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a b s t r a c t 

Both cortical and subcortical regions can be functionally organized into networks. Regions of the basal ganglia are 
extensively interconnected with the cortex via reciprocal connections that relay and modulate cortical function. 
Here we employ an edge-centric approach, which computes co-fluctuations among region pairs in a network to 
investigate the role and interaction of subcortical regions with cortical systems. By clustering edges into com- 
munities, we show that cortical systems and subcortical regions couple via multiple edge communities, with 
hippocampus and amygdala having a distinct pattern from striatum and thalamus. We show that the edge com- 
munity structure of cortical networks is highly similar to one obtained from cortical nodes when the subcortex is 
present in the network. Additionally, we show that the edge community profile of both cortical and subcortical 
nodes can be estimates solely from cortico-subcortical interactions. Finally, we used a motif analysis focusing on 
edge community triads where a subcortical region coupled to two cortical regions and found that two community 
triads where one community couples the subcortex to the cortex were overrepresented. In summary, our results 
show organized coupling of the subcortex to the cortex that may play a role in cortical organization of primary 
sensorimotor/attention and heteromodal systems and puts forth the motif analysis of edge community triads as 
a promising method for investigation of communication patterns in networks. 
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bbreviations 

OLD blood oxygen level dependent 
MRI functional magnetic resonance imaging 
C functional connectivity 
s-fMRI resting state fMRI 
CP Human Connectome Project 
TS edge time series 

. Introduction 

Characterizing the structural organization of the human brain has
een a goal of network neuroscience since the inception of the con-
ectome ( Hagmann et al., 2008 ; Sporns et al., 2005 ). The anatomical
rganization of connected neural elements is highly complex, which
ives rise to a large repertoire of functional interactions. By aggregat-
ng blood oxygen level dependent (BOLD) signal from functional mag-
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etic resonance imaging (fMRI) into regional measurements, functional
onnectivity (FC) among these regions (network nodes) can be esti-
ated via measures of statistical dependence (network edges/weights;
ommonly Pearson correlation) between BOLD time courses. Resting
tate and task fMRI paradigms have revealed an intrinsic organization
nto functional systems ( Fox et al., 2006 ; Yeo et al., 2011 ), which, as
etwork science approaches have revealed, are arranged into a multi-
cale modular architecture ( Betzel and Bassett, 2017 ; Mucha et al.,
010 ; Sporns and Betzel, 2016 ). Additionally, within clinical network
euroscience alterations in FC have been reported in various disease
tates such as schizophrenia ( Fornito et al., 2012 ), Alzheimer’s disease
 Contreras et al., 2019 ), and other brain disorders ( Fornito et al., 2015 ).
The modular structure of fMRI-derived FC is a topic of great inter-

st in network neuroscience. It refers to the decomposability of FC into
lusters or communities of neural elements that possess greater con-
ectivity within the same community compared to between different
ebruary 2022 
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ommunities ( Power et al., 2011 ). The brain’s community structure has
een studied in relation to networks estimated from task fMRI reported
ctivations ( Stanley et al., 2014 ) and from intrinsic functional systems
dentified at rest ( Betzel et al., 2016 ; Di and Biswal, 2015 ). It is now
ypothesized that modular structure is important for specialized brain
unction ( Bertolero et al., 2015 ). This hypothesis is supported by stud-
es that have shown correspondence between intrinsic networks at rest
nd activations in task-based paradigms ( Crossley et al., 2013 ; Di et al.,
013 ), as well as reconfiguration of modular networks between rest and
ask ( Cohen and Esposito, 2016 ; Hearne et al., 2017 ; Smith et al., 2009 ).
owever, the focus has remained primarily on cortical community struc-
ure, with less work focused on contributions from major subcortical
egions ( Bell and Shine, 2016 ). 
The basal ganglia and related structures within the subcortex are in-

olved in a diverse set of functions though intra-subcortical communi-
ation as well as with cortical regions. Core regions of the subcortex, the
triatum and globus pallidus are predominantly associated with motor
unctions and reward ( Haber and Knutson, 2010 ; Lanciego et al., 2012 ),
hile other subcortical structures (thalamus, amygdala, hippocampus)
ave roles in emotional, memory, and sensorimotor functions through
arious subcortical and cortico-subcortical circuits ( Child and Benar-
och, 2013 ; Choi et al., 2017 ; Janak and Tye, 2015 ; Nakajima and
alassa, 2017 ; Sherman, 2017 ). Early understanding of subcortical
unction comes from studies that employed electrical stimulation and
ract tracing in nonhuman models ( Haber et al., 1990 ; Olds and Mil-
er, 1954 ), as well as lesion studies of human patients ( Ward et al.,
013 ). As fMRI has become increasingly used to map subcortical or-
anization and function noninvasively in vivo, studies that focused
n subcortical FC have shown connectivity between the amygdala nu-
lei and hippocampus, caudate, and several cortical regions (prefrontal
ortex, insula, and cingulate) ( Janak and Tye, 2015 ; Tillman et al.,
018 ; Weis et al., 2019 ). Differential FC profiles of thalamic nu-
lei connectivity to cortical and subcortical regions have also been
bserved ( Child and Benarroch, 2013 ; Nakajima and Halassa, 2017 ;
herman, 2017 ). In recent years, methods have emerged that focus on
etwork connections/edges more so than on network nodes (for review
ee ( Faskowitz et al., 2021 )). Among those, Faskowitz et al. (2020) de-
eloped a framework that represents the network as functional in-
eractions of edges, which can be clustered to reveal an edge com-
unity structure, where each edge is assigned a community label

 Faskowitz et al., 2020 ; Jo et al., 2021 ). This edge community struc-
ure approach offers a novel avenue for investigating subcortico-cortical
nteractions and communication. 
The edge FC model uses nodal BOLD time series to estimate co-

uctuations among pairs of nodes, which can be interpreted as time-
ependent pattens of communication. Therefore, community structure
btained from these co-fluctuation edge time series identifies groups of
dges that may support similar communication strategies among con-
ecting nodes and, when mapped back onto a node-by-node matrix, re-
eals an overlapping community structure. Prior work ( Faskowitz et al.,
020 ; Jo et al., 2021 ; Zamani Esfahlani et al., 2020 ) has focused on map-
ing cortical communities, revealing a distinction between primary sys-
ems (visual, somatomotor, dorsal and ventral attention, and temporal
arietal) and heteromodal systems (control, default mode, and limbic),
ithout considering the roles and contributions of subcortical nodes. To
ddress this, we investigated how subcortical regions contribute to, af-
ect, or are affected by cortical modular organization. Our hypothesis
s that the subcortex, via edge community structure, will differentially
nteract with different cortical systems. We also introduce a novel mo-
if analysis based on edges’ community assignments, which we refer to
s “edge community triads ”, and we leverage this approach to further
robe subcortico-cortical communication patterns. Edge community tri-
ds are three node subgraphs consisting of four types, based on the or-
anization of edge communities. Given to the role of the subcortex in in-
ormation integration, we hypothesized that triads which connect a sub-
ortical node to two cortical nodes via the same edge community will be
2 
ver-represented relative to other triad types. This would demonstrate
hat subcortico-cortical communication patterns as estimated by edge
ommunity structure from resting state fMRI (rs-fMRI) capture biologi-
ally meaningful information about subcortico-cortical organization. 

. Materials and methods 

.1. Dataset 

In this study we analyzed data from the Human Connectome Project
HCP) ICA-FIX ( Griffanti et al., 2014 ; Van Essen et al., 2013 ) prepro-
essed dataset. Informed consent was obtained from all participants
nd all study protocols and procedures were approved by the Wash-
ngton University Institutional Review Board. Data were collected on a
iemens 3T Connectom Skyra with a 32-channel head coil. A detailed de-
cription of acquisition protocols can be found elsewhere ( Glasser et al.,
013 ; Van Essen et al., 2013 ). Briefly, rs-fMRI data were acquired in 4
essions over 2 days, (scan duration 14:33 min) with a gradient-echo-
lanar imaging sequence, with TR = 720 ms, TE = 33.1 ms, flip angle of
2°, 2 mm isotropic voxel resolution and a multiband factor of 8. Par-
icipants were instructed to keep eyes open and fixated on a cross. A
ubset of 92 unrelated participants, part of the HCP 100 unrelated sub-
ects release, for which complete processed data was available for all
our scans, were utilized in primary analyses. Scans were excluded from
nalysis based on a set of summary motion measurements ( Parkes et al.,
018 ) derived from motion correction preprocessing and provided in
he HCP database. Motion spikes were defined as a relative root-mean-
quare (RMS) movement of 0.25 mm or above. Scans were excluded
rom analysis if at least one of the following conditions were met: greater
han 15% of time points were marked as a motion spikes; the average
elative RMS motion greater than 0.2 mm; a spike larger than 5 mm was
resent. These criteria resulted in eight subjects with an incomplete set
f fMRI scans, and therefore excluded from the present study. 

.2. Image pre-processing 

Functional preprocessing. HCP rs-fMRI data were minimally prepro-
essed as described in Glasser et al. (2013) including distortion, sus-
eptibility, and motion correction, registration to subjects’ respective
1-weighted data, bias and intensity normalized (mean 10,000), pro-
ected onto the 32k_fs_LR mesh, and aligned to common space with a
ulti-modal surface registration ( Robinson et al., 2014 ). In addition to
he ICA-FIX artifact removal process, global signal, its derivative, and
heir squared terms were regressed out, and data were detrended and
andpass filtered (0.008 – 0.08 Hz) ( Parkes et al., 2018 ) with Nilearn
ignal.clean, which removes confounds orthogonal to the temporal fil-
ers ( Lindquist et al., 2019 ). 
Parcellation pre-processing. A functional parcellation of the cortex,

esigned to optimize both local gradient and global similarity mea-
ures of fMRI signal was used to define nodes at 4 scales (Schaefer100–
00 nodes in steps of 100) ( Schaefer et al., 2018 ). This parcellation is
apped to and grouped by canonical 17 resting state networks from
eo et al. (2011) . Parcellations were downloaded as cifti files in the
sLR_32k space; the same space as the preprocessed rs-fMRI data. Ad-
itionally, a novel gradient-based subcortical parcellation was used to
elineate nodes within the amygdala, hippocampus, thalamus, and stria-
um consistent of 16 regions per hemisphere (Scale II parcellation from
ian et al. (2020) ). 

.3. Edge graph construction 

Mean nodal time courses were extracted from preprocessed data for
ach scan and each cortical and subcortical parcellation. For each sub-
ect, time courses were cropped to exclude the first and last 50 time-
oints ( ∼36 s) to account for the edge effects of the bandpass filter and
oncatenated into day 1 and day 2 (2 scans each). Subsequently, sample
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ime courses were constructed for each day by concatenating all subject
ime courses from that day. 
Edge time series (ETS) were computed as described previously

 Faskowitz et al., 2020 ; Jo et al., 2021 ), in the following steps: (1) for
ll nodes ( N ), time courses were z -scored, (2) for all possible node pairs
 and 𝑗 (where 𝑖 ≠ 𝑗), the element-wise product (over time) was com-
uted. The resultant ( 𝑀 = 

𝑁 ( 𝑁 −1 ) 
2 ) ETS are vectors of same length as the

odal time courses that encode moment-by-moment co-fluctuations of
he edge between nodes 𝑖 and 𝑗. ETS can be interpreted as the decom-
osition of FC (Pearson correlation) into its time-varying contributions.

.4. Edge community detection 

Computing a matrix from ETS would result in large ( M x M ) matri-
es that would require a great amount of memory and computation time
o cluster. To circumvent this issue and reduce computational burden,
e clustered the 𝑀 × 𝑇 ETS matrix directly using the k-means algo-
ithm, implemented in MATLAB version 2021A, with normalized Eu-
lidean distance ( Jo et al., 2021 ). We varied the number of clusters, 𝑘 ,
rom 2 to 20 clusters in increments of 1, repeating the algorithm 250
imes with random initial conditions. Due to the large number of time
oints, for sample representative communities each run was initiated
ith 10% of the concatenated time series randomly sampled and clus-
ered to produce an initial estimate of cluster centroids. These centroids
ere then used as initial estimates to cluster the full sample time series.
t each k value a single consensus partition was obtained from the 250
uns. For subject-specific partitions, the clustering algorithm was run (1
un) with the sample consensus partition provided as the initial seed
artition. Note that no additional runs were necessary, as the k-means
lgorithm is deterministic; from a fixed initial assignment of nodes to
lusters it always converges to the same solution. 

.5. Community overlap metrics 

Normalized Entropy. Interpreted as a continuous measure of edge
ommunity overlap at any node 𝑖 , normalized entropy was calculated
y first computing node 𝑖 ′𝑠 participation in cluster 𝑐: 

 𝑖𝑐 = 

1 
𝑁 − 1 

∑

𝑗≠𝑖 

𝛿
(
𝑔 𝑖𝑗 , 𝑐 

)

here 𝑔 𝑖𝑗 ∈ ( 1 , … , 𝑘 ) was the cluster assignment of the edge between
odes 𝑖 and 𝑗 and 𝛿( 𝑔 𝑖𝑗 , 𝑐 ) is the Kronecker delta, whose value is 1 if 𝑥 ==
 and zero otherwise. The entropy of the probability distribution 𝑝 𝑖 =
 𝑝 𝑖 1 , … , 𝑝 𝑖𝑘 ] of node 𝑖 ′𝑠 edge community assignment was then computed
s: 

 𝑖 = − 

∑

𝑐 

𝑝 𝑖𝑐 log 2 𝑝 𝑖𝑐 

This value was then normalized by dividing by log 2 k, which
ounded the range to [0,1]. For sample time series derived clusters, en-
ropy is reported as the mean across the 250 repetitions of the clustering
lgorithms. 
Edge community similarity. The resultant partition from the clustered

TS is a vector where each edge is assigned a community label. This
ector can be rearranged into the upper triangular of a 𝑁 ∗ 𝑁 matrix
, where row/column for any node 𝑖 encodes the community affiliations
or edges connecting that node. Similarity of edge communities can then
e computed from this matrix for nodes 𝑖 and 𝑗 as the fraction of edges
hat have the same community labels for both nodes ( Jo et al., 2021 ): 

 𝑖𝑗 = 

1 
𝑁 − 2 

∑

𝑢 ≠𝑖,𝑗 

𝛿
(
𝑥 𝑖𝑢 , 𝑥 𝑗𝑢 

)

here 𝛿( 𝑥 𝑖𝑢 , 𝑥 𝑗𝑢 ) is the Kronecker delta that is 1 if x and y have the
ame value and 0 otherwise. Repeating the process over all node pairs
 𝑖𝑗 generates the similarity matrix S. 
Edge community triads. A triad of nodes can be analyzed as a three-

ode motif, a mesoscale building block of the wider brain network
3 
 Milo et al., 2002 ). Motifs allow for a complete decomposition of a larger
etwork into subgraphs, which can reveal statistical features in the local
rganization of structural and functional brain networks ( Battiston et al.,
017 ; Sporns and Kötter, 2004 ). Here, we adapt graph-based motif anal-
sis to include edge labels based on their edge community assignment,
hich allows for investigation of relationships among nodes using triad
otifs in a fully connected network. Focusing on a reference node (in-
exed 𝑙 in Fig. 1 ) and examining all or subset of triads it takes part in
llows us to ask questions about communication/coupling properties of
 that node to other nodes of the network, based on edge communities
hat make up the triads. Here the focus is on cortico-subcortical con-
ectivity, thus we focus our analysis on triads with a single subcortical
ode in the reference position and examine the coupling of these refer-
nce nodes to all possible pairs of cortical nodes. 
Fig. 1 shows a diagrammatic workflow from nodal time series to

dge community triads. There are four possible edge community triads,
n any network where the number of communities is greater than two:
1) closed loop – the three edges among the three nodes are all in the
ame community, (2) forked – the two edges connecting to/from the
eference (subcortical) node have the same community label, while the
hird edge (between the two cortical nodes) is in a different community,
3) l -triad – the two edges connecting to/from the reference node have
ifferent community labels, while the third edge (that does not connect
he reference node) shares a label with one of the two reference connect-
ng edges, and (4) diverse – all three edges in the triad have different
ommunity labels. A diagram of the possible triads is shown in Fig. 1 D.
o assess whether the distributions of triad types in a network are dif-
erent from those expected by chance, a set of 1000 null networks was
enerated from the node-by-node edge community assignment matrix,
ermuting the node labels in such a way that the indices of the sub-
ortex were permuted into the cortex portion of the matrix. This null
as chosen over a blind label permutation to ensure that anything that
ould make the subcortex distinct from the cortex in terms of its triad
attern was restructured under the null. This null distribution was used
o compute a permutation p- value. 

. Results 

.1. Consensus edge community structure 

Here we investigated the community structure of sample concate-
ated time series, using a parcellation of 200 cortical and 32 subcorti-
al nodes, by performing edge-centric clustering of concatenated time
eries of 92 participants from the HCP cohort. Clustering of the edge
ime series leads to community partitions where each edge is assigned a
abel and these partitions can be projected onto a node-by-node matrix
o visualize overlapping community structure ( Fig. 2 A). This approach
as been previously applied to cortical brain networks ( Faskowitz et al.,
020 ; Jo et al., 2021 ; Zamani Esfahlani et al., 2020 ) and we extend this
ork by assessing the role/influence of subcortical regions in the brain.
When ordered by canonical RSNs, estimated partitions showed over-

apping organization that qualitatively resembled canonical RSN group-
ng, with a distinct subcortical component ( Fig. 2 A). The distribution
f edge communities for all nodes was computed as normalized en-
ropy and visualized by system for cortical RSNs and subcortical nodes,
hich were grouped by anatomical label ( Fig. 2 B), showing a poten-
ial dichotomy of primary sensory and attentional systems (visual, so-
atomotor, dorsal and ventral attention, and temporal parietal) in one
roup and higher order systems (control, default mode, and limbic)
n another, as previously reported ( Jo et al., 2021 ). A comparison of
ean network entropies among the two system types showed signif-
cantly higher entropy values were observed in primary sensorimotor
nd attentional systems (mean ± standard deviation: 0.7673 ± 0.0877),
ndicating that edges incident upon nodes of those networks are dis-
ributed over a greater number of communities, compared to higher
rder systems (0.5490 ± 0.0630) (permutation t -test, p = 0.00011,
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Fig. 1. Edge time series clustering overview. Nodal time series (A) for all regions pairs are used to compute the edge time series (B) , which are subsequently 
clustered to assign each edge in the network to an edge community, as visualized in the node-by-node matrix (C) . From this matrix motif triads are estimated, with 
four possible triad types (D) : a closed loop comprised of a single community, a forked triad (relative to a reference node 𝑙) comprised of two communities with the 
same community for both edges connected to 𝑙, l -shape triad also comprised of two communities, however, edges connecting 𝑙 are in different communities, and a 
diverse triad comprised of three different communities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 2. (A) Edge community affiliations for the 7-cluster solution represented in a node-by-node matrix for the 232 node parcellation (200 cortical 
Schaefer et al. (2018) nodes and 32 subcortical Tian et al. (2020) nodes). Black dotted lines denote boundaries of 17 resting state networks from Yeo et al. (2011) plus 
subcortical. Networks are ordered top-bottom and left-right as labeled on x-axis in B and C. (B) Nodal entropies of edge communities grouped into 17 networks 
plus subcortical nodes, which are grouped by anatomy. Individual data points denote node groupings into the 17 canonical RSNs in Yeo et al. (2011) , colored by 7 
network labels, with added subcortical regions. (C) (Left) A surface template of the Schaefer et al., 2018 node assignment to the Yeo et al., 2011 17-networks. (Right) 
Edge communities (y-axis) across resting state networks and subcortex (x-axis). Color saturation corresponds to proportion of total edges in an edge community 
that connect to a node of a particular network. Variants of these plots for different cluster solutions, cortical parcellation scales, and for the Day 2 dataset are in 
Supplementary Figs. 1–3. Cont – Control, DorsAttn – Dorsal Attention, SalVentAttn – Salience/Ventral Attention, SomMot – Somatomotor, TempPar – Temporal 
Parietal, VisCent – Visual Central, VisPeri – Visual Peripheral, Hipp – Hippocampus, Amyg – Amygdala, Thal – Thalamus, NAcc – Nucleus Accumbens, GlobPall –
Globus Pallidus. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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00,000 label permutations). Similar outcomes were observed at other
luster solutions (number of clusters = 4, 10, and 17; Supplementary
ig. 1), with a range of cortical parcellation scales (Schaefer 100, 300,
nd 400 nodes; Supplementary Fig. 2), and in a second dataset con-
isting of Day 2 HCP scans from the same participants (Supplementary
ig. 3). 
4 
Contributions of edge communities to RSN systems as well as the
ontribution of subcortical nodes is shown in Fig. 2 C. For the 7-cluster
olution, three communities were predominantly cortical (communi-
ies 2,6,7) and coupled visual-somatomotor-attention, attention-control,
nd control-default mode systems, respectively. Four edge communi-
ies coupled subcortical nodes to cortical systems, which qualitatively
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Fig. 3. Spatial representation of edge communities for cortical (Left; 200 nodes from Schaefer et al. (2018) ) and subcortical (Right; 32 nodes from Tian et al. (2020) ) 
nodes. Color saturation corresponds to proportion of total edges in an edge community that connect to a particular node. Cortical nodes are visualized on a fs_LR_32k 
surface, while subcortical nodes are sagittal slices and an axial slice in Montreal Neurological Institute (MNI) standard space at the indicated coordinates. Anatomical 
underlay is the MNI152_1 mm brain template. Slices left of the axial slice are in the left hemisphere while slices to the right are in the right hemisphere. 
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howed two subcortical groupings ( Fig. 2 C, communities 1 and 4: stria-
um, pallidum, and thalamus; communities 3 and 5: predominantly
ippocampus and amygdala) coupled to either the primary sensorimo-
or/attention or heteromodal systems. Anatomical visualizations of edge
istributions for each of the seven communities at each node are shown
n Fig. 3 as well as in Supplementary Fig. 4 for the Day 2 HCP dataset,
here spatially similar communities were observed. 

.2. Role/Influence of subcortical nodes on cortical edge community 

tructure 

Given previous reports of edge community organization within cor-
ical systems ( Jo et al., 2021 ; Zamani Esfahlani et al., 2020 ), how does
he presence of subcortical nodes impact edge community structure?
e assessed this by comparing cortical edge communities for the 7-
luster solutions for the full network (cortical + subcortical) vs. cor-
ex only ( Fig. 4 ). Edge communities for cortical nodes were highly
imilar between the two networks (normalized mutual information
.7153; Fig. 4 A) and comparison across a range of community solutions
5 
howed high similarity for communities with similar number of clusters
 Fig. 4 B). Similar separation of primary and heteromodal systems via
dge communities ( Fig. 4 C) and similar system entropies ( Fig. 4 D; pri-
ary 0.7293 ± 0.1009 and heteromodal 0.5175 ± 0.0784 systems, per-
utation t -test, p = 0.0004, 100,000 label permutations) were also ob-
erved. To further examine how edge communities are related to nodal
SN groupings, the influence of subcortical nodes, and the distinction
etween primary and heteromodal RSNs, edge community profile sim-
larity matrices, which quantify the degree to which two nodes couple
o other nodes in the network via the same edge communities, were
enerated. Comparing the edge community similarity of cortical nodes
howed that addition of subcortical nodes to the network had minimal
nfluence on similarity ( Fig. 4 E-F, Pearson correlation r = 0.94 across
ortical nodes between two network types) This relationship was also
bserved at varying numbers of clusters and at other cortical parcella-
ion scales (Supplementary Fig. 5) as well as in the day 2 dataset (Sup-
lementary Fig. 6). 
Focusing on the edge communities within the cortico-subcortical

nteraction block ( Fig. 5 A), the distribution of the interaction edges
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Fig. 4. Cortico-cortical edge community structure is preserved with addition of subcortex. (A) Edge community clusters of the full (cortex + subcortex, as seen 
in Fig. 2 ) network (Left) compared to when only cortical edges were clustered (Right). Black dotted lines denote boundaries of the Yeo et al. (2011) 17 resting 
state networks. (B) Similarity of edge community partitions of varying sized (from 2 through 20) for cortical nodes from the cortex only network compared to 
cortical nodes from the cortex + subcortex network. (C) Overlapping edge communities (y-axis) across resting state networks (x-axis) of the cortical nodes only 
network. Color saturation corresponds to proportion of total edges in an edge community that connect to a node of a particular network. (D) Nodal entropies of edge 
communities grouped by 17 networks in the cortex only matrix, with individual data point colors denoting groupings into the 7 canonical RSNs in Yeo et al. (2011) . 
(E) Comparison of edge community profiles (similarity) of cortical nodes from the full network (left) versus the cortex only network (right). (F) Density plot of the 
edges from the two network types in D with Pearson correlation reported. Cont – Control, DorsAttn – Dorsal Attention, SalVentAttn – Salience/Ventral Attention, 
SomMot – Somatomotor, TempPar – Temporal Patietal, VisCent – Visual Central, VisPeri – Visual Peripheral, r – Pearson Correlation. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. (A) Zoomed in view of edge community structure of cortico-subcortical interactions. Black dashed lines denote boundaries for either the subcortex, grouped 
by anatomy (y-axis), or the Yeo et al. (2011) 17 resting state networks (x-axis). (B) Cortical and subcortical node entropies computed only from interaction edges 
connecting to/from the subcortex and cortex, respectively. (C) Similarities computed from all edges (left; full network) and from edges within subcortex only (right; 
interaction block). Scatterplot shows edge to edge correlation between the similarities from the two network types. (D) Similarity among cortical nodes estimated 
from the full network (cortex + subcortex; left) and from only the subcortex interaction edges (right), with a 2D heatmap showing edge-to-edge correspondence of 
similarities from the two network types. Cont – Control, DorsAttn – Dorsal Attention, SalVentAttn – Salience/Ventral Attention, SomMot – Somatomotor, TempPar 
– Temporal Patietal, VisCent – Visual Central, VisPeri – Visual Peripheral, Hipp – Hippocampus, Amyg – Amygdala, Thal – Thalamus, NAcc – Nucleus Accumbens, 
GlobPall – Globus Pallidus, r – Pearson correlation. 
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f communities with subcortical components among the RSNs shows
 distinction between hippocampus/amygdala and striatum/thalamus
dge community profiles. Nodal entropies computed only from the in-
eractions between the cortex and subcortex (i.e., row entropy for sub-
ortical nodes and column entropy for cortical nodes) recapitulate the
attern of segregation of primary (0.4557 ± 0.0729) and heteromodal
0.2105 ± 0.0956) systems (permutation t -test, p = 0.0002, 100,000
abel permutations). Just as with entropy, edge community profile sim-
larity can be computed only from the cortico-subcortical interaction
lements. For subcortical nodes, profiles were nearly identical for the
ull network versus the interaction block ( Fig. 5 C). Cortical edge com-
unity profiles from the interaction block were also highly similar to
rofiles from the full network albeit more variable ( Fig. 5 D). The finding
hat edge community profiles from cortico-subcortical interactions re-
ect cortical and subcortical profiles obtained from the full network are
onsistent at various cluster solutions (Supplementary Fig. 7), a range
f cortical parcellation scales (Supplementary Fig. 8), and in the Day 2
ata from these participants (Supplementary Fig. 9). 

.3. Individual variability in edge community structure 

While it is computationally infeasible to perform iterative cluster-
ng on edge time series from the 92 HCP participants individually,
he consensus partition described in previous sections can be used as
 seed/initial partition and clustering is then run once per partici-
ant to obtain an individual partition. Using this method, do the in-
ividual partitions recapitulate what was observed in consensus and
hat insight do they provide into cortico-subcortical coupling? Indi-
idual edge community partitions showed greater similarity to the con-
ensus partition (median mutual information = 0.2984) than amongst
ach other (0.1765) ( Fig. 6 A), as expected. Entropies per RSN, com-
uted per participant as the mean of the nodes in that system are
hown in Fig. 6 B. The median entropy for each participant across ei-
her primary, heteromodal, or subcortical systems is shown in Fig. 6 C,
here entropies were significantly different among the three system
ypes (means ± standard deviations: primary 0.7894 ± 0.0477, hetero-
odal 0.6605 ± 0.0553, and subcortical 0.4839 ± 0.1069, permutation
NOVA, p < 0.00001, 100,000 label permutations; all post-hoc t -tests
omparisons p < 0.001, Bonferroni adjusted), consistent with results ob-
ained from consensus data. For edge community profile similarity, me-
ian values were extracted per participant for edges within primary,
eteromodal, and subcortical nodes ( Fig. 6 D), as well as for edges be-
ween them ( Fig. 6 E). Profile similarities were significantly lower in het-
romodal (0.3391 ± 0.0548) compared to primary (0.4444 ± 0.0738)
r subcortical (0.4458 ± 0.1067) system types ( Fig. 6 D, permutation
NOVA p < 0.00001, 100,000 label permutations; post-hoc t -tests p <
.001 Bonferroni adjusted, for heteromodal versus primary and subcor-
ical system types). Finally, to probe whether the subcortical regions dif-
ered in their coupling to cortical systems, similarity values from edges
oupling primary-heteromodal (0.1494 ± 0.0549), primary-subcortical
0.2006 ± 0.0549), and heteromodal-subcortical (0.2781 ± 0.0615)
ere compared. A permutation ANOVA with 100,000 label permuta-
ions showed a significant main effect of group ( p < 0.00001), with the
hree groups significantly different from each other ( Fig. 6 E, all post-
oc t -tests p < 0.001, Bonferroni adjusted). This pattern was consistent
sing different numbers of edge communities (Supplementary Fig. 10),
t varying cortical parcellation scale (Supplementary Fig. 11), and in
he Day 2 data (Supplementary Fig. 12). 

.4. Subcortico-cortical communication via edge community triads 

The above results show a dichotomy of canonical RSN systems into
 primary sensorimotor and attention group and a higher order hetero-
odal group, which may be shaped by or influencing subcortical edge
ommunity organization. To further investigate subcortico-cortical cou-
ling, we adapted the concept of motifs, which has been primarily used
7 
o quantify subgraphs in structural/sparse networks (Olaf Sporns and
ötter, 2004 ), focusing on triads (triangles of 3 nodes) that are com-
rised of one subcortical (reference node; Fig. 1 D) and two cortical
odes. With each edge assigned a community label, four possible classes
f triads can be identified: a closed loop, a forked triad, l -shape triad,
r a diverse triad ( Figs. 1 D and 7 A show a diagram of triad types).
n this framework, how are the triad types distributed in instances of
ubcortico-cortical communication and what can this tell us about po-
ential communication strategies between the cortex and subcortex? 
To answer this question, triad type distributions were generated for

ach subcortical node, connecting to two cortical nodes, from the orig-
nal node-by-node edge community matrix as well as for 1000 null ma-
rices where node labels were permuted, with the condition that sub-
ortical nodes did not remain in subcortex assigned indices after per-
utation. When compared to the null distribution, forked triads were
resent in a significantly higher fraction for the striatum, pallidum, and
ve of the six nodes of the thalamus ( Fig. 7 B; permutation p < 0.05, two-
ided). Additionally, l -shape triads were present in lower frequency than
xpected for nodes of the thalamus, nucleus accumbens, and pallidum.
n terms of communication strategies, forked triads imply that the refer-
nce (subcortical) node employs similar patterns of communication with
ach of the two cortical nodes, while these cortical nodes maintain a dif-
erent pattern. This may point to a role of the subcortex in information
ntegration and cortical modulation. l -triads, in turn, could be represen-
ative of a different (and statistically underrepresented) strategy of relay
ommunication from subcortex to cortex or vice versa. Breaking down
he forked triads by their edge community affiliation (the community
hat has two edges in the triad between subcortex and cortex), three
ommunities (1, 4, and 5 in Fig. 7 C) showed significantly higher frac-
ions that expected by the null distribution (permutation p < 0.05). This
nding is in line with the observation that large portions of these edge
ommunities are in the subcortico-cortical interaction block ( Fig. 5 A).
isualization of the cortical nodes for these subcortico-cortical forked
riads ( Fig. 7 D), qualitatively shows a distinction between edge com-
unity 1, which has distributed edges from the striatal/thalamic nodes
o heteromodal systems and Salience/Ventral attention, and edge com-
unities 4 and 5, which connect primary/attentional systems to stria-
um/thalamus and hippocampus/amygdala, respectively. Detailed ma-
rices of cortical forked triad endpoints for each subcortical node are
hown in Supplementary Figure 13. At other investigated number of
ommunities (Supplementary Fig. 14) as well as varying cortical parcel-
ations (Supplementary Fig. 15) similar outcomes were observed. 
To better understand the cortical endpoints of forked triads, each

riad was labeled as ipsilateral (same hemisphere relative to the sub-
ortical reference node), bilateral (cortical endpoints in different hemi-
pheres), or contralateral, with the counts for each subcortical node plot-
ed in Fig. 7 E. Overall the distributions were highly similar, with the
nterior hippocampal nodes being the only notable standout ( Fig. 7 E
lue lines), however, the triad counts for those nodes were orders of
agnitude lower (tens vs hundreds/thousands). Therefore, the asym-
etry observed in the anterior hippocampus is likely due to low counts.
ext, to further understand the spatial distributions of forked triads over
he cortex, the Euclidian distance between cortical nodes (in standard
pace) was computed and summarized as a distribution (for each edge
ommunity) of average distance between cortical nodes (for forked tri-
ds at each subcortical reference node). For the first edge community,
here forked triads were overrepresented for thalamus and striatum,
he distance between cortical nodes was ∼100 mm, which given the
ostly equal distribution of ipsi-, bi-, and contralateral localization sug-
ests they are coupling some combination of frontal and parietal nodes,
ither within or between hemispheres. This is consistent with Supple-
entary Fig. 13, which shows that the cortical endpoints fall in control,
efault, and ventral attention systems as they are primarily localized in
rontal and parietal lobes. Edge community 4, which also involves the
tratum and thalamus, showed similar length distributions, however,
ortical endpoints of forked triads within this community fell in visual,
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Fig. 6. Assessment of variability and comparison to sample-wide data of individual subject-derived edge communities, with group consensus solution as initial 
condition. (A) Individual partition comparisons among all subject pairs (left) and of each subjects’ partition to the consensus partition from the sample concatenated 
time courses. (B) Nodal entropies of edge communities for individual subjects (each dot is a value for a node of a subject for a particular network) grouped by 
the 17 resting state systems and subcortical anatomical regions. Individual data point colors of cortical networks denote groupings into the 7 canonical RSNs in 
Yeo et al. (2011) . (C) Median entropies computed across nodes in primary, heteromodal, and subcortical systems for each subject. (D-E) Median edge community 
profile similarities for subjects grouped as either (D) within system type or (E) between system types. Statistical significance denotes post-hoc Bonferroni adjusted 
p -value from an ANOVA. Cont – Control, DorsAttn – Dorsal Attention, SalVentAttn – Salience/Ventral Attention, SomMot – Somatomotor, TempPar – Temporal 
Patietal, VisCent – Visual Central, VisPeri – Visual Peripheral, Hipp – Hippocampus, Amyg – Amygdala, Thal – Thalamus, NAcc – Nucleus Accumbens, GlobPall –
Globus Pallidus. 

s  

i  

t  

a  

t  

w

4

 

z  

2  

s  

T  

i  

s  

a  

s  

i  

M  

i  

t  

R  

b  

c  

o  

I  

s  

w  

t  

(  

t  

w  

m  

g  

s  

t  

m  

a  

w  

m  

c  

t  

a  

t

4

c

 

u  

r  
omatomotor, and dorsal attention regions. Finally, edge community 5
s distinct in that its forked triads couple hippocampus and amygdala
o visual occipital and sensorimotor parietal areas, as well as the dorsal
ttention network. Distances between cortical endpoints are widely dis-
ributed, indicating that forked triads couple spatially proximal regions
ithin hemisphere and more distal cross hemisphere regions. 

. Discussion 

Several studies have investigated the node-centric functional organi-
ation of cortical systems in isolation ( Gordon et al., 2016 ; Power et al.,
011 ; Yeo et al., 2011 ) or in combination with subcortical structures
uch as the basal ganglia, cerebellum, and brain stem ( Ji et al., 2019 ).
he latter are especially important, since the cortex does not act in
solation, but engages in constant back-and-forth communication with
ubcortical regions such as the striatum, thalamus, hippocampus, and
mygdala. For example, thalamic nuclei serve as information relays for
ensorimotor and other information to the cortex, while also involved
n cognitive function ( Halassa and Kastner, 2017 ; Hwang et al., 2017 ;
itchell, 2015 ; Sherman, 2007 ). Additionally, the striatum plays a role
n various functions, via parallel integration of information from dis-
ributed areas of cortex ( Barto ň et al., 2020 ; Di Martino et al., 2008 ;
eig and Silberberg, 2014 ). Finally, the amygdala is important for attri-
ution of emotional valence ( Ball et al., 2009 ; Jin et al., 2015 ) and is
oupled with the hippocampus among other regions to facilitate mem-
ry encoding ( Phelps, 2004 ; Richardson et al., 2004 ; Smith et al., 2006 ).
8 
n our recent work we have shown that edge community structure shares
imilarities with canonical RSNs, such that edge communities of nodes
ithin RSNs were more similar compared to nodes between RSNs. Addi-
ionally, these edge communities coupled cortical resting state networks
RSNs) to one another, whereby multiple edge communities were iden-
ified within each canonical RSN ( Faskowitz et al., 2020 ). Furthermore,
hen examining the diversity of edge community structure, hetero-
odal association systems (limbic, control, and default mode) showed
reater diversity of edge communities compared to primary systems (vi-
ual, somatomotor, and attention) ( Jo et al., 2021 ). Here, our aim was
o understand the role of key subcortical structures (striatum, thala-
us, hippocampus, and amygdala) in the edge community organization
mong cortical systems. Because edge communities are groups of edges
ith similar co-fluctuation patterns, we hypothesized that probing com-
unity organization via motif analysis can offer insight into communi-
ation patterns among node groups in a network. Therefore, we inves-
igated the organization of edge community triads in the network that
re comprised of one subcortical node and two cortical nodes, in order
o identify subcortico-cortical communication patterns in the brain. 

.1. Functional roles of subcortical nodes defined through edge 

ommunities 

Consensus clustering of data from 92 participants from the HCP100
nrelated subjects’ cohort revealed edge community structure that was
elated to canonical RSN organization and, within cortex, was highly
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Fig. 7. Edge community triads and their distribution around subcortical nodes. (A) Distribution of triads around subcortical nodes (x-axis) that connect it to any 
two cortical nodes. Rows correspond to triad types, from top to bottom the triads are closed-loop, forked, l -shape, and diverse. Columns sum to 1 (i.e., all triads that 
connect that subcortical node to cortical nodes). Compared to a null distribution of 1000 networks, asterisks denote proportions that significantly exceed the null, 
while open circles indicate lower than null (permutation p < 0.05 two-tailed). (B) A breakdown of forked triads by edge community. Edge community assignments 
correspond to the community that connected to/from the subcortical reference node. Color saturation indicates proportions of all triads around the node. Asterisks 
denote a significantly greater fraction compared to 1000 null networks (permutation p < 0.05, two-tailed). (C) For subcortical anatomical regions where more than 
half its nodes had significance in A, the cortical surface overlays show the average (across nodes within a subcortical region) fraction that a cortical node was part of 
the triad to that subcortical node. (E) Locations of cortical nodes relative to subcortical reference regions across triads. Colors denote subcortical anatomical labels, 
while dashed and dotted line denote right and left hemispheres, respectively. (F) Average distances (in mm) between cortical nodes for triads in each community, 
for all subcortical reference regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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imilar to previously reported results ( Faskowitz et al., 2020 ; Jo et al.,
021 ; Zamani Esfahlani et al., 2020 ) for edge communities among cor-
ical nodes. This finding suggests that the addition of subcortical nodes
o the analysis leaves cortical edge communities, which we may inter-
ret as a proxy for intra-cortical communication, largely unchanged.
he subcortex was generally partitioned into segregated communities,
ith its edges predominantly belonging to 3 edge communities in the
-cluster data. The primary v. heteromodal cortical system dichotomy
ound in cortex-only investigation by Jo et al., 2021 and Zamani Es-
ahlani et al. (2020) , is reinforced after the addition of subcortical nodes,
here striatum, pallidum, and thalamus, and through separate commu-
ities, the hippocampus and amygdala, differentially couple to control
nd default mode vs. visual and somatomotor systems ( Fig. 2 ). This is
9 
urther supported by nodal entropies of cortical nodes, which were sig-
ificantly different between primary and heteromodal system nodes. 
There is extensive evidence for the role of core basal ganglia and

halamic regions as integrative regions that possess diverse inputs and
utputs throughout the cortex ( Greene et al., 2020 ). The edge commu-
ity organization observed here, whereupon distinct communities cou-
le the subcortex to groups of cortical systems, supports these hypothe-
es. These communities can be interpreted as groups of edges where the
attens of communication among connected nodes are similar to each
ther. With that in mind, the overlapping community structure revealed
y the node-by-node matrix tells us that a node connected to some other
odes other via the same edge community has more in common with
heir BOLD time-courses (estimated via the co-fluctuation edge time se-



E.J. Chumin, J. Faskowitz, F.Z. Esfahlani et al. NeuroImage 250 (2022) 118971 

r  

c  

v  

F  

t  

w  

c  

s  

m  

t  

w  

D  

t
 

t  

d  

a  

a  

g  

i  

a  

n  

w  

t  

t  

o  

fl

4

t

 

c  

S  

t  

y  

n  

o  

t  

a  

a  

m  

d  

J  

s  

s  

e  

e  

i  

t  

n
 

w  

o  

r  

o  

n  

f  

c  

t  

w  

p  

f  

t  

v  

t  

e  

a  

s  

I  

c  

s  

C  

m  

e  

g  

a  

n
 

i  

c  

a  

t  

f  

t  

l  

t  

m  

w  

w  

u  

o  

s  

b  

o  

t  

g  

l  

s  

t  

i  

r  

t  

2

4

 

m  

t  

t  

a  

s  

c  

n  

t  

a  

b  

c  

t  

t  

n  

s  

o  

y  

p  

i  

p  

t  

a  

n  

i  
ies) compared to other nodes which connect to it by different edge
ommunities. In that context it is plausible that these communities re-
eal some underlying differential coupling among nodes in a network.
or instance, in our analyses the majority of subcortical nodes coupled
o the cortex via 2 + edge communities, with the exception of nodes
ithin the globus pallidus that coupled to nearly all other nodes via one
ommunity (thus resulting in entropies near zero). Additionally, while
ubcortical entropies tended to increase with increasing number of com-
unities, this was not true for the globus pallidus. Assessing whether
his holds true in neurological conditions, such as Parkinson’s disease,
here altered globus pallidus connectivity has been reported ( Miranda-
omínguez et al., 2020 ), may offer novel avenues for investigations into
he underlying neurobiology of disease. 
It is worth nothing the distinction in interpretation between edge

ime-series and the communities estimated from them and BOLD-
ependent node-based connectivity. In the case of BOLD, regions that
re said to be significantly connected will have similar nodal time-series
nd based on that similarity (commonly Pearson correlation) these re-
ions are likely to end up assigned to the same community when cluster-
ng is performed. Alternatively, edge time-series capture co-fluctuation
mong region pairs, and clustering of edge time-series tells us which
ode pairs are behaving in a similar fashion (i.e., similar co-fluctuation),
hich can be interpreted as an indicator of similar communication pat-
erns among brain regions. Therefore, when referring to edge communi-
ies linking the globus pallidus to other nodes in the network, grouping
f its edges into a single community suggests a similar degree of co-
uctuation to other nodes, not that it is equally connected to them. 

.2. Distinction between primary and heteromodal systems and the role of 

he subcortex 

Connectivity studies that utilize fMRI have tended to focus on corti-
al regions only for investigations of RSN structure ( Power et al., 2011 ;
chaefer et al., 2018 ; Yeo et al., 2011 ). However, the contribution of
he subcortex, cerebellum, and brainstem has gained attention in recent
ears ( Shine et al., 2019 ; Tian et al., 2020 ), showing that subcortical
etwork nodes also possess hub properties and contribute to rich-club
rganization ( van den Heuvel and Sporns, 2013 ). This is in part due
o technological, software, and methodological advancements that have
llowed for better imaging and signal estimates from smaller volumes
nd deeper brain structures. To better understand the contributions of
ajor subcortical structures to cortical network organization, we in-
ependently clustered edge time-series from only cortical nodes (as in
o et al., 2021 ) and from networks that included the subcortex. Our re-
ults showed a highly similar edge community structure, entropy, and
imilarity between the two network types. Notably, the primary and het-
romodal system dichotomy reported previously ( Jo et al., 2021 ) is still
vident when the subcortex is accounted for, with subcortico-cortical
nteraction edges also showing this split, by coupling to the two system
ypes via different edge communities and showing higher edge commu-
ity profile similarity to primary over heteromodal systems. 
These results are intuitively expected as the brain functions as a

hole, regardless of whether we obtain observations from a portion
f cortex, full cortex, or cortex and subcortex. That is, cortical regions
eceive ‘information’ via subcortical projections to cortex, irrespective
f whether or not we actually analyze those subcortical nodes in our
etworks or not. While technological limitations may prevent accurate
MRI measurements of small nuclei located in the subcortex, we can
ontinue to improve our understanding of the role of subcortical regions
hat we can measure. An important consideration is the relative scale at
hich the cortex and subcortex are measured. Here, we used a 32 node
arcellation of the subcortex (Tian scale II) and a range of cortical scales
rom 100 to 400 nodes ( Schaefer et al., 2018 ), so the relative ratio of cor-
ical to subcortical nodes did not exceed ∼30%. These outcomes could
ary if the number of subcortical nodes added to the network was closer
o equal or exceeded the number of cortical nodes. An additional consid-
10 
ration is the spatial resolution of human fMRI data. Subcortical regions
re typically comprised of several small nuclei, which cannot be mea-
ured separately with human fMRI due to spatial resolution constraints.
nsight into cortico-subcortical interaction of subcortical functional nu-
lei can be obtained from primate and rodent imaging data, which have
hown to possess RSN structure ( Belcher et al., 2013 ; Hori et al., 2020 ).
onnectivity of subcortical regions is conserved, to a degree, among hu-
an, primate, and rodent species, offering an avenue for applications of
dge-centric methodology in evolutionary neuroscience. Future investi-
ations will need to be cognizant of these considerations, when assessing
 more ‘complete brain network’ that could, in addition to subcortical
odes, include cerebellum and brain stem as well. 
Given that the cortical edge community organization is not signif-

cantly altered when the subcortex is included, what can subcortico-
ortical coupling tell us about organization of cortical brain regions? To
nswer this question within the framework of edge community struc-
ure, we computed entropies and edge community profile similarities
or cortical and subcortical nodes, only from the edges that connect be-
ween them. Across all RSNs and subcortical regions, entropies were
ower when computed from the interactions, compared to those from
he full networks. The patterns of lower values for heteromodal vs. pri-
ary systems and for striatal/thalamic vs. hippocampus and amygdala
ere also still evident. Additionally, edge community profile similarities
ere nearly identical for subcortical and for cortical regions. This tells
s that from the perspective of the cortex, the edge community coupling
f cortical nodes within system type is similar to their coupling to the
ubcortex. Alternatively, from a subcortex-centric perspective two possi-
le explanations exist: 1) subcortical nodes couple to an existing cortical
rganization that arises from connectivity among cortical regions, or 2)
he subcortex, though its connectivity to the cortex, shapes cortical or-
anization to some degree. Existing literature has shown that in the tha-
amus, different nuclei differentially couple to primary vs. heteromodal
ystems, with some degree of overlap to serve as an integrative hub be-
ween the two system types ( Hwang et al., 2017 ). Clinically, disruptions
n connectivity to one system type or the other, may underlie some neu-
ological conditions, such as reported hyperconnectivity between stria-
um and primary systems in autism spectrum disorder ( Cerliani et al.,
015 ). 

.3. Subcortico-cortical coupling via edge community triads 

Recurring patterns of connectivity within networks referred to as
otifs, have been employed to study organizational properties of struc-
ural and functional networks ( Battiston et al., 2017 ; Sporns and Köt-
er, 2004 ), with an emphasis on small motifs, such as 3-node tri-
ds. While it is straightforward to quantify presence of triads in
tructural/sparse networks, in functional networks based on cross-
orrelations, which are fully connected, topologically distinct patterns
eed to be derived either through thresholding or by imposing a struc-
ural backbone ( Battiston et al., 2017 ; Morgan et al., 2018 ). This poses
 challenge as multiple thresholds must be examined to identify ro-
ust topological features. Within the edge community framework, be-
ause each edge is assigned a label, we can assess triad motif struc-
ure of a fully connected network, by examining which communities
he edges of a triad belong to. This is beneficial because thresholding is
o longer necessary, however, the interpretations are not the same. As-
essing functional motifs on thresholded networks provides information
n strength of direct connections, while edge community motif anal-
sis examines higher order relationships (i.e., temporal co-fluctuation
attens grouped into communities). Because the purpose of this work
s to probe subcortico-cortical organization, we focused on a subset of
ossible triads that contain one subcortical node (which we refer to as
he reference node of a triad) and two cortical nodes. We found that
mong the four possible triad types, forked triads, where the cortical
odes connect to the subcortical node to one community while connect-
ng to each other via a different community, were present in higher
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raction than expected. In the seven-community solution, three commu-
ities had subcortical nodes with significant fraction of forked triads,
rouping striatum/thalamus and hippocampus/amygdala into separate
roups, with cortical triad points within either primary sensorimotor
community 1) or higher order control/default mode systems (commu-
ities 4 and 5), while attentional network connecting edge were present
n all three communities that contained subcortical components. 
What are the plausible interpretations for the observed triad types

nd the possible communication strategies underlying them? Among
he four types, closed-loop and diverse triads were not significantly ex-
ressed, while l -triads were underrepresented and forked triads over-
epresented. Given that we only investigated triads around subcortical
odes and only connecting to cortical nodes, this finding is consistent
ith our understanding of the underlying connectivity. Subcortical re-
ions have diverse anatomical inputs and outputs throughout the cortex,
hich could manifest functional communication patterns of forked tri-
ds, highlighting their role in information integration and modulation
f cortical activity. One must be careful not to infer directionality from
hese results, as such information is not available in fMRI data. It is
ossible that the forked triads are manifesting as a result of anatomical
eedback loops between cortex and subcortex ( Haber, 2016 ), resulting
n similar communication patters of subcortico-cortical edges that are
istinct from cortico-cortical communication (forked triad), and sup-
orting synchronous zero-lag communication through mutually coupled
ubcortico-cortical node pairs ( Gollo et al., 2014 ). The overrepresenta-
ion of forked motifs in nodes of both the striatum and thalamus is likely
elated, due to polysynaptic projections from the striatum to the cortex
ia the thalamus and direct cortical feedback back into the striatum,
owever, because we examine higher-order temporal relationships of
MRI data, we cannot discern whether direct or indirect connections
rive the observed results. Nonhuman imaging in primates and rodents
as shown functional activation that aligns with topographically orga-
ized structural loops between the cortex and subcortex ( Haber et al.,
006 ; Han et al., 2021 ). Therefore, future investigations of edge commu-
ity triad organization in such datasets are necessary to assess whether
here is a relationship between functional network-derived edge com-
unity triads and structural subcortico-cortical loops. 
Here we examined the interaction between nodes within the subcor-

ex (striatum, thalamus, hippocampus, amygdala) and cortical RSNs as
efined by Yeo et al. (2011) . Choi et al. (2012) extended the cortical RSN
arcellation into the subcortex by examining fMRI data and assigning
ubcortical regions to cortical RSNs. They showed that the striatum is
onnected to multiple functional systems with striatal zones connecting
o district cortical RSNs and we acknowledge that there is likely integra-
ion of multiple systems in single striatal zones that was not captured
ith their ‘winner-take-all’ strategy. Our approach highlights that at the
acros scale of anatomical regions, single subcortical nodes are coupled
o multiple RSNs. That is, examining higher order relationships through
lustering co-fluctuation edge time series, hippocampus and amygdala
howed distinct cortical coupling from the striatum and thalamus, and
hat all subcortical regions distinctly couple to primary vs. heteromodal
ystems. 

.4. Limitations 

Limitations regarding fMRI acquisition and preprocessing must be
onsidered when interpreting these findings. We focus on cortico-
ubcortical community structure and communication; however, we can-
ot make inferences regarding the direction of communication flow.
dditionally, the edge time-series framework captures higher order re-
ationships which may complicate the interpretability of the presented
ndings. Furthermore, an ongoing challenge for edge-centric analyses
s to establish which higher order features might be uniquely resolv-
ble at this scale of analysis, versus which features are accessible us-
ng static FC alone ( Novelli and Razi, 2021 ). Such a challenge neces-
itates a further explorations of communication pattern dynamics, and
11 
ow the topology of the structural network supports the unfolding of
uch patterns ( Pope et al., 2021 ). There are well understood limita-
ions in network neuroscience regarding parcellation selection and se-
ection/implementation of community structure algorithms. To address
hose were employed a multiscale cortical parcellation and performed
everal clustering iterations of the data with consensus clustering to en-
ure robustness of the present findings. Additionally, we present our
ndings in two datasets, consistent of separate days of HCP acquisitions
n the same participants. Finally, the analyses described here focused
n interactions of basal ganglia and related subcortical structures with
he cortex. For a more complete brain network, future investigations
an apply these methods to cortico-cerebellar and subcortico-cerebellar
unctional interactions. These were beyond the scope of this investiga-
ion. The cerebellum is connected to the cortex and the subcortex by
ultisynaptic connections via thalamus and there is evidence for thala-
ic integration of information coming from the striatum and cerebellum

 Bostan and Strick, 2010 , 2018 ; Hoshi et al., 2005 ). To adequately assess
unctional roles of these connections, separate investigations, perhaps in
igher spatial resolution nonhuman data, are necessary. 

. Conclusions 

In summary, we have shown that the edge-community coupling of
ubcortical regions is distributed over several cortical RSN systems. As
ndexed by edge communities, subcortical regions differentially com-
unicate with primary and heteromodal systems, showing greater sim-
larity with primary systems. In a novel implementation of a triad mo-
if analysis, prevalence of forked triads between subcortical and corti-
al nodes reinforces the role of the subcortex as an integrative center
or information from the cortex. Future work is necessary to continue
lucidating subcortical contributions in the edge time-series framework
hough addition of cerebellum and brainstem into functional brain net-
orks as well as assessing whether disruptions in edge community struc-
ure offer clinically meaningful insight. 
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