NeuroImage 252 (2022) 118993

journal homepage: www.elsevier.com/locate/neuroimage

Contents lists available at ScienceDirect

Neurolmage

Individualized event structure drives individual differences in whole-brain 7))

functional connectivity

Check for
| updates

Richard F. Betzel »»%%* Sarah A. Cutts®¢, Sarah Greenwell?, Joshua Faskowitz <,

Olaf Sporns %4

2 Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States

b Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
¢ Network Science Institute, Indiana University, Bloomington, IN 47405, United States
4 Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States

ABSTRACT

Resting-state functional connectivity is typically modeled as the correlation structure of whole-brain regional activity. It is studied widely, both to gain insight
into the brain’s intrinsic organization but also to develop markers sensitive to changes in an individual’s cognitive, clinical, and developmental state. Despite this,
the origins and drivers of functional connectivity, especially at the level of densely sampled individuals, remain elusive. Here, we leverage novel methodology to
decompose functional connectivity into its precise framewise contributions. Using two dense sampling datasets, we investigate the origins of individualized functional
connectivity, focusing specifically on the role of brain network “events” — short-lived and peaked patterns of high-amplitude cofluctuations. Here, we develop a
statistical test to identify events in empirical recordings. We show that the patterns of cofluctuation expressed during events are repeated across multiple scans of
the same individual and represent idiosyncratic variants of template patterns that are expressed at the group level. Lastly, we propose a simple model of functional
connectivity based on event cofluctuations, demonstrating that group-averaged cofluctuations are suboptimal for explaining participant-specific connectivity. Our
work complements recent studies implicating brief instants of high-amplitude cofluctuations as the primary drivers of static, whole-brain functional connectivity.
Our work also extends those studies, demonstrating that cofluctuations during events are individualized, positing a dynamic basis for functional connectivity.

1. Introduction

Functional connectivity (FC) measures the temporal correlation of
regional BOLD activity, often in the absence of explicit task instruc-
tions, i.e. in the “resting state” (Friston, 1994; Rogers et al., 2007). Al-
though usually estimated over an extended period of time and using all
available data, a growing number of studies have shown that FC can
be well approximated using relatively few observations, suggesting that
FC may be driven by a temporally sparse process (Tagliazucchi et al.,
2012; Allan et al., 2015; Tagliazucchi et al., 2016; Petridou et al., 2013;
Cifre et al., 2020).

In parallel, a growing body of work has demonstrated that, like
fingerprints, FC is unique to each individual and expresses features
that reliably distinguish one brain from another (Finn et al., 2015;
Demeter et al., 2020; Laumann et al.,, 2015; Gordon et al., 2017b;
Gratton et al., 2018). These observations hold tremendous transla-
tional promise, and open up the possibility of designing personalized
interventions (Gratton et al., 2019) and developing increasingly potent
connectivity-based biomarkers for cognition, development, and disease
Rosenberg et al., 2016; Chan et al., 2014; Lynall et al., 2010).

However, there remains a key open question: how does FC become
individualized in the first place? One possibility is that, like FC it-
self, personalized information is encoded through time-varying con-
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nectivity patterns and distributed dynamically and sparsely through-
out a scan session. Indeed, recent findings broadly support this hy-
pothesis (Liu et al., 2018; Fong et al., 2019). In (Esfahlani et al.,
2020), for instance, we demonstrated that using a small subset of
frames classified as “events” — brief and infrequent periods of high-
amplitude cofluctuation — we could produce accurate reconstructions
of FC while simultaneously rendering participants identifiable, am-
plifying their connectional fingerprints. In contrast, low-amplitude
frames yielded poorer estimates of FC and contained little personalized
information.

Although these observations support the hypothesis that personal-
ized information is expressed selectively during high-amplitude frames,
they also raise additional theoretical questions (Fig. 1). For instance, do
cofluctuation patterns during events repeat from one scan to another
(Fig. 1b)? If so, do they reflect a single repeating pattern or a repertoire
of different patterns? Are these patterns shared across individuals but
expressed in different proportions, thereby giving rise to individualized
FC (Fig. 1¢)? Or does the individualization of FC arise from equally id-
iosyncratic patterns of high-amplitude cofluctuations (Fig. 1d)? Address-
ing these questions is critical for linking patterns of brain connectivity
with individual differences in behavior (Dubois and Adolphs, 2016), and
would help clarify the role of brain dynamics in shaping the individ-
ualization of FC (Chen et al., 2015), complementing other approaches
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Fig. 1. Competing hypotheses for how co-fluctuations contribute to the indivi
tributions. (b) FC can be well-approximated from co-fluctuations expressed during
grouped into clusters or “states”. FC can then be approximated from state centroids

dualization of FC. (a) Edge time series decompose FC into its framewise con-
high-amplitude “events”. Recurrences of event co-fluctuation patterns can be
and the relative frequency with which each state is visited. Why does FC differ

between individuals? (c) One hypothesis (H1) is that the same states are shared across individuals and inter-individual differences are driven by differences in the
frequency with which those shared states are visited. (d) Another hypothesis (H2) is that the states, themselves, are subject-specific. In this case, inter-individual
differences in FC are driven by differences in the state centroids across subjects. (e) To adjudicate between these hypotheses, we can try to approximate FC matrices
with centroids estimated from that same subject’s data (different scans) or from group-averaged data.

that have focused on the collective influence of cortical expansion rates,
post-natal experience, and genetics (Mueller et al., 2013).

Here, we address these questions directly. Our approach leverages a
recently-proposed method for decomposing FC into its framewise con-
tributions, detecting events, and assessing the impact of events on time-
averaged FC (Esfahlani et al., 2020; Faskowitz et al., 2020; Jo et al.,
2020a,; Sporns et al., 2020; Greenwell et al., 2021; Esfahlani et al.,
2021; Liu et al., 2021; Pope et al., 2021). We apply this frame-
work to two independently acquired datasets: the Midnight Scan Club
(Gordon et al., 2017b; Gratton et al., 2018) and the MyConnectome
project (Laumann et al., 2015; Poldrack et al., 2015). In agreement with
our previous studies, we show that FC is accurately reconstructed from
event data alone. Next, we focus on the properties of individual events,
revealing that they repeat within and between scans of the same indi-
vidual. We also show that event cofluctuations can be clustered across
participants, revealing broad archetypes that are subtly yet systemati-
cally modified at the level of individuals. Finally, we construct a simple
model of FC, demonstrating that FC can be predicted with a high level
of accuracy using individualized event data, exclusively.

2. Results

2.1. Edge time series as a mathematically precise link between brain
dynamics and FC

In this paper, we analyze data from eight participants in the Midnight
Scan Club, each scanned ten times (participants MSCO8 and MSC09 were

dropped due to data quality issues). We analyzed two versions of these
data; one in which participants’ brains were parcellated into N = 333
group-level parcels (Gordon et al., 2016) and another in which parcels
were defined on an individual basis, resulting in a different set parcels
for each participant (N = 612 +28) (Wig et al., 2014). The primary
analyses were carried out using the group-level parcels. We also ana-
lyzed data from the MyConnectome project, a study in which a single in-
dividual was scanned > 100 times (Laumann et al., 2015; Poldrack et al.,
2015).

For each dataset, we transformed regional fMRI BOLD time series
into cofluctuation or edge time series (ETS). Briefly, ETS are calculated
as the element-wise product between pairs of z-scored regional (nodal)
time series (Fig. 2a; see Materials and Methods for details). This opera-
tion results in a new time series — one for every node pair (edge) — whose
elements index the direction and magnitude of instantaneous cofluctu-
ations between the corresponding pair of brain regions. For instance,
if the activity of region i and j deflect above (or below) their time-
averaged means at the same instant, the value of the edge time series
will be positive. On the other hand, if they deflect in opposite directions,
then the edge time series returns a negative value. If one deflects and the
other does not, then the value will be close to zero. The temporal mean of
an edge time series is equal to the Pearson sample correlation coefficient,
and therefore ETS is an exact decomposition of FC into its framewise
contributions.

If we calculate edge time series for all pairs of regions, we obtain
an edge X time matrix (Fig. 2b) whose temporal average yields a vec-
tor (Fig. 2c¢) that, when reshaped into the upper triangle elements of a
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Fig. 2. Edge time series. (a) An edge time series is constructed for pairs of brain regions, i and j, by computing the elementwise product of their z-scored activities,

z; and z;, respectively. The result is a new time series, z;;,

which indexes the framewise cofluctuations between i and j. (b) This procedure can be repeated for all

pairs of regions, generating a matrix of edge time series. At each instant in time, a “slice” through this matrix yields a region-by-region cofluctuation matrix that
can be modeled as a network. (c) At every moment in time we can calculate the root sum of squares (RSS) over all edge time series. The RSS time series is bursty,
such that it takes on low values most of the time, but is punctuated by short, intermittent, high-amplitude bursts. (d) The temporal average over all edge time series
yields a vector that corresponds to the upper triangle elements of a correlation matrix, i.e. functional connectivity (e). In this way, edge time series offer a means of
tracking moment-to- moment fluctuations in network topology and links them to functional connectivity through an exact decomposition. In f we show examples of

cofluctuations during a trough and peak (when RSS is small versus large).

node X node matrix, is exactly the FC matrix (Fig. 2d). The edge X time
matrix can also be “sliced” temporally and the corresponding vector
once again reshaped into the upper triangle elements of a node X node
matrix, yielding an instantaneous estimate of whole-brain cofluctua-
tions. These matrices vary in terms of their mean cofluctuations, which
we summarize with a root sum of squares measure (Fig. 2e).

In our previous study, we showed that RSS values followed a heavy-
tailed distribution, such that a small number of frames exhibited excep-
tionally high-amplitude RSS (Esfahlani et al., 2020). We also demon-
strated that FC reconstructed using only these high-amplitude frames
accurately recapitulated time-averaged FC, suggesting that FC weights
are not driven equally by all frames, but by a select set of frames. We also
demonstrated that these high-amplitude frames were underpinned by a
principal mode of brain activity, emphasizing oppositional activation of
default mode and control networks with sensorimotor and attentional
networks. In this paper, however, high-amplitude frames were selected
heuristically as the top P% by RSS value and, beyond the first mode of
activity, we did not investigate other activity patterns that occur during
events.

2.2. A statistical test for high-amplitude cofluctuation events

In previous work, we identified putative cofluctuation events as the
top P% frames in terms of root sum squared (RSS) amplitude of cofluctu-
ation weights. Although this heuristic is pragmatic - it is easy to imple-
ment and interpret — it has some unwanted characteristics. Notably, the
parameter P% lacks statistical justification and, due to slow temporal
fluctuations and serial correlations in the fMRI BOLD signal, can result
in event samples that disproportionately represent only a small number
of RSS peaks. Here, we present a simple statistical test to identify events
that addresses both of these issues.

In essence, we identify high-amplitude frames by comparing the RSS
time series estimated using real data with an ensemble of RSS time series
generated under a null model. Here, as a null model we apply the circu-
lar shift operator independently, randomly, and bidirectionally to each
region’s time series, which exactly preserves its mean and variance (and
its autocorrelation approximately). We then transform the shifted data
into edge time series and estimate their RSS. This step is repeated 100
times yielding 100 sets of surrogate RSS time series, against which we
compare the observed RSS data and identify sequences of frames whose
RSS exceeds the null distribution (non-parametric permutation test at

each frame; accepted false discovery rate fixed at ¢ = 0.05; Fig. 3a).
This entire procedure is repeated for every participant and every
scan.

This procedure allows us to segment the time series into three cate-
gories: contiguous frames whose RSS is greater than expected, less than
expected, or consistent with that of the null distribution. Rather than
consider all frames, we select representative frames from each block for
subsequent analysis. For segments whose RSS is greater than that of the
null distribution or not significant, we extract peak cofluctuation pattern
corresponding to the maximum RSS frame; for segments whose RSS is
less than that of the null, we extract the pattern corresponding to the
minimum RSS frame (trough).

To demonstrate that these categories of frames capture distinct fea-
tures of cofluctuations, we compare them along several different dimen-
sions (ANOVA; for all comparisons p < 10~13). First, we show that, as
expected, high-amplitude frames express greater RSS values than low-
amplitude and non-significant frames (Fig. 3b). On the other hand, the
number of high-amplitude frames in a scan is smaller than the number
of low-amplitude frames (Fig. 3c). Additionally, high-amplitude frames
form fewer contiguous segments than low-amplitude frames (Fig. 3d),
and, when they do, those segments tend to be of shorter duration then
contiguous segments of low-amplitude frames (Fig. 3e). Consistent with
our previous study, reconstructing FC using only high-amplitude frames
results in a pattern of FC strongly correlated with the FC estimated us-
ing all frames, and greater in magnitude than that of the non-significant
and low-amplitude frames (Fig. 3f). We note, however, that here the gap
in correlation between the high- and low-amplitude is narrower than in
previous studies (Esfahlani et al., 2020). This is due to differences in the
total number of frames used to reconstruct FC and how those frames
were selected. In fact, when controlling for the number of frames, we
find that the gap widens (see Fig. S1). This relationship holds over a
range of sample sizes, from 20 to 260 frames. Lastly, we find that high-
amplitude frames are almost never among those censored for excessive
in-scanner motion (Fig. 3g); low-amplitude frames, on the other hand,
were more likely to be associated with censored frames, but were also
more variable, a result that can be attributed, at least in part, to stable
inter-individual differences in motion (Bolton et al., 2020; Zeng et al.,
2014) (Fig. S2). This observation is consistent with our previous study,
in which we reported a weak but consistent negative correlation be-
tween RSS and framewise displacement (Esfahlani et al., 2020). These
findings, in general, replicate using individualized parcels for partici-
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Fig. 3. A statistical test for network-wide events. (a) We generated edge time series and computed the RSS time series. We compared this time series to a null RSS
time series estimated from edge time series that had been generated after circularly shifting the original fMRI BOLD time series. At each point in time, we calculated
the probability that the observed RSS value exceeded the null distribution, controlled for multiple comparisons, and identified sequences of frames that exceeded
the null distribution. This allowed us to categorize time points into three classes: those whose RSS was greater than null (GT), those whose RSS was significantly less
than the null (LT), and those that were in between (n.s.). For subsequent analysis, we extracted a single representative cofluctuation pattern for every contiguous
sequence of frames that was greater/less than the null distribution. This pattern corresponded to the frame with the maximum/minimum RSS. In panels b-g, we
separate the frames of each scan into these three classes and compare their features to one another. Each point represents the mean value over all frames assigned
to a given class. The features that are compared are: b mean RSS, c, the number of frames assigned to a given class, d the number of contiguous sequences of each
class, e the mean duration of sequences (log10 transformed), f the similarity of time-average FC with FC reconstructed using only frames assigned to each class, and

g the fraction of frames censored for high levels of in-scanner motion.

pants in the Midnight Scan Club (Fig. S3) and with MyConnectome data
(Fig. S4).

Taken together, these results suggest that the proposed statistical test
segments frames into classes with distinct features. This test addresses
two concerns associated with previous estimates of high-amplitude
“event” frames. First, it defines high-amplitude frames according to a
statistical criterion, rather than heuristically. Second, by extracting rep-
resentative frames from each contiguous segment, we obtain a more het-
erogeneous sample of high-amplitude frames and avoid selecting multi-
ple frames from around a single peak.

2.3. Peak cofluctuation patterns are repeated across scan sessions — troughs
are not

In the previous section we presented a simple method for estimating
statistically significant cofluctuation events and demonstrated that the
peak and trough frames of these segments exhibit distinct spatiotem-
poral properties. Here, we investigate representative cofluctuation pat-
terns extracted from blocks of high- and low-amplitude frames. We
first compare the similarity of these cofluctuation patterns, first within-
individuals and later between. Then, we present evidence that cofluc-
tuation patterns expressed during the peaks of high-amplitude events
recur across scans of the same individual and that these patterns exhibit
subject-specificity.

First, we applied the statistical test to MSC scans (excluding MSC08
and MSC09 due to data quality issues; see Materials and Methods
for more details). We found that each scan included 65.9 +9.2 and
72.2 + 17.1 highand low-amplitude segments, respectively (paired sam-
ple t-test; p = 0.0017; #(79) = 3.24). After additional quality control in
which we excluded segments that included any motion-censored frames,
the number of segments whose RSS was significantly greater than the
null changed little (61.26 + 14.7). However, the number of segments with
lower-than-expected RSS was reduced dramatically (52.5 + 23.9), reflect-
ing the fact that those frames often coincide with periods of excessive
in-scanner motion.

Next, we calculated the spatial similarity of motion-free cofluctu-
ation patterns extracted during RSS peaks and troughs (periods when
the RSS was significantly greater or less than the null model; labeled
G.T. and L.T. in Fig. 3). We performed this analysis separately for each
subject, resulting in eight similarity (correlation) matrices. We grouped
these values based on whether similarity was measured between two
peaks, two troughs, or a peak and trough co-fluctuation pattern. We
found peak-peak similarity was significantly greater than trough-trough
and peak-trough (t-test; p < 10~1%) (Fig. 4a,b). We see an identical effect
in the MyConnectome data (Fig. S5a-c) and when parcels are individu-
alized (Fig. S5d). These observations suggest that high-amplitude events
encode subject-specific patterns of cofluctuations.

Based on these observations, along with the fact that high-amplitude
events are less likely to be impacted by motion, we calculated the spatial
similarity of peak cofluctuation patterns for all pairs of detected events,
for all scans, and for all subjects (Fig. 4c). We then compared these sim-
ilarity values based on whether they came from the same or different
participants (Fig. 4d). We found that within-individual similarity ex-
ceeded between-individual similarity (non-parametric permutation test,
p < 10715; Fig. 4f).

Collectively, these results are in line with our previous study and
suggest that low-amplitude cofluctuations contains little participant-
specific information (Esfahlani et al., 2020). Rather, our findings sup-
port the hypothesis that high-amplitude cofluctuations contribute sig-
nificantly more information about an individual than low-amplitude
cofluctuations.

2.4. High-amplitude events can be divided into distinct communities based
on their cofluctuation patterns

In the previous section we found that co-fluctuation patterns ex-
pressed during peaks of high-amplitude event segments are not related
to motion and that they are repeatable across scans. This is in contrast
to co-fluctuation patterns expressed during low-amplitude segments,
which tend to coincide with excessive in-scanner motion and are dis-
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Fig. 4. Intra-/Inter-individual similarity of cofluctuation patterns. (a) For each individual separately, we aggregated all low-motion cofluctuation patterns
during peaks and troughs. We then computed the similarity between cofluctuation patterns (data from participant MSC06 is shown here as an example). (b) Boxplot
showing similarity values broken down by trough versus trough, peak versus trough, and peak versus peak. Because only cofluctuation at peaks exhibited similarity
across scans, we focused on these patterns only, discarding cofluctuation that occurs during troughs and focusing on comparisons of participants to one another. We
found that cofluctuation at peaks tended to be more similar within participants than between. We show the raw similarity matrix in c and the averaged values in d.
(e) Boxplot of similarity values broken down according to whether they fell within or between participants.

similar across scans and individuals, even within the same scan session.
These observations motivated us to focus on high-amplitude events in
yet greater detail. In this section, we test whether the cofluctuation
patterns expressed during high-amplitude events are entirely subject-
specific and not shared across individuals or whether they belong to a
general archetype that is fine-tuned to single participants.

To test whether this is the case, we aggregated across participants
all cofluctuation patterns that occurred during event peaks, calculated
the similarity matrix of those patterns, and clustered this matrix using a
variant of multiresolution consensus clustering (modularity maximiza-
tion with a uniform null model (Jeub et al., 2018; Jutla et al., 2011); see
Materials and Methods for details). The results of this analysis yielded
two large communities (clusters) along with many very small commu-
nities. We found that every participant was represented in the two large
communities (labeled 1 and 2 in Fig. 5a) and that instances of those
communities appeared in every scan session, accounting for 54.1% and
19.0% of all event peaks, respectively (see Fig. S6). Every participant
was also represented in the two next-largest communities, although they
appeared infrequently across scan sessions and collectively accounted
for only 8.6% of all event peaks. Accordingly, we aggregated the smaller
communities to form a third larger community (labeled 3 in Fig. 5a).
Most subsequent analyses will focus on communities 1 and 2 unless oth-
erwise noted. For completeness, we analyze community 3 in greater de-
tail in the Supplementary Material (see Fig. S7 and Fig. S8). Note that
we also repeated this clustering analysis for each participant individu-
ally and found that subject-level partitions of events were highly similar
to partitions estimated with the group-aggregated data (meanz+standard
deviation adjusted Rand index across subjects of 0.81 +0.10; p < 1074,
permutation test in which each subject’s community labels were ran-
domly shuffled).

To better understand why certain cofluctuation patterns were
grouped together, we examined group-representative centroids for each
community by calculating the mean cofluctuation pattern of all frames
assigned to that community (Fig. 5b,c). We found that community 1
reflected a topology that expressed strong and anticorrelated cofluc-
tuations mostly between cingulo-opercular and default mode networks
(Fig. 5b). Community 2, on the other hand, expressed strong anticorrela-
tions between the default mode with dorsal attention and fronto-parietal
networks (Fig. 5b). See Fig. S9 for topographic depiction of systems on
cortical surface.

We next wanted to better understand how brain activity drives the
cofluctuation patterns described above. To do this, we extracted ac-
tivity profiles (regional BOLD activity, rather than cofluctuations) dur-

ing event peaks, grouped them by community, and performed principal
components analysis (PCA). The first principal component for each com-
munity represents the mode of fMRI BOLD activity that tended to occur
during frames assigned to that community. We found the first principal
components of communities 1 and 2 (accounting for 25% and 26% of
variance, respectively, with a sharp drop-off for increasing component
numbers, Fig. S10) to be uncorrelated (r = —0.025; p = 0.65; Fig. 5d).
The first principal component for community 1 (Fig. 5e) exhibited sig-
nificant activation of the default mode and inactivation of cingulo-
opercular, visual, and somatomotor networks (distance-preserving per-
mutation test of node order, i.e. spin test (Alexander-Bloch et al., 2018;
Markello and Misic, 2021; Vasa et al., 2018); false discovery rate fixed at
5%; pag; = 5.3 X 10~%; Fig. 5f). The first principal component for com-
munity 2 (Fig. 5h) exhibited significant activation of dorsal attention
and fronto-parietal networks and inactivation of default mode, ventral
attention, and visual networks (spin test; false discovery rate fixed at
5%; poq; = 0.02; Fig. 5f). We show individual-level principal components
in the Supplementary Material (Fig. S11) and derive similar modes of
activity using an alternative procedure (Fig. S12). Note that the PCA
analysis results in modes of activity; in all cases, the sign of PCs can be
flipped and result in the same pattern of co-activity.

In the Supplementary Material we perform a similar analysis of
Midnight Scan Club data parcels fit to each participant individually.
We show that the first principal component of brain activity during
high-amplitude co-fluctuations is similar irrespective of whether we use
group-level or individualized parcels (Fig. S13). Even when we perform
event detection separately using the individualized parcels, we find sim-
ilar modes of activity (mean similarity of » = 0.89; p < 10~!!; Fig. S14).
Note that because the number of parcels differ across individuals, this
comparison was carried out at a system level.

Again, we use MyConnectome data as a replication dataset, finding
analogous communities (Fig. S15). We also take advantage of the fact
that MyConnectome data includes many more samples from an individ-
ual than the Midnight Scan Club (84 scans versus 10), to identify several
communities not evident in the group analysis of the Might Scan Club
data. We also find evidence of interdigitated communities with similar
system-level profiles but drawing on different regions from within those
systems (Fig. S16).

These observations build on our previous study, which focused on a
single pattern of cofluctuation during high-amplitude frames. Here, we
use data-driven methods to show that high-amplitude cofluctuation is
not monolithic and can be divided into meaningful sub-patterns, each
driven by a distinct mode of brain activity.
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Fig. 5. Clustering peak cofluctuation. (a) We clustered the cofluctuation similarity matrix using a multi-scale consensus clustering algorithm, resulting in two
large communities (1 and 2) and a third set of much smaller communities, grouped together here to form community 3. Here, black lines divide communities from
one another and, internally, participants from one another. The mean cofluctuation pattern for communities 1 and 2 are shown in b and c. To understand activity that
underpins each community, we pooled together corresponding activity time series separately for communities 1 and 2 and performed principal component analysis
on each set, returning the primary mode of activity (PC1). (d) Scatterplot of PC1 for community 1 and community 2. Colors denote brain systems. (e) Topographic
depiction of PC1 for community 1. (f) PC1 grouped according to brain system. Asterisks indicate p < p,,; (FDR fixed at ¢ = 0.05). Panels g and h show corresponding
plots for community 2. Analogous information about community 3 can be found in Fig. S7.

2.5. Event communities are individualized

In the previous section, we showed that cofluctuation patterns ex-
pressed at the peaks of high-amplitude events could be grouped into
meaningful communities. Within each community, are these patterns
individualized or are they shared across participants? Which node pairs
are most variable between individuals and, therefore, more likely to be
useful for subject fingerprinting and identifiability?

To address this question, we analyzed communities 1 and 2 sepa-
rately and in greater detail. Although collectively each community is
cohesive (similarity is greater among cofluctuation patterns assigned
to the same community than to other communities; see Fig. S17 and
Fig. S18), we also found evidence that the similarity between cofluctua-
tion patterns is stronger still when they come from the same participant
(t-test comparing within- and between-individual similarity; p < 10~13;
Fig. 6a-d). Further, we identified the pairs of brain regions whose cofluc-
tuations were most variable across individuals by computing the stan-
dard deviation of edge weights across participant centroids (Fig. 6e-f).
Our rationale for doing so was that pairs of regions whose cofluctuation
amplitude was variable are also among those most likely to drive indi-
vidualization (Amico and Goni, 2018). For the cofluctuation pattern ex-
pressed by community 1, we found that the most variable edges linked
the cingulo-opercular network to the dorsal attention, fronto-parietal,
and ventral attention networks (Fig. 6e). In the case of community 2,
the most variable edges were linked to default mode, dorsal attention,
and fronto-parietal.

Note that in Fig. S19 and Fig. S20, we further explored the individu-
alization of high-amplitude cofluctuation patterns. Briefly, we followed
(Seitzman et al., 2019) and computed the similarity (correlation) of re-
gional cofluctuation patterns estimated at the group and subject levels
for both communities 1 and 2 (Fig. S19a,b). This procedure yielded a
similarity map for each subject and community (Fig. S19c-f), which we
analyzed further. Specifically, we calculated the mean similarity of re-
gions in each putative brain system (Gordon et al., 2016) and demon-

strated that, for community 1 regions in the ventral attention system was
more dissimilar from the group than expected (space-preserving permu-
tation test, 10000 repetitions, p < 10~4; Fig. S19f). For community 2,
regions in the somatomotor-hand system, along with those that lack a
clear system assignment, were more dissimilar. Interestingly, regions in
the default mode and cingulo-opercular systems (community 1) and de-
fault mode, fronto-parietal, and dorsal attention systems (community
2) were more similar than expected. These systems all participated in
the strongest co-fluctuations and largely typified each cluster. Finally,
we investigate whether subject deviations from the group are evident
in individual scan sessions. To test this, we repeated the above proce-
dure but using scan-resolved estimates of communities (see Fig. S20 for
an example from MSC06 and community 1). In general, we fourd that
similarity maps for any given subject were highly repeatable across scan
sessions and dissimilar between individuals (t-test of mean within- and
between-subject similarity; p < 10~'%; Fig. S19g).

These observations suggest that high-amplitude cofluctuation pat-
terns reflect a topology that is broadly shared across individuals but is
systematically and individually refined. We note, however, that the ori-
gins of this individualization is likely multi-factorial and that true differ-
ences in co-fluctuation patterns likely depend on idiosyncratic anatom-
ical differences as well as choice of parcellation (Bijsterbosch et al.,
2020).

2.6. Functional connectivity is modeled accurately only when using
individual-specific co-fluctuation patterns

Previous studies have shown that time-averaged FC is individualized
and can serve as a fingerprint of an individual (Gratton et al., 2018;
Gordon et al., 2017a; Finn et al., 2015). Here and in (Esfahlani et al.,
2020), we showed that time-averaged FC can also be approximated us-
ing only a small number of high-amplitude frames (events) and that the
cofluctuation patterns expressed during those events can be grouped
into a small number of clusters or communities. How do these dif-
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Fig. 6. Personalization of cofluctuation patterns. We separately extracted cofluctuation patterns for communities 1 and 2 and computed the pairwise similarity.
Similarity matrices are shown in panels a and c. In both cases, we found that within-individual similarity was statistically greater than between-individual similarity.
Boxplots of similarity scores are depicted in panels b and d. Asterisks indicate p < p,,; based on permutation test (FDR fixed at ¢ = 0.05). For each community, we
calculated mean cofluctuation patterns for each participant and, across participants, computed the standard deviation of each node-pairs cofluctuation magnitude.
The patterns of variability for communities 1, 2, and 3 are depicted in panels e, f, and g, respectively.

ferent communities produce individualized patterns of FC? Are the
cofluctuation patterns fixed at the group level but expressed in dif-
ferent proportions from one individual to the next? Or are the pro-
portions fixed while the cofluctuation patterns vary idiosyncratically?
Here, we present a model to adjudicate between these and related
hypotheses.

Motivated by previous studies showing that FC can be described
using only high-amplitude frames (Tagliazucchi et al., 2012; Petridou
et al.,, 2013; Allan et al., 2015; Cifre et al., 2020; Esfahlani et al.,
2020), our model assumes that FC depends exclusively on the cofluc-
tuation patterns expressed during events and that low and middle-
amplitude frames make no contribution (Fig. 7a). Specifically, we
model static FC as a linear combination of the centroids for commu-
nities 1, 2, and 3, weighted by how frequently those communities ap-
pear in the data. To fit this model, we must estimate centroids and
frequencies.

These estimates can be carried out separately for each subject, yield-
ing subject-specific centroids and frequencies. However, estimates can
also be made at the group level, yielding a set of centroids and frequen-
cies that are shared across individuals. In both cases, we define model
fit as the correlation of edge weights in the observed and predicted FC
matrices.

Here, we test five model variants that combine subject and group-
level information in different configurations. The first two models make
predictions of FC using subject-specific estimates of centroids and fre-
quency estimates made at either the subject (model 1) or group level
(model 2). Similarly, the next two models pair group-level estimates
of centroids with either subject or group level estimates of frequen-
cies (models 3 and 4). Finally, we test a fifth model that makes predic-
tions of subject s’s FC using subject-specific centroids and frequencies
estimated for the remaining seven subjects (different from the subject
whose FC we are trying to predict), yielding seven independent predic-

tions. We define this model’s fitness as the best prediction out of the
seven.

Importantly, these models allow us to directly test the compet-
ing hypotheses that individualized FC is driven by subject-specific co-
fluctuation patterns or subject-specific frequencies (labeled H, and H,
in Fig. 1). Here, we found that model performance under H1 was signif-
icantly greater than performance for H2 (ry, = 0.85 +0.06, ry, = 0.70 £
0.05; paired sample t-test,p < 1071%). Additionally, combining subject-
specific centroids and frequencies yielded a small but statistically sig-
nificant improvement in performance, largely by reducing the num-
ber of outlying points (r = 0.85 + 0.05; paired sample t-test, p = 0.02).
Collectively, these findings suggest that the subject-specificity of high-
amplitude cofluctuation patterns drive the organization of static FC. Fi-
nally, we perform a sensitivity analysis to identify which of the three
communities drive these effects. For all models, we find that model per-
formance suffers the most by removing community 1, which alone ac-
counts for 54.1% of all events (Fig. 7d).

Additionally, we replicated these findings using: MSC data processed
using an alternative processing pipeline and parcellation (Esteban et al.,
2019; fer et al., 2018) (Fig. S21), at different spatial scales (100-node
parcellation) (Schaefer et al., 2018) (Fig. S22), and without including
global signal regression in the processing pipeline (Fig. S23). One no-
table discrepancy, however, was that in the absence of global signal
regression, high-amplitude co-fluctuation patterns did not exhibit anti-
correlations. Rather, we find that putative “events” are driven by cohe-
sive fluctuations of regional activity in the same direction, i.e. activity
deflects positively or negatively but typically not both. This is in line
with previous observations concerning the effect of the global signal on
FC (Fox et al., 2009; Chai et al., 2012; Saad et al., 2012). In fact, we find
that the groups of brain regions that had previously engaged in anticor-
related behavior now formed their own distinct community, yielding
four communities instead of two (along with a much smaller fifth com-
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Fig. 7. Modeling participant and scan-specific FC with cofluctuation patterns. (a) We hypothesized that FC is driven by brief high-amplitude patterns of
cofluctuation. A scan session can be abstracted, then, as periods of time where cofluctuation is close to zero punctuated by periods of time where cofluctuation
corresponds to one of the cofluctuation communities. (b) We modeled FC as a linear combination of cofluctuation patterns corresponding to communities 1, 2, and 3
as well as a blank state where cofluctuation was treated as zeros (low-amplitude frames). We varied whether cofluctuation patterns and the frequencies with which
they appear are estimated at the subject or group level. We also tested a model that used subject-level estimates of centroids and frequencies from other subjects. (c)
Performance of the five models. Overall, models that included participant-specific information about cluster centroids outperformed other models. (d) We performed
a sensitivity analysis of model 2, which used subject-specific centroids and group-level frequencies to predict FC patterns. In this analysis, we selectively exclude
each of the three communities from the model so that it does not contribute to the prediction. We find that removing community 1 yields the biggest decrease in
model performance, suggesting that it drives the model performance more so than communities 2 or 3.

munity). As a consequence, we modeled FC as a linear combination of
five states.

These results suggest that the cofluctuation patterns expressed at the
peaks of high-amplitude events can, on their own, explain a significant
fraction of participant-specific variance in time-averaged FC. More im-
portantly, our results reaffirm that cofluctuation patterns during event
peaks are participant specific; even when predicting a held-out scan,
when centroids are estimated using participant-specific data, we find
marked improvement in model performance.

Our model generates predictions of participant- and scan-specific FC.
It works by calculating, for that scan, the fraction of time points assigned
to communities 1, 2, and 3, and uses those values to weight the centroids
of each community (Fig. 7b). It also counts the fraction of time during
the scan spent in a low-amplitude frame, using that value to weight
a matrix of zeros (corresponding to the hypothesis that low-amplitude
frames make a negligible contribution).

3. Discussion

Here, we extended our recent analyses of edge time series and
putative high-amplitude cofluctuation events (Esfahlani et al., 2020;
Sporns et al., 2020). We proposed a simple null model that allowed
us to identify frames whose amplitude was significantly greater or less
than chance. We then analyzed the cofluctuation patterns expressed
during these frames, discovering that across scans of the same indi-
vidual, the cofluctuation patterns expressed during frames with lower-
than-expected amplitude were dissimilar. In contrast, we found that the
cofluctuation during high-amplitude frames was repeatable within an
individual and dissimilar between individuals. We then clustered pat-
terns of cofluctuation expressed during high-amplitude frames, identi-
fying a small number of cofluctuation patterns that were shared across
individuals. These patterns, however, were altered subtly yet system-
atically, so that they could be used to reliably distinguish participants
from one another. Finally, we tested the hypothesis that FC could be
predicted exclusively from the co-fluctuation patterns expressed during
events, and constructed a model that generated estimates of FC given a
set of cofluctuation community centroids and the frequency that those
centroids are expressed by that individual. We found that the model per-
formed well only when the centroids were estimated using data from the
participants whose FC we were aiming to predict.

3.1. High-amplitude cofluctuations can be partitioned into different
communities based on their topology

Intrinsic or resting-state functional connectivity reflects the coupling
of spontaneous activity between distant brain regions (Friston, 1994;
Horwitz, 2003). It is often used to construct a graphical representation of
the brain to be analyzed using tools from network science (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010). Although inter-individual dif-
ferences in FC have been linked to an individual’s clinical (Lynall et al.,
2010), cognitive (Cohen and D’Esposito, 2016), and developmental state
(Chan et al., 2014), the dynamic origins of individualized FC remain un-
known.

Recently, we presented a method for decomposing FC into its
framewise (instantaneous) contributions (Esfahlani et al., 2020;
Faskowitz et al., 2020). Our work, in agreement with other recent
studies (Tagliazucchi et al., 2012; Petridou et al., 2013; Allan et al.,
2015; Cifre et al., 2020), demonstrated that all frames do not contribute
equally to FC - rather only a small number of high-amplitude frames
- “events” — when averaged together, are necessary for explaining a
high proportion of variance in FC. In that study, however, we only ex-
amined the mean pattern of high-amplitude cofluctuations and did not
investigate individual events nor did we characterize variation in the
co-fluctuation patterns across events.

Here, we address these issues using two dense phenotyping datasets.
Leveraging a statistical test for identifying high-amplitude frames, we
show that “events” are not monolithic and comprise distinct patterns of
cofluctuations. Using a data-driven clustering method, we find evidence
of two patterns of cofluctuation that are conserved across all participants
and scans. These patterns emphasize opposed activation of default mode
regions with cingulo-opercular and sensorimotor systems (community
1) and with dorsal attention and fronto-parietal systems (community
2). We also find evidence of smaller communities corresponding to less
frequent events involving only a fraction of participants.

In the main text we grouped these patterns into a single community,
but find that the two largest (accounting for 8.6% of event peaks) in-
volve cofluctuations of sensorimotor systems, which we explore in the
Supplementary Material. The two largest communities have interesting
properties. For instance, the default mode is cohesive (densely intercon-
nected, internally) in both, but is selectively decoupled from distinct sets
of brain systems associated with processing sensorimotor information
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(Biswal et al., 1995) and coordinating flexible, goal-directed behavior
(Dosenbach et al., 2007). In neither community does the default mode
couple strongly to other systems. Rather, in these high-amplitude states
it maintains relative autonomy, in agreement with studies that have ex-
amined its “hubness” using the participation coefficient (Power et al.,
2013) - a graph-theoretic measure that describes the extent to which a
node’s connections are distributed across or concentrated within com-
munities (Guimera and Amaral, 2005).

Another interesting feature of these communities is their possible
relationship to network states obtained by clustering sliding-window
estimates of time-varying FC (Allen et al., 2014) or co-activation pat-
terns (CAPs) (Liu and Duyn, 2013). Indeed, these approaches all yield
estimates of repeating patterns of coactivity and connectivity suggest-
ing a deep mathematical relationship, which was disclosed recently in a
new paper (Novelli and Razi, 2021). Here, we analyze edge time se-
ries, a parameter-free method for estimating instantaneous cofluctu-
ations between regional activity (localized to individual frames) and
whose sum is precisely time-averaged FC. In contrast, sliding-window
estimates of time-varying FC require users to specify a window dura-
tion and overlap fraction (the number of frames shared by successive
estimates of FC) and, due to the sliding window, lead to temporally
blurred connectivity estimates that cannot be precisely localized in time
(Hindriks et al., 2016; Shakil et al., 2016). In fact, we speculate that brief
high-amplitude events may be present in sliding-window estimates of
time-varying FC, but because they evolve over timescales much shorter
than that of the typical window duration, are effectively obscured due
to blurring (Petridou et al., 2013; Liu et al., 2013; Tagliazucchi et al.,
2012; Cifre et al., 2020; Allan et al., 2015). CAPs, on the other hand,
which leverages a similar procedure as ours, identifies repeated and
high-amplitude patterns of activity rather than cofluctuation matrices
(the product of instantaneous activity patterns). For this reason, CAPs
traditionally does not offer the mathematical link between cofluctua-
tions and FC that edge time series does (Liu et al., 2013). Critically,
then, because edge time series are a decomposition of FC, events can be
viewed as the “atoms” or “building blocks” of FC.

Collectively, our findings suggest that cofluctuation patterns ex-
pressed during putative network-wide events are variable but can be
described in terms of two principal patterns. These findings extend our
previous study (Esfahlani et al., 2020) and open up opportunities for fu-
ture studies to investigate interindividual differences in these patterns
as well as the smaller and less frequent patterns.

3.2. High-amplitude cofluctuation patterns are individualized and drive
time-averaged FC

One of the questions we aimed to address was whether the indi-
vidualization of FC occurred because: a) high-amplitude cofluctuation
patterns are shared across individuals but expressed in different subject-
specific proportions or b) cofluctuation patterns expressed during high-
amplitude events are inherently subject-specific. The answer to this
question is important, as it speaks to the origins of individual differences
in FC (Mueller et al., 2013; Seitzman et al., 2019), has implications for
brain-behavior studies (Rosenberg et al., 2016), and also informs our
understanding of time-varying FC (Preti et al., 2017).

Here, we addressed these questions by aggregating and clustering
high-amplitude cofluctuation patterns from across all participants. This
analysis returned two large communities in which every participant and
scan were represented, indicating that, to some extent, patterns of high-
amplitude cofluctuations are indeed shared across individuals. How-
ever, when we examined these communities in greater detail, we found
that within communities there existed more cohesive sub-communities
corresponding to individual participants.

To better adjudicate between hypotheses, we constructed a simple
model to predict an individual’s scan-specific pattern of FC. Motivated
by previous studies (Tagliazucchi et al., 2012; Petridou et al., 2013;
Allan et al., 2015; Cifre et al., 2020), this model assumed that FC is
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driven exclusively by high-amplitude cofluctuations and that all other
time points made negligible contributions to FC. We then replaced FC
during high-amplitude frames with the centroid of the community to
which those frames were assigned. We found that, when centroids were
generated using data pooled from across all participants we could ex-
plain only ~50% of the variance in functional connection weights. How-
ever, when we estimated centroids using data from the same participant
whose FC we were predicting, the model exhibited a significant increase
in performance, accounting for ~75% of variance in connection weights.

These observations suggest that incorrectly ascribing group-level fea-
tures to an individual participant distorts our prediction of their FC,
favoring the hypothesis that high-amplitude cofluctuation patterns are
individualized. This endorsement of hypothesis b comes with some
caveats, however. Although FC is the product of individualized cofluc-
tuation patterns, those patterns appear to be variants of archetypal pat-
terns, i.e. the two large communities discussed in the previous sec-
tion. These observations align with other studies showing that the in-
dividualization of FC is generally a subtle modulation of features that
are evident in group-level data, from brain systems (Anderson et al.,
2021; Kong et al., 2019; Kraus et al., 2020) to regional FC fingerprints
(Finn et al., 2015). Notably, these findings also corroborate other “edge-
centric” analyses of individualized patterns of brain connectivity. For
instance, in (Jo et al., 2021), the authors demonstrated that the corre-
lation structure of edge time series — a construct referred to as “edge
functional connectivity” outperformed traditional FC in terms of identi-
fiability. Moreover, reconstructions of eFC using principal components
further improved its performance. Those results, paired with those of
the present study, suggest that edge-based approaches may offer a use-
ful framework for investigating individualization of connectivity and,
eventually, linking it back to behavioral, cognitive, and clinical pheno-
types.

Our results have implications for studies of brain-behavior correla-
tions as well as state-based analyses of time-varying FC. We show that
inter-individual differences in FC are largely shaped by differences in
high-amplitude cofluctuation patterns. However, our sensitivity anal-
ysis (Fig. 7d) demonstrated that of the three communities we consid-
ered, one contributed disproportionately to the individualization of FC
relative to the other two. This suggests that, rather than linking inter-
individual differences in FC across individuals, it may be more prof-
itable to directly investigate specific community centroids, e.g. those
that drive individual variation, potentially leading to improvements in
brain-behavior correlations.

Our results also have implications for studies of network states in
time-varying FC (Allen et al., 2014; Shakil et al., 2016). In general,
these studies cluster time points together based on the similarity of
networks to one another. To facilitate ease of comparison across indi-
viduals, this step is usually performed using concatenated data from
many participants or conditions. Different metrics can be calculated
from these partitions, e.g. cumulative time a participant spends in any
cluster, transition matrices, etc., and linked to behavioral and clinical
phenotypes. Our results suggest that, although methodologically conve-
nient, clustering time points together and treating them as recurrences
of the same “network state” likely obscures meaningful participant-level
variation.

3.3. Future directions

The results presented here raise important questions that should be
investigated in future research. First, because events contribute dispro-
portionately to the organization of time-averaged FC and because they
appear to be drivers of individualization, they should be the target of fu-
ture studies. We investigated events in two dense sampling studies and in
a total of nine brains. Although these data allowed us to investigate the
extent to which cofluctuation patterns during events are shared versus
individualized, the small number of participants precludes the possibil-
ity of investigating behavioral, cognitive, or disease correlates of events
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(Marek et al., 2020). Future studies should investigate communities of
high-amplitude events in larger datasets.

Relatedly, our study examined event structure exclusively during
task-free resting-state conditions. We demonstrated that time-averaged
FC could be well-approximated using only high-amplitude frames and
individualized estimates of cofluctuations during those frames. What
happens to events when participants are asked to perform tasks in
the scanner? Previous studies have demonstrated that tasks systemat-
ically modulates patterns of FC (Cohen and D’Esposito, 2016). Do these
changes reflect different patterns of cofluctuations during events? Are
they the same patterns as rest but in different proportions? And di-
rectly related to the aims of this study, are task events similarly per-
sonalized or can they be used to strengthen brain-behavior associations
(Greene et al., 2018)?

Here, we focused on the contributions of high-amplitude “events”
to patterns of time-averaged FC. The simple model we proposed even
goes so far as to consider contributions from all other frames as negligi-
ble. Is this really the case? What biases might we reinforce by focusing
on high-amplitude frames? High-amplitude cofluctuations make propor-
tionally bigger contributions to time-averaged FC than low-amplitude
cofluctuations. This statement is non-controversial; edge time series are
a mathematically precise “temporal unwrapping” of the Pearson corre-
lation into its framewise contributions, the average of which is simply
FC (Esfahlani et al., 2020; Faskowitz et al., 2020; Sporns et al., 2020;
Jo et al., 2020a,b). For this reason, it makes sense to focus on frames
where many edges simultaneously make big contributions — those same
frames necessarily will, on average, make bigger contributions to FC
than, say, frames where only a few edges exhibit high-amplitude edge
time series. However, this does not rule out the possibility that frames
outside of high-RSS events, which are more numerous, make contribu-
tions that outweigh or match those of high-amplitude frames. Addition-
ally, in focusing on global high-amplitude events, we may miss out on
events involving small brain systems, which will fail to meet statistical
criteria for significance due to their size.

Edge time series represent only the latest in a series of methods
for tracking and modeling time-varying changes in networks that in-
clude time-frequency analysis (Chang and Glover, 2010), sliding win-
dows (Hindriks et al., 2016), instantaneous phase-locking (Cabral et al.,
2017), co-activation patterns (Liu and Duyn, 2013; Karahanoglu and
Van De Ville, 2015; Petridou et al., 2013; Tagliazucchi et al., 2012),
multiplication of temporal derivatives (Shine et al., 2015), quasi-
periodic patterns (Majeed et al., 2009), and model-based frameworks
(Lindquist et al., 2014). Broadly, these different approaches can be clas-
sified on the timescales over which they describe changes in brain ac-
tivity or connectivity. Some, like CAPs, edge time series, and instan-
taneous phase-locking, characterize changes at a framewise timescale.
Others require windowing or smoothing of data to track time-varying
fluctuations. Of particular interest are quasi-period patterns, (QPPs),
which refer to repeated sequences of brain activity (Majeed et al., 2011;
Thompson et al., 2014; Yousefi et al., 2018). Recently, (Abbas et al.,
2019) developed a method for assessing contributions to FC by repeat-
ing patterns. In essence, they “regress out” each QPP’s time course from
the BOLD signal and calculate FC before and after doing so, allowing
the authors to assess the contribution of the QPP to FC. More recently,
(Bolt et al., 2021) identified three QPPs and demonstrated that, using
only the time courses of those QPPs, could reconstruct an FC matrix
that was correlated with the FC matrix estimated using the entire BOLD
signal. Although these studies collective suggest that QPPs contribute
to the overall pattern of FC, the precise mathematical link remains in-
exact. Moreover, every QPP evolves over an extended period of time
and includes multiple frames, further complicating its relationship with
FC. In contrast, edge time series are an exact decomposition of FC into
its framewise contributions. That is, the mean of a given edge time se-
ries is mathematically equivalent to that edge’s weight in the FC matrix.
This makes it possible to assess the collective contribution of individ-
ual frames to the overall FC pattern (although the average of subsets
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of frames, as we do here, generates a mean co-fluctuation value that
does not correspond to a true correlation coefficient, once again making
the link between co-fluctuations and FC inexact). In contrast, with QPPs
and co-activation patterns (CAPs), the mathematical link to FC is not
precise. Irrespective of whether their contributions can be determined
precisely, QPPs, CAPs, iCAPs, “events” and related methods make clear
that variation in activity and co-activity across time contribute to FC.
Future work should focus not only on assessing the relative strengths
and weakness of these methods but identifying underlying structural
similarities between approaches (Novelli and Razi, 2021).

Here, we analyze two dense-sampling datasets in which a small num-
ber of individuals were scanned many times. Our work is naturally ex-
tended by examining inter-individual variation of high-amplitude co-
fluctuation patterns and community frequency in large, cross-sectional
datasets, e.g. the Human Connectome Project (Van Essen et al., 2013). In
addition to imaging data, the HCP dataset includes rich cognitive, be-
havioral, and clinical assessments of participants. Future work should
focus on linking inter-individual variation in those measures with high-
amplitude events.

The results of our study suggest that co-fluctuation patterns are in-
dividualized and, in turn, contribute to the individualization of time-
averaged, static FC. However, there remain several open questions about
the origins of this individualization. Do co-fluctuation patterns appear
individualized because of individualized differences in anatomy and
subtle shifts in parcel boundaries (Bijsterbosch et al., 2018, 2019)? Here,
we tried to address this issue by replicating our results using a coarser
parcellation (100 nodes rather than 333). While the main results do,
indeed, replicate, we also find that the size of the effect (difference in
predicted FC using individualized versus group parcels) decreases. This
observation suggests that, as expected, true differences in the underlying
anatomy contribute to shaping the observed individualization of cofluc-
tuation patterns. However, a second contributing factor likely relates to
the well-documented dependence of whole-brain FC (and derived mea-
sures) on choice of parcels is well-documented (Eickhoff et al., 2018;
Gordon et al., 2016). Adopting coarser parcellations necessarily “washes
out” idiosyncrasies of FC that may be evident with finer, more detailed
parcellations. Adjudicating between these two possibilities is beyond the
scope of this paper, but is a topic of intense ongoing research (Finn and
Rosenberg, 2021; Bijsterbosch et al., 2020). Future studies should in-
vestigate the relative contributions of anatomy, parcellation choice, and
other factors in shaping the apparent individualization of FC patterns.

Here, we focus on high-amplitude co-fluctuations. Our rationale
is that, because the Pearson correlation (static FC) is a temporal av-
erage over framewise co-fluctuations, the frames with largest ampli-
tude will necessarily have a greater impact on the mean value. That
is, on a per-frame basis, frames with larger amplitudes mathemati-
cally will contribute more to the temporal mean. In focusing on high-
amplitude frames, we necessarily neglect contributions of middle- and
low-amplitude frames, which can also be used to approximate static FC
(albeit not as accurately as high-amplitude; see Fig. S1). Nonetheless,
an important direction for future research is to better characterize non-
event frames. For instance, do they exhibit cluster structure? Are they
simply “scaled down” analogs of the high-amplitude events? What are
the physiological and psychological drivers of non-event frames?

Finally, a key overarching and open question concerns the origins of
high-amplitude cofluctuations. In our previous study, we demonstrated
that movie-watching leads to synchronization of events across partici-
pants (Esfahlani et al., 2020), suggesting that their timing can be mod-
ulated selectively, in that case by sensory input. But what about rest?
In that previous study, we found no differences in event amplitude be-
tween rest and movie-watching, suggesting that spontaneous events are
just as large as those driven by sensory input. A couple recent stud-
ies help us speculate on the origins of events. One possibility is that
events help preserve brain circuit function in the absence of use. In
(Newbold et al., 2020b), the authors demonstrated that disuse of mo-
tor circuits by casting participants’ arms leads to increases in high-
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amplitude pulses and that manually censoring these pulses reduces FC
magnitude (Newbold et al., 2020a). Another possibility is that burst ac-
tivation of distinct systems, including default mode networks, co-occurs
with the recall or previously-observed stimuli (Higgins et al., 2020). Yet
another possibility, and one that is supported by recent results from
electrophysiological studies (Kucyi et al., 2020), is that rapid and an-
tagonistic (anti-correlated) relationships between specific subnetworks,
including the default mode, are strongly associated with sustained at-
tention, suggesting physiological origins. In all cases, these activation
patterns are likely constrained by the underlying anatomical connec-
tivity and reflect groups of mutually connected brain regions (Avena-
Koenigsberger et al., 2018; Pope et al., 2021). A final possibility is that
events are truly stochastic and are mere biproducts of modular corre-
lated time series, where the activation of one element within a module
implies the activation of the others (Novelli and Razi, 2021). In any case,
future experimental studies — possibly invasive studies that allow for
more targeted and temporally resolved recording — should be directed
to investigate their origins.

3.4. Limitations

The conclusions of this study are limited in several ways. Notably, we
analyze fMRI data, which affords whole-brain coverage but at a spatial
resolution of millimeters and a temporal resolution of, at best tenths of a
second. Moreover, fMRI BOLD samples a slow signal slowly, and is only
indirectly related to population activity. However, many studies have
demonstrated a correspondence between BOLD fluctuations and FC es-
timated from fMRI with other modalities, including local field potentials
(Logothetis et al., 2001), intracranial EEG (Betzel et al., 2019), and op-
tically recorded calcium imaging signals (Lake et al., 2020), positing a
neural basis for functional connectivity estimated from the fMRI BOLD
signal. Future studies could apply methods similar to those used here to
other imaging modalities.

A second limitation concerns data quality, in-scanner motion, and
other artifacts, which are known to impact estimates of FC and can
produce burst-like behavior in fMRI time series (Power et al., 2018;
Lynch et al., 2020). Here, we adopted a conservative approach and dis-
carded putative events that occurred near censored frames. Notably, this
procedure impacted low-amplitude frames to a greater extent than high-
amplitude frames, suggesting that high-amplitude frames, in addition
to contributing disproportionately to FC, are also less likely to be con-
taminated by artifacts. Nonetheless, how to adequately address motion-
related issues in the analysis of FC remains an ongoing and disputed
topic (Glasser et al., 2018, 2019; Power et al., 2019).

A final limitation concerns the use of PCA to extract “modes” of ac-
tivity underlying communities. While we find that each community’s
first component explains ~25% variance, we do not investigate the re-
maining components, which likely include other meaningful modes of
activity. Future studies should further investigate the link between brain
activity and connectivity. Because edge time series is a mathematically
exact decomposition of FC into its time-varying contributions, it repre-
sents a useful framework for doing so.

4. Conclusion

In conclusion, we find that FC can be explained using a small num-
ber of high-amplitude frames. These frames can be clustered into a small
number of communities corresponding to archetypal patterns of cofluc-
tuation, broadly shared across individuals. However, these patterns un-
dergo refinement at the level of individual participants, yielding reli-
able and individualized cofluctuation patterns. Finally, we show that
participants’ FC is more accurately predicted using participant-specific
estimates of their high-amplitude cofluctuation patterns compared to
group-level estimates. Our study discloses high-amplitude, network-
wide cofluctuations as dynamical drivers of individualized FC and intro-
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duces methodology for exploring their role in cognition, development,
and disease in future studies.

5. Materials and methods
5.1. Datasets

5.1.1. Midnight scan club

The description of the Midnight Scan Club dataset acquisition,
pre-processing, and network modeling is described in detail in
(Gordon et al., 2017b). Here, we provide a high-level overview. Data
were collected from ten healthy, righthanded, young adult participants
(5 females; age: 24-34). Participants were recruited from the Wash-
ington University community. Informed consent was obtained from all
participants. The study was approved by the Washington University
School of Medicine Human Studies Committee and Institutional Review
Board. This dataset was previously reported in (Gordon et al., 2017b;
Gratton et al., 2018) and is publicly available at https://openneuro.org/
datasets/ds000224/versions/00002. Imaging for each participant was
performed on a Siemens TRIO 3T MRI scanner over the course of 12
sessions conducted on separate days, each beginning at midnight. In to-
tal, four T1weighted images, four T2-weighted images, and 5 hours of
resting-state BOLD fMRI were collected from each participant. For fur-
ther details regarding data acquisition parameters, see (Gordon et al.,
2017b).

High-resolution structural MRI data were averaged together, and the
average T1 images were used to generate hand-edited cortical surfaces
using Freesurfer (Dale et al., 1999). The resulting surfaces were regis-
tered into fs LR 32k surface space as described in (Glasser et al., 2013).
Separately, an average native T1to-Talaraich (Talairach, 1988) volumet-
ric atlas transform was calculated. That transform was applied to the fs
LR 32k surfaces to put them into Talaraich volumetric space.

Volumetric fMRI pre-processing included including slice-timing cor-
rection, frame-to-frame alignment to correct for motion, intensity nor-
malization to mode 1000, registration to the T2 image (which was reg-
istered to the high-resolution T1 anatomical image, which in turn had
been previously registered to the template space), and distortion cor-
rection (Gordon et al., 2017b). Registration, atlas transformation, re-
sampling to 3 mm isotropic resolution, and distortion correction were
all combined and applied in a single transformation step (Smith et al.,
2004). Subsequent steps were all completed on the atlas transformed
and resampled data.

Several connectivity-specific steps were included (see (Power et al.,
2014)): (1) demeaning and de-trending of the data, (2) nuisance regres-
sion of signals from white matter, cerebrospinal fluid, and the global
signal, (3) removal of high motion frames (with framewise displacement
(FD) > 0.2 mm; see (Gordon et al., 2017b)) and their interpolation us-
ing power-spectral matched data, and (4) bandpass filtering (0.009 Hz
to 0.08 Hz). Functional data were sampled to the cortical surface and
smoothed (Gaussian kernel, ¢ = 2.55 mm) with 2-D geodesic smoothing.

The following steps were also undertaken to reduce contributions
from nonneuronal sources (Power et al., 2014; Ciric et al., 2017). First,
motion-contaminated frames were flagged. Two participants (MSC03
and MSC10) had high-frequency artifacts in the motion estimates cal-
culated in the phase encode (anterior-posterior) direction. Motion esti-
mate time courses were filtered in this direction to retain effects occur-
ring below 0.1 Hz. Motion contaminated volumes were then identified
by frame-by-frame displacement (FD, described in (Power et al.,2012)),
calculated as the sum of absolute values of the differentials of the 3
translational motion parameters (including one filtered parameter) and
3 rotational motion parameters. Frames with FD > 0.2 mm were flagged
as motion-contaminated. Across all participants, these masks censored
28% + 18% (range: 6% — 67%) of the data; on average, participants re-
tained 5929 + 1508 volumes (range: 2733 — 7667). Note that in this
paradigm, even the worst participant retained almost two hours of data.
Nonetheless, we excluded two subjects from all analyses, both of whom
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had fewer than 50% usable frames in at least five scan sessions (MSC08
in 7/10 and MSC9 in 5/10). See Fig. S24 for a summary of usable frames
for each subject and scan.

Time courses were extracted from N = 333 cortical regions using a
common (group) functional parcellation (Gordon et al., 2016). We also
analyze time courses estimated from using individualized parcellations
(see (Gordon et al., 2017a) for details). Both group and individualized
time series were used for FC estimation and edge time series generation.

5.1.2. MyConnectome dataset

All data and cortical surface files are freely available and were
obtained from the MyConnectome Project’s data-sharing webpage
(http://myconnectome.org/wp/data-sharing/). Specifically, we studied
pre-processed parcel fMRI time series for scan sessions 14-104. De-
tails of the pre-processing procedure have been described elsewhere
(Laumann et al., 2015; Poldrack et al., 2015). Each session consisted
of 518 time points during which the average fMRI BOLD signal was
measured for N = 630 parcels or regions of interest (ROIs). With a TR
of 1.16 s, the analyzed segment of each session was approximately 10
minutes long.

5.1.3. Functional connectivity

Functional connectivity (FC) measures the statistical dependence
between the activity of distinct neural elements. In the modeling of
macroscale brain networks with fMRI data, this usually means comput-
ing the Pearson correlation of brain regions’ activity time series. To cal-
culate FC for regions i and j, then, we first standardize their time series
and represent them as z-scores. We denote the z-scored time series of
region i as z; = [z;(1), ..., z;(T)], where T is the number of samples. The
Pearson correlation is then calculated as:

&
T 2 w0 7).
t

=1

rip =

In other words, the correlation is equal to the temporal average of
two regions’ cofluctuations.

5.1.4. Edge time series

Recently, we proposed a method for decomposing FC into its frame-
wise contributions. This is accomplished by simply omitting the averag-
ing step in computing Pearson’s correlation. This omission results in a
new time series:

(1) = z,(1) - z; ().

where the value of r;;(r)indexes the instantaneous cofluctuation between
regions i and j at time . When regions i and j both deflect from their
mean in the same direction r;; > 0, when they deflect in opposite direc-
tion, r; ; <0, and when one (or both) of their activities is near their mean
then r;; ~ 0. Importantly, the mean of this time series is exactly equal
to the FC between regions i and j, and therefore we can think of r;;(r) as
the instantaneous contribution of frame 7 to the overall FC.

If we consider the set of cofluctuation between all pairs of regions
{ij} at time ¢, we can arrange those elements into a node-by-node con-
nectivity matrix and analyze it as a network. We can also calculate the
total amplitude of cofluctuation between all node pairs as their root sum

square, RSS()= ./ ¥ r,-,-(t)z-
ij>i

5.1.5. Multiresolution consensus clustering

We used a variation of modularity maximization (Newman and
Girvan, 2004) to group cofluctuation patterns into clusters or “com-
munities”. Briefly, modularity maximization is a community detec-
tion method for partitioning relational data, e.g. networks, into non-
overlapping communities. This is accomplished by optimizing a modu-
larity quality function:

0 =Y, [y~ 7P)6(2,2,)

rs
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In this expression, .S, is the similarity of cofluctuation patterns r and
s; P, is the level of similarity expected by chance; 6(z,, z,) is the Kro-
necker delta function and is equal to 1 when the community assignments
of patterns r and s, denoted as z, and z,, are identical, and 0 otherwise.
The structural resolution parameter, y, controls the importance of S,
relative to P,, and, in effect, can be tuned to recover smaller or larger
communities.

Here, we use modularity maximization to obtain a representative set
of multiresolution communities (Jeub et al., 2018). That is, a partition
of cofluctuation patterns into communities that takes into account how
strongly coupled patterns are to one another at different scales, from
finescale partitions of patterns into many small communities to coarse
partitions of patterns into a few large communities. To do this, we sam-
ple communities at various scales by changing the value of y. Specifi-
cally, we sample 10,000 different values of y based on the distribution
of S,, values. At each value, we use a generalized version of the Lou-
vain algorithm to optimize the corresponding Q(y) (Jutla et al., 2011)
(http://netwiki.amath.unc.edu/GenLouvain/GenLouvain). This proce-
dure results in 10000 estimates of communities at a range of scales.

We transform these estimates into a probabilistic co-assignment ma-
trix, whose element T, is equal to the fraction of the 10000 partitions
in which nodes r and s were assigned to the same community. From this
matrix, we construct a new modularity:

Q) =Y [S, —rPS8(25. %) s
rs

In this expression, P, is the expected co-assignment of r and s to
the same community and can be estimated as the mean value of the ele-
ments in the empirical co-assignment matrix. z¢ and z¢ are the consensus
community assignment of patterns r and s, respectively.

Optimizing Q. tends to return partitions that are, as a group, more
similar to one another and, possibly, identical. If this is the case,
the algorithm ends and the resulting partition is accepted as the rep-
resentative consensus partition. However, if there is any variability
in the output so that the algorithm does not arrive at the same so-
lution each run,s a new co-assignment matrix is estimated and its
modularity optimized. This procedure repeats until the algorithm con-
verges. We use the same generalized version of the Louvain algorithm
to optimize the consensus modularity function and detect consensus
communities.

5.1.6. Principal component analysis of communities

The multiresolution consensus clustering procedure groups a series
of vectorized N x N high-amplitude, cofluctuation matrices into com-
munities. Each clustered cofluctuation matrix corresponds to the peak
frame in a temporally contiguous series of frames whose RSS was sig-
nificantly greater than that of a null model. While our primary aim was
to understand how these matrices contribute to time-averaged FC, we
were also interested in characterizing what types of activity, i.e. N x 1
patterns of fMRI BOLD data, give rise to high-amplitude cofluctuations.

Naively, one could address this question by identifying the frames
corresponding to peak co-fluctuations and average over their corre-
sponding activity patterns. This approach, however, can yield mislead-
ing results. This is because every co-fluctuation matrix can be generated
by two different patterns of activity that are identical to one another
except for their signs. To illustrate this, consider the toy case presented
below. Suppose we have a four-node network with the following co-
fluctuation matrix:

+1 41 -1 -1
+1 +1 -1 -1
€= -1 -1 41 +1
-1 -1 41 +1

The elements of this cofluctuation matrix are given by C;; = z;z;,

where z; is the z-scored activity of node i. Accordingly, this matrix could
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have been generated by either of the following patterns of activity:

+1
Lo |t
-1
-1
or
-1
-1
’_
z = +1 .
+1

The simple average of z and z’ is a vector of zeros, which is unrelated
to the co-fluctuation matrix. Averaging peak activity patterns can yield
a similarly misleading result. Fortunately, both patterns are co-linear
and satisfy the relationship z = —1 - z’. That is, these patterns can be de-
scribed by a single “mode” of activity, which we can detect by applying
principal components analysis (PCA) to the activity patterns directly.

With this in mind, our strategy for characterizing the patterns of ac-
tivity underpinning high-amplitude cofluctuations was as follows. For
each of the cofluctuation matrices assigned to community 1, 2, and 3,
we identified the scan and frame number in which they originated. Sep-
arately for each community, we aggregated the corresponding patterns
of activity into matrices with dimensions of N' X N . Here, N, is
the number of high-amplitude frames assigned to a given community.
Then, we applied PCA to these matrices, yielding a series of orthogo-
nal components of dimension N x land the variance explained by each
component. Note that these components are used mostly for visualiza-
tion and to better understand the link between cofluctuation matrices
and brain activity. In the main text, we also describe a second approach
for uncovering the dominant mode of activity underpinning the cen-
troids of communities. Each centroid represents the average over many
cofluctuation matrices. To discover the optimal mode of activity, we
aimed to determine the elements of z = [z,, ..., zy] that minimized the
following cost function:

P = Z (C,-j - z/-zj)z.
ij

To optimize P, we used a greedy algorithm which we repeated 100
times. Briefly, we initialized the algorithm with a z € R¥*1 vector whose
elements were drawn independently from N'(0,1) and calculated the
corresponding cost of P. Then we randomly selected a node, i, replaced
its current value with another value randomly drawn from the same dis-
tribution. We denote the resulting vector as z’ and its costas P'.If P’ < P
then we retained z’. We repeated this procedure 25000 times, gradually
reducing P. In practice, we found that the algorithm converged to highly
similar solutions (mean similarity across 100 runs of r = 0.993.

5.1.7. Predictive model of FC

In the main text we described a procedure for modeling FC in terms
of cofluctuation community centroids. In this section, we provide more
details of how the model works. In our previous work (Esfahlani et al.,
2020), we claimed that FC is driven by high-amplitude frames. One way
to test whether this is the case is to “zero out” all low-amplitude and non-
significant frames and to compute FC as the sum of whatever cofluctu-
ation patterns are expressed at high-amplitude frames. Here, we take
this claim one step further and state that the cofluctuation patterns ex-
pressed during high-amplitude frames are recurrences of one of three
template patterns, which we obtained from the community detection
analysis.

This intuition can be formalized by the following model:

FCsubject,scan = flcl + f2C2 + f3C3 + fOO

In this expression, f;, f,, and f; are the fractions of all low-motion
frames in which a participant expresses communities 1, 2, and 3, respec-
tively. The parameter f, is the fraction of frames in which a participant
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is in a low-amplitude or non-significant state. The values of these param-
eters come from the results of the multiresolution consensus clustering
analysis. The other parameters ¢, c,, and c; represent the average pat-
tern of cofluctuation for of the three communities. The final parameter,
0 is a node-by-node matrix where all elements are zero.

The first two models make predictions of FC using subject-specific
estimates of centroids and frequency estimates made at the subject and
group-level (models 1 and 2). Similarly, the next two models pair group-
level estimates of centroids with subject and group-level estimates of fre-
quencies (models 3 and 4). Finally, we test a fifth model that makes pre-
dictions of subject s’s FC using subject-specific centroids and frequencies
estimated for the remaining seven subjects. For this model, we retain the
best fit of the seven.

Note that when predicting FC for a given scan, both subject and
group-level centroids and frequencies are estimated while excluding ob-
servations from that scan. Note also that frequency is estimated as the to-
tal number of frames associated with a given community. To obtain this
number, we first map the community assignments of event cofluctuation
patterns back to the segment they originated (a temporally contiguous
set of frames whose amplitude is significantly greater than that of the
null model). We then assign the same community label to all frames
that make up that segment. Finally, we calculate the frequency of each
community as the total number of frames assigned to that community
divided by the total possible number of frames.

In general, the model can generate matrices that are not posi-
tive semidefinite (all positive eigenvalues) and therefore not possible
correlation matrices. Accordingly, we transform each matrix (transla-
tion/rotation/scaling) to match the nearest admissible matrix by mini-
mizing the Frobenius norm using the MATLAB function nearcorr .m.
In all cases, we measure model fitness as the correlation of upper trian-
gle elements in the true FC with those of the predicted FC matrix.

Data and code availability

Midnight Scan Club raw data and derivatives are available here:
https://openfmri.org/dataset/ds000224/ and in processed, parcellated
form here https://www.dropbox.com/sh/tb694nmpu2lbpnc/AABKU
Mew7h-yjtAC40bzG VaKa?dl=0. Processed and parcellated MyCon-
nectome data is available here: http://myconnectome.org/wp/data-
sharing/. Code for calculating edge time series, detecting events, clus-
tering events, and predicting FC from event clusters is available here:
https://github.com/brain-networks/event det ection.
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