 2 (b)). This mismatch of distributions likely explains why, for

hort windows, ETS and sw-tvFC exhibit a poor correspondence. On the

ther hand, as increased the length of windows, the estimated networks

xhibited little variation across time, suggesting they are incapable of

apturing the “burst ” dynamics observed in ETS. Collectively, these re-

ults explain both the overall weak correspondence between sw-tvFC

nd ETS at the global scale and why the peak similarity occurs at an

ntermediate window size (see Fig. S2 for details). We have conducted

 similar comparison between ETS and smoothed-tvFC (using Gaussian

ernel) which is available in Fig. S3. 

Next, we asked to what extent there is a memory of previous

etwork states in sw-tvFC versus ETS. To answer this question, we

sed the 𝑘 -means clustering algorithm to cluster the time frames into

on-overlapping clusters based on the similarity of whole-brain co-

uctuation patterns at different points in time ( Allen et al., 2014; Bart-

feld et al., 2015 ). Since our analysis is conducted at individual sub-

ect level, we conducted our analysis using several 𝑘 values (see details

or optimal number of 𝑘 for individual subjects in Fig. S6. Here we re-

ort results for 𝑘 = 5 and using subjects from all the scans; results are

ualitatively similar for other values of 𝑘 shown in Fig. S4). We used

hese clusters to estimate the transition probabilities between all pairs of

rain states (example of cluster patterns for one subject using these two

ethods are shown in Fig. S7), finding that ETS transitioned from one

rain state to another more frequently than sw-tvFC ( 𝑡 -test, 𝑝 < 0 . 001 ;
3 
ig. 2 (b); results for individual scans are shown in Fig. S4). This could

e due to the presence of rapid and bursty network-level fluctuations

n ETS expected by reduced averaged autocorrelation and higher rates

f power spectrum density for larger frequencies compared to sw-tvFC

Figs. S4 and S5). 

Collectively, these results suggest that compared to sw-tvFC, ETS

apture distinct patterns of co-fluctuations between brain regions. Our

esults also suggest that ETS capture a faster and more “bursty ” network

ynamics, in which network states change abruptly, more frequently,

nd over faster timescales compared to sw-tvFC. Further, these results

re in line with the hypothesis that the use of sliding windows may in-

uce smoothness in network trajectories across time, possibly obscuring

apid reconfigurations of the network over short timescales. 

.1.2. Synchronization of the whole-brain co-fluctuation patterns across 

ubjects 

In the previous section, we examined the presence of rapid and

ursty fluctuations in ETS, highlighting this property as one of its

ain ways it differs from sw-tvFC. These high-amplitude fluctua-

ions – referred to as “events ” in previous papers ( Esfahlani et al.,

020 ) – are infrequent and, in previous work, were shown to be un-

orrelated with in-scanner head motion ( Esfahlani et al., 2020; Bet-

el et al., 2021 ). Therefore, they may be important in providing in-

ights into the ongoing cognitive processes at rest and movie-watching

onditions. 

In this section, we examined how well co-fluctuation patterns cap-

ured by these two methods are synchronized across subjects. To address

his question, we calculated the inter-subject similarity based on the col-

ective co-fluctuations of brain regions during rest and movie-watching

onditions. More specifically, the collective co-fluctuations of brain re-

ions were estimated as the root sum square (RSS) of co-fluctuations

etween all pairs of brain regions (edges) at every given time point. We

ound that compared to sw-tvFC, the collective co-fluctuation patterns

n ETS (specifically those with high-amplitude) were aligned across sub-

ects during movie-watching condition verus resting state, ( Fig. 3 (a)).

his was indicated by higher inter-subject similarity in ETS, compared

o sw-tvFC during movie-watching condition ( t -test; 𝑝 < 0 . 001 ; Fig. 3 (b)
nd (c)). 

.1.3. Whole-brain co-fluctuation patterns at peaks and troughs 

In the previous section, we demonstrated that ETS provide a syn-

hronized estimation of the co-fluctuation patterns, specifically high-

mplitude ones across subjects which indicates their unique contribu-

ion to the overall connectivity patterns. In this section, we further ex-

mined the role of these high-amplitude co-fluctuations and their dis-

inction with low-amplitude ones. To do this, we defined measures of

rough-to-trough duration and the peak co-fluctuation amplitude be-

ween two troughs of the RSS signal ( Fig. 4 (a)) which allows evaluating

he relationship between the high- and low-amplitude co-fluctuations.

e found that, compared to sw-tvFC, ETS exhibited higher peaks and

horter trough-to-trough duration ( 𝑡 -test, 𝑝 < 0 . 001 ; Fig. 4 (c)), which
urther indicated that ETS reflects rapid fluctuations over time. More-

ver, we calculated the similarity between peaks and troughs as the

orrelation coefficient between whole-brain co-fluctuations at peaks and

roughs. Our results suggested that there is a lower similarity between

eaks and trough in terms of collective co-fluctuations in ETS than sw-

vFC ( 𝑡 -test, 𝑝 < 0 . 001 ; Fig. 4 (c)). We have conducted a similar compar-
son between ETS and smoothed-tvFC (using Gaussian kernel) which is

vailable in Fig. S9. 

.2. Edge time series in autism spectrum disorder 

.2.1. Edge fluctuations in autism spectrum disorder vs. healthy controls 

In the previous section, we discussed differences between ETS and

w-tvFC in terms of their ability to capture time-varying features of func-

ional brain networks. Our findings suggested the effectiveness of ETS in
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Fig. 2. Relationship between edge time series (ETS) and sliding window-time varying functional connectivity (sw-tvFC). (a) ETS and sw-tvFC are calculated for 

every subject in resting state. ETS and sw-tvFC are resampled to ensure they contain the same numbers of time points. Then, the complete set of time-varying edge 

weights estimated by these two methods are vectorized and their similarity are computed. Bar plot represents the averaged Pearson correlation between all the 

edges in ETS and sw-tvFC. (b) The probability distribution of connection weights in ETS and sw-tvFC. In ETS, the histogram of connection weights is unimodal (each 

line represents one subject), while in sw-tvFC (averaged probability distribution across subjects for all scans), for very small windows, the histogram of connection 

weights is bimodal and dissimilar of ETS. (c) The state transition of whole-brain co-fluctuations over time. ETS show higher between-state transitions and lower 

within-state transitions compared to the sw-tvFC suggesting the presence of high-amplitude co-fluctuations. States at each given time point were defined based on 

the whole-brain co-fluctuations. 
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racking rapid transitions in the magnitude of collective co-fluctuations,

s evidenced by greater co-fluctuation amplitude and shorter trough-

o-trough duration relative to sw-tvFC. In this section, we used ETS to

xamine the collective, i.e. whole-brain, and edge-level co-fluctuations

ver time. More specifically, we used the two previously defined mea-

ures of trough-to-trough duration and the peak co-fluctuation ampli-

ude to examine the differences of ASD and CN during passive viewing

f naturalistic movies. 

First, we examined differences in collective co-fluctuations of brain

egions between ASD and CN in terms of trough-to-trough duration and

he peak co-fluctuation amplitude. To this end, we calculated the aver-

ge trough-to-trough duration and the peak amplitude of the RSS signal

or each subject in both the ASD and CN groups. Our results, as shown

n Fig. 5 (a), suggested similar patterns of peak co-fluctuations between

N and ASD ( 𝑡 -test, 𝑝 = 0 . 97 ). However, a close examination revealed
ubtle distinctions between the two groups. Specifically, we found that
4 
rough-to-trough duration was greater in ASD, compared to CN ( 𝑡 -test,

 = 0 . 005 ; Fig. 5 (a)). To ensure that these differences were not driven
y head motion, we conducted a posthoc motion correction analysis

n which we regressed out the mean head motion (e.g., derivative of

n-scanner motion and framewise displacement) from trough-to-trough

uration and the peak co-fluctuation amplitude measures and compared

he obtained residuals between ASD and CN. The results of this analy-

is were in line with the original findings, suggesting that ASD and CN

re different in terms of the trough-to-trough duration ( 𝑡 test, 𝑝 = 0 . 01 ),
ut not in terms of peak amplitude ( 𝑡 test, 𝑝 = 0 . 35 ; Fig. S11).We have
onducted a similar analysis using the sw-tvFC method (Fig. S10). We

ound that, when using data from all-scan sessions, the peak height was

ignificantly greater in the CN group for all the window sizes ( 𝑤 ) ex-

ept 𝑤 = 10 ( 𝑡 -test; 𝑝 < 0 . 05 ). However, the trough-to-trough duration
as not significantly different between ASD and CN groups for any win-

ow sizes except 𝑤 = 50 . After conducting a posthoc motion correction
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Fig. 3. Comparison of edge time series (ETS) and sliding window-time varying functional connectivity (sw-tvFC) in identifying consistent co-fluctuation patterns 

across subjects in rest versus movie-watching conditions. (a) Shows the root sum square (RSS) of interpolated edge time series per subject during movie-watching 

and rest conditions. When comparing rest versus movie-watching conditions for both methods, RSS patterns specifically, high RSS values (shown in red colors) are 

consistent across subjects for ETS in movie-watching conditions. (b) Shows the inter-subject similarity (ISS) based on RSS pattern for movie-watching condition 

where ISS is higher in ETS ( 𝑝 < 0 . 0001 ). (c) Shows the distribution of ISS values (elements in the upper diagonal of matrices shown in panel b ) for individual movie 
scans and all the movie scans together where ETS shows higher ISS compared to sw-tvFC. 
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nalysis and regressing out the mean of head motion variables from

he trough-to-trough duration and peak height measures, the trough-to-

rough duration was only significantly different between ASD and CN

roups using some of the window sizes ( 20 , 40 , 50 , 90 , ( 𝑡 -test; 𝑝 < 0 . 05 )).
verall, the sliding window method was not consistent in capturing the

ifferences of ASD and CN groups across scans and before and after mo-

ion correction analysis. 

Next, we examined the correlation and community structure of peaks

n terms of their spatial similarity (whole-brain co-fluctuations) in ASD

nd CN for individual scans at the group level. Specifically, we identified

eak amplitudes in an averaged edge time series across subjects per scan

ession. Then we calculated their spatial similarities and clustered them

sing a community detection algorithm (i.e., modularity maximization).

e found that there are three clusters in both CN and ASD groups (scan

) and that overall edges show higher mean peak fluctuations (averaged

mplitudes across time points in each cluster) in CN compared to ASD

 Fig. 5 (f) and (g)). The results for other scan sessions are provided in

he supplementary section (Figs. S14–S16). 

Finally, we conducted an edge-wise comparison of high-amplitude

o-fluctuations between ASD and CN. Our results showed that the

ithin-network edges, i.e. those that link nodes belonging to the same

rain system, exhibited greater magnitude fluctuations in CN ( 𝑡 -test,

 𝑎𝑑 𝑗 𝑢𝑠𝑡𝑒𝑑 < 0 . 008 , false discovery rate (FDR) = 0 . 05 ; Fig. 5 (b)–(e)). The
esults presented in this section were generated using data from all sub-

ects pooled across all scans. The results for individual scans are avail-

ble in the supplementary section (Figs. S12 and S13). 

. Discussion 

In this paper, we compared dynamic properties of ETS with the com-

only used method for estimating tvFC: sliding window analysis. We

onducted our comparisons in several steps including state transition,

o-fluctuation synchrony across subjects, and so on. We found that ETS

apture faster and bursty network dynamics, which is often not feasible

n sw-tvFC due to the blurring effect induced by windowing procedure.

uilding on this important feature of ETS, we used ETS to compare co-

uctuation patterns between ASD and CN groups. We found that at the

hole-brain co-fluctuation level, while CN and ASD show similar levels

f peak amplitude co-fluctuations, ASD shows higher trough-to-trough

uration. 
5 
.1. Edge time series characterize fast and bursty network dynamics 

A growing number of studies have modeled time-varying changes in

etwork structure to study fast changes in network dynamics and link-

ng their features to inter-individual variation in traits, cognition, and

linical status ( Betzel et al., 2016; Cohen, 2018; Liu and Duyn, 2013 ).

lthough many techniques are available for estimating and studying

ime-varying networks, the most common is the sliding window method.

his approach, however, requires the user to define several key param-

ters, each of which impact the character of the estimated networks.

dditionally, the use of a sliding window, which includes multiple suc-

essive samples, prohibits the localization of networks to a specific point

n time. 

However, there exists several methods that can be used to partially

ddress this issue ( Li et al., 2021; Liu and Duyn, 2013; Liu et al., 2018 ).

mong these methods is the recently-proposed “edge time series ”. This

ethod decomposes FC into its exact framewise contributions, gener-

ting an estimate of the co-fluctuation magnitude between node pairs

t each point in time, thereby obviating the need for a sliding window.

lthough this method has been used in several papers ( Esfahlani et al.,

020; Sporns et al., 2021; Betzel et al., 2021 ), which have documented

haracteristics not usually reported in sliding window estimates of tvFC,

.g., bursts of co-activity, no direct comparison of edge time series and

liding-window tvFC has been carried out. 

Our study fills this gap in the literature, measuring several commonly

eported variables in both edge time series and sliding-window tvFC. We

nd that, broadly, these two methods yield estimates of time-varying

etworks that are globally similar, with the similarity peaking when

liding-window tvFC is estimated using short (but not the shortest) win-

ow duration. This location of this peak may reflect tradeoffs between

bility to network reconstruction accuracy, which improves with many

amples, and temporal precision, which increases with fewer samples.

e also found that edge time series have a shorter “memory ” than sw-

vFC, demonstrating that not only does temporal autocorrelation decay

o a baseline value faster than sw-tvFC, the baseline itself is established

t a lower level. Finally, we used a common clustering technique to de-

ne network “states ” and calculated the probabilities of transitions from

ne state to another. We found that recurrent transitions were more

ommon in sw-tvFC compared to edge time series and that transitions

o other states is more common in edge times series. 
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Fig. 4. Peak-trough relationship in the whole-brain co-fluctuation patterns measured by root sum square (RSS) signal. (a) Shows the procedure for calculating peak 

amplitude and duration measures in the RSS signal. Troughs are identified as time points where their amplitudes are lower than their two direct neighbors. (b) Shows 

an example of peak-trough relationship in one subject. (c) Comparing the peak-trough relationship in ETS and sw-tvFC ( 𝑤 = 10 –100 frames with increments of 10). 

 

d  

a  

t  

t  

T  

b  

i  

t  

t  

(  

o  

a  

b  

s  

t  

h  

t  

c  

(  

m  

t  

a  

h  

e  

s  

t  

l  

(  

t  

f  

d

 

t  

o  

d  
These results were expected and are potentially due to several key

ifferences in the estimation of time varying changes using the sw-tvFC

nd ETS methods. First, in the sw-tvFC method, the strength of func-

ional connectivity between pairs of brain regions is calculated based on

he correlation coefficient using all the samples within every window.

his minimizes the contribution of sharp and short-lived co-fluctuations

etween brain regions resulting in a smooth estimation of the time vary-

ng functional connectivity and state transitions over time. Second, sw-

vFC uses the original, unstandardized nodal time series as inputs. While

his might help to identify statistically different brain states over time

 Leonardi and De Ville, 2015 ), it does not provide accurate information

f timing of state transitions ( Shakil et al., 2016 ). In ETS, these issues

re resolved by estimating the magnitude of co-fluctuations between

rain regions as the dot products of standardized (z-scored) nodal time

eries at a framewise scale. This allows utilizing the temporal informa-

ion (i.e., mean and variance) from the entire scan session and estimate

ow much two nodes are jointly deflected above or below their respec-

ive means. This results in a more reliable estimation of time varying
6 
hanges, and a more precise estimation of state transitions over time

e.g., transition from high to low amplitude co-fluctuations with infor-

ation about their specific timing). Nonetheless, it also should be noted

hat ETS does not benefit from the averaging across multiple samples

s present in the sw-tvFC method and thus might be noisier. Although

ere we compare ETS and sw-tvFC directly, we note that, given how

ach is calculated, they implicitly measure distinct time-varying con-

tructs, which might explain the relatively poor agreement between the

wo measures. Specifically, sw-tvFC aims to measure interregional corre-

ations, which are bounded to the interval [0,1] and necessarily require

at minimum) three samples. ETS, on the other hand, calculates instan-

aneous co-fluctuations. That is, it estimates at a timescale of individual

rames, the unbounded magnitude by which the activity of two regions

eflects above or below their respective means. 

Overall, there is a tradeoff between the specificity and sensitivity of

he estimated time varying changes using both sw-tvFC and ETS meth-

ds. sw-tvFC uses a moderate number of samples per window to re-

uce the effect of sampling variability while minimizing the contribu-
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Fig. 5. Edge time series (ETS) in autism spectrum disorder (ASD) and control (CN) subjects during movie-watching condition. (a) Average of peaks and trough- 

to-trough duration between ASD and CN group. Each point in the box plot shows the average of peaks/trough-to-trough duration measure for one subject across 

scans. (b) Averaged differences of edges in peak fluctuation amplitude between CN and ASD (CN minus ASD). (c) Edges that are different in peak fluctuation amplitude 

between ASD and CN ( 𝑝 𝑎𝑑 𝑗 𝑢𝑠𝑡𝑒𝑑 = 0 . 0075 , false discovery rate (FDR) = 0 . 05 ). (d) Edges shown in panel c sorted based on Yeo 17 functional networks ( Yeo et al., 2011 ). 
Each cell represents the number of significant edges (blue (CN > ASD), red (ASD > CN)). (e) Visualization of edges shows in panel c, the p value cutoff is selected 

for visualization. (f, g) Similarity and community structure of peak time points in CN and ASD respectively in scan 2. There are three clusters for peak time points 

based on the whole-brain co-fluctuations. Mean peak fluctuations for every cluster and their first principal component are shown. 

7 
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ion of single point co-fluctuations; on the other hand, ETS captures

o-fluctuations at individual sample level, but does not benefit from the

veraging and potentially be noisier. 

One of the ways that time-varying estimates of networks have been

sed in the past is for brain state detection, i.e. clustering time points

ased on the similarity of connectivity to identify network ‘states’ that

pproximately reoccur across time. In principle, the procedures used

o construct ETS and sw-tvFC as well as decisions about the analysis

ipeline could have implications for the character of the detected states

nd should be investigated further in future studies. Using ETS, con-

ection weight is determined based on deviations from the expected

ehavior over the entire scan (z-scoring is performed with respect to

can-averaged mean and standard deviation). In contrast, sw-tvFC con-

ections are determined based on local correlations, using temporally

roximal frames. Consequently, large deviations from the scan-averaged

ean/variance may be, effectively, corrected for via local z -scoring in

w-tvFC, leading to dissimilar estimates of time-varying connectivity,

hich impact estimates of network states. 

Another way that ETS and sw-tvFC may yield dissimilar and poten-

ially complementary estimates of network states is based on the param-

ters of the clustering algorithm itself. Many of the popular clustering

lgorithms determine clusters based on the distance between network

atterns at different frames. When network patterns are similar (dis-

ance is small), they are likely to be assigned to the same state. The

etric is selected by the user, with correlation distance being the most

ommon. Correlation distance, however, z-scores whole-brain patterns

f connectivity before calculating their distance from one another, ef-

ectively removing any differences in mean connectivity and variance.

hile this decision may have little impact on sw-tvFC estimates, which

xhibit relatively little variation from frame-to-frame in terms of co-

uctuation amplitude, ETS frames exhibit “bursty ” behavior, yielding a

eavy-tailed distribution of co-fluctuation amplitude across time. Con-

equently, z-scoring frames may artificially make a frame with relatively

ow amplitude more similar to an “event ” frame with high-amplitude.

n short, care must be taken in estimating brain states in ETS and com-

aring them to states estimated from sw-tvFC. One possible soluation

s to investigate other metrics, including concordance, which assesses

imilarity and distance by balancing pattern similarity and differences

n amplitude ( Betzel et al., 2022; Betzel et al., 2022 ). 

These findings inform our understanding and interpretation of brain

ynamics. Sliding-window estimates paint a picture in which the brain

ends to slowly traverse a high-dimensional state space, with its state

t 𝑡 + 1 highly dependent on its previous state at time 𝑡 . In contrast,
dge time series exhibit faster rate of change, rapidly reconfiguring over

hort timescales with punctuated, high-amplitude bursts. Notably, how-

ver, both techniques operate on the same input data – nodal time se-

ies. That they offer dissimilar insight highlights the potential for ETS to

erve as a complementary approach to the conventional sliding-window

ethod. 

.2. Relevance of high-amplitude co-fluctuations to cognition and behavior 

Previous studies have examined edge time series and characterized

ome of their basic properties ( Esfahlani et al., 2020; Betzel et al., 2021 ),

peculating that these properties might serve as potent biomarkers for

omparing individuals in terms of their cognitive or clinical states. How-

ver, with limited exceptions, these speculations have not been inves-

igated. Here, as part of an exploratory analysis, we performed two

nalyses. First, we compared edge time series and sw-tvFC in terms of

heir ability to capture inter-subject correlations across individuals dur-

ng passive viewing of movies. To this end, we found that when using

TS, whole-brain co-fluctuation patterns (RSS values across time) are

ore similar across subjects during movie-watching condition compared

o sw-tvFC. This observation highlights a strength of ETS in capturing

hared responses across subjects to the mutual stimuli. Nevertheless, ad-

itional studies are required to understand the origins of these synchro-
8 
ized events during the movie-watching condition, whether they are

riven by the underlying physiological processes or represent the corre-

ation structure. One potential way to address this question would be by

onducting statistical tests to remove the effect of mean evoked activity

rom the original signal and investigate if these synchronized events can

till be observed ( Cole et al., 2019 ). Another possibility to address this

uestion is by studying the link between the movie contents in natural-

stic movie-watching conditions with evoked activities, and the inter-

ubject synchronization of events. There are several studies suggesting

he importance of the timing of events (at the boundaries of movies in

esponse to the contextual shifts in movies) ( Tanner et al., 2022 ) and

heir relevance to cognitive processes and reactivation of past informa-

ion ( Hahamy et al., 2022 ). On the other hand, we also found that, by

xamining whole-brain connectivity profiles during peaks and troughs,

he similarity between peaks and troughs was lower using ETS com-

ared to sw-tvFC. Collectively, these results suggest that the temporal

recision afforded by edge time series may allow us to better track when

rains respond to stimuli, while exposing heterogeneity of response pro-

les (connectivity patterns) across individuals. We speculate that these

wo features could be taken advantage of by future studies investigating

rain-behavior relationships ( Betzel et al., 2022c; Esfahlani et al., 2020;

o et al., 2021 ). Nevertheless, it should be noted that conducting brain-

ehavior studies at single point co-fluctuation level is a challenging task

iven the complexity of understanding the origin of co-fluctuations at

ramewise level (e.g., whether they are driven by the underlying phys-

ological processes or represent the underlying correlation structure),

eterogeneity of neural time series and behavioral measures across indi-

iduals and often small number of samples in these studies ( Marek et al.,

022 ). 

.3. Edge time series disclose differences between ASD and healthy control 

ynamics 

Another key finding of this paper is that ASD, compared to CN,

hows longer trough-to-trough duration, but similar peak amplitudes

n the whole-brain co-fluctuation patterns (RSS signal) during movie-

atching. This observation suggests that, although ASD patients respond

imilarly to stimuli as controls, their network dynamics are systemati-

ally “stickier ” than those of controls – taking longer to rise to peak ac-

ivity and then return to baseline. These stickier dynamics may have im-

ortant implications for the understanding of disorders and disease. For

nstance, slower dynamics could impede or delay transitions between

rain states and, to the extent that brain states are of cognitive rele-

ance, could impact the timing of ongoing cognitive processes ( Cocchi

t al., 2017; Liu et al., 2020; Medaglia et al., 2018; Taghia et al., 2018 ).

More generally, these observations underscore the possibility that

opulation-level differences, if they exist, may be encoded not in the

tructure of a network, but in its dynamics and changes across time.

ndeed, a growing number of studies have shown that features such

s transition rate and occupancy time of dynamic network states vary

ith age and differ between clinical conditions ( Chen et al., 2019; Ezaki

t al., 2018; Tseng and Poppenk, 2020 ). Higher-order network structure,

ncluding its system- and module-level architecture, also vary across

ime, and has been shown in previous studies to track with individual

ifferences in a variety of measures ( Hilger et al., 2017; Liao et al.,

017 ). 

. Limitations and future work 

In this work, we compared sliding window and ETS methods for esti-

ating tvFC, further using ETS to investigate inter-subject correlations

uring movie-watching and group differences between ASD and control

opulations. Although the results of this paper help contextualize ETS

ith respect to existing methods for estimating tvFC and highlight its

otential as a method for studying inter-individual differences, it has a
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umber of limitations. At the same time, it presents exciting opportuni-

ies for future work. 

One way to broaden our findings is to extend the analysis of net-

ork states reported in the first part of the paper and compare the

ontrol and ASD groups in terms of these states. Previous studies have

hown that these states undergo individualization and may present use-

ul and subject-specific information for comparing groups ( Betzel et al.,

021 ). Additionally, the framework applied here to an ASD popula-

ion could be extended to other clinical populations. Indeed, there exist

any large, publicly available datasets that include both clinical groups

 Gorgolewski et al., 2017 ) and massive control populations that are ac-

ompanied by sub-clinical responses to assessments of different neu-

opsychiatric disorders ( Essen et al., 2013; Satterthwaite et al., 2016 ). 

Another possible extension includes exploring edge functional con-

ectivity (eFC), which refers to the correlation structure of edge time

eries. Previous studies demonstrated that this higher-order construct

s both highly reliable and can readily identify overlapping communi-

ies in networks. Yet another opportunity for future work includes more

etailed benchmarking of ETS using synthetic examples with the aim

f clearly distinguishing features that are genuinely “dynamic ” from

hose can be explained by time-invariant features of the static FC ma-

rix ( Ladwig et al., 2022; Novelli and Razi, 2021 ). This question is of-

en examined by conducting statistical null models where the statistical

roperties of the data except the features under study are preserved.

here are several null models for studying the dynamic features of fMRI

uch as independent and identically distributed (i.i.d) Gaussian, multi-

ariate autoregressive, and phase randomization null models that allows

reserving different properties of fMRI data such as kurtosis, covariance

tructure, autocorrelation of the data ( Liégeois et al., 2021 ). While there

ave been several efforts to study the dynamic versus time-invariant fea-

ures of the static FC ( Ladwig et al., 2022; Novelli and Razi, 2021 ), the

onducted models often suffer from the proper representation of the

hysical properties of brain and mainly focus on the correlation struc-

ure observed in the fMRI BOLD signals ( Betzel et al., 2016; Thompson

nd Fransson, 2015 ). Our work clearly demonstrates that it returns dis-

imilar results relative to sliding window methods, however, it remains

nclear whether those dissimilarities necessarily mean that ETS is out-

erforming the other approach. 

Another direction for future research involves comparing ETS

gainst, not only sw-tvFC, but other methods for estimating changing of

onnection patterns, including kernel-based approaches ( Faghiri et al.,

021; Iraji et al., 2020 ). 

Finally, while our work demonstrates that there are systematic dif-

erences in trough-to-trough duration and, possibly, the height of peaks,

t does not speak to when those differences occur. Nor does it speak to

he character of the stimulus present at those instants. Future work us-

ng annotated naturalistic stimuli could be undertaken to help address

hese questions. 

. Materials and methods 

.1. Dataset 

We analyzed fMRI data of 29 CN and 23 ASD individuals that are

canned multiple times during resting-state and movie-watching condi-

ions. The number of subjects used in this study for scan 1, 2, 3 and 4

ere subsequently 29 CN, 23 ASD; 29 CN, 23 ASD; 26 CN, 20 ASD; and

5 CN, 21 ASD. The details for this dataset including participant char-

cteristics, data acquisition, and preprocessing pipeline can be found in

yrge and Kennedy (2020) . 

.2. Image preprocessing 

.2.1. MRI acquisition and processing 

MRI images were acquired using a 3T whole-body MRI system (Mag-

etom Tim Trio, Siemens Medical Solutions, Natick, MA) with a 32-
9 
hannel head receive array. Both raw and prescan-normalized images

ere acquired; raw images were used at all preprocessing stages and

n all analyses unless specifically noted. During functional scans, T2 ∗ -

eighted multiband echo planar imaging (EPI) data were acquired us-

ng the following parameters: TR/TE = 813/28 ms; 1200 vol; flip angle

 60 ; 3.4 mm isotropic voxels; 42 slices acquired with interleaved order

overing the whole brain; multi-band acceleration factor of 3. Preced-

ng the first functional scan, gradient-echo EPI images were acquired

n opposite phase-encoding directions (10 images each with P-A and A-

 phase encoding) with identical geometry to the EPI data (TR/TE =
175/39.2 ms, flip angle = 60 ) to be used to generate a fieldmap to cor-
ect EPI distortions, similar to the approach used by the Human Connec-

ome Project ( Smith et al., 2013 ). High-resolution T1-weighted images

f the whole brain (MPRAGE, 0.7 mm isotropic voxel size; TR/TE/TI =
499/2.3/1000 ms) were acquired as anatomical references. All func-

ional data were processed according to an in-house pipeline using

EAT (v6.00) and MELODIC (v3.14) within FSL (v. 5.0.9; FMRIB’s Soft-

are Library, www.fmrib.ox.ac.uk/fsl ), Advanced Normalization Tools

ANTs; v2.1.0) ( Avants et al., 2011 ), and Matlab R2014b. This pipeline

as identical to the GLM + MGTR procedure described in Byrge and

ennedy (2018) . 

In more detail, individual anatomical images were bias corrected

nd skull-stripped using ANTs, and segmented into gray matter, white

atter, and CSF partial volume estimates using FSL FAST. A midspace

emplate was constructed using ANTs’ buildtemplateparallel and subse-

uently skull-stripped. Composite (affine and diffeomorphic) transforms

arping each individual anatomical image to this midspace template,

nd warping the midspace template to the Montreal Neurological Insti-

ute MNI152 1mm reference template, were obtained using ANTs. 

For each functional run, the first five volumes ( ≃ 4 s) were discarded
o minimize magnetization equilibration effects. Framewise displace-

ent traces for this raw (trimmed) data were computed using fsl motion

utliers. Following ( Burgess et al., 2016; Byrge and Kennedy, 2020 ), we

erformed FIX followed by mean cortical signal regression. This proce-

ure included rigid-body motion correction, fieldmapbased geometric

istortion correction, and non-brain removal (but not slice-timing cor-

ection due to fast TR Smith et al., 2013 ). Preprocessing included weak

ighpass temporal filtering ( > 2000 s FWHM) to remove slow drifts

 Smith et al., 2013 ) and no spatial smoothing. Off-resonance geometric

istortions in EPI data were corrected using a fieldmap derived from

wo gradient-echo EPI images collected in opposite phase-encoding

irections (posterior-anterior and anterior-posterior) using FSL

opup. 

We then used FSL-FIX ( Salimi-Khorshidi et al., 2014 ) to regress out

ndependent components classified as noise using a classifier trained

n independent but similar data and validated on handclassified func-

ional runs. The residuals were regarded as ‘cleaned’ data. Finally, we

egressed out the mean cortical signal (mean BOLD signal across gray

atter partial volume estimate obtained from FSL FAST). All analyses

ere carried out on these data, which were registered to subjects’ skull-

tripped T1-weighted anatomical imaging using Boundary-Based Regis-

ration (BBR) with epi reg within FSL. Subjects’ functional images were

hen transformed to the MNI152 reference in a single step, using ANTS to

pply a concatenation of the affine transformation matrix with the com-

osite (affine + diffeomorphic) transforms between a subject’s anatom-

cal image, the midspace template, and the MNI152 reference. Prior to

etwork analysis, we extracted mean regional time series from regions of

nterest defined as sub-divisions of the 17-system parcellation reported

n Yeo et al. (2011) and used previously ( Betzel et al., 2014; Byrge et al.,

015; Betzel et al., 2015 ). Wakefulness during movie and rest scans was

onitored in real-time using an eye tracking camera (Eyelink 1000). 

.2.2. Naturalistic stimuli 

All movies were obtained from Vimeo ( https://vimeo.com ). They

ere selected based on multiple criteria. First, to ensure that movies

epresented novel stimuli, we excluded any movie that had a wide the-

http://www.fmrib.ox.ac.uk/fsl
https://vimeo.com
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trical release. Secondly, we excluded movies with potentially objec-

ionable content including nudity, swearing, drug use, etc. Lastly, we

xcluded movies with intentionally startling events that could lead to

xcessive in-scanner movement. 

Each movie lasted approximately 1 to 5 min. Each movie scan com-

rised between four and six movies with genres that included documen-

aries, dramas, comedies, sports, mystery, and adventure. See Table S1

or more details. 

.3. Edge (Co-fluctuation) time series 

Functional brain networks are constructed by estimating the statisti-

al dependency between fMRI BOLD activity of brain regions. The mag-

itude of these dependencies reflects the strength of functional con-

ection between brain regions. One of the most common measures to

stimate the dependency between brain regions is the Pearson corre-

ation coefficient. The overall procedure for calculating Pearson coeffi-

ient is as follows: Let 𝑥 𝑖 = [ 𝑥 𝑖 (1) , … , 𝑥 𝑖 ( 𝑇 )] and 𝑥 𝑗 = [ 𝑥 𝑗 (1) , … , 𝑥 𝑗 ( 𝑇 )] be
he time series recorded from voxels or parcels 𝑖 and 𝑗, respectively. We

an calculate the correlation of 𝑖 and 𝑗 by first z-scoring each time series,

uch that 𝑧 𝑖 = 

𝑥 𝑖 − 𝜇𝑖 
𝜎𝑖 

, where 𝜇𝑖 = 
1 
𝑇 

∑
𝑡 𝑥 𝑖 ( 𝑡 ) and 𝜎𝑖 = 

1 
𝑇−1 

∑
𝑡 [ 𝑥 𝑖 ( 𝑡 ) − 𝜇𝑖 ] are

he time averaged mean and standard deviation. Then, the correlation

f 𝑖 with 𝑗 can be calculated as 𝑟 𝑖𝑗 = 
1 

𝑇−1 
∑

𝑡 [ 𝑧 𝑖 ( 𝑡 ) .𝑧 𝑗 ( 𝑡 ) ] . Repeating this
rocedure for all pairs of parcels results in a node-by-node correlation

atrix, i.e., an estimate of FC. If there are N nodes, this matrix has di-

ensions [ 𝑁 ×𝑁] . To estimate edge-centric networks, we modify the
bove approach such that we only calculate the element-wise product

f two time series and remove the step for calculating the mean. This op-

ration would result in a vector of length 𝑇 whose elements encode the

oment-by-moment co-fluctuation magnitude of parcels 𝑖 and 𝑗. More

pecifically, the positive values in the vector reflect the simultaneous

ncrease or decrease in the activity of parcels 𝑖 and 𝑗, while negative

alues reflect the opposite direction (one increasing while the other de-

reasing and vice versa) of the magnitude of their activity. Similarly, if

ither 𝑖 or 𝑗 increased or decreased while the activity of the other was

lose to baseline, the corresponding entry would be close to zero. An

nalogous vector can easily be calculated for every pair of parcels (net-

ork nodes), resulting in a set of edge time series. With 𝑁 parcels, this

esults in 
𝑁 ×( 𝑁 −1) 

2 pairs, each of length 𝑇 . 

.4. Sliding window time series 

To estimate tvFC using sliding window method, we divided every

MRI BOLD time series into several consecutive equal-sized segments

windows) and calculated correlation coefficient between time points

ithin each window. We repeated this procedure for every window

nd for all pairs of time series. This results in a [ 𝑁 ×( 𝑁 −1) 
2 ×𝑊 ] where

is the total number of brain regions and 𝑊 is the total number of

indows used to for sw-tvFC estimation (for every time series). We

ave normalized obtained sw-tvFC values (i.e., 𝑟 ) using Fisher trans-

orm 𝐹 = 
1 
2 × ln ( 1+ 𝑟 1− 𝑟 ) . We used window sizes ( 𝑤 ) of 10–100 with in-

rements of 10; and offset (value for shifting window) = 1 to estimate
w-tvFC where the results for 𝑤 = 20 are in provided in the main text
nd results for other window sizes are available in the supplementary

ection. 

The obtained tvFC based on the sliding window is shorter than the

ctual fMRI BOLD time series, while ETS is exactly the same length as

MRI BOLD time series. Therefore, in order to compare the whole-brain

o-fluctuation and inter-subject similarity between sw-tvFC and ETS, we

sed linear interpolation technique to resample (i.e., 350 time points)

ime series and calculate the similarity between the two interpolated

ime series. 
10 
.5. Kernel-based time varying functional connectivity 

Kernel-based time varying functional connectivity uses kernel func-

ions (i.e., Gaussian kernel) to obtain smoothed tvFC by considering the

ontribution of the neighboring time points on the estimation of instan-

aneous correlation at each time point. Here, we used Gaussian kernel

ith the width = 10–100, with increments of 10 to obtain smoothed

vFC. 

.6. Autocorrelation 

For every subject, we calculated the autocorrelation (i.e., lag = 100)

n ETS/sw-tvFC as the similarity of whole-brain co-fluctuation patterns

t time 𝑡 with the patterns at times 𝑡 + 1 , 𝑡 + 2 , … , 𝑡 + 99 , 𝑡 + 100 . We com-
ared the averaged autocorrelation across subjects in ETS and sw-tvFC.

.7. K-means clustering and state transitions 

We have used k-means clustering algorithm with Euclidean distance

o cluster ETS/sw-tvFC. More specifically, we clustered time points

ased on the similarity of whole-brain co-fluctuation patterns at a given

ime point. For every subject, we obtained a clustered time series ( 1 × 𝑇 )

here every element represents a cluster index (i.e., brain state) at that

iven time point. After obtaining the clustered edge time series, we

uantified the number of transitions between/within states over time.

e used 𝑘 = 5 , 10, and 15 as the initial number of clusters where results
or 𝑘 = 5 is provided in the main text and 𝑘 = 10 and 𝑘 = 15 are provided
n the supplementary section. 

.8. Trough-to-trough duration and peak amplitude measures 

For every subject, we calculated the root sum square (RSS) of all the

dge time series at every given time point resulting in a single time se-

ies. Next, we identified troughs in RSS signal and defined two measures

f peak amplitude (highest peak between two troughs) and duration of

rough-to-trough. Troughs (here, referring local minima) in RSS signal

ere defined as time points where their values were lower than the

mplitude of their two direct neighbors. We used the mean peak ampli-

udes and trough-to-trough duration in RSS signal to compare ETS and

w-tvFC across subjects. The same approach was used to compare CN

nd ASD in terms of these measures. 

.9. Correlation between confounding variables and tvFC 

We conducted a posthoc motion correction analysis to examine the

ffect of head motion and noise in calculating trough-trough duration

nd peak amplitude measures in RSS signal. For every subject, we re-

ressed out the mean of two head motion variables (e.g., derivative of

canner motion and framewise displacement) from trough-to-trough du-

ation and the peak co-fluctuation amplitude measures and compared

he obtained residuals between ASD and CN. More specifically, we re-

ressed out the mean of head motion variables from peak amplitude

easures at time points corresponding to peaks. For trough-to-trough

uration measure, we took the average of head motions between every

wo troughs and regressed out those from the trough-trough duration

easure. Finally, we compared the obtained residuals between ASD and

N groups. 

.10. Modularity maximization 

Modularity maximization is a computational heuristic for detecting

ommunity structure in networked data. It defines communities (clus-

ers) as groups elements whose internal density of connections maxi-

ally exceed what would be expected. In this context, we defined the

xpected weight of connections to be equal to the mean similarity be-

ween all pairs of patterns. Modularity maximization with the Louvain
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lgorithm is non-deterministic and, depending upon initial conditions,

an yield dissimilar results. Accordingly, we ran the algorithm 1000

imes with different random seeds. We resolved variability across these

ifferent seeds using a consensus clustering algorithm in which we it-

ratively clustered the module co-assignment matrix until convergence.

he resulting consensus partition assigned each co-fluctuation pattern

o non-overlapping clusters. 
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