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SUMMARY
The human brain is composed of functionally specialized systems that support cognition. Recently, we pro-
posed an edge-centric model for detecting overlapping communities. It remains unclear how these commu-
nities and brain systems are related. Here, we address this question using data from the Midnight Scan Club
and show that all brain systems are linked via at least two edge communities. We then examine the diversity
of edge communities within each system, finding that heteromodal systems are more diverse than sensory
systems. Next, we cluster the entire cortex to reveal it according to the regions’ edge-community profiles.
We find that regions in heteromodal systems are more likely to form their own clusters. Finally, we show
that edge communities are personalized. Our work reveals the pervasive overlap of edge communities across
the cortex and their relationship with brain systems. Our work provides pathways for future research using
edge-centric brain networks.
INTRODUCTION

The human brain is a complex network made up of functionally

and structurally interacting neural elements (Bullmore and

Sporns, 2009; Bassett and Sporns, 2017; Park and Friston,

2013). Traditionally, brain networks are represented using

models in which nodes and edges are defined as regions and

the magnitude of their correlated activity, i.e., functional connec-

tivity (FC), respectively (Friston et al., 1993; Rogers et al., 2007;

Craddock et al., 2013). This node-centric model emphasizes in-

teractivity among pairs of nodes and has been especially useful

in cognitive and network neuroscience, where inter-individual

variation has been linked to subjects’ cognitive (Shirer et al.,

2012), disease (Fornito et al., 2015), and developmental states

(Di Martino et al., 2014).

Among the most salient features of node-centric functional

networks is their decomposability into subnetworks called

‘‘modules’’ or ‘‘communities’’ (Power et al., 2011; Thomas Yeo

et al., 2011; Meunier et al., 2010; Sporns and Betzel, 2016). In

general, networks with modular structure are evolvable (Kirsch-

ner and Gerhart, 1998; Kashtan and Alon, 2005), are capable

of supporting complex dynamics (Hizanidis et al., 2016), can

buffer perturbations, and can facilitate cost-effective embedding

in three-dimensional space (Bassett et al., 2010). In the case of

human brain networks, the boundaries of modules delineate pat-

terns of task-evoked activity (Smith et al., 2009) and correspond

closely with known cognitive and functional systems (Power
Ce
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et al., 2011; Thomas Yeo et al., 2011). This is true even when

modules are estimated under task-free or resting-state condi-

tions. This observation has prompted the hypothesis that

modular structure is a key feature for supporting specialized

brain function (Bertolero et al., 2015).

In virtually every application, the brain’s modular structure is

estimated using node-centric functional connectivity, which re-

sults in a mapping of nodes (brain regions) to modules (Fortu-

nato, 2010). Recently, we proposed an edge-centric model for

representing pairwise functional interactions among a network’s

edges (Faskowitz et al., 2020; Zamani Esfahlani et al., 2020b).

Although node (nFC) and edge FC (eFC) are generated from

identical fMRI time series, the two constructs provide comple-

mentary insight into brain network organization and operation.

Whereas nFC measures the extent to which the activity of one

brain region fluctuations with the activity of another, eFC un-

wraps those co-fluctuations across time, first yielding moment-

by-moment accounts of the co-fluctuations between pairs of

brain regions (edges) and then assessing the similarity between

pairs of co-fluctuation time series (Zamani Esfahlani et al.,

2020b).

Intuitively, if one considers nFC as a measure of communica-

tion between pairs of brain regions (Reid et al., 2019), eFC works

by first unwrapping that communication pattern, generating

time-varying accounts of the ‘‘conversation’’ between every

pair of brain regions. It then compares pairs of conversations

to one another, calculating their pairwise similarity. In other
ll Reports 37, 110032, November 16, 2021 ª 2021 The Author(s). 1
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Figure 1. Edge functional connectivity

(A) Force-directed layout of edge functional connectivity (eFC). Each point represents an individual edge, colored according to the brain systems to which the

edge’s stub nodes belong to.

(B) Edge communities mapped into a node 3 node matrix. Each color reflects a distinct edge community.

(legend continued on next page)
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words, eFC measures whether there are similar conversations

taking place in the brain (Uddin, 2020).

Similarly, compared with the modular structure of nFC, the

modules estimated from eFC provide complementary informa-

tion about the brain’s system-level organization. Clustering

nFC results in a partition of nodes into non-overlappingmodules,

such that each brain region gets assigned to one community and

one community only (Newman and Girvan, 2004; Rosvall and

Bergstrom, 2008). Applying the same algorithm to eFC results

in a non-overlapping partition of edges into communities. How-

ever, when edges are mapped back to their respective nodes,

non-overlapping edge partitions yield overlapping nodal parti-

tions, such that a single node can be associated with multiple

communities (Ahn et al., 2010; Evans and Lambiotte, 2009).

In a previous paper, we characterized the basic properties of

eFC, including its modular structure (Faskowitz et al., 2020).

However, the relationship between modules derived from eFC

and brain systems derived from nFC remains unclear. Are the

edges that link brain systems to one another homogeneous in

terms of their edge community assignments, or are brain sys-

tems linked to one another via diverse assemblies of edges

that comprise several distinct edge communities (Vaiana and

Muldoon, 2020; De Domenico, 2017)? Addressing these ques-

tions would add clarity to our understanding of how the brain’s

modular structure helps support cognition.

Here, we investigate this relationship in greater detail with

eFC estimated using Midnight Scan Club data (MSC) (Gratton

et al., 2018; Gordon et al., 2017b). First, we derive edge com-

munities and show that individual brain regions participate in

many different communities. Next, we investigate how these

communities are distributed within and between traditionally

defined brain systems. We demonstrate that all systems are

linked to one another via multiple distinct edge communities.

Focusing on the configuration of edge communities within brain

systems, we use a data-driven community-detection algorithm

to uncover their multi-scale organization (Betzel and Bassett,

2017), demonstrating that higher-order cognitive systems

exhibit more complex communities compared with sensori-

motor systems. We then apply the same clustering algorithm

to data from the entire cerebral cortex, identifying a novel clus-

ter structure that deviates, systematically, from previously

described brain systems. Finally, we investigate edge commu-

nity structure at the level of individual subjects. We show that

edge community structure exhibits remarkable idiosyncrasies,

which are driven by the personalization of edge communities

outside of sensorimotor cortices. The results presented here

offer pathways for future studies aimed at relating features of

edge-centric networks to individual differences in behavior

and cognition.
(C) Edge communities mapped back to individual nodes. In this plot, rows and c

colors indicate the fraction of a node’s edges that are associated with the corres

cortical surface.

(D) Projections for each of the k = 10 edge communities. Line thickness is linearly

calculate the normalized entropy for each node—a measure of community overl

(E) Projections of the overlap scores in (D) onto the cortical surface.

(F andG)We can then aggregate, entropy (overlap) scores according to brain syste

and attentional systems and lowest in association cortices. Asterisk indicates p
RESULTS

In this section, we present analyses of eFC estimated using

resting-state data from the MSC. Specifically, we analyzed par-

cel time series from N = 400 regions (Schaefer et al., 2018). We

calculated eFC by first Z-scoring each regional time series and

computing the element-wise product between all pairs of time

series, yielding M = 79,800 unique pairs corresponding to every

possible edge. Using these so-called edge time series (Zamani

Esfahlani et al., 2020b, 2021a; Betzel et al., 2021; Greenwell

et al., 2021; Faskowitz et al., 2020), we calculated the

79,800 3 79,800 eFC matrix of all pairwise similarities (see

STAR Methods for details). This procedure was repeated sepa-

rately for each of the 10 subjects in the MSC and for each of their

10 scans. At times, we find it useful to create composite eFC

matrices, both at the group level, by averaging over subjects

and scans, but also at the subject level, by averaging over scans.

Complete details of MRI acquisition, pre-processing pipelines,

and network construction can be found in STAR Methods.

Edge communities reveal overlapping network
structure
Many studies have shown that the brain exhibits modular struc-

ture, meaning that its elements can be partitioned into cohesive

clusters called ‘‘communities’’ or ‘‘modules’’ (Power et al., 2011;

Thomas Yeo et al., 2011; Betzel et al., 2018b, 2017). Modules are

usually defined to be internally dense and non-overlapping (with

some notable exceptions; Najafi et al., 2016; Thomas Yeo et al.,

2014; Faskowitz et al., 2018; Betzel et al., 2018a), such that

nodes are assigned to one module only, and that nodes tend

to be strongly connected to other nodes in their own module

and weakly connected to nodes in other modules. Recently,

we developed an edge-centric representation of brain networks

(see Figure 1A for an example of eFC drawn using a force-

directed layout algorithm), which we used to cluster network

edges, resulting in overlapping nodal communities. Here, we

replicate those findings using data from the MSC. We show

that community overlap varies across cerebral cortex and ca-

nonical brain systems (Schaefer et al., 2018). These observations

motivate a further exploration of the relationship of brain systems

and edge communities.

We first derived group-representative edge communities. To

do so, we estimated the edge-time series for all 100 resting-state

scans in the dataset (10 subjects; 10 scans each; see Figure S1

in which we compare select properties of edge-time series to

time-varying FC estimated using sliding windows), concate-

nated those data, and used a two-stage k-means clustering

algorithm to generate 250 estimates of communities, before syn-

thesizing those results into consensus edge communities. Here,
olumns represent nodes and communities, respectively. Within each column,

ponding edge community. We can project the columns of this matrix onto the

proportional to mean connection weight. From edge communities, we can also

ap.

ms. As in our previous paper, we find that overlap is greatest in primary sensory

< 10–3.
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communities correspond to groups of edges (region pairs)

whose co-activity over time follows a similar trajectory. These

communities can be visualized in several different ways. First,

because the clustering algorithm operates at the level of edges,

we can visualize edge communities in matrix form, by labeling

the edge between nodes i and j according to its edge community

assignment (Figure 1B). Here, each color corresponds to a

different edge community (as in our previous paper, we show re-

sults with the number of communities fixed at k = 10; see Fig-

ure S2A, for edge communities detected at other k values, and

Figure S2B, for a comparison against a null model). A second

strategy for visualizing edge communities is to calculate, for

each node, the fraction of its edges that belongs to a given com-

munity. This procedure is especially useful because it allows us

to describe edge communities more intuitively in terms of brain

regions and systems (Figure 1C). This also allows us to visualize

the topography of edge communities in anatomical space by

projecting regional participation in edge communities onto brain

surfaces (Figure 1D).

Following our previous paper, we then calculated the level of

community overlap for a given brain region as normalized en-

tropy, where values close to 0 indicate that a brain regions’

edges are concentrated among a small number of communities,

whereas values close to 1 indicate that edges are uniformly

distributed over communities (Figure 1E). Specifically, normal-

ized entropy was calculated for each brain region by first calcu-

lating howmany of its edgeswere assigned to each of the k com-

munities. Normalized entropy is simply the entropy over that

distribution (see STAR Methods for more details). Notably, we

found that there were no regions with entropies near zero, in

agreement with the observation from our previous paper that

brains exhibit ‘‘pervasive overlap.’’ Nonetheless, the community

overlap measure exhibited cortical specificity. Again, in agree-

ment with our previous paper, we found that the greatest levels

of overlap were concentrated in primary sensory and attentional

networks Figures 1F and 1G). Specifically, we partitioned brain

systems into two groups: a sensory-attention group comprising

somatomotor, visual, dorsal attention, and the salience/ventral

attention networks (220 regions); and a heteromodal group

comprising control, default mode, limbic, and temporoparietal

networks (180 regions). We compared the difference in mean

entropy between groups and compared that value against a

null distribution generated using a spatially constrained permu-

tation of system labels (Vá�sa et al., 2018). We found that the en-

tropy of the sensory-attention group was greater than that of the

heteromodal group (p < 10�3; 1,000 permutations; Figure 1G).

This observation indicates that the connections associated

with brain regions in those systems are involved inmany different

edge communities. In contrast, heteromodal association

cortices, which include control, default mode, and limbic net-

works, exhibited the lowest levels of overlap. In the Supplemen-

tary material, we show that a significant amount of variance in

those results can be partially anticipated from nFC alone (see

Figure S3). These observations underscore the need for future

work not only to assess more clearly the interrelationship be-

tween these two modalities (Novelli and Razi, 2021) but also to

demonstrate that the unexplained variance is neurobiologically

and/or behaviorally relevant.
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Collectively, these results recapitulate the main findings from

our previous paper (Faskowitz et al., 2020), and extend them

to an increasingly fine-grained parcellation (Schaefer et al.,

2018).More practically, the fact that we could obtain qualitatively

similar community structure and overlap by clustering an edge-

time series, which is more computationally tractable than the

edge-connectivity matrix, makes it possible to perform addi-

tional complex analyses in the future. In summary, these findings

are in line with our earlier report (Faskowitz et al., 2020) and pro-

vide a baseline for the following extension of the edge-connec-

tivity framework.

System-level complexity of edge community structure
An edge community is a collection of edges—pairs of nodes—

whose co-fluctuations follow similar time courses. How are

these communities distributed within and between canonical

brain systems (Schaefer et al., 2018; Thomas Yeo et al., 2011;

Power et al., 2011)? Are some brain systems linked to one

another via many communities? Are others linked by few?

Here, we address those questions by considering edge commu-

nity templates—binarized maps of edge communities—which

we aggregate into descriptions of system-level interactions. In

general, we find additional evidence of ‘‘pervasive overlap’’

(Ahn et al., 2010), such that virtually all pairs of systems are linked

to one another by at least two edge communities. We also find

that, internally, sensorimotor systems are spanned by relatively

few edge communities comparedwith that of higher-order heter-

omodal systems.

We first mapped edge community labels into a node-by-node

matrix (Figure 2A) and, for each edge community, extracted its

template pattern (Figure 2B), in which edges belonging to that

community were assigned a value of 1, whereas all other edges

were set equal to 0. We aggregated the nonzero elements in

each template by cognitive systems, counting the fraction of

the edges within or between those systems that belonged to a

given edge community (Figure 2C). These system-by-system

maps quantified the extent to which systems were linked by a

given edge community (Figure 2D).

Using the system-by-system maps, we estimated the entropy

associated with all pairs of systems (Figure 2E). Intuitively, if the

edges between those systems belonged to a diverse set of edge

communities, then the entropy score was high. On the other

hand, if the edges belonged to relatively few communities,

then the entropy was low. Interestingly, we found that the highest

levels of entropy were associated with connections between the

dorsal attention and cognitive control networks, whereas the

lowest were associated with the within-system connections of

the somatomotor network (Figures 2F and 2G). When consid-

ering just the internal edges of brain systems, we found that

default mode and dorsal attention had the highest levels of en-

tropy, whereas somatomotor, temporoparietal, and the visual

network were among the lowest. We found similar patterns

when considering the number of distinct edge communities

observed in within- and between-system blocks (Figures 2H

and 2I).

Finally, we investigated the structure of each edge community

in greater detail, focusing on the specific brain systems that it

linked. Broadly, edge communities could be sub-divided into
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Figure 2. Edge community templates reveal system-dependent organization

(A) Edge communities mapped into a node 3 node matrix.

(B) We generated community templates, in which each community is represented as a binary matrix with edges assigned a value of 1 or 0, depending upon

whether they were included in that community.

(C) We aggregated template edges by brain systems and counting the number of edges that fell within or between eight canonical brain networks.

(D) Each template describes the fraction of inter- and intra-system interactions mediated by a given edge community (here, we split systems into their left- and

right-hemisphere components for visualization only).

(E) We can use these templates to identify brain systems linked to one another by edges assigned to many or few edge communities (high or low entropy).

(F) We calculated the entropies for all pairs of brain systems.

(G–I) If we consider only within-system edges, we find that heteromodal association cortex tends to have greater entropy (G) and participate in a greater number of

discrete edge communities than do primary sensory systems (H and I).
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two groups: ‘‘cohesive’’ communities, which included dispro-

portionately many within-system edges; and ‘‘bridge’’ commu-

nities, comprising mostly edges that fell between brain systems

(Figure 3A). We further sub-classified ‘‘bridge’’ communities

based on the systems that they linked: ‘‘association’’ bridges

linked heteromodal systems (control, default mode, dorsal atten-

tion, limbic, salience/ventral attention, and temporoparietal sys-

tems) to one another, whereas ‘‘processing’’ bridges linked het-

eromodal and unimodal systems (somatomotor and visual) to

each other (Figure 3B). As expected, we found that cohesive

communities contained a greater proportion of within-system

edges than bridge communities (Figure 3B; p = 1.1 3 10�4;

t test with 10 samples). We also found that association commu-

nities contained a greater proportion of edges linking heteromo-

dal systems to one another compared with that of processing

communities (Figure 3C; p = 0.0019; t test with six samples)

whereas processing communities contained a greater propor-
tion of heteromodal to unimodal edges (Figure 3D; p = 1.4 3

10�4; t test with six samples). We show the full ontology of

edge communities in Figure 3E. We find similar results with

different numbers of edge communities (Figure S4).

Collectively, these findings suggest that the brain’s edge com-

munity structure is pervasively overlapping, such that all pairs of

brain systems are linked to one another via multiple edge com-

munities, which, in turn, reflect distinct patterns of edge co-fluc-

tuations. Second, these findings further suggest that, although

all systems interact via distinct modes, the number and diversity

of modes are system dependent and that heteromodal systems

exhibit a more-complex internal structure than do sensorimotor

systems. Further, the particular configuration of edge commu-

nities among brain systems suggests distinct functional classes,

with some edge communities positioned to maintain the cohe-

siveness of systems and others to form links across system

boundaries.
Cell Reports 37, 110032, November 16, 2021 5
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Figure 3. Categorization of edge communities

(A) Each edge community was classified as a ‘‘cohesive’’ or ‘‘bridge’’ community according to whether edges belonging to that community fell within or between

brain systems, respectively. We further sub-classified bridge communities according to whether the edges linked heteromodal systems (control, default mode,

dorsal attention, salience/ventral attention, limbic, and temporoparietal) to other heteromodal systems or to sensorimotor systems (somatomotor and visual). We

referred to these two sub-categories as ‘‘association’’ and ‘‘processing’’ communities, respectively.

(B) As expected, we found that cohesive communities included a greater proportion within-system edges compared with bridge communities. Asterisk indicates

p = 1.1 x 10–4.

(C and D) Similarly, association communities had a greater proportion of edges linking heteromodal systems to other heteromodal systems (C) whereas pro-

cessing communities exhibited a greater proportion of heteromodal to unimodal edges (D). In (C), asterisk indicates p = 0.0019. In (D), asterisk indicates p = 1.4 x

10–4.

(E) Ten edge communities divided into their respective classes. The vertical line divides ‘‘cohesive’’ from ‘‘bridge’’ communities, whereas the horizontal line

divides ‘‘association’’ from ‘‘processing.’’ The outlines (black, green, and red) are used to help identify system pairs responsible for that edge community’s

classification.
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Multi-scale and system-dependent organization of edge
community structure
In the System-level complexity of edge community structure, we

showed that brain systems are linked to one another via different

modes of coupling (edge communities). Notably, we found that

the diversity of edge communities within brain systemswas high-

ly variable. Here, we investigate the internal structure of brain

systems in greater detail. To do so, we introduce the concept

of an ‘‘edge community profile’’ and define a measure of similar-

ity for comparing profiles among pairs of regions. Separately, for

each cognitive system, we generated the interregional similarity

matrix among all regions assigned to that system, which we par-

titioned usingmulti-scalemodularity maximization (Newman and

Girvan, 2004; Reichardt and Bornholdt, 2006; Traag et al., 2011;

Bazzi et al., 2016). Modularity maximization is a well-studied

community-detection framework in which communities corre-
6 Cell Reports 37, 110032, November 16, 2021
spond to groups of nodes whose density of connections to

one another maximally exceeds what would be expected by

chance (Zamani Esfahlani et al., 2021b; Betzel, 2020). In this

case, we search for communities of nodes whose edge commu-

nity similarity is greater than that of a chance model (see STAR

Methods for details). We find that the number of distinct sub-

communities within each brain system was greatest for higher-

order cognitive systems, whereas sensorimotor networks

exhibited many fewer sub-communities. Note that, here, we

switch clustering algorithms from k-means, which we used to

cluster edge time series, to modularity maximization. This deci-

sion was motivated practically because the dimensionality of

the edge-community similarity matrix was considerably less

than that of the edge time series, which allowed us to use the

more-computationally demanding modularity maximization.

For completeness, we report the similarity of whole-brain
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(A) Edge communities reshaped into a node 3

node matrix.

(B) We can treat the columns and rows of this

matrix as ‘‘profiles’’ for different regions and

compare nodes’ community labels to measure the

similarity of two profiles with respect to one

another.

(C and D) Repeating this process for all pairs of

nodes results in a similarity matrix (C). The average

similarity between nodes within each brain system

is highly variable. We find that control networks

exhibit low levels of overlap and are composed of

nodes with heterogeneous edge community pro-

files (D); individual points in (D) correspond to the

edge community similarity for pairs of brain re-

gions within a given system. In contrast, we find

that sensorimotor networks (visual + somatomo-

tor) exhibit high levels of overlap but are

composed of nodes with homogeneous edge

community profiles.

(E) We can also visualize the heterogeneity of each

system by projecting their mean internal similarity

onto the cortex. Note that similarity is greatest for

visual and somatomotor systems.
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partitions detected using k-means and modularity maximization

in the Supplementary material (Figures S2C and S2D).

Toestimate themulti-scale community structure,we leveraged

the node-by-node matrix representation of edge communities

(Figure 4A) and extracted each region’s edge-community profile

as the corresponding row (Figure 4B). To measure the similarity

between two regions’ profiles, we simply measured the fraction

of their elements assigned to the same edge community.

Repeating that process for all pairs of brain regions generated a

node-by-node similarity matrix (Figure 4C). Considering, sepa-

rately, the within-system elements for each system, we found

that visual and sensorimotor systems exhibited significantly

greater levels of similarity comparedwith the other brain systems

(permutation test, 1,000 repetitions; p< 10�3; Figures 4Dand4E).

With a similar analysis, we also found that the control network ex-

hibited significantly lower levels of within-system similarity

compared with the default mode, salience/ventral attention, so-

matomotor, and visual network (permutation test, 1,000 repeti-

tions; p < 10�3), suggesting that the edge community assign-

ments of control-network regions are more heterogeneous

relative to nodes in those other brain systems. We found similar

results with different numbers of edge communities (Figure S5).

Next, we clustered the within-system similarity matrix for each

system (Figure 5A). This procedure entailed extracting the set of

within-system similarity values and, using amulti-scale variant of

modularity maximization (Newman andGirvan, 2004), estimating

clusters across a range of topological scales (by varying the

value of a structural resolution parameter, g, over the interval

[0, 1] in increments of 0.002; Reichardt and Bornholdt, 2006).

We then grouped together clusters estimated using similar

parameter values and, from those estimates, extracted

consensus clusters (Lancichinetti and Fortunato, 2012). We
repeated this procedure for multiple topological scales (resolu-

tion parameters); here, we focus on the range 0.4 < g < 0.5.

In general, we found that the number of clusters detected was

greatest in higher-order systems compared with somatomotor

and visual networks (Figure 5B). We find similar results at other

ranges of g (see Figure S6B). Here, we focus on the control

network, which the clustering algorithm partitioned into three

clusters (Figure 5C; we show results for other brain systems in

Figure S6A and comparisons with other reported sub-divisions

in Figure S6C). Each cluster was, internally, homogeneous (Fig-

ure 5D) and composed of regions with distinct edge-community

profiles (Figure 5Ee). We show these profiles in greater detail in

Figures 5F–5I.

Intuitively, we can think of these profiles as delineating

different patterns by which the activity of regions in the control

network and the rest of the brain co-fluctuates. To map those

patterns back to brain systems, we calculated the dominant

edge community, linking each of the three control clusters to

the eight canonical systems. We depict these cluster-to-system

links as hub-and-spoke diagrams in Figures 5J–5L. At the center

of each diagram is a hub that represents the set of control re-

gions assigned to that cluster. Those regions are connected to

each system by spokes colored according to the dominant

edge community. For instance, edges from control regions in

cluster 1 to regions belonging to the salience/ventral attention

system tend to belong to the red edge community, whereas

edges linking that cluster to the visual network tend to be in

the cyan edge community.

Importantly, although this analysis suggests that there exist

distinct modes of coordination between control regions and the

rest of the brain, there were also some patterns of edge commu-

nities shared across the multiple clusters. Specifically, we found
Cell Reports 37, 110032, November 16, 2021 7
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Figure 5. Cluster structure of edge communities

(A) Pipeline for estimating system-specific multi-resolution clusters.

(B) We found that the systemswith the greatest number of communities included control, default mode, and both dorsal and ventral attention networks. In (C)–(N),

we focus on the control network specifically.

(C) Co-assignment matrix ordered by consensus communities.

(D) The within-system similarity matrix ordered according to the three-cluster solution.

(E) Edge community profiles ordered according to clusters.

(F–I) Topographic representation of consensus clusters (F) and cluster centroids (G–I). In each centroid plot, nodes are colored according to the mode of their

edge community assignments emanating from the control network. The brightness of nodes indicates ‘‘cluster homogeneity.’’

(J–L) Hub-and-spoke plots for each centroid revealing the dominant edge community linking centroids to brain systems. In these plots, line color indicates the

dominant edge community. Line thickness is linearly proportional to the fraction of connections assigned to that dominant community.

(M and N) Maximum affiliation of control nodes to any of the 10 edge communities aggregated by brain system (M) and displayed topographically (N). In (M),

asterisk indicates p < 10–3.
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that nodes in the control network tended to be linked to one

another via the same edge community (Figures 5M and 5N). On

the other hand, the edge community assignments of nodes in

the control network to dorsal attention, salience/ventral attention,

and visual networks are all highly variable. We demonstrated that

statistically by partitioning nodes into control (61 regions) and

non-control groups (339 regions). We calculated the average

maximum affiliation over nodes in each group and calculated

the difference in means (0.14). We then compared that value to

a null distribution generated by permuting nodes’ system labels

and preserving spatial relationships. We found that the observed
8 Cell Reports 37, 110032, November 16, 2021
difference exceeded all values in our estimated null distribution

(permutation test, 1,000 repetitions; p < 10�3).

Taken together, these findings indicate that the internal

structure and complexity of edge communities varies across

systems. Building on observations from the previous section,

and in agreement with the extant literature, we find that the

greatest level of complexity is located in the higher-order, het-

eromodal brain systems, which are associated with a range of

cognitive domains. Our findings suggest that their polyfunction-

ality may be engendered by the diversity of edge-communities

profiles.
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Figure 6. Multi-resolution cluster structure of cortical edge communities

(A) Nodes’ cluster assignments arranged in order from coarsest to finest levels. In our analysis, we focus on a level in which there seven large clusters comprising

>20 nodes each (black arrow) exist. Note that the nodes are ordered by clusters detected and not brain systems. The bar on the x axis depicts brain system labels

in the same ordering.

(B–D) Interregional cluster co-assignment probabilities (B), whole-brain edge community similarities (C), and edge community labels inmatrix form (D), ordered by

clusters detected.

(E) Clusters mapped onto the cortical surface. Small clusters are collapsed into a single label (gray).

(F) Regional similarity of detected clusters and canonical brain systems.

(G) System composition of detected clusters.

(H) Cluster composition of brain systems. Color indicates the number of unique clusters within a system.
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Uncovering whole-brain communities from edge
community profiles
In Multi-scale and system-dependent organization, we used a

multi-resolution community-detection algorithm to uncover the

cluster structure of edge communities within specific brain sys-

tems. Although these analyses revealed differences from one

system to another, they prevented us from discovering patterns

in edge communities at the whole-brain level. For instance, if two

nodes had identical edge community profiles but were assigned

to different systems, the previous analyses would be incapable

of grouping them together into the same cluster. To address

those limitations, we used the same algorithm as in the previous

section to uncovermulti-scale community structure usingwhole-

brain data. We found that clusters derived from edge commu-

nities largely approximated known cognitive systems. However,

we also uncovered subtle, yet systematic, differences between

nodes’ assigned clusters and their canonical system labels.

We applied a multi-resolution consensus clustering algorithm

to partition the cerebral cortex into non-overlapping commu-

nities of different sizes (Figure 6A). Here, we focus on an interme-

diate scale that resulted in seven large clusters and multiple

small clusters (which we group into a separate cluster for conve-

nience) (Figure 6B). We note that the larger clusters tended to be
stable across the full range of g values. At an intermediate level

(0.4 < g < 0.5), nodes assigned to the detected clusters were

similar to one another (Figure 6C), resulting in homogeneous

edge community profiles (Figure 6D; we show partitions derived

at other resolutions in Figure S7A). We also confirm that the edge

communities detected using this data-driven method are more

homogeneous than the brain systems analyzed in previous sec-

tions. Specifically, we separately pooled within-cluster and

within-system similarity values and compared their means. As

expected, we found that the within-cluster similarity values

were significantly greater than the within-system values (t test;

p < 10�15; see Figure S7B).

Broadly, the detected clusters were similar to known brain

systems (Figure 6E). To assess this correspondence more

directly, we computed the similarity (Jaccard index) of each re-

gion’s assigned cluster and system. Overall, the visual and so-

matomotor networks exhibited greater-than-expected similarity,

whereas control, dorsal attention, limbic, and temporoparietal

networks were more dissimilar than expected (padj = 0.0016;

false discovery rate fixed at 5%; Figure 6F). To better visualize

the overlap, we calculated the composition of each cluster in

terms of its assigned node’s system labels (Figure 6G). We found

that clusters 1 and 2 were almost uniformly composed of regions
Cell Reports 37, 110032, November 16, 2021 9
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from the visual and somatomotor systems, respectively. Simi-

larly, clusters 3, 4, 5, 6, and 7 were dominated by nodes in the

control, salience/ventral attention, default mode, control, and

limbic systems, respectively. Interestingly, cluster 8 (which was

an aggregate of all the small communities) included relatively

few sensorimotor nodes and was composed of regions from

control, default mode, attention, limbic, and temporoparietal

systems.We performed a similar analysis, grouping the detected

clusters by brain systems (Figure 6H). We found that visual and

somatomotor systems were composed of relatively few distinct

clusters, whereas the other brain systemswere composed of no-

des from multiple different clusters. To test that statistically, we

partitioned nodes into three groups: visual, somatomotor, and

everything else. We computed the entropies for each group

based on the distribution of nodes’ cluster labels and the differ-

ences in their entropies. We then compared those differences

with a null distribution generated by randomly permuting system

labels and preserving spatial relationships.We found that the dif-

ferences observed were significantly greater than chance, con-

firming that visual and somatomotor systems were composed

of fewer clusters than other systems (permutation test, 1,000

repetitions; p < 10�3).

Collectively, these results suggest that the similarity of re-

gions’ edge community profiles is largely aligned with the brain’s

known system-level organization. However, we also find that dif-

ferences between the two sets of labels follow a distinct pattern.

Misalignment tends to involve regions typically assigned to het-

eromodal systems.

Edge community structure is subject specific
To this point, all analyses have focused on relating brain systems

to edge communities using pooled, group-representative data.

These analyses uncovered shared relationships, common

across a small cohort of individuals. However, there remain

several important unresolved questions. For instance, to what

extent are edge communities variable across individuals? Are

the edge community profiles of some regions and systems differ-

entially variable across individuals? Does variability of those fea-

tures reflect meaningful, subject-specific traits? Here, we

address these questions by detecting and comparing edge com-

munities within and between subjects and scans.

To address those questions, we performed three separate an-

alyses. First, for each subject, we concatenated their scans and

estimated their subject-specific consensus edge communities

(Figure 7A). Subjects’ edge communities were more similar to

group-representative partition than expected by chance (permu-

tation test, 1,000 repetitions; p < 10�3).

Visual inspection revealed that edge communities were het-

erogeneous across subjects, suggesting that edge communities

might capture idiosyncratic and subject-specific variation. To

test that hypothesis, we estimated edge communities for each

subject and each scan (Figure 7B). If edge communities were

unique to individual subjects, then, we would expect that

imposing them on another scan from the same subject would

result in segregated edge communities (strong internal eFC;

weak external eFC). On the other hand, imposing those edge

partitions onto eFC from a different individual would result in

reduced segregation. We tested that hypothesis by systemati-
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cally imposing each of the 100 edge partitions onto eFC esti-

mated from 10 subjects and their 10 scans (100 scans in total)

and calculated the ‘‘segregation’’ score as themeanwithin-com-

munity eFC minus the mean between-community eFC (Fig-

ure 7C). As expected, we found that segregation was greatest

when we imposed a partition back on the eFC used to estimate

those edge communities in the first place (t test; p < 10�15; Fig-

ure 7D). Interestingly, we also found the segregation was greater

when we imposed edge communities on eFC estimated from the

same individual than on eFC estimated from other individuals

(t test; p < 10�15; Figure 7D). These observations suggest that

edge communities capture meaningful, subject-specific pat-

terns of edge-edge interactions. Note that these analyses are

similar in spirit to previous reports that the variability of individual

edge-edge connections is subject specific (Faskowitz et al.,

2020). The current findings focus on the variability of commu-

nities—a coarser scale of description—and indicate that the

subject specificity of edge-edge connections propagates to,

and manifests at, this scale.

These analyses, however, did not reveal what parts of the

brain make subjects identifiable. Here, we address that question

by estimating the differential identifiability associated with the

edge community structure of every brain region. Specifically,

for a given scan and subject, we can generate a vector-region

i’s similarity with respect to all j s i (Figure 7E). Here, j indexes

other regions’ vectors. We can then extract analogous vectors

from that subject’s other scans and from all subjects’ and their

respective scans. Calculating thematrix of pairwise correlations,

we compute the differential identifiability as the mean within-

subject similarity minus the mean between-subject similarity.

We then repeat this procedure for all regions.

This procedure generates a score for every brain region that

describes, on average, how personalized and idiosyncratic its

edge communities are. In Figure 7F, we show those scores pro-

jected onto the cortical surface. Interestingly, we find consider-

able variability across the cortex in terms of identifiability, with

regions in the control network, along with temporoparietal and

dorsal attention networks performing particularly well (Fig-

ure 7G). We find similar results using different numbers of com-

munities (see Figure S8).

In summary, these results further implicate the control

network, along with other areas in attentional and temporoparie-

tal networks, as key drivers of individuality in edge communities.

Our work builds on a previously established quantitative frame-

work for tracking identifiable features of brain imaging and

network data (Amico and Goñi, 2018), and extends this frame-

work using edge connectivity data. In doing so, we rely on a

mapping of edge communities back into a node-centric frame-

work, thereby improving their interpretability.

Overall, these findings suggest that edge communities are

highly personalized and that this personalization can be linked

to the variability of edge communities associated with many

different systems in general but, in particular, the cognitive con-

trol network. These observations agree with other recent studies

reporting that control networks carry personalized information

about subjects (Finn et al., 2015). In summary, our findings un-

derscore the inter-subject variability of the brain’s community

and system-level architecture, complementing companion
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Figure 7. Personalization of edge community structure

(A) Subject-representative edge communities (estimated with 10 scans).

(B) Pipeline for segregation estimation.We derived edge communities for each subject and each scan and imposed those communities onto eFCs estimated from

all other scans and subjects. Segregation is measured as the mean within-community eFC minus the mean between-community eFC.

(C) Scan-by-scan matrix of segregation scores; rows represent the subject and scan from which edge communities were estimated, and columns represent the

subject and scan onto which those communities were imposed. The brightness of cells represents the level of segregation.

(D) Comparing segregation scores within and between scans/subjects. Asterisk indicates p < 10–15.

(E) Pipeline for calculating regional differential identifiability.

(F) Topographic representation of regional differential identifiability scores.

(G) Regional differential identifiability scores aggregated by brain systems.
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analyses of MSC data using node-centric models of connectivity

(Gratton et al., 2018; Gordon et al., 2017b).

DISCUSSION

In this paper, we investigated the configuration of edge commu-

nities across canonical brain systems. We found that all pairs of

systemswere linked to one another by at least two edge commu-

nities and that the exact number and diversity of such links varied

by system. Focusing only on within-system edges, we found that

the variability and diversity of edge communities comprising

higher-order cognitive systems was greater than that of sensori-

motor systems. We then used a data-driven clustering algorithm
to partition brain regions in each brain system into multi-scale

communities, according to the similarity of their edge community

profiles. We found that the number of communities detected is

greatest in heteromodal systems and lowest in sensorimotor

systems. Repeating this analysis using data from the complete

cerebral cortex, we discovered that, overall, the clusters de-

tected resembled known brain systems. However, there were

also systematic discrepancies between system labels and the

clusters detected, revealing incongruity between clusters

derived from traditional nFC and those derived from eFC. Finally,

we show that edge community structure is subject specific and

reproducible across multiple scans of the same individual. This

personalization is driven by the edge community assignments
Cell Reports 37, 110032, November 16, 2021 11
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of nodes located in control, default mode, dorsal attention, and

temporoparietal networks.

Pervasive overlap and multiplexity
Many studies have partitioned brain regions based on their func-

tional connections, revealing a surprisingly consistent set of

communities that align well with activation patterns and well-

known brain systems (Power et al., 2011; Thomas Yeo et al.,

2011; Meunier et al., 2009; Sporns and Betzel, 2016). These ob-

servations suggest that assortative and segregated commu-

nities may play an important role in the emergence of functional

specialization. Here, rather than focus on partitions of brain re-

gions into communities, we leveraged a recently proposed

edge-centric network model to partition connections into com-

munities (Zamani Esfahlani et al., 2020b; Faskowitz et al.,

2020). The resulting edge communities delineate groups of func-

tional connections whose valence and amplitude co-fluctuate

with one another over time. We speculate that these co-fluctua-

tion patterns may correspond to distinct modes of interregional

communication.

A key question, then, was whether edge communities were

aligned with the boundaries of traditionally defined brain sys-

tems. That is, if we were to examine the complete set of connec-

tions between regions in systems A and B, would those connec-

tions co-fluctuate uniformly and be assigned to a single edge

community, or would they be composed of several distinct pat-

terns of co-fluctuation? Phrased alternatively, and in line with the

hypothesis that co-fluctuating edges reflect distinct modes of

interregional communication, do systems communicate with

one another through a single homogeneous mode or do they

communicate in parallel via a series of multiplexed channels?

Here, we addressed that question by counting the number and

distribution of edge communities linking pairs of systems. In all

cases, systems were linked by multiple edge communities,

although the number and diversity varied considerably across

system pairs. These observations suggest that the brain exists

in a state of ‘‘pervasive overlap’’ (Ahn et al., 2010; Faskowitz

et al., 2020), in which regions and systems throughout the brain

are linked to one another through multiple edge communities.

Our findings have important implications for understanding

brain function. In most studies, brain regions are assigned to

non-overlapping communities with distinct functional profiles

(Power et al., 2011; Gordon et al., 2016; Thomas Yeo et al.,

2011). Polyfunctionality emerges from this caricature in the

form of a small subset of brain regions whose connectivity pat-

terns span system boundaries (Bertolero et al., 2015, 2017).

On the other hand, we find that all brain regions participate in

many communities and the functional connections bridging brain

systems are associated with a plurality set of community labels.

These observations suggest that overlapping function may be a

key organizing principle of brain networks and a rule, rather than

an exception.

Why, then, do we observe multiplexed, overlapping commu-

nity structure in the brain? Why are the same brain systems

linked by dissimilar patterns of co-fluctuation? One obvious pos-

sibility is that the current system ontology does not fully capture

the sub-divisions and fine-scale structure of cortical architecture

(Uddin et al., 2019). That is, edge communities may reveal orga-
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nization that is obscured by, or inaccessible, using node-centric

network models. Another possibility is that edge communities

reflect a form of functional robustness and redundancy (Pessoa,

2014). That is, by communicating across multiple ‘‘channels,’’

brain systems reduce the likelihood that damage to any one

channel would result in a complete disruption of communication

and brain function (Aerts et al., 2016; Betzel and Bassett, 2018;

Honey and Sporns, 2008; Alstott et al., 2009). Future work is

necessary to clarify the precise functional roles of multiplexed

and overlapping communities.

Heterogeneity and system specificity of edge
community profiles
Here, we examined edge communities from the perspective of

brain regions by defining edge community ‘‘profiles.’’ Focusing

on profiles, we were able to map edge communities from an un-

familiar and large m-dimensional edge space back into an n-

dimensional node space. By studying the similarity of regions’

profiles to one another, wewere able to characterize the diversity

of edge communities among regions that make up traditional

brain systems. Using that approach, we generated region-by-re-

gion similarity matrices for every system and clustered them us-

ing a multi-resolution algorithm.

Interestingly, the internal structure of edge community profiles

varied across brain systems, with the regions in sensorimotor

systems exhibiting highly similar edge community profiles and

regions in higher order, heteromodal systems exhibiting greater

variation. These observations agree with current theories of

cortical organization and function. In terms of node-centric com-

munity structure, sensorimotor systems are among the most

functionally segregated (Power et al., 2011, 2013) and occupy

opposite positions along smoothly varying functional gradients

(Margulies et al., 2016).

The same analysis pipeline was applied to similarity matrices

constructed using edge community profiles from the entire cere-

bral cortex. Specifically, the communities detected resembled

known system-level divisions of cortex (Schaefer et al., 2017).

We found that regions associated with higher-order brain sys-

tems were more likely to fragment and form small (sometimes

singleton) clusters with distinct edge community profiles. Impor-

tantly, the detected clusters were inhomogeneous and con-

tained regions associated with multiple brain systems. Collec-

tively, these findings suggest that edge communities give rise

to distinct regional profiles that are organized into clusters that

span traditional system-level boundaries.

Personalization of edge community structure
Most of this report focused on edge community structure using

composite edge time series assembled from multiple subjects.

Although analysis of group-representative data can uncover pat-

terns of eFC shared across many individuals, it is poorly suited

for uncovering personalized and idiosyncratic features of eFC,

which are key elements necessary for biomarker generation

(Woo and Wager, 2015; Wang et al., 2020). Addressing this lim-

itation, we derived edge communities for the ten individuals in

the MSC dataset. We found that subjects’ edge community

structure was idiosyncratic, so communities estimated from

subject s using data from scan t did a good job describing
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edge communities of the same subject on scan t0 but a poor job

describing edge communities of any other subject. Importantly,

these idiosyncrasies arise from the community assignments of

edges associated with control, default mode, dorsal attention,

and temporoparietal networks.

These observations agree with other recent analysis of MSC

data, reporting high levels of personalization in both cortical and

subcortical networks (Gratton et al., 2018; Sylvester et al., 2020;

Gordon et al., 2017b, 2018). Like similar findings in larger popula-

tions (Finn et al., 2015; Amico and Goñi, 2018) our findings impli-

cate heteromodal association cortex as being both highly repeat-

able across scans of the same subject but maximally dissimilar

across individuals. These observations suggest that edge com-

munities, which we interpret as modes of temporally resolved ac-

counts ofongoingcommunicationbetweenbrain regions, arealso

subject specific and personalized.We further link the personaliza-

tion of edge community structure to the assignments of edges

associatedwithhigher-ordercognitivesystems, includingcontrol,

default mode, dorsal attention, and temporoparietal networks.

Thefindings reportedherealignwithother recentstudiessuggest-

ing brain network organization is highly individualized (Gratton

et al., 2018, 2019; Sylvester et al., 2020; Gordon et al., 2017b;

Seitzman et al., 2019; Cui et al., 2020). Collectively, these obser-

vations open up the tantalizing prospect of more targeted and

increasingly personalized interventions in the future.

Future directions
Our work opens up several opportunities for future studies, both

methodological and applied. For instance, are inter-individual

differences in the number and diversity of edge communities be-

tween brain systems related to behavioral, demographic, and

clinical variables of interest, such as a subject’s performance

on a cognitively demanding task (Shirer et al., 2012), their biolog-

ical age (Zuo et al., 2017), or their neuropsychiatric state (Fornito

et al., 2015)? Similarly, future studies should investigate individ-

ual differences in the composition and sub-divisions of brain sys-

tems. For example, is the complexity and heterogeneity of edge

community profiles within subjects’ control networks related to

their performance on tasks that require cognitive control, e.g.,

Stroop or Navon tasks (Medaglia et al., 2018; Betzel et al.,

2018b)?

Other potentially fruitful opportunities for future studies include

exploring subcortical (Sylvester et al., 2020) and cerebellar orga-

nization (King et al., 2019) with edge communities. These areas

were excluded from the present study but could be investigated

in greater detail, yielding new insight into cortical-subcortical in-

teractions (Ji et al., 2019). Relatedly, features derived from edge-

centric network models, including overlapping communities,

could be incorporated into parcellation-generation frameworks

to create novel cortical parcellations (Eickhoff et al., 2018).

A final direction for future research involves exploring the rela-

tive utility of edge time series and eFC comparedwithmore tradi-

tional constructs, such as sliding window estimates of time-vary-

ing connectivity and nFC. Compared with sliding window

estimates, edge time series require no parameterization and

do not necessitate a sliding window, making it possible to track

framewise estimates of edgeweights. Similarly, eFC can be used

to detect pervasively overlapping communities, yielding new
insight into the brain’s modular structure (Faskowitz et al.,

2020). Although recent work suggests that these and other fea-

tures of edge-centric analyses can be exploited to learn more

about brain organization and dynamics, few studies have sys-

tematically compared them with more common methods (Za-

mani Esfahlani et al., 2021a; Novelli and Razi, 2021). Future

work should investigate these questions in greater detail.

Limitations of the study
One overarching limitation surrounding this study concerns the

interpretability of eFC. Although traditional nFC is now largely

accepted within the human neuroimaging community and is

frequently interpreted as a measure of interregional communica-

tion (although with many caveats; Reid et al., 2019), eFC is novel,

high dimensional, and may be difficult to interpret. Although this

study attempts to form a conceptual bridge between the system-

level organization of nFC and edge communities, future work is

necessary to clarify, in more precise terms, the relationship be-

tween these two constructs.

A second limitation concerns the procedure for estimating

edge communities. Here, we use a k-means algorithm that par-

titions edges into a fixed number of clusters on the basis of their

similarity (eFC) with respect to one another. The motivation to

use k-means as opposed to other clustering algorithms was

practical and stems from its computational efficiency and the

fact that eFC can be viewed as a distance metric and can be

used by the k-means algorithm to estimate edge communities

from edge time series directly. However, there exists a multitude

of alternative algorithms that could, in principle, be applied to

edge time series or eFC to estimate communities, including the

suite of graph-clustering algorithms (Fortunato, 2010; Porter

et al., 2009) but also time-series decompositions algorithms,

such as independent components analysis (ICA) (Hyvärinen

andOja, 2000), which has proven especially useful in the analysis

of neuroimaging data (Beckmann et al., 2005). Applying many

of these algorithms to eFC data, however, would require

computing, storing, and manipulating massive, fully weighted,

and signed matrices. For large, multi-subject datasets this pre-

sents an undesirable computational burden. Along with investi-

gating the effect of clustering algorithms, future studies should

also explore solutions that also help reduce the computational

burden of discovering edge communities.

Here, we use a recently proposed framework to transform

node-centric fMRI data into edge-centric networks (Zamani Es-

fahlani et al., 2020b; Faskowitz et al., 2020). This framework

complements extant approaches that aim to do the same. These

include line graphs (Evans and Lambiotte, 2009) and link similar-

ity (Ahn et al., 2010), as well as non-linear embedding techniques

(Gao et al., 2020). Although, in principle, these methods all

achieve the same goal of generating edge-centric networks,

they achieve this through different means, possess distinct

biases, and likely, yield complementary insight into the edge-

level organization of networks. Indeed, early results suggest

that this is the case. In Faskowitz et al. (2020), for instance, the

authors compare the community structure obtained by clus-

tering line graphs and eFC matrices. In general, the patterns

are dissimilar, suggesting that these two approaches capture

distinct edge-level features of a network.
Cell Reports 37, 110032, November 16, 2021 13
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Moving forward, an increasingly important line of work will be

the construction of appropriate null models for eFC. For all the

above-mentioned methods, it is critical that the null models be

implemented at the nodal level. Recent studies have shown

that at least some of the properties of edge-centric networks

are mathematical necessities that arise from the network con-

struction process and can be, in part, anticipated from the

node-level networks directly (Novelli and Razi, 2021). A null

model implemented at the level of edge networks may fail to pre-

serve those properties. In the case of eFC, the appropriate null

model likely operates directly on the nodal time series. Among

the possible candidates are multivariate autoregressive models

(Liégeois et al., 2017) or phase randomized surrogates (Zalesky

et al., 2014). At present, however, there is a lack of consensus as

to what the appropriate null model should be, with some studies

using generating null time series based on circular shifts of the

original data (Greenwell et al., 2021; Betzel et al., 2021), whereas

others explore complex biophysical models (Pope et al., 2021).

In summary, future work should explore both the effect of the

method for generating edge-centric networks as well as the util-

ity of different null models for identifying statistically meaningful

features of those networks.

A final limitation concerns the eFC measure itself. In general,

eFC assesses the similarity of edge time series originating from

two pairs of nodes, {i, j} and {u, v}. In most cases, is us v. How-

ever, some node pairs may share a node, that is, either i or j is

equal to either u or v. The presence of a shared node may inflate

the similarity of their edge time series, yielding spuriously strong

eFCweights. Here, we do not correct for that possibility explicitly

because it falls beyond the scope of our study. However, future

studies should explore strategies for mitigating the possibility of

spurious eFC. One possibility is to perform careful comparisons

of observed eFC with eFC estimated from time-series surro-

gates. If the observed eFC is artifactually inflated because of

shared nodes, we expect to find similar inflation in the surrogate

data, which can then be subtracted or modeled out of the

observed eFC. Another possibility is to censor edge-edge con-

nections that involve a shared node, that is, impute those ele-

ments in the eFC matrix with a value of 0 or as NaN, effectively

nullifying their contribution to all subsequent analyses.

Conclusion
In summary, detailed analysis of edge functional connectivity

and edge communities revealed marked heterogeneity across

brain systems and highly reproducible and idiosyncratic patterns

within subjects. These findings help establish edge functional

connectivity as a useful representational framework and edge

communities asmeasures of potential interest for revealing novel

brain-behavior associations and individual differences in brain

organization.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
14 Cell Reports 37, 110032, November 16, 2021
B Lead contact

B Material availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Functional preprocessing

B Image quality control

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Parcellation preprocessing

B Functional network preprocessing

B Edge graph construction

B Edge community detection algorithm

B Community overlap metrics

B Edge community similarity

B Modularity maximization

B Edge community segregation

B Differential identifiability
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

celrep.2021.110032.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Founda-

tion under grant no. 076059-00003C (R.F.B. and O.S.). This research was sup-

ported by Indiana University Office of the Vice President for Research

Emerging Area of Research Initiative, Learning: Brains, Machines and Children

(F.Z.E., O.S., and R.F.B.).

AUTHOR CONTRIBUTIONS

Y.J. and R.F.B. conceived of the project, performed analyses, and wrote the

initial draft of the manuscript. J.F. processed imaging data. All authors edited

manuscript and contributed to final version.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: July 24, 2021

Revised: September 8, 2021

Accepted: October 28, 2021

Published: November 16, 2021

REFERENCES

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi,

J., Gramfort, A., Thirion, B., and Varoquaux, G. (2014). Machine learning for

neuroimaging with scikit-learn. Front. Neuroinform. 8, 14.

Aerts, H., Fias, W., Caeyenberghs, K., and Marinazzo, D. (2016). Brain net-

works under attack: robustness properties and the impact of lesions. Brain

139, 3063–3083.

Ahn, Y.-Y., Bagrow, J.P., and Lehmann, S. (2010). Link communities reveal

multiscale complexity in networks. Nature 466, 761–764.

Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., and Sporns, O. (2009).

Modeling the impact of lesions in the human brain. PLoS Comput. Biol. 5,

e1000408.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Richard

Betzel (rbetzel@indiana.edu).

Material availability
This study generated no new reagents or materials. See following section for Data and code availability.

Data and code availability

d MRI data are deposited and publicly available in the OpenNeuro data repository (https://openneuro.org/datasets/ds000224/

versions/00002). The accession number is OpenNeuro: ds000224.

d Code to transform fMRI time courses into edge time series, construct edge functional connectivity, detect edge communities,

and compute edge community profile similarity is available at https://github.com/brain-networks/edge-centric_demo.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Midnight Scan Club (MSC) dataset (Gordon et al., 2017b) included rsfMRI from 10 adults (50% female, mean age = 29.1 ± 3.3,

age range = 24-34). The study was approved by theWashington University School of Medicine Human Studies Committee and Insti-

tutional Review Board and informed consent was obtained from all subjects. These data were initially reported in Gordon et al.

(2017a).

METHOD DETAILS

Functional preprocessing
Subjects underwent 12 scanning sessions on separate days, each session beginning at midnight. Ten (10) rsfMRI scans per subject

were collected with a gradient-echo EPI sequence (run duration = 30 min, TR = 2200 ms, TE = 27 ms, flip angle = 90�, 4 mm isotropic

voxel resolution) with eyes open andwith eye tracking recording tomonitor for prolonged eye closure (to assess drowsiness). Images

were collected on a 3T Siemens Trio. Functional images in theMSC dataset were preprocessed using fMRIPrep 1.3.2 (Esteban et al.,

2018), which is based on Nipype 1.1.9 (Gorgolewski et al., 2011). The following description of fMRIPrep’s preprocessing is based on

boilerplate distributed with the software covered by a ‘‘no rights reserved’’ (CC0) license. Internal operations of fMRIPrep use Nilearn
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0.5.0 (Abraham et al., 2014), ANTs 2.2.0 (Avants et al., 2009), FreeSurfer 6.0.1 (Dale et al., 1999), FSL 5.0.9 (Smith et al., 2004), and

AFNI v16.2.07 (Cox, 1996). For more details about the pipeline, see the section corresponding to workflows in fMRIPrep’s

documentation.

The T1-weighted (T1w) image was corrected for intensity non-uniformity with N4BiasFieldCorrection (Tustison et al., 2010; Avants

et al., 2008), distributed with ANTs, and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped

with a Nipype implementation of the antsBrainExtraction.sh workflow. Brain surfaces were reconstructed using recon-all (Dale et al.,

1999), and the brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-derived and

FreeSurfer-derived segmentations of the cortical gray-matter using Mindboggle (Klein et al., 2017). Spatial normalization to the

ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009) was performed through nonlinear registration with

antsRegistration, using brain-extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid

(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using FSL’s fast (Zhang et al., 2001).

Functional data was slice time corrected using AFNI’s 3dTshift and motion corrected using FSL’s mcflirt (Jenkinson et al., 2002).

Fieldmap-less distortion correction was performed by co-registering the functional image to the same-subject T1w image with

intensity inverted (Wang et al., 2017) constrained with an average fieldmap template (Treiber et al., 2016), implemented with

antsRegistration. This was followed by co-registration to the corresponding T1w using boundary-based registration (Greve and

Fischl, 2009) with 9 degrees of freedom. Motion correcting transformations, field distortion correcting warp, BOLD-to-T1w transfor-

mation and T1w-to-template (MNI) warp were concatenated and applied in a single step using antsApplyTransforms using Lanczos

interpolation. Several confounding time-series were calculated based on this preprocessed BOLD: framewise displacement (FD),

DVARS and three region-wise global signals. FD and DVARS are calculated for each functional run, both using their implementations

in Nipype (Power et al., 2014). The three global signals are extracted within the CSF, the WM, and the whole-brain masks. The resul-

tant NIFTI file for each MSC subject used in this study followed the file naming pattern *_space-T1w_desc-preproc_bold.nii.gz.

Image quality control
The quality of functional images in the MSCwere assessed using fMRIPrep’s visual reports andMRIQC 0.15.1 (Esteban et al., 2017).

Data was visually inspected for whole brain field of view coverage, signal artifacts, and proper alignment to the corresponding

anatomical image.

QUANTIFICATION AND STATISTICAL ANALYSIS

Parcellation preprocessing
A functional parcellation designed to optimize both local gradient and global similarity measures of the fMRI signal (Schaefer et al.,

2017) (Schaefer400) was used to define 400 areas on the cerebral cortex. These nodes are also mapped to the Thomas Yeo et al.

(2011) canonical functional networks. For the MSC dataset, a Schaefer400 parcellation was obtained for each subject using a

Gaussian classifier surface atlas (Fischl et al., 2004) (trained on 100 unrelated HumanConnectome Project subjects) and FreeSurfer’s

mris_ca_label function. These tools utilize the surface registrations computed in the recon-all pipeline to transfer a group average

atlas to subject space based on individual surface curvature and sulcal patterns. This method rendered a T1w space volume for

each subject. For use with functional data, the parcellation was resampled to 2mm T1w space.

Functional network preprocessing
Each preprocessed BOLD image was linearly detrended, band-pass filtered (0.008-0.08 Hz) (Parkes et al., 2018), confound re-

gressed and standardized using Nilearn’s signal.clean, which removes confounds orthogonally to the temporal filters (Lindquist

et al., 2019). The confound regression employed (Satterthwaite et al., 2013) included 6 motion estimates, time series of the mean

CSF, mean WM, and mean global signal, the derivatives of these nine regressors, and the squares these 18 terms. Furthermore,

a spike regressor was added for each frame exceeding 0.5mm framewise displacement. Following preprocessing and nuisance

regression, residual mean BOLD time series at each node were recovered. eFC matrices for each subject were computed and

then averaged across subjects, to obtain a representative eFC matrix for each dataset.

Edge graph construction
Constructing networks from fMRI data (or any neural time series data) requires estimating the statistical dependency between pairs of

time series. The magnitude of that dependency is usually interpreted as a measure of how strongly (or weakly) those voxels are par-

cels are functionally connected to each other. By far the most common measure of statistic dependence is the Pearson correlation

coefficient. Let xi = ½xið1Þ;.; xiðTÞ� and xj = ½xjð1Þ;.; xjðTÞ� be the time series recorded from voxels or parcels i and j, respectively. We

can calculate the correlation of i and j by first z-scoring each time series, such that zi = ðxi � m1Þ=si, where mi = 1=T
P

txiðtÞ and
si = 1=ðT � 1ÞPt xi tð Þ � mi½ � are the time-averaged mean and standard deviation. Then, the correlation of i with j can be calculated

as: rij = 1=ðT � 1ÞPt zi tð Þ$zj tð Þ
� �

. Repeating this procedure for all pairs of parcels results in a node-by-node correlation matrix,

i.e., an estimate of FC. If there are N nodes, this matrix has dimensions ½N3N�.
To estimate edge-centric networks, we need to modify the above approach in one small but crucial way. Suppose we have two

z-scored parcel time series, zi and zj. To estimate their correlation we calculate the mean their element-wise product (not exactly
Cell Reports 37, 110032, November 16, 2021 e2



Article
ll

OPEN ACCESS
the average, because we divide by T � 1 rather than T). Suppose, instead, that we never calculate the mean and simply stop after

calculating the element-wise product. This operation would result in a vector of length T whose elements encode the moment-by-

moment co-fluctuations magnitude of parcels i and j. For instance, suppose at time t, parcels i and j simultaneously increased their

activity relative to baseline. These increases are encoded in zi and zj as positive entries in the tth position, so their product is also

positive. The same would be true if i and j decreased their activity simultaneously (because the product of negatives is a positive).

On the other hand, if i increased while j decreased (or vice versa), this would manifest as a negative entry. Similarly, if either i or j

increased or decreased while the activity of the other was close to baseline, the corresponding entry would be close to zero.

Accordingly, the vector resulting from the element-wise product of zi and zj can be viewed as encoding the magnitude of moment-

to-moment co-fluctuations between i and j. An analogous vector can easily be calculated for every pair of parcels (network nodes),

resulting in a set of co-fluctuation (edge) time series. With N parcels, this results in ðNðN�1Þ =2Þ pairs, each of length T. From these

time series we can estimate the statistical dependency for every pair of edges. We refer to this construct as edge functional connec-

tivity (eFC). Let cij = ½zið1Þ $zjð1Þ;.; ziðTÞ $zjðTÞ� and cuv = ½zuð1Þ $zvð1Þ;.; ziðTÞ $zjðTÞ� be the time series for edges fi; jg and fu; vg,
respectively. Then we can calculate eFC as:

eFCij;uv =

P
tcijðtÞ$cuvðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

tcijðtÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

tcuvðtÞ2
q : (Equation 1)

Here, the denominator is necessary to bound eFC to the interval ½ � 1; 1�.

Edge community detection algorithm
In our previous paper we developed a spectral method for clustering eFC matrices (Faskowitz et al., 2020). Although this algorithm

operated on a reduced rank version of eFCmatrices, obtaining these lower rank data required first generating the eFCmatrix. In gen-

eral, eFC matrices are much larger than nFC matrices. This means that they take longer to compute and much more memory. Here,

we circumvent this issue by clustering the edge time series directly. A parcellation of the brain into N regions results in M=

½NðN�1Þ�=2 edges. So rather than generating an M3M matrix, reducing its dimensionality, and then clustering its low-dimensional

representation, we simply cluster the M3T time series (where T) is the number of samples. We use a k-means clustering algorithm

where the distancemetric is defined as ð1 � eFCÞ=2. Two perfectly correlated edge time series have a distance of 0 while two orthog-

onal edge time series would have a distance of 1.

We used this same algorithm to generate estimates of edge communities at the scale of scans, subjects, and cohort. To generate

subject-representative communities, we concatenated edge time series from all of a subjects’ scans and clustered the concatenated

time series. Similarly, to generate group representative partitions, we concatenated scans from all subjects. At all scales, we

repeated the clustering algorithm 250 times.

To ensure that 250 repetitions were sufficient for sampling the space of possible partitions, we performed the following analysis.

First, we calculated the cluster co-assignment matrix using all 250 partitions. The co-assignment matrix has dimensions M3M and

its elements encode howmany times two edges were assigned to the same cluster out of the 250 total partitions. Next, we generated

co-assignment matrices using random sub-samples of those 250 partitions. We tested sample sizes ranging from 5 to 100 in incre-

ments of 5. For each sample, we computed the similarity (correlation) of its corresponding co-assignment matrix with the elements of

the co-assignment matrix estimated from the full sample of 250 partitions. For k = 10 clusters, we found that with as few as 25 sam-

ples, the similarity between co-assignment matrices was already r = 0:991± 10�5. These observations suggest that k-means quickly

converges to a small set of solutions. Moreover, it suggests that the 250 repeats was likely sufficient for obtaining a meaningful sam-

ple of the space of possible partitions.

Community overlap metrics
The clustering algorithm partitioned edges into non-overlapping clusters. That is, every edge fi;jg, where i;j˛f1;.;Ng, was assigned

to one of k clusters. In this list of edges, each node appeared N� 1 times (we excluded self-connections). Region i’s participation in

cluster c was calculated as:

pic =
1

N� 1

X
jsi

d
�
gij; c

�
(Equation 2)

where gij˛f1;.; kgwas the cluster assignment of the edge linking nodes i and j and dðx; yÞ is the Kronecker delta, whose value is 1 if

x = y and zero otherwise.

By definition,
P
c

pic = 1, and we can treat the vector pi = ½pi1;.;pik � as a probability distribution. The entropy of this distribution

measures the extent to which region i’s community affiliations are distributed evenly across all communities (high entropy and high

overlap) or concentrated within a small number of communities (low entropy and low overlap). We calculate this entropy as:

hi = �
X
c

piclog2pic: (Equation 3)
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To normalize this measure and bound it to the interval ½0;1�, we divide by log2k. We refer to this measure as community entropy and

interpret this value as an index of overlap.

Edge community similarity
When we cluster an eFC matrix, we assign each edge to a single community. These edge communities can be rearranged into the

upper triangle of aN3Nmatrix,X, whose element xij denotes the edge community assignment of the edge between nodes i and j. The

ith column ofX, whichwe denote as xi = ½x1i;.;xNi�, encodes the community labels of all edges in which node i participates. Note that

we do not consider self-edges, so the element xii is left empty.

From this matrix, we can compare the edge communities of nodes i and j by calculating the similarity of vectors xi and xj. Here, we

measure that similarity as the fraction of elements in both vectors with the same community label. That is:

sij =
1

N� 2

X
usi;j

dðxiu; xjuÞ (Equation 4)

Here, dðx; yÞ is the Kronecker delta, and takes on a value of 1 when x and y have the same value, but is zero otherwise. Note that the

scaling factor is N� 2 because we ignore the self-connections xii and xjj. Repeating this comparison for all pairs of nodes generates

the similarity matrix, S = fsijg.

Modularity maximization
In the main text, we computed system and whole-brain edge community similarity matrices. To discover the meso-scale structure of

these matrices we used a multi-scale modularity maximization algorithm (Newman and Girvan, 2004; Traag et al., 2011; Bazzi et al.,

2016). Modularity maximization detects meso-scale structure according to a simple principle: clusters are groups of nodes whose

actual connection weight is greater than what we would expect by chance. This general framework is flexible and, through param-

eterization can be used to detect clusters of different sizes (Reichardt and Bornholdt, 2006) and across layers (time (Bassett et al.,

2013), subjects (Betzel et al., 2019a), frequencies (Tewarie et al., 2016)).

Formally, the modularity quality function is expressed as:

QðgÞ =
X

ij

½Aij �g $Pij�dðsi; sjÞ (Equation 5)

where Aij is the observed weight of connections between nodes i and j, Pij is the expected weight under some null model, g is a struc-

tural resolution parameter, and dðx; yÞ is the Kronecker delta and is equal to 1 when the community assignments of nodes i and j,

denoted as si and sj, respectively, are identical and is equal to 0 otherwise. The inclusion of the delta function means that the double

summation is over node pairs that fall within communities. Thus, QðgÞ measures the total weight of within-community connections

less their expected values. The modularity maximization framework seeks to maximize the value of QðgÞ by selecting nodes’ com-

munity assignments.

Here we used a uniform null model, i.e., Pij = 1 for all node pairs. Combined with the resolution parameter, g, communities detected

under this null model represent groups of nodes whose average similarity of edge community profiles exceeds g. Note that we

selected this particular null model deliberately, as previous studies have shown that it is especially well-suited for networks whose

weights reflect statistical measures of similarity or correlation (Traag et al., 2011; Bazzi et al., 2016). We further note that this null

model has been used in previous studies (Betzel et al., 2019b; Zamani Esfahlani et al., 2020a; Betzel, 2018; Kenett et al., 2020; Betzel

et al., 2017).

In more detail, we selected 200 values of g, linearly-spaced over the interval ½0;1�. At each value, we ran a Louvain-like algorithm to

optimize modularity (Jutla et al., 2011; Blondel et al., 2008). Because this optimization algorithm is non-deterministic, we performed

50 iterations at each value of g. We then aggregated g values into 10 linearly-spaced intervals and, within each interval, used to

detected clusters to generate a single representative set of clusters using a consensus clustering algorithm (Lancichinetti and For-

tunato, 2012; Rubinov and Sporns, 2010). Briefly, this algorithm involved estimating the co-assignment matrix from the detected

clusters, whose elements indicate the fraction of times that nodes i and jwere assigned to the same cluster across all partitions within

that interval. We then calculated the expected fraction (by randomly permuting nodes’ community assignments independently for

each partition). The observed and expected co-assignment values can be used to define a consensus modularity function that

we optimized using the same Louvain-like algorithm (1000 repetitions). If any of the 1000 partitions were dissimilar, we recomputed

a co-assignment matrix and the expected co-assignment and repeated the algorithm. These two steps – calculation of co-assign-

ment values and clustering – were repeated until convergence, i.e., all detected partitions are identical. In practice, the algorithm

converged in three or fewer iterations.

Edge community segregation
In themain text, we described a procedure in whichwe imposed edge community structure onto eFCmatrices andmeasured a quan-

tity that we referred to as an index of ‘‘segregation.’’ To calculate the segregation index, wemeasured two quantities induced by edge
Cell Reports 37, 110032, November 16, 2021 e4
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communities: eFCwithin and eFCbetween, which measure the average eFC weight within and between edge communities. The segre-

gation index, then, is simply the difference in these two quantities:

Segregation = eFCwithin � eFCbetween: (Equation 6)

Because we define edge communities to be groups of edges with similar co-fluctuation patterns, we expect eFCwithin

Differential identifiability
Suppose we had a dataset comprising many scans from many subjects. We would say that subjects are ‘‘identifiable’’ if, given a

scan’s worth of data from one subject, we could accurately identify other scans from the same subject (Finn et al., 2015). This intuition

can be formalized using the measure differential identifiability (Amico and Goñi, 2018):

Idiff = Iwithin � Ibetween: (Equation 7)

In this expression Iwithin and Ibetween are the mean similarities among scans from the same and different subjects. Here, we measure

similarity as the Pearson correlation between regions’ edge community similarity vectors. Thus, Idiff measures howmuchmore similar

subjects are to themselves then they are to other subjects.
e5 Cell Reports 37, 110032, November 16, 2021
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