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SUMMARY

The human brain is composed of functionally specialized systems that support cognition. Recently, we pro-
posed an edge-centric model for detecting overlapping communities. It remains unclear how these commu-
nities and brain systems are related. Here, we address this question using data from the Midnight Scan Club
and show that all brain systems are linked via at least two edge communities. We then examine the diversity
of edge communities within each system, finding that heteromodal systems are more diverse than sensory
systems. Next, we cluster the entire cortex to reveal it according to the regions’ edge-community profiles.
We find that regions in heteromodal systems are more likely to form their own clusters. Finally, we show
that edge communities are personalized. Our work reveals the pervasive overlap of edge communities across
the cortex and their relationship with brain systems. Our work provides pathways for future research using

edge-centric brain networks.

INTRODUCTION

The human brain is a complex network made up of functionally
and structurally interacting neural elements (Bullmore and
Sporns, 2009; Bassett and Sporns, 2017; Park and Friston,
2013). Traditionally, brain networks are represented using
models in which nodes and edges are defined as regions and
the magnitude of their correlated activity, i.e., functional connec-
tivity (FC), respectively (Friston et al., 1993; Rogers et al., 2007;
Craddock et al., 2013). This node-centric model emphasizes in-
teractivity among pairs of nodes and has been especially useful
in cognitive and network neuroscience, where inter-individual
variation has been linked to subjects’ cognitive (Shirer et al.,
2012), disease (Fornito et al., 2015), and developmental states
(Di Martino et al., 2014).

Among the most salient features of node-centric functional
networks is their decomposability into subnetworks called
“modules” or “communities” (Power et al., 2011; Thomas Yeo
et al., 2011; Meunier et al., 2010; Sporns and Betzel, 2016). In
general, networks with modular structure are evolvable (Kirsch-
ner and Gerhart, 1998; Kashtan and Alon, 2005), are capable
of supporting complex dynamics (Hizanidis et al., 2016), can
buffer perturbations, and can facilitate cost-effective embedding
in three-dimensional space (Bassett et al., 2010). In the case of
human brain networks, the boundaries of modules delineate pat-
terns of task-evoked activity (Smith et al., 2009) and correspond
closely with known cognitive and functional systems (Power

et al., 2011; Thomas Yeo et al., 2011). This is true even when
modules are estimated under task-free or resting-state condi-
tions. This observation has prompted the hypothesis that
modular structure is a key feature for supporting specialized
brain function (Bertolero et al., 2015).

In virtually every application, the brain’s modular structure is
estimated using node-centric functional connectivity, which re-
sults in a mapping of nodes (brain regions) to modules (Fortu-
nato, 2010). Recently, we proposed an edge-centric model for
representing pairwise functional interactions among a network’s
edges (Faskowitz et al., 2020; Zamani Esfahlani et al., 2020b).
Although node (nFC) and edge FC (eFC) are generated from
identical fMRI time series, the two constructs provide comple-
mentary insight into brain network organization and operation.
Whereas nFC measures the extent to which the activity of one
brain region fluctuations with the activity of another, eFC un-
wraps those co-fluctuations across time, first yielding moment-
by-moment accounts of the co-fluctuations between pairs of
brain regions (edges) and then assessing the similarity between
pairs of co-fluctuation time series (Zamani Esfahlani et al.,
2020b).

Intuitively, if one considers nFC as a measure of communica-
tion between pairs of brain regions (Reid et al., 2019), eFC works
by first unwrapping that communication pattern, generating
time-varying accounts of the “conversation” between every
pair of brain regions. It then compares pairs of conversations
to one another, calculating their pairwise similarity. In other
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Figure 1. Edge functional connectivity

(A) Force-directed layout of edge functional connectivity (eFC). Each point represents an individual edge, colored according to the brain systems to which the
edge’s stub nodes belong to.

(B) Edge communities mapped into a node X node matrix. Each color reflects a distinct edge community.

(legend continued on next page)
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words, eFC measures whether there are similar conversations
taking place in the brain (Uddin, 2020).

Similarly, compared with the modular structure of nFC, the
modules estimated from eFC provide complementary informa-
tion about the brain’s system-level organization. Clustering
nFC results in a partition of nodes into non-overlapping modules,
such that each brain region gets assigned to one community and
one community only (Newman and Girvan, 2004; Rosvall and
Bergstrom, 2008). Applying the same algorithm to eFC results
in a non-overlapping partition of edges into communities. How-
ever, when edges are mapped back to their respective nodes,
non-overlapping edge partitions yield overlapping nodal parti-
tions, such that a single node can be associated with multiple
communities (Ahn et al., 2010; Evans and Lambiotte, 2009).

In a previous paper, we characterized the basic properties of
eFC, including its modular structure (Faskowitz et al., 2020).
However, the relationship between modules derived from eFC
and brain systems derived from nFC remains unclear. Are the
edges that link brain systems to one another homogeneous in
terms of their edge community assignments, or are brain sys-
tems linked to one another via diverse assemblies of edges
that comprise several distinct edge communities (Vaiana and
Muldoon, 2020; De Domenico, 2017)? Addressing these ques-
tions would add clarity to our understanding of how the brain’s
modular structure helps support cognition.

Here, we investigate this relationship in greater detail with
eFC estimated using Midnight Scan Club data (MSC) (Gratton
et al., 2018; Gordon et al., 2017b). First, we derive edge com-
munities and show that individual brain regions participate in
many different communities. Next, we investigate how these
communities are distributed within and between traditionally
defined brain systems. We demonstrate that all systems are
linked to one another via multiple distinct edge communities.
Focusing on the configuration of edge communities within brain
systems, we use a data-driven community-detection algorithm
to uncover their multi-scale organization (Betzel and Bassett,
2017), demonstrating that higher-order cognitive systems
exhibit more complex communities compared with sensori-
motor systems. We then apply the same clustering algorithm
to data from the entire cerebral cortex, identifying a novel clus-
ter structure that deviates, systematically, from previously
described brain systems. Finally, we investigate edge commu-
nity structure at the level of individual subjects. We show that
edge community structure exhibits remarkable idiosyncrasies,
which are driven by the personalization of edge communities
outside of sensorimotor cortices. The results presented here
offer pathways for future studies aimed at relating features of
edge-centric networks to individual differences in behavior
and cognition.
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RESULTS

In this section, we present analyses of eFC estimated using
resting-state data from the MSC. Specifically, we analyzed par-
cel time series from N = 400 regions (Schaefer et al., 2018). We
calculated eFC by first Z-scoring each regional time series and
computing the element-wise product between all pairs of time
series, yielding M = 79,800 unique pairs corresponding to every
possible edge. Using these so-called edge time series (Zamani
Esfahlani et al., 2020b, 2021a; Betzel et al., 2021; Greenwell
et al.,, 2021; Faskowitz et al.,, 2020), we calculated the
79,800 x 79,800 eFC matrix of all pairwise similarities (see
STAR Methods for details). This procedure was repeated sepa-
rately for each of the 10 subjects in the MSC and for each of their
10 scans. At times, we find it useful to create composite eFC
matrices, both at the group level, by averaging over subjects
and scans, but also at the subject level, by averaging over scans.
Complete details of MRI acquisition, pre-processing pipelines,
and network construction can be found in STAR Methods.

Edge communities reveal overlapping network

structure

Many studies have shown that the brain exhibits modular struc-
ture, meaning that its elements can be partitioned into cohesive
clusters called “communities” or “modules” (Power et al., 2011;
Thomas Yeo et al., 2011; Betzel et al., 2018b, 2017). Modules are
usually defined to be internally dense and non-overlapping (with
some notable exceptions; Najafi et al., 2016; Thomas Yeo et al.,
2014; Faskowitz et al., 2018; Betzel et al., 2018a), such that
nodes are assigned to one module only, and that nodes tend
to be strongly connected to other nodes in their own module
and weakly connected to nodes in other modules. Recently,
we developed an edge-centric representation of brain networks
(see Figure 1A for an example of eFC drawn using a force-
directed layout algorithm), which we used to cluster network
edges, resulting in overlapping nodal communities. Here, we
replicate those findings using data from the MSC. We show
that community overlap varies across cerebral cortex and ca-
nonical brain systems (Schaefer et al., 2018). These observations
motivate a further exploration of the relationship of brain systems
and edge communities.

We first derived group-representative edge communities. To
do so, we estimated the edge-time series for all 100 resting-state
scans in the dataset (10 subjects; 10 scans each; see Figure S1
in which we compare select properties of edge-time series to
time-varying FC estimated using sliding windows), concate-
nated those data, and used a two-stage k-means clustering
algorithm to generate 250 estimates of communities, before syn-
thesizing those results into consensus edge communities. Here,

(C) Edge communities mapped back to individual nodes. In this plot, rows and columns represent nodes and communities, respectively. Within each column,
colors indicate the fraction of a node’s edges that are associated with the corresponding edge community. We can project the columns of this matrix onto the

cortical surface.

(D) Projections for each of the k = 10 edge communities. Line thickness is linearly proportional to mean connection weight. From edge communities, we can also
calculate the normalized entropy for each node—a measure of community overlap.

(E) Projections of the overlap scores in (D) onto the cortical surface.

(F and G) We can then aggregate, entropy (overlap) scores according to brain systems. As in our previous paper, we find that overlap is greatest in primary sensory
and attentional systems and lowest in association cortices. Asterisk indicates p < 107°.
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communities correspond to groups of edges (region pairs)
whose co-activity over time follows a similar trajectory. These
communities can be visualized in several different ways. First,
because the clustering algorithm operates at the level of edges,
we can visualize edge communities in matrix form, by labeling
the edge between nodes i and j according to its edge community
assignment (Figure 1B). Here, each color corresponds to a
different edge community (as in our previous paper, we show re-
sults with the number of communities fixed at k = 10; see Fig-
ure S2A, for edge communities detected at other k values, and
Figure S2B, for a comparison against a null model). A second
strategy for visualizing edge communities is to calculate, for
each node, the fraction of its edges that belongs to a given com-
munity. This procedure is especially useful because it allows us
to describe edge communities more intuitively in terms of brain
regions and systems (Figure 1C). This also allows us to visualize
the topography of edge communities in anatomical space by
projecting regional participation in edge communities onto brain
surfaces (Figure 1D).

Following our previous paper, we then calculated the level of
community overlap for a given brain region as normalized en-
tropy, where values close to O indicate that a brain regions’
edges are concentrated among a small number of communities,
whereas values close to 1 indicate that edges are uniformly
distributed over communities (Figure 1E). Specifically, normal-
ized entropy was calculated for each brain region by first calcu-
lating how many of its edges were assigned to each of the k com-
munities. Normalized entropy is simply the entropy over that
distribution (see STAR Methods for more details). Notably, we
found that there were no regions with entropies near zero, in
agreement with the observation from our previous paper that
brains exhibit “pervasive overlap.” Nonetheless, the community
overlap measure exhibited cortical specificity. Again, in agree-
ment with our previous paper, we found that the greatest levels
of overlap were concentrated in primary sensory and attentional
networks Figures 1F and 1G). Specifically, we partitioned brain
systems into two groups: a sensory-attention group comprising
somatomotor, visual, dorsal attention, and the salience/ventral
attention networks (220 regions); and a heteromodal group
comprising control, default mode, limbic, and temporoparietal
networks (180 regions). We compared the difference in mean
entropy between groups and compared that value against a
null distribution generated using a spatially constrained permu-
tation of system labels (Vasa et al., 2018). We found that the en-
tropy of the sensory-attention group was greater than that of the
heteromodal group (p < 1073; 1,000 permutations; Figure 1G).
This observation indicates that the connections associated
with brain regions in those systems are involved in many different
edge communities. In contrast, heteromodal association
cortices, which include control, default mode, and limbic net-
works, exhibited the lowest levels of overlap. In the Supplemen-
tary material, we show that a significant amount of variance in
those results can be partially anticipated from nFC alone (see
Figure S3). These observations underscore the need for future
work not only to assess more clearly the interrelationship be-
tween these two modalities (Novelli and Razi, 2021) but also to
demonstrate that the unexplained variance is neurobiologically
and/or behaviorally relevant.
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Collectively, these results recapitulate the main findings from
our previous paper (Faskowitz et al., 2020), and extend them
to an increasingly fine-grained parcellation (Schaefer et al.,
2018). More practically, the fact that we could obtain qualitatively
similar community structure and overlap by clustering an edge-
time series, which is more computationally tractable than the
edge-connectivity matrix, makes it possible to perform addi-
tional complex analyses in the future. In summary, these findings
are in line with our earlier report (Faskowitz et al., 2020) and pro-
vide a baseline for the following extension of the edge-connec-
tivity framework.

System-level complexity of edge community structure
An edge community is a collection of edges—pairs of nodes—
whose co-fluctuations follow similar time courses. How are
these communities distributed within and between canonical
brain systems (Schaefer et al., 2018; Thomas Yeo et al., 2011;
Power et al., 2011)? Are some brain systems linked to one
another via many communities? Are others linked by few?
Here, we address those questions by considering edge commu-
nity templates—binarized maps of edge communities—which
we aggregate into descriptions of system-level interactions. In
general, we find additional evidence of “pervasive overlap”
(Ahnetal., 2010), such that virtually all pairs of systems are linked
to one another by at least two edge communities. We also find
that, internally, sensorimotor systems are spanned by relatively
few edge communities compared with that of higher-order heter-
omodal systems.

We first mapped edge community labels into a node-by-node
matrix (Figure 2A) and, for each edge community, extracted its
template pattern (Figure 2B), in which edges belonging to that
community were assigned a value of 1, whereas all other edges
were set equal to 0. We aggregated the nonzero elements in
each template by cognitive systems, counting the fraction of
the edges within or between those systems that belonged to a
given edge community (Figure 2C). These system-by-system
maps quantified the extent to which systems were linked by a
given edge community (Figure 2D).

Using the system-by-system maps, we estimated the entropy
associated with all pairs of systems (Figure 2E). Intuitively, if the
edges between those systems belonged to a diverse set of edge
communities, then the entropy score was high. On the other
hand, if the edges belonged to relatively few communities,
then the entropy was low. Interestingly, we found that the highest
levels of entropy were associated with connections between the
dorsal attention and cognitive control networks, whereas the
lowest were associated with the within-system connections of
the somatomotor network (Figures 2F and 2G). When consid-
ering just the internal edges of brain systems, we found that
default mode and dorsal attention had the highest levels of en-
tropy, whereas somatomotor, temporoparietal, and the visual
network were among the lowest. We found similar patterns
when considering the number of distinct edge communities
observed in within- and between-system blocks (Figures 2H
and 2I).

Finally, we investigated the structure of each edge community
in greater detail, focusing on the specific brain systems that it
linked. Broadly, edge communities could be sub-divided into
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Figure 2. Edge community templates reveal system-dependent organization

(A) Edge communities mapped into a node x node matrix.

(B) We generated community templates, in which each community is represented as a binary matrix with edges assigned a value of 1 or 0, depending upon

whether they were included in that community.

(C) We aggregated template edges by brain systems and counting the number of edges that fell within or between eight canonical brain networks.
(D) Each template describes the fraction of inter- and intra-system interactions mediated by a given edge community (here, we split systems into their left- and

right-hemisphere components for visualization only).

(E) We can use these templates to identify brain systems linked to one another by edges assigned to many or few edge communities (high or low entropy).

(F) We calculated the entropies for all pairs of brain systems.

(G-) If we consider only within-system edges, we find that heteromodal association cortex tends to have greater entropy (G) and participate in a greater number of

discrete edge communities than do primary sensory systems (H and I).

two groups: “cohesive” communities, which included dispro-
portionately many within-system edges; and “bridge” commu-
nities, comprising mostly edges that fell between brain systems
(Figure 3A). We further sub-classified “bridge” communities
based on the systems that they linked: “association” bridges
linked heteromodal systems (control, default mode, dorsal atten-
tion, limbic, salience/ventral attention, and temporoparietal sys-
tems) to one another, whereas “processing” bridges linked het-
eromodal and unimodal systems (somatomotor and visual) to
each other (Figure 3B). As expected, we found that cohesive
communities contained a greater proportion of within-system
edges than bridge communities (Figure 3B; p = 1.1 x 107%
t test with 10 samples). We also found that association commu-
nities contained a greater proportion of edges linking heteromo-
dal systems to one another compared with that of processing
communities (Figure 3C; p = 0.0019; t test with six samples)
whereas processing communities contained a greater propor-

tion of heteromodal to unimodal edges (Figure 3D; p = 1.4 X
1074 t test with six samples). We show the full ontology of
edge communities in Figure 3E. We find similar results with
different numbers of edge communities (Figure S4).

Collectively, these findings suggest that the brain’s edge com-
munity structure is pervasively overlapping, such that all pairs of
brain systems are linked to one another via multiple edge com-
munities, which, in turn, reflect distinct patterns of edge co-fluc-
tuations. Second, these findings further suggest that, although
all systems interact via distinct modes, the number and diversity
of modes are system dependent and that heteromodal systems
exhibit a more-complex internal structure than do sensorimotor
systems. Further, the particular configuration of edge commu-
nities among brain systems suggests distinct functional classes,
with some edge communities positioned to maintain the cohe-
siveness of systems and others to form links across system
boundaries.

Cell Reports 37, 110032, November 16, 2021 5
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Figure 3. Categorization of edge communities

(A) Each edge community was classified as a “cohesive” or “bridge” community according to whether edges belonging to that community fell within or between
brain systems, respectively. We further sub-classified bridge communities according to whether the edges linked heteromodal systems (control, default mode,
dorsal attention, salience/ventral attention, limbic, and temporoparietal) to other heteromodal systems or to sensorimotor systems (somatomotor and visual). We
referred to these two sub-categories as “association” and “processing” communities, respectively.

(B) As expected, we found that cohesive communities included a greater proportion within-system edges compared with bridge communities. Asterisk indicates
p=1.1x10".

(C and D) Similarly, association communities had a greater proportion of edges linking heteromodal systems to other heteromodal systems (C) whereas pro-
cessing communities exhibited a greater proportion of heteromodal to unimodal edges (D). In (C), asterisk indicates p = 0.0019. In (D), asterisk indicates p = 1.4 x
107,

(E) Ten edge communities divided into their respective classes. The vertical line divides “cohesive” from “bridge” communities, whereas the horizontal line
divides “association” from “processing.” The outlines (black, green, and red) are used to help identify system pairs responsible for that edge community’s

classification.

Multi-scale and system-dependent organization of edge
community structure

In the System-level complexity of edge community structure, we
showed that brain systems are linked to one another via different
modes of coupling (edge communities). Notably, we found that
the diversity of edge communities within brain systems was high-
ly variable. Here, we investigate the internal structure of brain
systems in greater detail. To do so, we introduce the concept
of an “edge community profile” and define a measure of similar-
ity for comparing profiles among pairs of regions. Separately, for
each cognitive system, we generated the interregional similarity
matrix among all regions assigned to that system, which we par-
titioned using multi-scale modularity maximization (Newman and
Girvan, 2004; Reichardt and Bornholdt, 2006; Traag et al., 2011;
Bazzi et al., 2016). Modularity maximization is a well-studied
community-detection framework in which communities corre-

6 Cell Reports 37, 110032, November 16, 2021

spond to groups of nodes whose density of connections to
one another maximally exceeds what would be expected by
chance (Zamani Esfahlani et al., 2021b; Betzel, 2020). In this
case, we search for communities of nodes whose edge commu-
nity similarity is greater than that of a chance model (see STAR
Methods for details). We find that the number of distinct sub-
communities within each brain system was greatest for higher-
order cognitive systems, whereas sensorimotor networks
exhibited many fewer sub-communities. Note that, here, we
switch clustering algorithms from k-means, which we used to
cluster edge time series, to modularity maximization. This deci-
sion was motivated practically because the dimensionality of
the edge-community similarity matrix was considerably less
than that of the edge time series, which allowed us to use the
more-computationally demanding modularity maximization.
For completeness, we report the similarity of whole-brain
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partitions detected using k-means and modularity maximization
in the Supplementary material (Figures S2C and S2D).

To estimate the multi-scale community structure, we leveraged
the node-by-node matrix representation of edge communities
(Figure 4A) and extracted each region’s edge-community profile
as the corresponding row (Figure 4B). To measure the similarity
between two regions’ profiles, we simply measured the fraction
of their elements assigned to the same edge community.
Repeating that process for all pairs of brain regions generated a
node-by-node similarity matrix (Figure 4C). Considering, sepa-
rately, the within-system elements for each system, we found
that visual and sensorimotor systems exhibited significantly
greater levels of similarity compared with the other brain systems
(permutation test, 1,000 repetitions; p < 10~%; Figures 4D and 4E).
With a similar analysis, we also found that the control network ex-
hibited significantly lower levels of within-system similarity
compared with the default mode, salience/ventral attention, so-
matomotor, and visual network (permutation test, 1,000 repeti-
tions; p < 107%), suggesting that the edge community assign-
ments of control-network regions are more heterogeneous
relative to nodes in those other brain systems. We found similar
results with different numbers of edge communities (Figure S5).

Next, we clustered the within-system similarity matrix for each
system (Figure 5A). This procedure entailed extracting the set of
within-system similarity values and, using a multi-scale variant of
modularity maximization (Newman and Girvan, 2004), estimating
clusters across a range of topological scales (by varying the
value of a structural resolution parameter, vy, over the interval
[0, 1] in increments of 0.002; Reichardt and Bornholdt, 2006).
We then grouped together clusters estimated using similar
parameter values and, from those estimates, extracted
consensus clusters (Lancichinetti and Fortunato, 2012). We

Brain regions
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Figure 4. Edge community similarity
(A) Edge communities reshaped into a node x

1.0 2  node matrix.
E (B) We can treat the columns and rows of this
% matrix as “profiles” for different regions and
o compare nodes’ community labels to measure the
00 § similarity of two profiles with respect to one
0o

another.

(C and D) Repeating this process for all pairs of
nodes results in a similarity matrix (C). The average
similarity between nodes within each brain system
is highly variable. We find that control networks
exhibit low levels of overlap and are composed of
nodes with heterogeneous edge community pro-
files (D); individual points in (D) correspond to the
edge community similarity for pairs of brain re-
gions within a given system. In contrast, we find
that sensorimotor networks (visual + somatomo-
tor) exhibit high levels of overlap but are
composed of nodes with homogeneous edge
community profiles.

(E) We can also visualize the heterogeneity of each
system by projecting their mean internal similarity
onto the cortex. Note that similarity is greatest for
visual and somatomotor systems.

Mean similarity to other
nodes in same system

repeated this procedure for multiple topological scales (resolu-
tion parameters); here, we focus on the range 0.4 < y < 0.5.

In general, we found that the number of clusters detected was
greatest in higher-order systems compared with somatomotor
and visual networks (Figure 5B). We find similar results at other
ranges of y (see Figure S6B). Here, we focus on the control
network, which the clustering algorithm partitioned into three
clusters (Figure 5C; we show results for other brain systems in
Figure S6A and comparisons with other reported sub-divisions
in Figure S6C). Each cluster was, internally, homogeneous (Fig-
ure 5D) and composed of regions with distinct edge-community
profiles (Figure 5Ee). We show these profiles in greater detail in
Figures 5F-5l.

Intuitively, we can think of these profiles as delineating
different patterns by which the activity of regions in the control
network and the rest of the brain co-fluctuates. To map those
patterns back to brain systems, we calculated the dominant
edge community, linking each of the three control clusters to
the eight canonical systems. We depict these cluster-to-system
links as hub-and-spoke diagrams in Figures 5J-5L. At the center
of each diagram is a hub that represents the set of control re-
gions assigned to that cluster. Those regions are connected to
each system by spokes colored according to the dominant
edge community. For instance, edges from control regions in
cluster 1 to regions belonging to the salience/ventral attention
system tend to belong to the red edge community, whereas
edges linking that cluster to the visual network tend to be in
the cyan edge community.

Importantly, although this analysis suggests that there exist
distinct modes of coordination between control regions and the
rest of the brain, there were also some patterns of edge commu-
nities shared across the multiple clusters. Specifically, we found
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Figure 5. Cluster structure of edge communities
(A) Pipeline for estimating system-specific multi-resolution clusters.

(B) We found that the systems with the greatest number of communities included control, default mode, and both dorsal and ventral attention networks. In (C)—(N),

we focus on the control network specifically.
(C) Co-assignment matrix ordered by consensus communities.

(D) The within-system similarity matrix ordered according to the three-cluster solution.

(E) Edge community profiles ordered according to clusters.

(F-1) Topographic representation of consensus clusters (F) and cluster centroids (G-I). In each centroid plot, nodes are colored according to the mode of their
edge community assignments emanating from the control network. The brightness of nodes indicates “cluster homogeneity.”

(J-L) Hub-and-spoke plots for each centroid revealing the dominant edge community linking centroids to brain systems. In these plots, line color indicates the
dominant edge community. Line thickness is linearly proportional to the fraction of connections assigned to that dominant community.

(M and N) Maximum affiliation of control nodes to any of the 10 edge communities aggregated by brain system (M) and displayed topographically (N). In (M),

asterisk indicates p < 107,

that nodes in the control network tended to be linked to one
another via the same edge community (Figures 5M and 5N). On
the other hand, the edge community assignments of nodes in
the control network to dorsal attention, salience/ventral attention,
and visual networks are all highly variable. We demonstrated that
statistically by partitioning nodes into control (61 regions) and
non-control groups (339 regions). We calculated the average
maximum affiliation over nodes in each group and calculated
the difference in means (0.14). We then compared that value to
a null distribution generated by permuting nodes’ system labels
and preserving spatial relationships. We found that the observed
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difference exceeded all values in our estimated null distribution
(permutation test, 1,000 repetitions; p < 1079).

Taken together, these findings indicate that the internal
structure and complexity of edge communities varies across
systems. Building on observations from the previous section,
and in agreement with the extant literature, we find that the
greatest level of complexity is located in the higher-order, het-
eromodal brain systems, which are associated with a range of
cognitive domains. Our findings suggest that their polyfunction-
ality may be engendered by the diversity of edge-communities
profiles.
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Figure 6. Multi-resolution cluster structure of cortical edge communities
(A) Nodes’ cluster assignments arranged in order from coarsest to finest levels. In our analysis, we focus on a level in which there seven large clusters comprising
>20 nodes each (black arrow) exist. Note that the nodes are ordered by clusters detected and not brain systems. The bar on the x axis depicts brain system labels

in the same ordering.

(B-D) Interregional cluster co-assignment probabilities (B), whole-brain edge community similarities (C), and edge community labels in matrix form (D), ordered by

clusters detected.

(E) Clusters mapped onto the cortical surface. Small clusters are collapsed into a single label (gray).

(F) Regional similarity of detected clusters and canonical brain systems.
(G) System composition of detected clusters.
(

H) Cluster composition of brain systems. Color indicates the number of unique clusters within a system.

Uncovering whole-brain communities from edge
community profiles
In Multi-scale and system-dependent organization, we used a
multi-resolution community-detection algorithm to uncover the
cluster structure of edge communities within specific brain sys-
tems. Although these analyses revealed differences from one
system to another, they prevented us from discovering patterns
in edge communities at the whole-brain level. For instance, if two
nodes had identical edge community profiles but were assigned
to different systems, the previous analyses would be incapable
of grouping them together into the same cluster. To address
those limitations, we used the same algorithm as in the previous
section to uncover multi-scale community structure using whole-
brain data. We found that clusters derived from edge commu-
nities largely approximated known cognitive systems. However,
we also uncovered subtle, yet systematic, differences between
nodes’ assigned clusters and their canonical system labels.
We applied a multi-resolution consensus clustering algorithm
to partition the cerebral cortex into non-overlapping commu-
nities of different sizes (Figure 6A). Here, we focus on an interme-
diate scale that resulted in seven large clusters and multiple
small clusters (which we group into a separate cluster for conve-
nience) (Figure 6B). We note that the larger clusters tended to be

stable across the full range of y values. At an intermediate level
(0.4 < y < 0.5), nodes assigned to the detected clusters were
similar to one another (Figure 6C), resulting in homogeneous
edge community profiles (Figure 6D; we show partitions derived
at other resolutions in Figure S7A). We also confirm that the edge
communities detected using this data-driven method are more
homogeneous than the brain systems analyzed in previous sec-
tions. Specifically, we separately pooled within-cluster and
within-system similarity values and compared their means. As
expected, we found that the within-cluster similarity values
were significantly greater than the within-system values (t test;
p < 107'%; see Figure S7B).

Broadly, the detected clusters were similar to known brain
systems (Figure 6E). To assess this correspondence more
directly, we computed the similarity (Jaccard index) of each re-
gion’s assigned cluster and system. Overall, the visual and so-
matomotor networks exhibited greater-than-expected similarity,
whereas control, dorsal attention, limbic, and temporoparietal
networks were more dissimilar than expected (paqj = 0.0016;
false discovery rate fixed at 5%; Figure 6F). To better visualize
the overlap, we calculated the composition of each cluster in
terms of its assigned node’s system labels (Figure 6G). We found
that clusters 1 and 2 were almost uniformly composed of regions
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from the visual and somatomotor systems, respectively. Simi-
larly, clusters 3, 4, 5, 6, and 7 were dominated by nodes in the
control, salience/ventral attention, default mode, control, and
limbic systems, respectively. Interestingly, cluster 8 (which was
an aggregate of all the small communities) included relatively
few sensorimotor nodes and was composed of regions from
control, default mode, attention, limbic, and temporoparietal
systems. We performed a similar analysis, grouping the detected
clusters by brain systems (Figure 6H). We found that visual and
somatomotor systems were composed of relatively few distinct
clusters, whereas the other brain systems were composed of no-
des from multiple different clusters. To test that statistically, we
partitioned nodes into three groups: visual, somatomotor, and
everything else. We computed the entropies for each group
based on the distribution of nodes’ cluster labels and the differ-
ences in their entropies. We then compared those differences
with a null distribution generated by randomly permuting system
labels and preserving spatial relationships. We found that the dif-
ferences observed were significantly greater than chance, con-
firming that visual and somatomotor systems were composed
of fewer clusters than other systems (permutation test, 1,000
repetitions; p < 1079).

Collectively, these results suggest that the similarity of re-
gions’ edge community profiles is largely aligned with the brain’s
known system-level organization. However, we also find that dif-
ferences between the two sets of labels follow a distinct pattern.
Misalignment tends to involve regions typically assigned to het-
eromodal systems.

Edge community structure is subject specific

To this point, all analyses have focused on relating brain systems
to edge communities using pooled, group-representative data.
These analyses uncovered shared relationships, common
across a small cohort of individuals. However, there remain
several important unresolved questions. For instance, to what
extent are edge communities variable across individuals? Are
the edge community profiles of some regions and systems differ-
entially variable across individuals? Does variability of those fea-
tures reflect meaningful, subject-specific traits? Here, we
address these questions by detecting and comparing edge com-
munities within and between subjects and scans.

To address those questions, we performed three separate an-
alyses. First, for each subject, we concatenated their scans and
estimated their subject-specific consensus edge communities
(Figure 7A). Subjects’ edge communities were more similar to
group-representative partition than expected by chance (permu-
tation test, 1,000 repetitions; p < 1073).

Visual inspection revealed that edge communities were het-
erogeneous across subjects, suggesting that edge communities
might capture idiosyncratic and subject-specific variation. To
test that hypothesis, we estimated edge communities for each
subject and each scan (Figure 7B). If edge communities were
unique to individual subjects, then, we would expect that
imposing them on another scan from the same subject would
result in segregated edge communities (strong internal eFC;
weak external eFC). On the other hand, imposing those edge
partitions onto eFC from a different individual would result in
reduced segregation. We tested that hypothesis by systemati-
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cally imposing each of the 100 edge partitions onto eFC esti-
mated from 10 subjects and their 10 scans (100 scans in total)
and calculated the “segregation” score as the mean within-com-
munity eFC minus the mean between-community eFC (Fig-
ure 7C). As expected, we found that segregation was greatest
when we imposed a partition back on the eFC used to estimate
those edge communities in the first place (t test; p < 10~'%; Fig-
ure 7D). Interestingly, we also found the segregation was greater
when we imposed edge communities on eFC estimated from the
same individual than on eFC estimated from other individuals
(t test; p < 107'5; Figure 7D). These observations suggest that
edge communities capture meaningful, subject-specific pat-
terns of edge-edge interactions. Note that these analyses are
similar in spirit to previous reports that the variability of individual
edge-edge connections is subject specific (Faskowitz et al.,
2020). The current findings focus on the variability of commu-
nities—a coarser scale of description—and indicate that the
subject specificity of edge-edge connections propagates to,
and manifests at, this scale.

These analyses, however, did not reveal what parts of the
brain make subjects identifiable. Here, we address that question
by estimating the differential identifiability associated with the
edge community structure of every brain region. Specifically,
for a given scan and subject, we can generate a vector-region
i’s similarity with respect to all j # i (Figure 7E). Here, j indexes
other regions’ vectors. We can then extract analogous vectors
from that subject’s other scans and from all subjects’ and their
respective scans. Calculating the matrix of pairwise correlations,
we compute the differential identifiability as the mean within-
subject similarity minus the mean between-subject similarity.
We then repeat this procedure for all regions.

This procedure generates a score for every brain region that
describes, on average, how personalized and idiosyncratic its
edge communities are. In Figure 7F, we show those scores pro-
jected onto the cortical surface. Interestingly, we find consider-
able variability across the cortex in terms of identifiability, with
regions in the control network, along with temporoparietal and
dorsal attention networks performing particularly well (Fig-
ure 7G). We find similar results using different numbers of com-
munities (see Figure S8).

In summary, these results further implicate the control
network, along with other areas in attentional and temporoparie-
tal networks, as key drivers of individuality in edge communities.
Our work builds on a previously established quantitative frame-
work for tracking identifiable features of brain imaging and
network data (Amico and Goni, 2018), and extends this frame-
work using edge connectivity data. In doing so, we rely on a
mapping of edge communities back into a node-centric frame-
work, thereby improving their interpretability.

Overall, these findings suggest that edge communities are
highly personalized and that this personalization can be linked
to the variability of edge communities associated with many
different systems in general but, in particular, the cognitive con-
trol network. These observations agree with other recent studies
reporting that control networks carry personalized information
about subjects (Finn et al., 2015). In summary, our findings un-
derscore the inter-subject variability of the brain’s community
and system-level architecture, complementing companion
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Figure 7. Personalization of edge community structure
(A) Subject-representative edge communities (estimated with 10 scans).

(B) Pipeline for segregation estimation. We derived edge communities for each subject and each scan and imposed those communities onto eFCs estimated from
all other scans and subjects. Segregation is measured as the mean within-community eFC minus the mean between-community eFC.

(C) Scan-by-scan matrix of segregation scores; rows represent the subject and scan from which edge communities were estimated, and columns represent the
subject and scan onto which those communities were imposed. The brightness of cells represents the level of segregation.

(D) Comparing segregation scores within and between scans/subjects. Asterisk indicates p < 107'°.

(E) Pipeline for calculating regional differential identifiability.
(F) Topographic representation of regional differential identifiability scores.
(G) Regional differential identifiability scores aggregated by brain systems.

analyses of MSC data using node-centric models of connectivity
(Gratton et al., 2018; Gordon et al., 2017b).

DISCUSSION

In this paper, we investigated the configuration of edge commu-
nities across canonical brain systems. We found that all pairs of
systems were linked to one another by at least two edge commu-
nities and that the exact number and diversity of such links varied
by system. Focusing only on within-system edges, we found that
the variability and diversity of edge communities comprising
higher-order cognitive systems was greater than that of sensori-
motor systems. We then used a data-driven clustering algorithm

to partition brain regions in each brain system into multi-scale
communities, according to the similarity of their edge community
profiles. We found that the number of communities detected is
greatest in heteromodal systems and lowest in sensorimotor
systems. Repeating this analysis using data from the complete
cerebral cortex, we discovered that, overall, the clusters de-
tected resembled known brain systems. However, there were
also systematic discrepancies between system labels and the
clusters detected, revealing incongruity between clusters
derived from traditional nFC and those derived from eFC. Finally,
we show that edge community structure is subject specific and
reproducible across multiple scans of the same individual. This
personalization is driven by the edge community assignments
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of nodes located in control, default mode, dorsal attention, and
temporoparietal networks.

Pervasive overlap and multiplexity

Many studies have partitioned brain regions based on their func-
tional connections, revealing a surprisingly consistent set of
communities that align well with activation patterns and well-
known brain systems (Power et al., 2011; Thomas Yeo et al.,
2011; Meunier et al., 2009; Sporns and Betzel, 2016). These ob-
servations suggest that assortative and segregated commu-
nities may play an important role in the emergence of functional
specialization. Here, rather than focus on partitions of brain re-
gions into communities, we leveraged a recently proposed
edge-centric network model to partition connections into com-
munities (Zamani Esfahlani et al., 2020b; Faskowitz et al.,
2020). The resulting edge communities delineate groups of func-
tional connections whose valence and amplitude co-fluctuate
with one another over time. We speculate that these co-fluctua-
tion patterns may correspond to distinct modes of interregional
communication.

A key question, then, was whether edge communities were
aligned with the boundaries of traditionally defined brain sys-
tems. That is, if we were to examine the complete set of connec-
tions between regions in systems A and B, would those connec-
tions co-fluctuate uniformly and be assigned to a single edge
community, or would they be composed of several distinct pat-
terns of co-fluctuation? Phrased alternatively, and in line with the
hypothesis that co-fluctuating edges reflect distinct modes of
interregional communication, do systems communicate with
one another through a single homogeneous mode or do they
communicate in parallel via a series of multiplexed channels?
Here, we addressed that question by counting the number and
distribution of edge communities linking pairs of systems. In all
cases, systems were linked by multiple edge communities,
although the number and diversity varied considerably across
system pairs. These observations suggest that the brain exists
in a state of “pervasive overlap” (Ahn et al., 2010; Faskowitz
et al., 2020), in which regions and systems throughout the brain
are linked to one another through multiple edge communities.

Our findings have important implications for understanding
brain function. In most studies, brain regions are assigned to
non-overlapping communities with distinct functional profiles
(Power et al., 2011; Gordon et al., 2016; Thomas Yeo et al.,
2011). Polyfunctionality emerges from this caricature in the
form of a small subset of brain regions whose connectivity pat-
terns span system boundaries (Bertolero et al., 2015, 2017).
On the other hand, we find that all brain regions participate in
many communities and the functional connections bridging brain
systems are associated with a plurality set of community labels.
These observations suggest that overlapping function may be a
key organizing principle of brain networks and a rule, rather than
an exception.

Why, then, do we observe multiplexed, overlapping commu-
nity structure in the brain? Why are the same brain systems
linked by dissimilar patterns of co-fluctuation? One obvious pos-
sibility is that the current system ontology does not fully capture
the sub-divisions and fine-scale structure of cortical architecture
(Uddin et al., 2019). That is, edge communities may reveal orga-
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nization that is obscured by, or inaccessible, using node-centric
network models. Another possibility is that edge communities
reflect a form of functional robustness and redundancy (Pessoa,
2014). That is, by communicating across multiple “channels,”
brain systems reduce the likelihood that damage to any one
channel would result in a complete disruption of communication
and brain function (Aerts et al., 2016; Betzel and Bassett, 2018;
Honey and Sporns, 2008; Alstott et al., 2009). Future work is
necessary to clarify the precise functional roles of multiplexed
and overlapping communities.

Heterogeneity and system specificity of edge
community profiles

Here, we examined edge communities from the perspective of
brain regions by defining edge community “profiles.” Focusing
on profiles, we were able to map edge communities from an un-
familiar and large m-dimensional edge space back into an n-
dimensional node space. By studying the similarity of regions’
profiles to one another, we were able to characterize the diversity
of edge communities among regions that make up traditional
brain systems. Using that approach, we generated region-by-re-
gion similarity matrices for every system and clustered them us-
ing a multi-resolution algorithm.

Interestingly, the internal structure of edge community profiles
varied across brain systems, with the regions in sensorimotor
systems exhibiting highly similar edge community profiles and
regions in higher order, heteromodal systems exhibiting greater
variation. These observations agree with current theories of
cortical organization and function. In terms of node-centric com-
munity structure, sensorimotor systems are among the most
functionally segregated (Power et al., 2011, 2013) and occupy
opposite positions along smoothly varying functional gradients
(Margulies et al., 2016).

The same analysis pipeline was applied to similarity matrices
constructed using edge community profiles from the entire cere-
bral cortex. Specifically, the communities detected resembled
known system-level divisions of cortex (Schaefer et al., 2017).
We found that regions associated with higher-order brain sys-
tems were more likely to fragment and form small (sometimes
singleton) clusters with distinct edge community profiles. Impor-
tantly, the detected clusters were inhomogeneous and con-
tained regions associated with multiple brain systems. Collec-
tively, these findings suggest that edge communities give rise
to distinct regional profiles that are organized into clusters that
span traditional system-level boundaries.

Personalization of edge community structure

Most of this report focused on edge community structure using
composite edge time series assembled from multiple subjects.
Although analysis of group-representative data can uncover pat-
terns of eFC shared across many individuals, it is poorly suited
for uncovering personalized and idiosyncratic features of eFC,
which are key elements necessary for biomarker generation
(Woo and Wager, 2015; Wang et al., 2020). Addressing this lim-
itation, we derived edge communities for the ten individuals in
the MSC dataset. We found that subjects’ edge community
structure was idiosyncratic, so communities estimated from
subject s using data from scan t did a good job describing
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edge communities of the same subject on scan t' but a poor job
describing edge communities of any other subject. Importantly,
these idiosyncrasies arise from the community assignments of
edges associated with control, default mode, dorsal attention,
and temporoparietal networks.

These observations agree with other recent analysis of MSC
data, reporting high levels of personalization in both cortical and
subcortical networks (Gratton et al., 2018; Sylvester et al., 2020;
Gordon et al., 2017b, 2018). Like similar findings in larger popula-
tions (Finn et al., 2015; Amico and Goni, 2018) our findings impli-
cate heteromodal association cortex as being both highly repeat-
able across scans of the same subject but maximally dissimilar
across individuals. These observations suggest that edge com-
munities, which we interpret as modes of temporally resolved ac-
counts of ongoing communication between brain regions, are also
subject specific and personalized. We further link the personaliza-
tion of edge community structure to the assignments of edges
associated with higher-order cognitive systems, including control,
default mode, dorsal attention, and temporoparietal networks.
The findings reported here align with other recent studies suggest-
ing brain network organization is highly individualized (Gratton
et al., 2018, 2019; Sylvester et al., 2020; Gordon et al., 2017b;
Seitzman et al., 2019; Cui et al., 2020). Collectively, these obser-
vations open up the tantalizing prospect of more targeted and
increasingly personalized interventions in the future.

Future directions

Our work opens up several opportunities for future studies, both
methodological and applied. For instance, are inter-individual
differences in the number and diversity of edge communities be-
tween brain systems related to behavioral, demographic, and
clinical variables of interest, such as a subject’s performance
on a cognitively demanding task (Shirer et al., 2012), their biolog-
ical age (Zuo et al., 2017), or their neuropsychiatric state (Fornito
et al., 2015)? Similarly, future studies should investigate individ-
ual differences in the composition and sub-divisions of brain sys-
tems. For example, is the complexity and heterogeneity of edge
community profiles within subjects’ control networks related to
their performance on tasks that require cognitive control, e.g.,
Stroop or Navon tasks (Medaglia et al., 2018; Betzel et al.,
2018b)?

Other potentially fruitful opportunities for future studies include
exploring subcortical (Sylvester et al., 2020) and cerebellar orga-
nization (King et al., 2019) with edge communities. These areas
were excluded from the present study but could be investigated
in greater detail, yielding new insight into cortical-subcortical in-
teractions (Ji et al., 2019). Relatedly, features derived from edge-
centric network models, including overlapping communities,
could be incorporated into parcellation-generation frameworks
to create novel cortical parcellations (Eickhoff et al., 2018).

A final direction for future research involves exploring the rela-
tive utility of edge time series and eFC compared with more tradi-
tional constructs, such as sliding window estimates of time-vary-
ing connectivity and nFC. Compared with sliding window
estimates, edge time series require no parameterization and
do not necessitate a sliding window, making it possible to track
framewise estimates of edge weights. Similarly, eFC can be used
to detect pervasively overlapping communities, yielding new
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insight into the brain’s modular structure (Faskowitz et al.,
2020). Although recent work suggests that these and other fea-
tures of edge-centric analyses can be exploited to learn more
about brain organization and dynamics, few studies have sys-
tematically compared them with more common methods (Za-
mani Esfahlani et al., 2021a; Novelli and Razi, 2021). Future
work should investigate these questions in greater detail.

Limitations of the study

One overarching limitation surrounding this study concerns the
interpretability of eFC. Although traditional nFC is now largely
accepted within the human neuroimaging community and is
frequently interpreted as a measure of interregional communica-
tion (although with many caveats; Reid et al., 2019), eFC is novel,
high dimensional, and may be difficult to interpret. Although this
study attempts to form a conceptual bridge between the system-
level organization of nFC and edge communities, future work is
necessary to clarify, in more precise terms, the relationship be-
tween these two constructs.

A second limitation concerns the procedure for estimating
edge communities. Here, we use a k-means algorithm that par-
titions edges into a fixed number of clusters on the basis of their
similarity (eFC) with respect to one another. The motivation to
use k-means as opposed to other clustering algorithms was
practical and stems from its computational efficiency and the
fact that eFC can be viewed as a distance metric and can be
used by the k-means algorithm to estimate edge communities
from edge time series directly. However, there exists a multitude
of alternative algorithms that could, in principle, be applied to
edge time series or eFC to estimate communities, including the
suite of graph-clustering algorithms (Fortunato, 2010; Porter
et al., 2009) but also time-series decompositions algorithms,
such as independent components analysis (ICA) (Hyvéarinen
and Oja, 2000), which has proven especially useful in the analysis
of neuroimaging data (Beckmann et al., 2005). Applying many
of these algorithms to eFC data, however, would require
computing, storing, and manipulating massive, fully weighted,
and signed matrices. For large, multi-subject datasets this pre-
sents an undesirable computational burden. Along with investi-
gating the effect of clustering algorithms, future studies should
also explore solutions that also help reduce the computational
burden of discovering edge communities.

Here, we use a recently proposed framework to transform
node-centric fMRI data into edge-centric networks (Zamani Es-
fahlani et al., 2020b; Faskowitz et al., 2020). This framework
complements extant approaches that aim to do the same. These
include line graphs (Evans and Lambiotte, 2009) and link similar-
ity (Ahn et al., 2010), as well as non-linear embedding techniques
(Gao et al., 2020). Although, in principle, these methods all
achieve the same goal of generating edge-centric networks,
they achieve this through different means, possess distinct
biases, and likely, yield complementary insight into the edge-
level organization of networks. Indeed, early results suggest
that this is the case. In Faskowitz et al. (2020), for instance, the
authors compare the community structure obtained by clus-
tering line graphs and eFC matrices. In general, the patterns
are dissimilar, suggesting that these two approaches capture
distinct edge-level features of a network.
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Moving forward, an increasingly important line of work will be
the construction of appropriate null models for eFC. For all the
above-mentioned methods, it is critical that the null models be
implemented at the nodal level. Recent studies have shown
that at least some of the properties of edge-centric networks
are mathematical necessities that arise from the network con-
struction process and can be, in part, anticipated from the
node-level networks directly (Novelli and Razi, 2021). A null
model implemented at the level of edge networks may fail to pre-
serve those properties. In the case of eFC, the appropriate null
model likely operates directly on the nodal time series. Among
the possible candidates are multivariate autoregressive models
(Liegeois et al., 2017) or phase randomized surrogates (Zalesky
et al., 2014). At present, however, there is a lack of consensus as
to what the appropriate null model should be, with some studies
using generating null time series based on circular shifts of the
original data (Greenwell et al., 2021; Betzel et al., 2021), whereas
others explore complex biophysical models (Pope et al., 2021).
In summary, future work should explore both the effect of the
method for generating edge-centric networks as well as the util-
ity of different null models for identifying statistically meaningful
features of those networks.

A final limitation concerns the eFC measure itself. In general,
eFC assesses the similarity of edge time series originating from
two pairs of nodes, {i,j} and {u, v}. In most cases, i # u # v. How-
ever, some node pairs may share a node, that is, either i orj is
equal to either u or v. The presence of a shared node may inflate
the similarity of their edge time series, yielding spuriously strong
eFC weights. Here, we do not correct for that possibility explicitly
because it falls beyond the scope of our study. However, future
studies should explore strategies for mitigating the possibility of
spurious eFC. One possibility is to perform careful comparisons
of observed eFC with eFC estimated from time-series surro-
gates. If the observed eFC is artifactually inflated because of
shared nodes, we expect to find similar inflation in the surrogate
data, which can then be subtracted or modeled out of the
observed eFC. Another possibility is to censor edge-edge con-
nections that involve a shared node, that is, impute those ele-
ments in the eFC matrix with a value of 0 or as NaN, effectively
nullifying their contribution to all subsequent analyses.

Conclusion

In summary, detailed analysis of edge functional connectivity
and edge communities revealed marked heterogeneity across
brain systems and highly reproducible and idiosyncratic patterns
within subjects. These findings help establish edge functional
connectivity as a useful representational framework and edge
communities as measures of potential interest for revealing novel
brain-behavior associations and individual differences in brain
organization.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited Data

Midnight Scan Club raw data

Gordon et al. (2017b)

https://openneuro.org/datasets/ds000224/versions/00002 Openneuro

Software and Algorithms

MATLAB
Brain Connectivity Toolbox

Mathworks
Rubinov & Sporns (2010)

RRID:
RRID:

SCR_001622 https://www.mathworks.com/
SCR_004841 https://sites.google.com/site/bctnet/

fMRIPrep Esteban et al. (2018) RRID: SCR_016216 https://fmriprep.org/en/stable/
NiLearn Abraham et al. (2014) RRID: SCR_001362 http://nilearn.github.io

Advanced Normalization Tools Avants et al. (2009) RRID: SCR_004757 http://picsl.upenn.edu/software/ants
Freesurfer Dale et al. (1999) RRID: SCR_001847 https://surfer.nmr.mgh.harvard.edu/
FSL Smith et al. (2004) RRID: SCR_002823 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
AFNI Cox (1996) RRID: SCR_005927 https://afni.nimh.nih.gov/afni/

Generalized Louvain algorithm

Jutla et al. (2011)

http://netwiki.amath.unc.edu/GenLouvain/GenLouvain

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Richard
Betzel (rbetzel@indiana.edu).

Material availability
This study generated no new reagents or materials. See following section for Data and code availability.

Data and code availability

o MRI data are deposited and publicly available in the OpenNeuro data repository (https://openneuro.org/datasets/ds000224/
versions/00002). The accession number is OpenNeuro: ds000224.

o Code to transform fMRI time courses into edge time series, construct edge functional connectivity, detect edge communities,
and compute edge community profile similarity is available at https://github.com/brain-networks/edge-centric_demo.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Midnight Scan Club (MSC) dataset (Gordon et al., 2017b) included rsfMRI from 10 adults (50% female, mean age =29.1 + 3.3,
age range = 24-34). The study was approved by the Washington University School of Medicine Human Studies Committee and Insti-
tutional Review Board and informed consent was obtained from all subjects. These data were initially reported in Gordon et al.
(2017a).

METHOD DETAILS

Functional preprocessing

Subjects underwent 12 scanning sessions on separate days, each session beginning at midnight. Ten (10) rsfMRI scans per subject
were collected with a gradient-echo EPI sequence (run duration = 30 min, TR = 2200 ms, TE = 27 ms, flip angle = 90°, 4 mm isotropic
voxel resolution) with eyes open and with eye tracking recording to monitor for prolonged eye closure (to assess drowsiness). Images
were collected on a 3T Siemens Trio. Functional images in the MSC dataset were preprocessed using fMRIPrep 1.3.2 (Esteban et al.,
2018), which is based on Nipype 1.1.9 (Gorgolewski et al., 2011). The following description of fMRIPrep’s preprocessing is based on
boilerplate distributed with the software covered by a “no rights reserved” (CCO) license. Internal operations of fMRIPrep use Nilearn
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0.5.0 (Abraham et al., 2014), ANTs 2.2.0 (Avants et al., 2009), FreeSurfer 6.0.1 (Dale et al., 1999), FSL 5.0.9 (Smith et al., 2004), and
AFNI v16.2.07 (Cox, 1996). For more details about the pipeline, see the section corresponding to workflows in fMRIPrep’s
documentation.

The T1-weighted (T1w) image was corrected for intensity non-uniformity with N4BiasFieldCorrection (Tustison et al., 2010; Avants
et al., 2008), distributed with ANTSs, and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped
with a Nipype implementation of the antsBrainExtraction.sh workflow. Brain surfaces were reconstructed using recon-all (Dale et al.,
1999), and the brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-derived and
FreeSurfer-derived segmentations of the cortical gray-matter using Mindboggle (Klein et al., 2017). Spatial normalization to the
ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009) was performed through nonlinear registration with
antsRegistration, using brain-extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using FSL’s fast (Zhang et al., 2001).

Functional data was slice time corrected using AFNI’s 3dTshift and motion corrected using FSL’s mcflirt (Jenkinson et al., 2002).
Fieldmap-less distortion correction was performed by co-registering the functional image to the same-subject T1w image with
intensity inverted (Wang et al., 2017) constrained with an average fieldmap template (Treiber et al., 2016), implemented with
antsRegistration. This was followed by co-registration to the corresponding T1w using boundary-based registration (Greve and
Fischl, 2009) with 9 degrees of freedom. Motion correcting transformations, field distortion correcting warp, BOLD-to-T1w transfor-
mation and T1w-to-template (MNI) warp were concatenated and applied in a single step using antsApplyTransforms using Lanczos
interpolation. Several confounding time-series were calculated based on this preprocessed BOLD: framewise displacement (FD),
DVARS and three region-wise global signals. FD and DVARS are calculated for each functional run, both using their implementations
in Nipype (Power et al., 2014). The three global signals are extracted within the CSF, the WM, and the whole-brain masks. The resul-
tant niFTi file for each MSC subject used in this study followed the file naming pattern *_space-T1w_desc-preproc_bold.nii.gz.

Image quality control

The quality of functional images in the MSC were assessed using fMRIPrep’s visual reports and MRIQC 0.15.1 (Esteban et al., 2017).
Data was visually inspected for whole brain field of view coverage, signal artifacts, and proper alignment to the corresponding
anatomical image.

QUANTIFICATION AND STATISTICAL ANALYSIS

Parcellation preprocessing

A functional parcellation designed to optimize both local gradient and global similarity measures of the fMRI signal (Schaefer et al.,
2017) (Schaefer400) was used to define 400 areas on the cerebral cortex. These nodes are also mapped to the Thomas Yeo et al.
(2011) canonical functional networks. For the MSC dataset, a Schaefer400 parcellation was obtained for each subject using a
Gaussian classifier surface atlas (Fischl et al., 2004) (trained on 100 unrelated Human Connectome Project subjects) and FreeSurfer’s
mris_ca_label function. These tools utilize the surface registrations computed in the recon-all pipeline to transfer a group average
atlas to subject space based on individual surface curvature and sulcal patterns. This method rendered a T1w space volume for
each subject. For use with functional data, the parcellation was resampled to 2mm T1w space.

Functional network preprocessing

Each preprocessed BOLD image was linearly detrended, band-pass filtered (0.008-0.08 Hz) (Parkes et al., 2018), confound re-
gressed and standardized using Nilearn’s signal.clean, which removes confounds orthogonally to the temporal filters (Lindquist
et al., 2019). The confound regression employed (Satterthwaite et al., 2013) included 6 motion estimates, time series of the mean
CSF, mean WM, and mean global signal, the derivatives of these nine regressors, and the squares these 18 terms. Furthermore,
a spike regressor was added for each frame exceeding 0.5mm framewise displacement. Following preprocessing and nuisance
regression, residual mean BOLD time series at each node were recovered. eFC matrices for each subject were computed and
then averaged across subjects, to obtain a representative eFC matrix for each dataset.

Edge graph construction
Constructing networks from fMRI data (or any neural time series data) requires estimating the statistical dependency between pairs of
time series. The magnitude of that dependency is usually interpreted as a measure of how strongly (or weakly) those voxels are par-
cels are functionally connected to each other. By far the most common measure of statistic dependence is the Pearson correlation
coefficient. Letx; = [x;(1), ...,x;(T)] and x; = [x;(1), ..., x;(T)] be the time series recorded from voxels or parcels i and j, respectively. We
can calculate the correlation of i and j by first z-scoring each time series, such that z; = (x; — u4)/0;, where u;=1/T>"x(t) and
oi=1/(T —1)>°;[xi(t) — u;] are the time-averaged mean and standard deviation. Then, the correlation of i with j can be calculated
as: rj = 1/(T — 1)3[zi(t)-z(t)]. Repeating this procedure for all pairs of parcels results in a node-by-node correlation matrix,
i.e., an estimate of FC. If there are N nodes, this matrix has dimensions [N xN].

To estimate edge-centric networks, we need to modify the above approach in one small but crucial way. Suppose we have two
z-scored parcel time series, z; and z;. To estimate their correlation we calculate the mean their element-wise product (not exactly

Cell Reports 37, 110032, November 16, 2021 e2




¢? CelPress Cell Reports

the average, because we divide by T — 1 rather than T). Suppose, instead, that we never calculate the mean and simply stop after
calculating the element-wise product. This operation would result in a vector of length T whose elements encode the moment-by-
moment co-fluctuations magnitude of parcels i and j. For instance, suppose at time t, parcels i and j simultaneously increased their
activity relative to baseline. These increases are encoded in z; and z; as positive entries in the tth position, so their product is also
positive. The same would be true if i and j decreased their activity simultaneously (because the product of negatives is a positive).
On the other hand, if i increased while j decreased (or vice versa), this would manifest as a negative entry. Similarly, if either i or j
increased or decreased while the activity of the other was close to baseline, the corresponding entry would be close to zero.

Accordingly, the vector resulting from the element-wise product of z; and z; can be viewed as encoding the magnitude of moment-
to-moment co-fluctuations between j and j. An analogous vector can easily be calculated for every pair of parcels (network nodes),
resulting in a set of co-fluctuation (edge) time series. With N parcels, this results in (N(N —1) /2) pairs, each of length T. From these
time series we can estimate the statistical dependency for every pair of edges. We refer to this construct as edge functional connec-
tivity (eFC). Let ¢;=[zi(1) -z(1),...,z(T) -z(T)] and ¢y, = [z,(1) -2,(1),...,2i(T) -z;i(T)] be the time series for edges {i,j} and {u,v},
respectively. Then we can calculate eFC as:

2Cii(t)-Cuv(t)
eFC,--‘W =
: \/Ztci/(t)2\/ZtCUV(t)2

Here, the denominator is necessary to bound eFC to the interval [ — 1,1].

(Equation 1)

Edge community detection algorithm

In our previous paper we developed a spectral method for clustering eFC matrices (Faskowitz et al., 2020). Although this algorithm
operated on a reduced rank version of eFC matrices, obtaining these lower rank data required first generating the eFC matrix. In gen-
eral, eFC matrices are much larger than nFC matrices. This means that they take longer to compute and much more memory. Here,
we circumvent this issue by clustering the edge time series directly. A parcellation of the brain into N regions results in M=
[N(N —1)]/2 edges. So rather than generating an MxM matrix, reducing its dimensionality, and then clustering its low-dimensional
representation, we simply cluster the MxT time series (where T) is the number of samples. We use a k-means clustering algorithm
where the distance metric is defined as (1 — eFC) /2. Two perfectly correlated edge time series have a distance of 0 while two orthog-
onal edge time series would have a distance of 1.

We used this same algorithm to generate estimates of edge communities at the scale of scans, subjects, and cohort. To generate
subject-representative communities, we concatenated edge time series from all of a subjects’ scans and clustered the concatenated
time series. Similarly, to generate group representative partitions, we concatenated scans from all subjects. At all scales, we
repeated the clustering algorithm 250 times.

To ensure that 250 repetitions were sufficient for sampling the space of possible partitions, we performed the following analysis.
First, we calculated the cluster co-assignment matrix using all 250 partitions. The co-assignment matrix has dimensions Mx M and
its elements encode how many times two edges were assigned to the same cluster out of the 250 total partitions. Next, we generated
co-assignment matrices using random sub-samples of those 250 partitions. We tested sample sizes ranging from 5 to 100 in incre-
ments of 5. For each sample, we computed the similarity (correlation) of its corresponding co-assignment matrix with the elements of
the co-assignment matrix estimated from the full sample of 250 partitions. For k = 10 clusters, we found that with as few as 25 sam-
ples, the similarity between co-assignment matrices was already r = 0.991 + 10~%. These observations suggest that k-means quickly
converges to a small set of solutions. Moreover, it suggests that the 250 repeats was likely sufficient for obtaining a meaningful sam-
ple of the space of possible partitions.

Community overlap metrics

The clustering algorithm partitioned edges into non-overlapping clusters. That is, every edge {i,j}, wherei je {1,...,N}, was assigned
to one of k clusters. In this list of edges, each node appeared N — 1 times (we excluded self-connections). Region i’s participation in
cluster ¢ was calculated as:

Dic = ﬁ; 8(gy,¢) (Equation 2)
where gje {1, ..., k} was the cluster assignment of the edge linking nodes i and j and é(x, y) is the Kronecker delta, whose value is 1 if
x =y and zero otherwise.

By definition, Y pic = 1, and we can treat the vector p; = [pj1, ..., pi] as a probability distribution. The entropy of this distribution
measures the exfent to which region i’'s community affiliations are distributed evenly across all communities (high entropy and high
overlap) or concentrated within a small number of communities (low entropy and low overlap). We calculate this entropy as:

hi= — Z Picl0gsPic. (Equation 3)
c
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To normalize this measure and bound it to the interval [0, 1], we divide by log,k. We refer to this measure as community entropy and
interpret this value as an index of overlap.

Edge community similarity
When we cluster an eFC matrix, we assign each edge to a single community. These edge communities can be rearranged into the
upper triangle of a Nx N matrix, X, whose element x; denotes the edge community assignment of the edge between nodesiandj. The
ith column of X, which we denote as x; = [xj,...,Xni], encodes the community labels of all edges in which node i participates. Note that
we do not consider self-edges, so the element x;; is left empty.

From this matrix, we can compare the edge communities of nodes i and j by calculating the similarity of vectors x; and x;. Here, we
measure that similarity as the fraction of elements in both vectors with the same community label. That is:

1 .
sj = mz 6(Xius Xiu) (Equation 4)
u#ij
Here, 6(x,y) is the Kronecker delta, and takes on a value of 1 when x and y have the same value, but is zero otherwise. Note that the
scaling factor is N — 2 because we ignore the self-connections x; and x;. Repeating this comparison for all pairs of nodes generates
the similarity matrix, S = {s;}.

Modularity maximization

In the main text, we computed system and whole-brain edge community similarity matrices. To discover the meso-scale structure of
these matrices we used a multi-scale modularity maximization algorithm (Newman and Girvan, 2004; Traag et al., 2011; Bazzi et al.,
2016). Modularity maximization detects meso-scale structure according to a simple principle: clusters are groups of nodes whose
actual connection weight is greater than what we would expect by chance. This general framework is flexible and, through param-
eterization can be used to detect clusters of different sizes (Reichardt and Bornholdt, 2006) and across layers (time (Bassett et al.,
2013), subjects (Betzel et al., 2019a), frequencies (Tewarie et al., 2016)).

Formally, the modularity quality function is expressed as:

Q(y) = > [Ai—v - Pylo(ai, o) (Equation 5)
if

where Aj is the observed weight of connections between nodes i and j, P; is the expected weight under some null model, v is a struc-
tural resolution parameter, and 6(x,y) is the Kronecker delta and is equal to 1 when the community assignments of nodes i and j,
denoted as o; and gj, respectively, are identical and is equal to 0 otherwise. The inclusion of the delta function means that the double
summation is over node pairs that fall within communities. Thus, Q(y) measures the total weight of within-community connections
less their expected values. The modularity maximization framework seeks to maximize the value of Q(vy) by selecting nodes’ com-
munity assignments.

Here we used a uniform null model, i.e., Pj; = 1 for all node pairs. Combined with the resolution parameter, v, communities detected
under this null model represent groups of nodes whose average similarity of edge community profiles exceeds y. Note that we
selected this particular null model deliberately, as previous studies have shown that it is especially well-suited for networks whose
weights reflect statistical measures of similarity or correlation (Traag et al., 2011; Bazzi et al., 2016). We further note that this null
model has been used in previous studies (Betzel et al., 2019b; Zamani Esfahlani et al., 2020a; Betzel, 2018; Kenett et al., 2020; Betzel
et al., 2017).

In more detail, we selected 200 values of v, linearly-spaced over the interval [0, 1]. At each value, we ran a Louvain-like algorithm to
optimize modularity (Jutla et al., 2011; Blondel et al., 2008). Because this optimization algorithm is non-deterministic, we performed
50 iterations at each value of y. We then aggregated vy values into 10 linearly-spaced intervals and, within each interval, used to
detected clusters to generate a single representative set of clusters using a consensus clustering algorithm (Lancichinetti and For-
tunato, 2012; Rubinov and Sporns, 2010). Briefly, this algorithm involved estimating the co-assignment matrix from the detected
clusters, whose elements indicate the fraction of times that nodes i andj were assigned to the same cluster across all partitions within
that interval. We then calculated the expected fraction (by randomly permuting nodes’ community assignments independently for
each partition). The observed and expected co-assignment values can be used to define a consensus modularity function that
we optimized using the same Louvain-like algorithm (1000 repetitions). If any of the 1000 partitions were dissimilar, we recomputed
a co-assignment matrix and the expected co-assignment and repeated the algorithm. These two steps - calculation of co-assign-
ment values and clustering — were repeated until convergence, i.e., all detected partitions are identical. In practice, the algorithm
converged in three or fewer iterations.

Edge community segregation

Inthe main text, we described a procedure in which we imposed edge community structure onto eFC matrices and measured a quan-
tity that we referred to as an index of “segregation.” To calculate the segregation index, we measured two quantities induced by edge
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communities: eFCyithin @and eFCpetween, Which measure the average eFC weight within and between edge communities. The segre-
gation index, then, is simply the difference in these two quantities:

Segregation = eFCyitnin — €FChetween- (Equation 6)

Because we define edge communities to be groups of edges with similar co-fluctuation patterns, we expect eFCuyitnin

Differential identifiability

Suppose we had a dataset comprising many scans from many subjects. We would say that subjects are “identifiable” if, given a
scan’s worth of data from one subject, we could accurately identify other scans from the same subject (Finn et al., 2015). This intuition
can be formalized using the measure differential identifiability (Amico and Goni, 2018):

laitt = lwithin — loetween- (Equation 7)

In this expression /yinin @and lpetween are the mean similarities among scans from the same and different subjects. Here, we measure
similarity as the Pearson correlation between regions’ edge community similarity vectors. Thus, /4 measures how much more similar
subjects are to themselves then they are to other subjects.
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