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a b s t r a c t 

Resting-state functional connectivity is typically modeled as the correlation structure of whole-brain regional activity. It is studied widely, both to gain insight 

into the brain’s intrinsic organization but also to develop markers sensitive to changes in an individual’s cognitive, clinical, and developmental state. Despite this, 

the origins and drivers of functional connectivity, especially at the level of densely sampled individuals, remain elusive. Here, we leverage novel methodology to 

decompose functional connectivity into its precise framewise contributions. Using two dense sampling datasets, we investigate the origins of individualized functional 

connectivity, focusing specifically on the role of brain network “events ” – short-lived and peaked patterns of high-amplitude cofluctuations. Here, we develop a 

statistical test to identify events in empirical recordings. We show that the patterns of cofluctuation expressed during events are repeated across multiple scans of 

the same individual and represent idiosyncratic variants of template patterns that are expressed at the group level. Lastly, we propose a simple model of functional 

connectivity based on event cofluctuations, demonstrating that group-averaged cofluctuations are suboptimal for explaining participant-specific connectivity. Our 

work complements recent studies implicating brief instants of high-amplitude cofluctuations as the primary drivers of static, whole-brain functional connectivity. 

Our work also extends those studies, demonstrating that cofluctuations during events are individualized, positing a dynamic basis for functional connectivity. 
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. Introduction 

Functional connectivity (FC) measures the temporal correlation of

egional BOLD activity, often in the absence of explicit task instruc-

ions, i.e. in the “resting state ” ( Friston, 1994 ; Rogers et al., 2007 ). Al-

hough usually estimated over an extended period of time and using all

vailable data, a growing number of studies have shown that FC can

e well approximated using relatively few observations, suggesting that

C may be driven by a temporally sparse process ( Tagliazucchi et al.,

012 ; Allan et al., 2015 ; Tagliazucchi et al., 2016 ; Petridou et al., 2013 ;

ifre et al., 2020 ). 

In parallel, a growing body of work has demonstrated that, like

ngerprints, FC is unique to each individual and expresses features

hat reliably distinguish one brain from another ( Finn et al., 2015 ;

emeter et al., 2020 ; Laumann et al., 2015 ; Gordon et al., 2017b ;

ratton et al., 2018 ). These observations hold tremendous transla-

ional promise, and open up the possibility of designing personalized

nterventions ( Gratton et al., 2019 ) and developing increasingly potent

onnectivity-based biomarkers for cognition, development, and disease

osenberg et al., 2016 ; Chan et al., 2014 ; Lynall et al., 2010 ). 

However, there remains a key open question: how does FC become

ndividualized in the first place? One possibility is that, like FC it-

elf, personalized information is encoded through time-varying con-
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ectivity patterns and distributed dynamically and sparsely through-

ut a scan session. Indeed, recent findings broadly support this hy-

othesis ( Liu et al., 2018 ; Fong et al., 2019 ). In ( Esfahlani et al.,

020 ), for instance, we demonstrated that using a small subset of

rames classified as “events ” – brief and infrequent periods of high-

mplitude cofluctuation – we could produce accurate reconstructions

f FC while simultaneously rendering participants identifiable, am-

lifying their connectional fingerprints. In contrast, low-amplitude

rames yielded poorer estimates of FC and contained little personalized

nformation. 

Although these observations support the hypothesis that personal-

zed information is expressed selectively during high-amplitude frames,

hey also raise additional theoretical questions ( Fig. 1 ). For instance, do

ofluctuation patterns during events repeat from one scan to another

 Fig. 1 b)? If so, do they reflect a single repeating pattern or a repertoire

f different patterns? Are these patterns shared across individuals but

xpressed in different proportions, thereby giving rise to individualized

C ( Fig. 1 c)? Or does the individualization of FC arise from equally id-

osyncratic patterns of high-amplitude cofluctuations ( Fig. 1 d)? Address-

ng these questions is critical for linking patterns of brain connectivity

ith individual differences in behavior ( Dubois and Adolphs, 2016 ), and

ould help clarify the role of brain dynamics in shaping the individ-

alization of FC ( Chen et al., 2015 ), complementing other approaches
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Fig. 1. Competing hypotheses for how co-fluctuations contribute to the individualization of FC. (a) Edge time series decompose FC into its framewise con- 

tributions. (b) FC can be well-approximated from co-fluctuations expressed during high-amplitude “events ”. Recurrences of event co-fluctuation patterns can be 

grouped into clusters or “states ”. FC can then be approximated from state centroids and the relative frequency with which each state is visited. Why does FC differ 

between individuals? (c) One hypothesis (H1) is that the same states are shared across individuals and inter-individual differences are driven by differences in the 

frequency with which those shared states are visited. (d) Another hypothesis (H2) is that the states, themselves, are subject-specific. In this case, inter-individual 

differences in FC are driven by differences in the state centroids across subjects. (e) To adjudicate between these hypotheses, we can try to approximate FC matrices 

with centroids estimated from that same subject’s data (different scans) or from group-averaged data. 
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hat have focused on the collective influence of cortical expansion rates,

ost-natal experience, and genetics ( Mueller et al., 2013 ). 

Here, we address these questions directly. Our approach leverages a

ecently-proposed method for decomposing FC into its framewise con-

ributions, detecting events, and assessing the impact of events on time-

veraged FC ( Esfahlani et al., 2020 ; Faskowitz et al., 2020 ; Jo et al.,

020a ,; Sporns et al., 2020 ; Greenwell et al., 2021 ; Esfahlani et al.,

021 ; Liu et al., 2021 ; Pope et al., 2021 ). We apply this frame-

ork to two independently acquired datasets: the Midnight Scan Club

 Gordon et al., 2017b ; Gratton et al., 2018 ) and the MyConnectome

roject ( Laumann et al., 2015 ; Poldrack et al., 2015 ). In agreement with

ur previous studies, we show that FC is accurately reconstructed from

vent data alone. Next, we focus on the properties of individual events,

evealing that they repeat within and between scans of the same indi-

idual. We also show that event cofluctuations can be clustered across

articipants, revealing broad archetypes that are subtly yet systemati-

ally modified at the level of individuals. Finally, we construct a simple

odel of FC, demonstrating that FC can be predicted with a high level

f accuracy using individualized event data, exclusively. 

. Results 

.1. Edge time series as a mathematically precise link between brain 

ynamics and FC 

In this paper, we analyze data from eight participants in the Midnight

can Club, each scanned ten times (participants MSC08 and MSC09 were
2 
ropped due to data quality issues). We analyzed two versions of these

ata; one in which participants’ brains were parcellated into 𝑁 = 333
roup-level parcels ( Gordon et al., 2016 ) and another in which parcels

ere defined on an individual basis, resulting in a different set parcels

or each participant ( 𝑁 = 612 ± 28 ) ( Wig et al., 2014 ). The primary
nalyses were carried out using the group-level parcels. We also ana-

yzed data from the MyConnectome project, a study in which a single in-

ividual was scanned > 100 times ( Laumann et al., 2015 ; Poldrack et al.,

015 ). 

For each dataset, we transformed regional fMRI BOLD time series

nto cofluctuation or edge time series (ETS). Briefly, ETS are calculated

s the element-wise product between pairs of z-scored regional (nodal)

ime series ( Fig. 2 a; see Materials and Methods for details). This opera-

ion results in a new time series – one for every node pair (edge) – whose

lements index the direction and magnitude of instantaneous cofluctu-

tions between the corresponding pair of brain regions. For instance,

f the activity of region 𝑖 and 𝑗 deflect above (or below) their time-

veraged means at the same instant, the value of the edge time series

ill be positive. On the other hand, if they deflect in opposite directions,

hen the edge time series returns a negative value. If one deflects and the

ther does not, then the value will be close to zero. The temporal mean of

n edge time series is equal to the Pearson sample correlation coefficient,

nd therefore ETS is an exact decomposition of FC into its framewise

ontributions. 

If we calculate edge time series for all pairs of regions, we obtain

n 𝑒𝑑𝑔𝑒 × 𝑡𝑖𝑚𝑒 matrix ( Fig. 2 b) whose temporal average yields a vec-

or ( Fig. 2 c) that, when reshaped into the upper triangle elements of a
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Fig. 2. Edge time series. (a) An edge time series is constructed for pairs of brain regions, 𝑖 and 𝑗, by computing the elementwise product of their z-scored activities, 

𝑧 𝑖 and 𝑧 𝑗 , respectively. The result is a new time series, 𝑧 𝑖𝑗 , which indexes the framewise cofluctuations between 𝑖 and 𝑗. (b) This procedure can be repeated for all 

pairs of regions, generating a matrix of edge time series. At each instant in time, a “slice ” through this matrix yields a region-by-region cofluctuation matrix that 

can be modeled as a network. (c) At every moment in time we can calculate the root sum of squares (RSS) over all edge time series. The RSS time series is bursty, 

such that it takes on low values most of the time, but is punctuated by short, intermittent, high-amplitude bursts. (d) The temporal average over all edge time series 

yields a vector that corresponds to the upper triangle elements of a correlation matrix, i.e. functional connectivity (e). In this way, edge time series offer a means of 

tracking moment-to- moment fluctuations in network topology and links them to functional connectivity through an exact decomposition. In f we show examples of 

cofluctuations during a trough and peak (when RSS is small versus large). 
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𝑜𝑑𝑒 × 𝑛𝑜𝑑𝑒 matrix, is exactly the FC matrix ( Fig. 2 d). The 𝑒𝑑𝑔𝑒 × 𝑡𝑖𝑚𝑒

atrix can also be “sliced ” temporally and the corresponding vector

nce again reshaped into the upper triangle elements of a 𝑛𝑜𝑑𝑒 × 𝑛𝑜𝑑𝑒

atrix, yielding an instantaneous estimate of whole-brain cofluctua-

ions. These matrices vary in terms of their mean cofluctuations, which

e summarize with a root sum of squares measure ( Fig. 2 e). 

In our previous study, we showed that RSS values followed a heavy-

ailed distribution, such that a small number of frames exhibited excep-

ionally high-amplitude RSS ( Esfahlani et al., 2020 ). We also demon-

trated that FC reconstructed using only these high-amplitude frames

ccurately recapitulated time-averaged FC, suggesting that FC weights

re not driven equally by all frames, but by a select set of frames. We also

emonstrated that these high-amplitude frames were underpinned by a

rincipal mode of brain activity, emphasizing oppositional activation of

efault mode and control networks with sensorimotor and attentional

etworks. In this paper, however, high-amplitude frames were selected

euristically as the top 𝑃 % by RSS value and, beyond the first mode of

ctivity, we did not investigate other activity patterns that occur during

vents. 

.2. A statistical test for high-amplitude cofluctuation events 

In previous work, we identified putative cofluctuation events as the

op P% frames in terms of root sum squared (RSS) amplitude of cofluctu-

tion weights. Although this heuristic is pragmatic – it is easy to imple-

ent and interpret – it has some unwanted characteristics. Notably, the

arameter 𝑃 % lacks statistical justification and, due to slow temporal

uctuations and serial correlations in the fMRI BOLD signal, can result

n event samples that disproportionately represent only a small number

f RSS peaks. Here, we present a simple statistical test to identify events

hat addresses both of these issues. 

In essence, we identify high-amplitude frames by comparing the RSS

ime series estimated using real data with an ensemble of RSS time series

enerated under a null model. Here, as a null model we apply the circu-

ar shift operator independently, randomly, and bidirectionally to each

egion’s time series, which exactly preserves its mean and variance (and

ts autocorrelation approximately). We then transform the shifted data

nto edge time series and estimate their RSS. This step is repeated 100

imes yielding 100 sets of surrogate RSS time series, against which we

ompare the observed RSS data and identify sequences of frames whose

SS exceeds the null distribution (non-parametric permutation test at
3 
ach frame; accepted false discovery rate fixed at 𝑞 = 0 . 05 ; Fig. 3 a).
his entire procedure is repeated for every participant and every

can. 

This procedure allows us to segment the time series into three cate-

ories: contiguous frames whose RSS is greater than expected, less than

xpected, or consistent with that of the null distribution. Rather than

onsider all frames, we select representative frames from each block for

ubsequent analysis. For segments whose RSS is greater than that of the

ull distribution or not significant, we extract peak cofluctuation pattern

orresponding to the maximum RSS frame; for segments whose RSS is

ess than that of the null, we extract the pattern corresponding to the

inimum RSS frame (trough). 

To demonstrate that these categories of frames capture distinct fea-

ures of cofluctuations, we compare them along several different dimen-

ions (ANOVA; for all comparisons 𝑝 < 10 −15 ). First, we show that, as

xpected, high-amplitude frames express greater RSS values than low-

mplitude and non-significant frames ( Fig. 3 b). On the other hand, the

umber of high-amplitude frames in a scan is smaller than the number

f low-amplitude frames ( Fig. 3 c). Additionally, high-amplitude frames

orm fewer contiguous segments than low-amplitude frames ( Fig. 3 d),

nd, when they do, those segments tend to be of shorter duration then

ontiguous segments of low-amplitude frames ( Fig. 3 e). Consistent with

ur previous study, reconstructing FC using only high-amplitude frames

esults in a pattern of FC strongly correlated with the FC estimated us-

ng all frames, and greater in magnitude than that of the non-significant

nd low-amplitude frames ( Fig. 3 f). We note, however, that here the gap

n correlation between the high- and low-amplitude is narrower than in

revious studies ( Esfahlani et al., 2020 ). This is due to differences in the

otal number of frames used to reconstruct FC and how those frames

ere selected. In fact, when controlling for the number of frames, we

nd that the gap widens (see Fig. S1). This relationship holds over a

ange of sample sizes, from 20 to 260 frames. Lastly, we find that high-

mplitude frames are almost never among those censored for excessive

n-scanner motion ( Fig. 3 g); low-amplitude frames, on the other hand,

ere more likely to be associated with censored frames, but were also

ore variable, a result that can be attributed, at least in part, to stable

nter-individual differences in motion ( Bolton et al., 2020 ; Zeng et al.,

014 ) (Fig. S2). This observation is consistent with our previous study,

n which we reported a weak but consistent negative correlation be-

ween RSS and framewise displacement ( Esfahlani et al., 2020 ). These

ndings, in general, replicate using individualized parcels for partici-
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Fig. 3. A statistical test for network-wide events. (a) We generated edge time series and computed the RSS time series. We compared this time series to a null RSS 

time series estimated from edge time series that had been generated after circularly shifting the original fMRI BOLD time series. At each point in time, we calculated 

the probability that the observed RSS value exceeded the null distribution, controlled for multiple comparisons, and identified sequences of frames that exceeded 

the null distribution. This allowed us to categorize time points into three classes: those whose RSS was greater than null (GT), those whose RSS was significantly less 

than the null (LT), and those that were in between (n.s.). For subsequent analysis, we extracted a single representative cofluctuation pattern for every contiguous 

sequence of frames that was greater/less than the null distribution. This pattern corresponded to the frame with the maximum/minimum RSS. In panels b-g, we 

separate the frames of each scan into these three classes and compare their features to one another. Each point represents the mean value over all frames assigned 

to a given class. The features that are compared are: b mean RSS, c, the number of frames assigned to a given class, d the number of contiguous sequences of each 

class, e the mean duration of sequences (log10 transformed), f the similarity of time-average FC with FC reconstructed using only frames assigned to each class, and 

g the fraction of frames censored for high levels of in-scanner motion. 
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ants in the Midnight Scan Club (Fig. S3) and with MyConnectome data

Fig. S4). 

Taken together, these results suggest that the proposed statistical test

egments frames into classes with distinct features. This test addresses

wo concerns associated with previous estimates of high-amplitude

event ” frames. First, it defines high-amplitude frames according to a

tatistical criterion, rather than heuristically. Second, by extracting rep-

esentative frames from each contiguous segment, we obtain a more het-

rogeneous sample of high-amplitude frames and avoid selecting multi-

le frames from around a single peak. 

.3. Peak cofluctuation patterns are repeated across scan sessions – troughs

re not 

In the previous section we presented a simple method for estimating

tatistically significant cofluctuation events and demonstrated that the

eak and trough frames of these segments exhibit distinct spatiotem-

oral properties. Here, we investigate representative cofluctuation pat-

erns extracted from blocks of high- and low-amplitude frames. We

rst compare the similarity of these cofluctuation patterns, first within-

ndividuals and later between. Then, we present evidence that cofluc-

uation patterns expressed during the peaks of high-amplitude events

ecur across scans of the same individual and that these patterns exhibit

ubject-specificity. 

First, we applied the statistical test to MSC scans (excluding MSC08

nd MSC09 due to data quality issues; see Materials and Methods

or more details). We found that each scan included 65 . 9 ± 9 . 2 and
2 . 2 ± 17 . 1 highand low-amplitude segments, respectively (paired sam-
le t-test; 𝑝 = 0 . 0017 ; 𝑡 ( 79 ) = 3 . 24 ). After additional quality control in
hich we excluded segments that included any motion-censored frames,

he number of segments whose RSS was significantly greater than the

ull changed little ( 61 . 26 ± 14 . 7 ). However, the number of segments with
ower-than-expected RSS was reduced dramatically ( 52 . 5 ± 23 . 9 ), reflect-
ng the fact that those frames often coincide with periods of excessive

n-scanner motion. 
4 
Next, we calculated the spatial similarity of motion-free cofluctu-

tion patterns extracted during RSS peaks and troughs (periods when

he RSS was significantly greater or less than the null model; labeled

.T. and L.T. in Fig. 3 ). We performed this analysis separately for each

ubject, resulting in eight similarity (correlation) matrices. We grouped

hese values based on whether similarity was measured between two

eaks, two troughs, or a peak and trough co-fluctuation pattern. We

ound peak-peak similarity was significantly greater than trough-trough

nd peak-trough (t-test; 𝑝 < 10 −15 ) ( Fig. 4 a,b). We see an identical effect
n the MyConnectome data (Fig. S5a-c) and when parcels are individu-

lized (Fig. S5d). These observations suggest that high-amplitude events

ncode subject-specific patterns of cofluctuations. 

Based on these observations, along with the fact that high-amplitude

vents are less likely to be impacted by motion, we calculated the spatial

imilarity of peak cofluctuation patterns for all pairs of detected events,

or all scans, and for all subjects ( Fig. 4 c). We then compared these sim-

larity values based on whether they came from the same or different

articipants ( Fig. 4 d). We found that within-individual similarity ex-

eeded between-individual similarity (non-parametric permutation test,

 < 10 −15 ; Fig. 4 f). 
Collectively, these results are in line with our previous study and

uggest that low-amplitude cofluctuations contains little participant-

pecific information ( Esfahlani et al., 2020 ). Rather, our findings sup-

ort the hypothesis that high-amplitude cofluctuations contribute sig-

ificantly more information about an individual than low-amplitude

ofluctuations. 

.4. High-amplitude events can be divided into distinct communities based 

n their cofluctuation patterns 

In the previous section we found that co-fluctuation patterns ex-

ressed during peaks of high-amplitude event segments are not related

o motion and that they are repeatable across scans. This is in contrast

o co-fluctuation patterns expressed during low-amplitude segments,

hich tend to coincide with excessive in-scanner motion and are dis-
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Fig. 4. Intra-/Inter-individual similarity of cofluctuation patterns. (a) For each individual separately, we aggregated all low-motion cofluctuation patterns 

during peaks and troughs. We then computed the similarity between cofluctuation patterns (data from participant MSC06 is shown here as an example). (b) Boxplot 

showing similarity values broken down by trough versus trough, peak versus trough, and peak versus peak. Because only cofluctuation at peaks exhibited similarity 

across scans, we focused on these patterns only, discarding cofluctuation that occurs during troughs and focusing on comparisons of participants to one another. We 

found that cofluctuation at peaks tended to be more similar within participants than between. We show the raw similarity matrix in c and the averaged values in d. 

(e) Boxplot of similarity values broken down according to whether they fell within or between participants. 
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imilar across scans and individuals, even within the same scan session.

hese observations motivated us to focus on high-amplitude events in

et greater detail. In this section, we test whether the cofluctuation

atterns expressed during high-amplitude events are entirely subject-

pecific and not shared across individuals or whether they belong to a

eneral archetype that is fine-tuned to single participants. 

To test whether this is the case, we aggregated across participants

ll cofluctuation patterns that occurred during event peaks, calculated

he similarity matrix of those patterns, and clustered this matrix using a

ariant of multiresolution consensus clustering (modularity maximiza-

ion with a uniform null model ( Jeub et al., 2018 ; Jutla et al., 2011 ); see

aterials and Methods for details). The results of this analysis yielded

wo large communities (clusters) along with many very small commu-

ities. We found that every participant was represented in the two large

ommunities (labeled 1 and 2 in Fig. 5 a) and that instances of those

ommunities appeared in every scan session, accounting for 54.1% and

9.0% of all event peaks, respectively (see Fig. S6). Every participant

as also represented in the two next-largest communities, although they

ppeared infrequently across scan sessions and collectively accounted

or only 8.6% of all event peaks. Accordingly, we aggregated the smaller

ommunities to form a third larger community (labeled 3 in Fig. 5 a).

ost subsequent analyses will focus on communities 1 and 2 unless oth-

rwise noted. For completeness, we analyze community 3 in greater de-

ail in the Supplementary Material (see Fig. S7 and Fig. S8). Note that

e also repeated this clustering analysis for each participant individu-

lly and found that subject-level partitions of events were highly similar

o partitions estimated with the group-aggregated data (mean ± standard

eviation adjusted Rand index across subjects of 0 . 81 ± 0 . 10 ; 𝑝 < 10 −4 ,
ermutation test in which each subject’s community labels were ran-

omly shuffled). 

To better understand why certain cofluctuation patterns were

rouped together, we examined group-representative centroids for each

ommunity by calculating the mean cofluctuation pattern of all frames

ssigned to that community ( Fig. 5 b,c). We found that community 1

eflected a topology that expressed strong and anticorrelated cofluc-

uations mostly between cingulo-opercular and default mode networks

 Fig. 5 b). Community 2, on the other hand, expressed strong anticorrela-

ions between the default mode with dorsal attention and fronto-parietal

etworks ( Fig. 5 b). See Fig. S9 for topographic depiction of systems on

ortical surface. 

We next wanted to better understand how brain activity drives the

ofluctuation patterns described above. To do this, we extracted ac-

ivity profiles (regional BOLD activity, rather than cofluctuations) dur-
5 
ng event peaks, grouped them by community, and performed principal

omponents analysis (PCA). The first principal component for each com-

unity represents the mode of fMRI BOLD activity that tended to occur

uring frames assigned to that community. We found the first principal

omponents of communities 1 and 2 (accounting for 25% and 26% of

ariance, respectively, with a sharp drop-off for increasing component

umbers, Fig. S10) to be uncorrelated ( 𝑟 = −0 . 025 ; 𝑝 = 0 . 65 ; Fig. 5 d).
he first principal component for community 1 ( Fig. 5 e) exhibited sig-

ificant activation of the default mode and inactivation of cingulo-

percular, visual, and somatomotor networks (distance-preserving per-

utation test of node order, i.e. spin test ( Alexander-Bloch et al., 2018 ;

arkello and Misic, 2021 ; Váš a et al., 2018 ); false discovery rate fixed at

%; 𝑝 𝑎𝑑𝑗 = 5 . 3 × 10 −4 ; Fig. 5 f). The first principal component for com-
unity 2 ( Fig. 5 h) exhibited significant activation of dorsal attention

nd fronto-parietal networks and inactivation of default mode, ventral

ttention, and visual networks (spin test; false discovery rate fixed at

%; 𝑝 𝑎𝑑𝑗 = 0 . 02 ; Fig. 5 f). We show individual-level principal components

n the Supplementary Material (Fig. S11) and derive similar modes of

ctivity using an alternative procedure (Fig. S12). Note that the PCA

nalysis results in modes of activity; in all cases, the sign of PCs can be

ipped and result in the same pattern of co-activity. 

In the Supplementary Material we perform a similar analysis of

idnight Scan Club data parcels fit to each participant individually.

e show that the first principal component of brain activity during

igh-amplitude co-fluctuations is similar irrespective of whether we use

roup-level or individualized parcels (Fig. S13). Even when we perform

vent detection separately using the individualized parcels, we find sim-

lar modes of activity (mean similarity of 𝑟 = 0 . 89 ; 𝑝 < 10 −11 ; Fig. S14).
ote that because the number of parcels differ across individuals, this

omparison was carried out at a system level. 

Again, we use MyConnectome data as a replication dataset, finding

nalogous communities (Fig. S15). We also take advantage of the fact

hat MyConnectome data includes many more samples from an individ-

al than the Midnight Scan Club (84 scans versus 10), to identify several

ommunities not evident in the group analysis of the Might Scan Club

ata. We also find evidence of interdigitated communities with similar

ystem-level profiles but drawing on different regions from within those

ystems (Fig. S16). 

These observations build on our previous study, which focused on a

ingle pattern of cofluctuation during high-amplitude frames. Here, we

se data-driven methods to show that high-amplitude cofluctuation is

ot monolithic and can be divided into meaningful sub-patterns, each

riven by a distinct mode of brain activity. 
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Fig. 5. Clustering peak cofluctuation. (a) We clustered the cofluctuation similarity matrix using a multi-scale consensus clustering algorithm, resulting in two 

large communities (1 and 2) and a third set of much smaller communities, grouped together here to form community 3. Here, black lines divide communities from 

one another and, internally, participants from one another. The mean cofluctuation pattern for communities 1 and 2 are shown in b and c. To understand activity that 

underpins each community, we pooled together corresponding activity time series separately for communities 1 and 2 and performed principal component analysis 

on each set, returning the primary mode of activity (PC1). (d) Scatterplot of PC1 for community 1 and community 2. Colors denote brain systems. (e) Topographic 

depiction of PC1 for community 1. (f) PC1 grouped according to brain system. Asterisks indicate 𝑝 < 𝑝 𝑎𝑑𝑗 (FDR fixed at 𝑞 = 0 . 05 ). Panels g and h show corresponding 

plots for community 2. Analogous information about community 3 can be found in Fig. S7. 
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.5. Event communities are individualized 

In the previous section, we showed that cofluctuation patterns ex-

ressed at the peaks of high-amplitude events could be grouped into

eaningful communities. Within each community, are these patterns

ndividualized or are they shared across participants? Which node pairs

re most variable between individuals and, therefore, more likely to be

seful for subject fingerprinting and identifiability? 

To address this question, we analyzed communities 1 and 2 sepa-

ately and in greater detail. Although collectively each community is

ohesive (similarity is greater among cofluctuation patterns assigned

o the same community than to other communities; see Fig. S17 and

ig. S18), we also found evidence that the similarity between cofluctua-

ion patterns is stronger still when they come from the same participant

t-test comparing within- and between-individual similarity; 𝑝 < 10 −15 ;
ig. 6 a-d). Further, we identified the pairs of brain regions whose cofluc-

uations were most variable across individuals by computing the stan-

ard deviation of edge weights across participant centroids ( Fig. 6 e-f).

ur rationale for doing so was that pairs of regions whose cofluctuation

mplitude was variable are also among those most likely to drive indi-

idualization (Amico and Goñi, 2018) . For the cofluctuation pattern ex-

ressed by community 1, we found that the most variable edges linked

he cingulo-opercular network to the dorsal attention, fronto-parietal,

nd ventral attention networks ( Fig. 6 e). In the case of community 2,

he most variable edges were linked to default mode, dorsal attention,

nd fronto-parietal. 

Note that in Fig. S19 and Fig. S20, we further explored the individu-

lization of high-amplitude cofluctuation patterns. Briefly, we followed

 Seitzman et al., 2019 ) and computed the similarity (correlation) of re-

ional cofluctuation patterns estimated at the group and subject levels

or both communities 1 and 2 (Fig. S19a,b). This procedure yielded a

imilarity map for each subject and community (Fig. S19c-f), which we

nalyzed further. Specifically, we calculated the mean similarity of re-

ions in each putative brain system ( Gordon et al., 2016 ) and demon-
6 
trated that, for community 1 regions in the ventral attention system was

ore dissimilar from the group than expected (space-preserving permu-

ation test, 10000 repetitions, 𝑝 < 10 −4 ; Fig. S19f). For community 2,
egions in the somatomotor-hand system, along with those that lack a

lear system assignment, were more dissimilar. Interestingly, regions in

he default mode and cingulo-opercular systems (community 1) and de-

ault mode, fronto-parietal, and dorsal attention systems (community

) were more similar than expected. These systems all participated in

he strongest co-fluctuations and largely typified each cluster. Finally,

e investigate whether subject deviations from the group are evident

n individual scan sessions. To test this, we repeated the above proce-

ure but using scan-resolved estimates of communities (see Fig. S20 for

n example from MSC06 and community 1). In general, we fourd that

imilarity maps for any given subject were highly repeatable across scan

essions and dissimilar between individuals (t-test of mean within- and

etween-subject similarity; 𝑝 < 10 −15 ; Fig. S19g). 
These observations suggest that high-amplitude cofluctuation pat-

erns reflect a topology that is broadly shared across individuals but is

ystematically and individually refined. We note, however, that the ori-

ins of this individualization is likely multi-factorial and that true differ-

nces in co-fluctuation patterns likely depend on idiosyncratic anatom-

cal differences as well as choice of parcellation ( Bijsterbosch et al.,

020 ). 

.6. Functional connectivity is modeled accurately only when using 

ndividual-specific co-fluctuation patterns 

Previous studies have shown that time-averaged FC is individualized

nd can serve as a fingerprint of an individual ( Gratton et al., 2018 ;

ordon et al., 2017a ; Finn et al., 2015 ). Here and in ( Esfahlani et al.,

020 ), we showed that time-averaged FC can also be approximated us-

ng only a small number of high-amplitude frames (events) and that the

ofluctuation patterns expressed during those events can be grouped

nto a small number of clusters or communities. How do these dif-
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Fig. 6. Personalization of cofluctuation patterns. We separately extracted cofluctuation patterns for communities 1 and 2 and computed the pairwise similarity. 

Similarity matrices are shown in panels a and c. In both cases, we found that within-individual similarity was statistically greater than between-individual similarity. 

Boxplots of similarity scores are depicted in panels b and d. Asterisks indicate 𝑝 < 𝑝 𝑎𝑑𝑗 based on permutation test (FDR fixed at 𝑞 = 0 . 05 ). For each community, we 
calculated mean cofluctuation patterns for each participant and, across participants, computed the standard deviation of each node-pairs cofluctuation magnitude. 

The patterns of variability for communities 1, 2, and 3 are depicted in panels e, f, and g, respectively. 
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erent communities produce individualized patterns of FC? Are the

ofluctuation patterns fixed at the group level but expressed in dif-

erent proportions from one individual to the next? Or are the pro-

ortions fixed while the cofluctuation patterns vary idiosyncratically?

ere, we present a model to adjudicate between these and related

ypotheses. 

Motivated by previous studies showing that FC can be described

sing only high-amplitude frames ( Tagliazucchi et al., 2012 ; Petridou

t al., 2013 ; Allan et al., 2015 ; Cifre et al., 2020 ; Esfahlani et al.,

020 ), our model assumes that FC depends exclusively on the cofluc-

uation patterns expressed during events and that low and middle-

mplitude frames make no contribution ( Fig. 7 a). Specifically, we

odel static FC as a linear combination of the centroids for commu-

ities 1, 2, and 3, weighted by how frequently those communities ap-

ear in the data. To fit this model, we must estimate centroids and

requencies. 

These estimates can be carried out separately for each subject, yield-

ng subject-specific centroids and frequencies. However, estimates can

lso be made at the group level, yielding a set of centroids and frequen-

ies that are shared across individuals. In both cases, we define model

t as the correlation of edge weights in the observed and predicted FC

atrices. 

Here, we test five model variants that combine subject and group-

evel information in different configurations. The first two models make

redictions of FC using subject-specific estimates of centroids and fre-

uency estimates made at either the subject (model 1) or group level

model 2). Similarly, the next two models pair group-level estimates

f centroids with either subject or group level estimates of frequen-

ies (models 3 and 4). Finally, we test a fifth model that makes predic-

ions of subject s’s FC using subject-specific centroids and frequencies

stimated for the remaining seven subjects (different from the subject

hose FC we are trying to predict), yielding seven independent predic-
7 
ions. We define this model’s fitness as the best prediction out of the

even. 

Importantly, these models allow us to directly test the compet-

ng hypotheses that individualized FC is driven by subject-specific co-

uctuation patterns or subject-specific frequencies (labeled 𝐻 1 and 𝐻 2 
n Fig. 1 ). Here, we found that model performance under H1 was signif-

cantly greater than performance for H2 ( 𝑟 𝐻 1 
= 0 . 85 ± 0 . 06 , 𝑟 𝐻 1 

= 0 . 70 ±
 . 05 ; paired sample t-test, 𝑝 < 10 −15 ). Additionally, combining subject-
pecific centroids and frequencies yielded a small but statistically sig-

ificant improvement in performance, largely by reducing the num-

er of outlying points ( 𝑟 = 0 . 85 ± 0 . 05 ; paired sample t-test, 𝑝 = 0 . 02 ).
ollectively, these findings suggest that the subject-specificity of high-

mplitude cofluctuation patterns drive the organization of static FC. Fi-

ally, we perform a sensitivity analysis to identify which of the three

ommunities drive these effects. For all models, we find that model per-

ormance suffers the most by removing community 1, which alone ac-

ounts for 54.1% of all events ( Fig. 7 d). 

Additionally, we replicated these findings using: MSC data processed

sing an alternative processing pipeline and parcellation ( Esteban et al.,

019 ; fer et al., 2018) (Fig. S21), at different spatial scales (100-node

arcellation) ( Schaefer et al., 2018 ) (Fig. S22), and without including

lobal signal regression in the processing pipeline (Fig. S23). One no-

able discrepancy, however, was that in the absence of global signal

egression, high-amplitude co-fluctuation patterns did not exhibit anti-

orrelations. Rather, we find that putative “events ” are driven by cohe-

ive fluctuations of regional activity in the same direction, i.e. activity

eflects positively or negatively but typically not both. This is in line

ith previous observations concerning the effect of the global signal on

C ( Fox et al., 2009 ; Chai et al., 2012 ; Saad et al., 2012 ). In fact, we find

hat the groups of brain regions that had previously engaged in anticor-

elated behavior now formed their own distinct community, yielding

our communities instead of two (along with a much smaller fifth com-
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Fig. 7. Modeling participant and scan-specific FC with cofluctuation patterns. (a) We hypothesized that FC is driven by brief high-amplitude patterns of 

cofluctuation. A scan session can be abstracted, then, as periods of time where cofluctuation is close to zero punctuated by periods of time where cofluctuation 

corresponds to one of the cofluctuation communities. (b) We modeled FC as a linear combination of cofluctuation patterns corresponding to communities 1, 2, and 3 

as well as a blank state where cofluctuation was treated as zeros (low-amplitude frames). We varied whether cofluctuation patterns and the frequencies with which 

they appear are estimated at the subject or group level. We also tested a model that used subject-level estimates of centroids and frequencies from other subjects. (c) 

Performance of the five models. Overall, models that included participant-specific information about cluster centroids outperformed other models. (d) We performed 

a sensitivity analysis of model 2, which used subject-specific centroids and group-level frequencies to predict FC patterns. In this analysis, we selectively exclude 

each of the three communities from the model so that it does not contribute to the prediction. We find that removing community 1 yields the biggest decrease in 

model performance, suggesting that it drives the model performance more so than communities 2 or 3. 
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unity). As a consequence, we modeled FC as a linear combination of

ve states. 

These results suggest that the cofluctuation patterns expressed at the

eaks of high-amplitude events can, on their own, explain a significant

raction of participant-specific variance in time-averaged FC. More im-

ortantly, our results reaffirm that cofluctuation patterns during event

eaks are participant specific; even when predicting a held-out scan,

hen centroids are estimated using participant-specific data, we find

arked improvement in model performance. 

Our model generates predictions of participant- and scan-specific FC.

t works by calculating, for that scan, the fraction of time points assigned

o communities 1, 2, and 3, and uses those values to weight the centroids

f each community ( Fig. 7 b). It also counts the fraction of time during

he scan spent in a low-amplitude frame, using that value to weight

 matrix of zeros (corresponding to the hypothesis that low-amplitude

rames make a negligible contribution). 

. Discussion 

Here, we extended our recent analyses of edge time series and

utative high-amplitude cofluctuation events ( Esfahlani et al., 2020 ;

porns et al., 2020 ). We proposed a simple null model that allowed

s to identify frames whose amplitude was significantly greater or less

han chance. We then analyzed the cofluctuation patterns expressed

uring these frames, discovering that across scans of the same indi-

idual, the cofluctuation patterns expressed during frames with lower-

han-expected amplitude were dissimilar. In contrast, we found that the

ofluctuation during high-amplitude frames was repeatable within an

ndividual and dissimilar between individuals. We then clustered pat-

erns of cofluctuation expressed during high-amplitude frames, identi-

ying a small number of cofluctuation patterns that were shared across

ndividuals. These patterns, however, were altered subtly yet system-

tically, so that they could be used to reliably distinguish participants

rom one another. Finally, we tested the hypothesis that FC could be

redicted exclusively from the co-fluctuation patterns expressed during

vents, and constructed a model that generated estimates of FC given a

et of cofluctuation community centroids and the frequency that those

entroids are expressed by that individual. We found that the model per-

ormed well only when the centroids were estimated using data from the

articipants whose FC we were aiming to predict. 
8 
.1. High-amplitude cofluctuations can be partitioned into different 

ommunities based on their topology 

Intrinsic or resting-state functional connectivity reflects the coupling

f spontaneous activity between distant brain regions ( Friston, 1994 ;

orwitz, 2003 ). It is often used to construct a graphical representation of

he brain to be analyzed using tools from network science ( Bullmore and

porns, 2009 ; Rubinov and Sporns, 2010 ). Although inter-individual dif-

erences in FC have been linked to an individual’s clinical ( Lynall et al.,

010 ), cognitive ( Cohen and D’Esposito, 2016 ), and developmental state

 Chan et al., 2014 ), the dynamic origins of individualized FC remain un-

nown. 

Recently, we presented a method for decomposing FC into its

ramewise (instantaneous) contributions ( Esfahlani et al., 2020 ;

askowitz et al., 2020 ). Our work, in agreement with other recent

tudies ( Tagliazucchi et al., 2012 ; Petridou et al., 2013 ; Allan et al.,

015 ; Cifre et al., 2020 ), demonstrated that all frames do not contribute

qually to FC – rather only a small number of high-amplitude frames

“events ” – when averaged together, are necessary for explaining a

igh proportion of variance in FC. In that study, however, we only ex-

mined the mean pattern of high-amplitude cofluctuations and did not

nvestigate individual events nor did we characterize variation in the

o-fluctuation patterns across events. 

Here, we address these issues using two dense phenotyping datasets.

everaging a statistical test for identifying high-amplitude frames, we

how that “events ” are not monolithic and comprise distinct patterns of

ofluctuations. Using a data-driven clustering method, we find evidence

f two patterns of cofluctuation that are conserved across all participants

nd scans. These patterns emphasize opposed activation of default mode

egions with cingulo-opercular and sensorimotor systems (community

) and with dorsal attention and fronto-parietal systems (community

). We also find evidence of smaller communities corresponding to less

requent events involving only a fraction of participants. 

In the main text we grouped these patterns into a single community,

ut find that the two largest (accounting for 8.6% of event peaks) in-

olve cofluctuations of sensorimotor systems, which we explore in the

upplementary Material. The two largest communities have interesting

roperties. For instance, the default mode is cohesive (densely intercon-

ected, internally) in both, but is selectively decoupled from distinct sets

f brain systems associated with processing sensorimotor information
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 Biswal et al., 1995 ) and coordinating flexible, goal-directed behavior

 Dosenbach et al., 2007 ). In neither community does the default mode

ouple strongly to other systems. Rather, in these high-amplitude states

t maintains relative autonomy, in agreement with studies that have ex-

mined its “hubness ” using the participation coefficient ( Power et al.,

013 ) – a graph-theoretic measure that describes the extent to which a

ode’s connections are distributed across or concentrated within com-

unities ( Guimera and Amaral, 2005 ). 

Another interesting feature of these communities is their possible

elationship to network states obtained by clustering sliding-window

stimates of time-varying FC ( Allen et al., 2014 ) or co-activation pat-

erns (CAPs) ( Liu and Duyn, 2013 ). Indeed, these approaches all yield

stimates of repeating patterns of coactivity and connectivity suggest-

ng a deep mathematical relationship, which was disclosed recently in a

ew paper ( Novelli and Razi, 2021 ). Here, we analyze edge time se-

ies, a parameter-free method for estimating instantaneous cofluctu-

tions between regional activity (localized to individual frames) and

hose sum is precisely time-averaged FC. In contrast, sliding-window

stimates of time-varying FC require users to specify a window dura-

ion and overlap fraction (the number of frames shared by successive

stimates of FC) and, due to the sliding window, lead to temporally

lurred connectivity estimates that cannot be precisely localized in time

 Hindriks et al., 2016 ; Shakil et al., 2016 ). In fact, we speculate that brief

igh-amplitude events may be present in sliding-window estimates of

ime-varying FC, but because they evolve over timescales much shorter

han that of the typical window duration, are effectively obscured due

o blurring ( Petridou et al., 2013 ; Liu et al., 2013 ; Tagliazucchi et al.,

012 ; Cifre et al., 2020 ; Allan et al., 2015 ). CAPs, on the other hand,

hich leverages a similar procedure as ours, identifies repeated and

igh-amplitude patterns of activity rather than cofluctuation matrices

the product of instantaneous activity patterns). For this reason, CAPs

raditionally does not offer the mathematical link between cofluctua-

ions and FC that edge time series does ( Liu et al., 2013 ). Critically,

hen, because edge time series are a decomposition of FC, events can be

iewed as the “atoms ” or “building blocks ” of FC. 

Collectively, our findings suggest that cofluctuation patterns ex-

ressed during putative network-wide events are variable but can be

escribed in terms of two principal patterns. These findings extend our

revious study ( Esfahlani et al., 2020 ) and open up opportunities for fu-

ure studies to investigate interindividual differences in these patterns

s well as the smaller and less frequent patterns. 

.2. High-amplitude cofluctuation patterns are individualized and drive 

ime-averaged FC 

One of the questions we aimed to address was whether the indi-

idualization of FC occurred because: a) high-amplitude cofluctuation

atterns are shared across individuals but expressed in different subject-

pecific proportions or b) cofluctuation patterns expressed during high-

mplitude events are inherently subject-specific. The answer to this

uestion is important, as it speaks to the origins of individual differences

n FC ( Mueller et al., 2013 ; Seitzman et al., 2019 ), has implications for

rain-behavior studies ( Rosenberg et al., 2016 ), and also informs our

nderstanding of time-varying FC ( Preti et al., 2017 ). 

Here, we addressed these questions by aggregating and clustering

igh-amplitude cofluctuation patterns from across all participants. This

nalysis returned two large communities in which every participant and

can were represented, indicating that, to some extent, patterns of high-

mplitude cofluctuations are indeed shared across individuals. How-

ver, when we examined these communities in greater detail, we found

hat within communities there existed more cohesive sub-communities

orresponding to individual participants. 

To better adjudicate between hypotheses, we constructed a simple

odel to predict an individual’s scan-specific pattern of FC. Motivated

y previous studies ( Tagliazucchi et al., 2012 ; Petridou et al., 2013 ;

llan et al., 2015 ; Cifre et al., 2020 ), this model assumed that FC is
9 
riven exclusively by high-amplitude cofluctuations and that all other

ime points made negligible contributions to FC. We then replaced FC

uring high-amplitude frames with the centroid of the community to

hich those frames were assigned. We found that, when centroids were

enerated using data pooled from across all participants we could ex-

lain only ≈50% of the variance in functional connection weights. How-

ver, when we estimated centroids using data from the same participant

hose FC we were predicting, the model exhibited a significant increase

n performance, accounting for ≈75% of variance in connection weights.

These observations suggest that incorrectly ascribing group-level fea-

ures to an individual participant distorts our prediction of their FC,

avoring the hypothesis that high-amplitude cofluctuation patterns are

ndividualized. This endorsement of hypothesis b comes with some

aveats, however. Although FC is the product of individualized cofluc-

uation patterns, those patterns appear to be variants of archetypal pat-

erns, i.e. the two large communities discussed in the previous sec-

ion. These observations align with other studies showing that the in-

ividualization of FC is generally a subtle modulation of features that

re evident in group-level data, from brain systems ( Anderson et al.,

021 ; Kong et al., 2019 ; Kraus et al., 2020 ) to regional FC fingerprints

 Finn et al., 2015 ). Notably, these findings also corroborate other “edge-

entric ” analyses of individualized patterns of brain connectivity. For

nstance, in ( Jo et al., 2021 ), the authors demonstrated that the corre-

ation structure of edge time series – a construct referred to as “edge

unctional connectivity ” outperformed traditional FC in terms of identi-

ability. Moreover, reconstructions of eFC using principal components

urther improved its performance. Those results, paired with those of

he present study, suggest that edge-based approaches may offer a use-

ul framework for investigating individualization of connectivity and,

ventually, linking it back to behavioral, cognitive, and clinical pheno-

ypes. 

Our results have implications for studies of brain-behavior correla-

ions as well as state-based analyses of time-varying FC. We show that

nter-individual differences in FC are largely shaped by differences in

igh-amplitude cofluctuation patterns. However, our sensitivity anal-

sis ( Fig. 7 d) demonstrated that of the three communities we consid-

red, one contributed disproportionately to the individualization of FC

elative to the other two. This suggests that, rather than linking inter-

ndividual differences in FC across individuals, it may be more prof-

table to directly investigate specific community centroids, e.g. those

hat drive individual variation, potentially leading to improvements in

rain-behavior correlations. 

Our results also have implications for studies of network states in

ime-varying FC ( Allen et al., 2014 ; Shakil et al., 2016 ). In general,

hese studies cluster time points together based on the similarity of

etworks to one another. To facilitate ease of comparison across indi-

iduals, this step is usually performed using concatenated data from

any participants or conditions. Different metrics can be calculated

rom these partitions, e.g. cumulative time a participant spends in any

luster, transition matrices, etc., and linked to behavioral and clinical

henotypes. Our results suggest that, although methodologically conve-

ient, clustering time points together and treating them as recurrences

f the same “network state ” likely obscures meaningful participant-level

ariation. 

.3. Future directions 

The results presented here raise important questions that should be

nvestigated in future research. First, because events contribute dispro-

ortionately to the organization of time-averaged FC and because they

ppear to be drivers of individualization, they should be the target of fu-

ure studies. We investigated events in two dense sampling studies and in

 total of nine brains. Although these data allowed us to investigate the

xtent to which cofluctuation patterns during events are shared versus

ndividualized, the small number of participants precludes the possibil-

ty of investigating behavioral, cognitive, or disease correlates of events
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t  
 Marek et al., 2020 ). Future studies should investigate communities of

igh-amplitude events in larger datasets. 

Relatedly, our study examined event structure exclusively during

ask-free resting-state conditions. We demonstrated that time-averaged

C could be well-approximated using only high-amplitude frames and

ndividualized estimates of cofluctuations during those frames. What

appens to events when participants are asked to perform tasks in

he scanner? Previous studies have demonstrated that tasks systemat-

cally modulates patterns of FC ( Cohen and D’Esposito, 2016 ). Do these

hanges reflect different patterns of cofluctuations during events? Are

hey the same patterns as rest but in different proportions? And di-

ectly related to the aims of this study, are task events similarly per-

onalized or can they be used to strengthen brain-behavior associations

 Greene et al., 2018 )? 

Here, we focused on the contributions of high-amplitude “events ”

o patterns of time-averaged FC. The simple model we proposed even

oes so far as to consider contributions from all other frames as negligi-

le. Is this really the case? What biases might we reinforce by focusing

n high-amplitude frames? High-amplitude cofluctuations make propor-

ionally bigger contributions to time-averaged FC than low-amplitude

ofluctuations. This statement is non-controversial; edge time series are

 mathematically precise “temporal unwrapping ” of the Pearson corre-

ation into its framewise contributions, the average of which is simply

C ( Esfahlani et al., 2020 ; Faskowitz et al., 2020 ; Sporns et al., 2020 ;

o et al., 2020a ,b). For this reason, it makes sense to focus on frames

here many edges simultaneously make big contributions – those same

rames necessarily will, on average, make bigger contributions to FC

han, say, frames where only a few edges exhibit high-amplitude edge

ime series. However, this does not rule out the possibility that frames

utside of high-RSS events, which are more numerous, make contribu-

ions that outweigh or match those of high-amplitude frames. Addition-

lly, in focusing on global high-amplitude events, we may miss out on

vents involving small brain systems, which will fail to meet statistical

riteria for significance due to their size. 

Edge time series represent only the latest in a series of methods

or tracking and modeling time-varying changes in networks that in-

lude time-frequency analysis ( Chang and Glover, 2010 ), sliding win-

ows ( Hindriks et al., 2016 ), instantaneous phase-locking ( Cabral et al.,

017 ), co-activation patterns ( Liu and Duyn, 2013 ; Karahanoglu and

an De Ville, 2015 ; Petridou et al., 2013 ; Tagliazucchi et al., 2012 ),

ultiplication of temporal derivatives ( Shine et al., 2015 ), quasi-

eriodic patterns ( Majeed et al., 2009 ), and model-based frameworks

 Lindquist et al., 2014 ). Broadly, these different approaches can be clas-

ified on the timescales over which they describe changes in brain ac-

ivity or connectivity. Some, like CAPs, edge time series, and instan-

aneous phase-locking, characterize changes at a framewise timescale.

thers require windowing or smoothing of data to track time-varying

uctuations. Of particular interest are quasi-period patterns, (QPPs),

hich refer to repeated sequences of brain activity ( Majeed et al., 2011 ;

hompson et al., 2014 ; Yousefi et al., 2018 ). Recently, ( Abbas et al.,

019 ) developed a method for assessing contributions to FC by repeat-

ng patterns. In essence, they “regress out ” each QPP’s time course from

he BOLD signal and calculate FC before and after doing so, allowing

he authors to assess the contribution of the QPP to FC. More recently,

 Bolt et al., 2021 ) identified three QPPs and demonstrated that, using

nly the time courses of those QPPs, could reconstruct an FC matrix

hat was correlated with the FC matrix estimated using the entire BOLD

ignal. Although these studies collective suggest that QPPs contribute

o the overall pattern of FC, the precise mathematical link remains in-

xact. Moreover, every QPP evolves over an extended period of time

nd includes multiple frames, further complicating its relationship with

C. In contrast, edge time series are an exact decomposition of FC into

ts framewise contributions. That is, the mean of a given edge time se-

ies is mathematically equivalent to that edge’s weight in the FC matrix.

his makes it possible to assess the collective contribution of individ-

al frames to the overall FC pattern (although the average of subsets
10 
f frames, as we do here, generates a mean co-fluctuation value that

oes not correspond to a true correlation coefficient, once again making

he link between co-fluctuations and FC inexact). In contrast, with QPPs

nd co-activation patterns (CAPs), the mathematical link to FC is not

recise. Irrespective of whether their contributions can be determined

recisely, QPPs, CAPs, iCAPs, “events ” and related methods make clear

hat variation in activity and co-activity across time contribute to FC.

uture work should focus not only on assessing the relative strengths

nd weakness of these methods but identifying underlying structural

imilarities between approaches ( Novelli and Razi, 2021 ). 

Here, we analyze two dense-sampling datasets in which a small num-

er of individuals were scanned many times. Our work is naturally ex-

ended by examining inter-individual variation of high-amplitude co-

uctuation patterns and community frequency in large, cross-sectional

atasets, e.g. the Human Connectome Project ( Van Essen et al., 2013 ). In

ddition to imaging data, the HCP dataset includes rich cognitive, be-

avioral, and clinical assessments of participants. Future work should

ocus on linking inter-individual variation in those measures with high-

mplitude events. 

The results of our study suggest that co-fluctuation patterns are in-

ividualized and, in turn, contribute to the individualization of time-

veraged, static FC. However, there remain several open questions about

he origins of this individualization. Do co-fluctuation patterns appear

ndividualized because of individualized differences in anatomy and

ubtle shifts in parcel boundaries ( Bijsterbosch et al., 2018 , 2019 )? Here,

e tried to address this issue by replicating our results using a coarser

arcellation (100 nodes rather than 333). While the main results do,

ndeed, replicate, we also find that the size of the effect (difference in

redicted FC using individualized versus group parcels) decreases. This

bservation suggests that, as expected, true differences in the underlying

natomy contribute to shaping the observed individualization of cofluc-

uation patterns. However, a second contributing factor likely relates to

he well-documented dependence of whole-brain FC (and derived mea-

ures) on choice of parcels is well-documented ( Eickhoff et al., 2018 ;

ordon et al., 2016 ). Adopting coarser parcellations necessarily “washes

ut ” idiosyncrasies of FC that may be evident with finer, more detailed

arcellations. Adjudicating between these two possibilities is beyond the

cope of this paper, but is a topic of intense ongoing research ( Finn and

osenberg, 2021 ; Bijsterbosch et al., 2020 ). Future studies should in-

estigate the relative contributions of anatomy, parcellation choice, and

ther factors in shaping the apparent individualization of FC patterns. 

Here, we focus on high-amplitude co-fluctuations. Our rationale

s that, because the Pearson correlation (static FC) is a temporal av-

rage over framewise co-fluctuations, the frames with largest ampli-

ude will necessarily have a greater impact on the mean value. That

s, on a per-frame basis, frames with larger amplitudes mathemati-

ally will contribute more to the temporal mean. In focusing on high-

mplitude frames, we necessarily neglect contributions of middle- and

ow-amplitude frames, which can also be used to approximate static FC

albeit not as accurately as high-amplitude; see Fig. S1). Nonetheless,

n important direction for future research is to better characterize non-

vent frames. For instance, do they exhibit cluster structure? Are they

imply “scaled down ” analogs of the high-amplitude events? What are

he physiological and psychological drivers of non-event frames? 

Finally, a key overarching and open question concerns the origins of

igh-amplitude cofluctuations. In our previous study, we demonstrated

hat movie-watching leads to synchronization of events across partici-

ants ( Esfahlani et al., 2020 ), suggesting that their timing can be mod-

lated selectively, in that case by sensory input. But what about rest?

n that previous study, we found no differences in event amplitude be-

ween rest and movie-watching, suggesting that spontaneous events are

ust as large as those driven by sensory input. A couple recent stud-

es help us speculate on the origins of events. One possibility is that

vents help preserve brain circuit function in the absence of use. In

 Newbold et al., 2020b ), the authors demonstrated that disuse of mo-

or circuits by casting participants’ arms leads to increases in high-
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mplitude pulses and that manually censoring these pulses reduces FC

agnitude ( Newbold et al., 2020a ). Another possibility is that burst ac-

ivation of distinct systems, including default mode networks, co-occurs

ith the recall or previously-observed stimuli ( Higgins et al., 2020 ). Yet

nother possibility, and one that is supported by recent results from

lectrophysiological studies ( Kucyi et al., 2020 ), is that rapid and an-

agonistic (anti-correlated) relationships between specific subnetworks,

ncluding the default mode, are strongly associated with sustained at-

ention, suggesting physiological origins. In all cases, these activation

atterns are likely constrained by the underlying anatomical connec-

ivity and reflect groups of mutually connected brain regions ( Avena-

oenigsberger et al., 2018 ; Pope et al., 2021 ). A final possibility is that

vents are truly stochastic and are mere biproducts of modular corre-

ated time series, where the activation of one element within a module

mplies the activation of the others ( Novelli and Razi, 2021 ). In any case,

uture experimental studies – possibly invasive studies that allow for

ore targeted and temporally resolved recording – should be directed

o investigate their origins. 

.4. Limitations 

The conclusions of this study are limited in several ways. Notably, we

nalyze fMRI data, which affords whole-brain coverage but at a spatial

esolution of millimeters and a temporal resolution of, at best tenths of a

econd. Moreover, fMRI BOLD samples a slow signal slowly, and is only

ndirectly related to population activity. However, many studies have

emonstrated a correspondence between BOLD fluctuations and FC es-

imated from fMRI with other modalities, including local field potentials

 Logothetis et al., 2001 ), intracranial EEG ( Betzel et al., 2019 ), and op-

ically recorded calcium imaging signals ( Lake et al., 2020 ), positing a

eural basis for functional connectivity estimated from the fMRI BOLD

ignal. Future studies could apply methods similar to those used here to

ther imaging modalities. 

A second limitation concerns data quality, in-scanner motion, and

ther artifacts, which are known to impact estimates of FC and can

roduce burst-like behavior in fMRI time series ( Power et al., 2018 ;

ynch et al., 2020 ). Here, we adopted a conservative approach and dis-

arded putative events that occurred near censored frames. Notably, this

rocedure impacted low-amplitude frames to a greater extent than high-

mplitude frames, suggesting that high-amplitude frames, in addition

o contributing disproportionately to FC, are also less likely to be con-

aminated by artifacts. Nonetheless, how to adequately address motion-

elated issues in the analysis of FC remains an ongoing and disputed

opic ( Glasser et al., 2018 , 2019 ; Power et al., 2019 ). 

A final limitation concerns the use of PCA to extract “modes ” of ac-

ivity underlying communities. While we find that each community’s

rst component explains ≈25% variance, we do not investigate the re-

aining components, which likely include other meaningful modes of

ctivity. Future studies should further investigate the link between brain

ctivity and connectivity. Because edge time series is a mathematically

xact decomposition of FC into its time-varying contributions, it repre-

ents a useful framework for doing so. 

. Conclusion 

In conclusion, we find that FC can be explained using a small num-

er of high-amplitude frames. These frames can be clustered into a small

umber of communities corresponding to archetypal patterns of cofluc-

uation, broadly shared across individuals. However, these patterns un-

ergo refinement at the level of individual participants, yielding reli-

ble and individualized cofluctuation patterns. Finally, we show that

articipants’ FC is more accurately predicted using participant-specific

stimates of their high-amplitude cofluctuation patterns compared to

roup-level estimates. Our study discloses high-amplitude, network-

ide cofluctuations as dynamical drivers of individualized FC and intro-
11 
uces methodology for exploring their role in cognition, development,

nd disease in future studies. 

. Materials and methods 

.1. Datasets 

.1.1. Midnight scan club 

The description of the Midnight Scan Club dataset acquisition,

re-processing, and network modeling is described in detail in

 Gordon et al., 2017b ). Here, we provide a high-level overview. Data

ere collected from ten healthy, righthanded, young adult participants

5 females; age: 24-34). Participants were recruited from the Wash-

ngton University community. Informed consent was obtained from all

articipants. The study was approved by the Washington University

chool of Medicine Human Studies Committee and Institutional Review

oard. This dataset was previously reported in ( Gordon et al., 2017b ;

ratton et al., 2018 ) and is publicly available at https://openneuro.org/

atasets/ds000224/versions/00002 . Imaging for each participant was

erformed on a Siemens TRIO 3T MRI scanner over the course of 12

essions conducted on separate days, each beginning at midnight. In to-

al, four T1weighted images, four T2-weighted images, and 5 hours of

esting-state BOLD fMRI were collected from each participant. For fur-

her details regarding data acquisition parameters, see ( Gordon et al.,

017b ). 

High-resolution structural MRI data were averaged together, and the

verage T1 images were used to generate hand-edited cortical surfaces

sing Freesurfer ( Dale et al., 1999 ). The resulting surfaces were regis-

ered into fs LR 32k surface space as described in ( Glasser et al., 2013 ).

eparately, an average native T1to-Talaraich ( Talairach, 1988 ) volumet-

ic atlas transform was calculated. That transform was applied to the fs

R 32k surfaces to put them into Talaraich volumetric space. 

Volumetric fMRI pre-processing included including slice-timing cor-

ection, frame-to-frame alignment to correct for motion, intensity nor-

alization to mode 1000, registration to the T2 image (which was reg-

stered to the high-resolution T1 anatomical image, which in turn had

een previously registered to the template space), and distortion cor-

ection ( Gordon et al., 2017b ). Registration, atlas transformation, re-

ampling to 3 mm isotropic resolution, and distortion correction were

ll combined and applied in a single transformation step ( Smith et al.,

004 ). Subsequent steps were all completed on the atlas transformed

nd resampled data. 

Several connectivity-specific steps were included (see ( Power et al.,

014 )): (1) demeaning and de-trending of the data, (2) nuisance regres-

ion of signals from white matter, cerebrospinal fluid, and the global

ignal, (3) removal of high motion frames (with framewise displacement

FD) > 0.2 mm; see ( Gordon et al., 2017b )) and their interpolation us-

ng power-spectral matched data, and (4) bandpass filtering (0.009 Hz

o 0.08 Hz). Functional data were sampled to the cortical surface and

moothed (Gaussian kernel, 𝜎 = 2.55 mm) with 2-D geodesic smoothing.

The following steps were also undertaken to reduce contributions

rom nonneuronal sources ( Power et al., 2014 ; Ciric et al., 2017 ). First,

otion-contaminated frames were flagged. Two participants (MSC03

nd MSC10) had high-frequency artifacts in the motion estimates cal-

ulated in the phase encode (anterior-posterior) direction. Motion esti-

ate time courses were filtered in this direction to retain effects occur-

ing below 0.1 Hz. Motion contaminated volumes were then identified

y frame-by-frame displacement (FD, described in ( Power et al.,2012 )),

alculated as the sum of absolute values of the differentials of the 3

ranslational motion parameters (including one filtered parameter) and

 rotational motion parameters. Frames with FD > 0.2 mm were flagged

s motion-contaminated. Across all participants, these masks censored

8% ± 18% (range: 6% – 67%) of the data; on average, participants re-

ained 5929 ± 1508 volumes (range: 2733 – 7667). Note that in this
aradigm, even the worst participant retained almost two hours of data.

onetheless, we excluded two subjects from all analyses, both of whom

https://openneuro.org/
https://openneuro.org/datasets/ds000224/versions/00002
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w 𝑖  
ad fewer than 50% usable frames in at least five scan sessions (MSC08

n 7/10 and MSC9 in 5/10). See Fig. S24 for a summary of usable frames

or each subject and scan. 

Time courses were extracted from 𝑁 = 333 cortical regions using a
ommon (group) functional parcellation ( Gordon et al., 2016 ). We also

nalyze time courses estimated from using individualized parcellations

see ( Gordon et al., 2017a ) for details). Both group and individualized

ime series were used for FC estimation and edge time series generation.

.1.2. MyConnectome dataset 

All data and cortical surface files are freely available and were

btained from the MyConnectome Project’s data-sharing webpage

 http://myconnectome.org/wp/data-sharing/ ). Specifically, we studied

re-processed parcel fMRI time series for scan sessions 14–104. De-

ails of the pre-processing procedure have been described elsewhere

 Laumann et al., 2015 ; Poldrack et al., 2015 ). Each session consisted

f 518 time points during which the average fMRI BOLD signal was

easured for 𝑁 = 630 parcels or regions of interest (ROIs). With a TR
f 1.16 s, the analyzed segment of each session was approximately 10

inutes long. 

.1.3. Functional connectivity 

Functional connectivity (FC) measures the statistical dependence

etween the activity of distinct neural elements. In the modeling of

acroscale brain networks with fMRI data, this usually means comput-

ng the Pearson correlation of brain regions’ activity time series. To cal-

ulate FC for regions 𝑖 and 𝑗, then, we first standardize their time series

nd represent them as z-scores. We denote the z-scored time series of

egion 𝑖 as 𝑧 𝑖 = [ 𝑧 𝑖 (1) , … , 𝑧 𝑖 ( 𝑇 ) ] , where 𝑇 is the number of samples. The
earson correlation is then calculated as: 

 𝑖𝑗 = 

1 
𝑇 − 1 

𝑇 ∑
𝑡 =1 

𝑧 𝑖 ( 𝑡 ) ⋅ 𝑧 𝑗 ( 𝑡 ) . 

In other words, the correlation is equal to the temporal average of

wo regions’ cofluctuations. 

.1.4. Edge time series 

Recently, we proposed a method for decomposing FC into its frame-

ise contributions. This is accomplished by simply omitting the averag-

ng step in computing Pearson’s correlation. This omission results in a

ew time series: 

 𝑖𝑗 ( 𝑡 ) = 𝑧 𝑖 ( 𝑡 ) ⋅ 𝑧 𝑗 ( 𝑡 ) . 

here the value of 𝑟 𝑖𝑗 ( 𝑡 ) indexes the instantaneous cofluctuation between
egions 𝑖 and 𝑗 at time 𝑡 . When regions 𝑖 and 𝑗 both deflect from their

ean in the same direction 𝑟 𝑖𝑗 > 0 , when they deflect in opposite direc-
ion, 𝑟 𝑖𝑗 < 0 , and when one (or both) of their activities is near their mean
hen 𝑟 𝑖𝑗 ≈ 0 . Importantly, the mean of this time series is exactly equal
o the FC between regions i and j , and therefore we can think of 𝑟 𝑖𝑗 ( 𝑡 ) as
he instantaneous contribution of frame 𝑡 to the overall FC. 

If we consider the set of cofluctuation between all pairs of regions

 𝑖𝑗 } at time 𝑡 , we can arrange those elements into a node-by-node con-
ectivity matrix and analyze it as a network. We can also calculate the

otal amplitude of cofluctuation between all node pairs as their root sum

quare, 𝑅𝑆 𝑆 ( 𝑡 ) = 

√ ∑
𝑖,𝑗>𝑖 

𝑟 𝑖𝑗 ( 𝑡 ) 2 . 

.1.5. Multiresolution consensus clustering 

We used a variation of modularity maximization ( Newman and

irvan, 2004 ) to group cofluctuation patterns into clusters or “com-

unities ”. Briefly, modularity maximization is a community detec-

ion method for partitioning relational data, e.g. networks, into non-

verlapping communities. This is accomplished by optimizing a modu-

arity quality function: 

 ( 𝛾) = 

∑
𝑟𝑠 

[
𝑆 𝑟𝑠 − 𝛾𝑃 𝑟𝑠 

]
𝛿
(
𝑧 𝑟 , 𝑧 𝑠 

)

12 
In this expression, 𝑆 𝑟𝑠 is the similarity of cofluctuation patterns 𝑟 and

 ; 𝑃 𝑟𝑠 is the level of similarity expected by chance; 𝛿( 𝑧 𝑟 , 𝑧 𝑠 ) is the Kro-
ecker delta function and is equal to 1 when the community assignments

f patterns 𝑟 and 𝑠 , denoted as 𝑧 𝑟 and 𝑧 𝑠 , are identical, and 0 otherwise.

he structural resolution parameter, 𝛾, controls the importance of 𝑆 𝑟𝑠 

elative to 𝑃 𝑟𝑠 and, in effect, can be tuned to recover smaller or larger

ommunities. 

Here, we use modularity maximization to obtain a representative set

f multiresolution communities ( Jeub et al., 2018 ). That is, a partition

f cofluctuation patterns into communities that takes into account how

trongly coupled patterns are to one another at different scales, from

nescale partitions of patterns into many small communities to coarse

artitions of patterns into a few large communities. To do this, we sam-

le communities at various scales by changing the value of 𝛾. Specifi-

ally, we sample 10,000 different values of 𝛾 based on the distribution

f 𝑆 𝑟𝑠 values. At each value, we use a generalized version of the Lou-

ain algorithm to optimize the corresponding 𝑄 ( 𝛾) ( Jutla et al., 2011 )
 http://netwiki.amath.unc.edu/GenLouvain/GenLouvain ). This proce-

ure results in 10000 estimates of communities at a range of scales. 

We transform these estimates into a probabilistic co-assignment ma-

rix, whose element 𝑇 𝑟𝑠 is equal to the fraction of the 10000 partitions

n which nodes 𝑟 and 𝑠 were assigned to the same community. From this

atrix, we construct a new modularity: 

 
𝑐 ( 𝛾) = 

∑
𝑟𝑠 

[
𝑆 𝑟𝑠 − 𝛾𝑃 𝑐 

𝑟𝑠 

]
𝛿
(
𝑧 𝑐 
𝑟 
, 𝑧 𝑐 

𝑠 

)
. s 

In this expression, 𝑃 𝑐 
𝑟𝑠 
is the expected co-assignment of 𝑟 and 𝑠 to

he same community and can be estimated as the mean value of the ele-

ents in the empirical co-assignment matrix. 𝑧 𝑐 
𝑟 
and 𝑧 𝑐 

𝑠 
are the consensus

ommunity assignment of patterns 𝑟 and 𝑠 , respectively. 

Optimizing 𝑄 𝑐 tends to return partitions that are, as a group, more

imilar to one another and, possibly, identical. If this is the case,

he algorithm ends and the resulting partition is accepted as the rep-

esentative consensus partition. However, if there is any variability

n the output so that the algorithm does not arrive at the same so-

ution each run,s a new co-assignment matrix is estimated and its

odularity optimized. This procedure repeats until the algorithm con-

erges. We use the same generalized version of the Louvain algorithm

o optimize the consensus modularity function and detect consensus

ommunities. 

.1.6. Principal component analysis of communities 

The multiresolution consensus clustering procedure groups a series

f vectorized 𝑁 ×𝑁 high-amplitude, cofluctuation matrices into com-

unities. Each clustered cofluctuation matrix corresponds to the peak

rame in a temporally contiguous series of frames whose RSS was sig-

ificantly greater than that of a null model. While our primary aim was

o understand how these matrices contribute to time-averaged FC, we

ere also interested in characterizing what types of activity, i.e. 𝑁 × 1
atterns of fMRI BOLD data, give rise to high-amplitude cofluctuations.

Naively, one could address this question by identifying the frames

orresponding to peak co-fluctuations and average over their corre-

ponding activity patterns. This approach, however, can yield mislead-

ng results. This is because every co-fluctuation matrix can be generated

y two different patterns of activity that are identical to one another

xcept for their signs. To illustrate this, consider the toy case presented

elow. Suppose we have a four-node network with the following co-

uctuation matrix: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

+1 +1 
+1 +1 

−1 −1 
−1 −1 

−1 −1 
−1 −1 

+1 +1 
+1 +1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
The elements of this cofluctuation matrix are given by 𝐶 𝑖𝑗 = 𝑧 𝑖 𝑧 𝑗 ,

here 𝑧 is the z-scored activity of node 𝑖 . Accordingly, this matrix could

http://myconnectome.org/wp/data-sharing/
http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
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ave been generated by either of the following patterns of activity: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

+1 
+1 
−1 
−1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
r 

 
′ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

−1 
−1 
+1 
+1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. 

The simple average of 𝑧 and 𝑧 ′ is a vector of zeros, which is unrelated

o the co-fluctuation matrix. Averaging peak activity patterns can yield

 similarly misleading result. Fortunately, both patterns are co-linear

nd satisfy the relationship 𝑧 = −1 ⋅ 𝑧 ′. That is, these patterns can be de-
cribed by a single “mode ” of activity, which we can detect by applying

rincipal components analysis (PCA) to the activity patterns directly. 

With this in mind, our strategy for characterizing the patterns of ac-

ivity underpinning high-amplitude cofluctuations was as follows. For

ach of the cofluctuation matrices assigned to community 1, 2, and 3,

e identified the scan and frame number in which they originated. Sep-

rately for each community, we aggregated the corresponding patterns

f activity into matrices with dimensions of 𝑁 ×𝑁 𝑝𝑒𝑎𝑘𝑠 . Here, 𝑁 𝑝𝑒𝑎𝑘𝑠 is

he number of high-amplitude frames assigned to a given community.

hen, we applied PCA to these matrices, yielding a series of orthogo-

al components of dimension 𝑁 × 1 and the variance explained by each
omponent. Note that these components are used mostly for visualiza-

ion and to better understand the link between cofluctuation matrices

nd brain activity. In the main text, we also describe a second approach

or uncovering the dominant mode of activity underpinning the cen-

roids of communities. Each centroid represents the average over many

ofluctuation matrices. To discover the optimal mode of activity, we

imed to determine the elements of 𝑧 = [ 𝑧 1 , … , 𝑧 𝑁 
] that minimized the

ollowing cost function: 

 = 

∑
𝑖𝑗 

(
𝐶 𝑖𝑗 − 𝑧 𝑖 𝑧 𝑗 

)2 
. 

To optimize P, we used a greedy algorithm which we repeated 100

imes. Briefly, we initialized the algorithm with a 𝑧 ∈ℝ 
N ×1 vector whose

lements were drawn independently from  ( 0 , 1 ) and calculated the
orresponding cost of 𝑃 . Then we randomly selected a node, 𝑖 , replaced

ts current value with another value randomly drawn from the same dis-

ribution. We denote the resulting vector as 𝑧 ′ and its cost as 𝑃 ′. If 𝑃 ′ < 𝑃 

hen we retained 𝑧 ′. We repeated this procedure 25000 times, gradually

educing 𝑃 . In practice, we found that the algorithm converged to highly

imilar solutions (mean similarity across 100 runs of 𝑟 = 0 . 993 . 

.1.7. Predictive model of FC 

In the main text we described a procedure for modeling FC in terms

f cofluctuation community centroids. In this section, we provide more

etails of how the model works. In our previous work ( Esfahlani et al.,

020 ), we claimed that FC is driven by high-amplitude frames. One way

o test whether this is the case is to “zero out ” all low-amplitude and non-

ignificant frames and to compute FC as the sum of whatever cofluctu-

tion patterns are expressed at high-amplitude frames. Here, we take

his claim one step further and state that the cofluctuation patterns ex-

ressed during high-amplitude frames are recurrences of one of three

emplate patterns, which we obtained from the community detection

nalysis. 

This intuition can be formalized by the following model: 

 𝐶 𝑠𝑢𝑏𝑗𝑒𝑐 𝑡,𝑠𝑐 𝑎𝑛 = 𝑓 1 𝑐 1 + 𝑓 2 𝑐 2 + 𝑓 3 𝑐 3 + 𝑓 0 0 

In this expression, 𝑓 1 , 𝑓 2 , and 𝑓 3 are the fractions of all low-motion

rames in which a participant expresses communities 1, 2, and 3, respec-

ively. The parameter 𝑓 is the fraction of frames in which a participant
0 

13 
s in a low-amplitude or non-significant state. The values of these param-

ters come from the results of the multiresolution consensus clustering

nalysis. The other parameters 𝑐 1 , 𝑐 2 , and 𝑐 3 represent the average pat-

ern of cofluctuation for of the three communities. The final parameter,

 is a node-by-node matrix where all elements are zero. 

The first two models make predictions of FC using subject-specific

stimates of centroids and frequency estimates made at the subject and

roup-level (models 1 and 2). Similarly, the next two models pair group-

evel estimates of centroids with subject and group-level estimates of fre-

uencies (models 3 and 4). Finally, we test a fifth model that makes pre-

ictions of subject s’s FC using subject-specific centroids and frequencies

stimated for the remaining seven subjects. For this model, we retain the

est fit of the seven. 

Note that when predicting FC for a given scan, both subject and

roup-level centroids and frequencies are estimated while excluding ob-

ervations from that scan. Note also that frequency is estimated as the to-

al number of frames associated with a given community. To obtain this

umber, we first map the community assignments of event cofluctuation

atterns back to the segment they originated (a temporally contiguous

et of frames whose amplitude is significantly greater than that of the

ull model). We then assign the same community label to all frames

hat make up that segment. Finally, we calculate the frequency of each

ommunity as the total number of frames assigned to that community

ivided by the total possible number of frames. 

In general, the model can generate matrices that are not posi-

ive semidefinite (all positive eigenvalues) and therefore not possible

orrelation matrices. Accordingly, we transform each matrix (transla-

ion/rotation/scaling) to match the nearest admissible matrix by mini-

izing the Frobenius norm using the MATLAB function nearcorr.m .

n all cases, we measure model fitness as the correlation of upper trian-

le elements in the true FC with those of the predicted FC matrix. 
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ectome data is available here: http://myconnectome.org/wp/data-
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