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A B S T R A C T   

Most neuroimaging studies of post-stroke recovery rely on analyses derived from standard node-centric func
tional connectivity to map the distributed effects in stroke patients. Here, given the importance of nonlocal and 
diffuse damage, we use an edge-centric approach to functional connectivity in order to provide an alternative 
description of the effects of this disorder. These techniques allow for the rendering of metrics such as normalized 
entropy, which describes the diversity of edge communities at each node. Moreover, the approach enables the 
identification of high amplitude co-fluctuations in fMRI time series. We found that normalized entropy is 
associated with stroke lesion severity and continually increases across the time of patients’ recovery. Further
more, high amplitude co-fluctuations not only relate to the lesion severity but are also associated with patients’ 
level of recovery. The current study is the first edge-centric application for a clinical population in a longitudinal 
dataset and demonstrates how a different perspective for functional data analysis can further characterize 
topographic modulations of brain dynamics.   

1. Introduction 

The brain can be conceptualized as a system of regions that func
tionally influence each other, forming a complex network of interactions 
(Bassett and Sporns, 2017; Park and Friston, 2013). Stroke causes focal 
brain lesions that alters this network organization both locally and 
globally (Crofts et al., 2011; Wang et al., 2019). The tools of network 
science and graph theory allow for these changes to be quantified in 
various ways. Using functional magnetic resonance imaging (fMRI), it 
has been shown that the functional synchronization between distinct 
regions of the brain, referred to as functional connectivity (FC), is dis
rupted by stroke (Silasi and Murphy, 2014; Wodeyar et al., 2020). 

Commonly observed disruptions to this network organization include 
inter- and intra-hemispheric changes in FC (Crofts et al., 2011; Griffis 
et al., 2019a; Siegel et al., 2016). Furthermore, using structural magnetic 
resonance imaging (sMRI) of the brain’s white matter architecture, 
several studies have shown how structural disconnections explain brain 
network (such as modularity and synchronization) dysfunction after 
stroke (Corbetta et al., 2015; Griffis et al., 2019b; Siegel et al., 2016; 
Wang et al., 2019). These studies show how decreases in modularity and 
synchronization are strongly related to behavioral deficits. 

Common to many network neuroscience investigations is a reliance 
on network analyses that result in measurements specific to each brain 
region. A recent study proposed that resting-state functional 
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connectivity (rsFC) may not be fully representative of brain activation 
patterns underlying specific behaviors, which was shown to be con
strained by the structural connectome (Honey et al., 2007; Honey et al., 
2009; Olafson et al., 2021). Therefore, it could be the case that the 
observed modulations of functional connectivity following stroke 
represent an incomplete picture of the brain dysfunction linked to ipsi- 
and contralateral stroke. Along these lines, new analytical approaches 
should be explored to see if they can further expand our understanding 
of these fMRI-derived modulations. In particular, new network-based 
analyses of fMRI that focus on the brain’s functional connections, 
known as edges, could help to fill these gaps. 

Recent studies have motivated an edge-centric approach, shifting 
focus onto the information that can be resolved on a per-edge level (Ahn 
et al., 2010; Faskowitz et al., 2020; Zamani Esfahlani et al., 2020). Using 
a straightforward unwrapping of the Pearson correlation, co-fluctuation 
time series (alternatively referred to as “edge time series”) data can be 
estimated for each edge. Unlike sliding-window time-varying connec
tivity, which requires the parameterization of a window duration, kernel 
shape, and step size, edge time series have the same temporal resolution 
as the original functional data. Importantly, the time-averaged value of 
an edge time series is a correlation coefficient. This means that edge time 
series are a mathematically exact decomposition of a functional 
connection into its framewise contributions. Previous analyses of edge 
time series data have shown that transient periods of high-amplitude 
activity make disproportionately large contributions to the time- 
averaged functional connectivity (Allan et al., 2015; Cifre et al., 2020; 
Petridou et al., 2013; Tagliazucchi et al., 2012; Zamani Esfahlani et al., 
2020). In other words, data selected from specific temporal slices can be 
used to reconstruct a similarity matrix with a high correspondence to the 
functional connectivity matrix constructed from the full dataset (Betzel 
et al., 2021; Greenwell et al., 2021). Like with co-activation pattern 
(CAP) analysis (Karahanoglu and Van De Ville, 2015; Liu and Duyn, 
2013), the structure of high-amplitude activity forms distinctive spatial 
patterns that are transiently expressed and only partly resembles the 
canonical functional systems architecture (Sporns et al., 2021). What 
separates edge time series from previous methods is that it provides an 
exact mathematical relationship to the Pearson correlation. 

Edge time series can be compared in a pairwise manner, creating an 
edge-by-edge similarity matrix of the brain that can be submitted to 
network analyses. Clustering this data results in a community structure 
of edges, where communities represent groups of region pairs that 
similarly fluctuate across time (Chumin et al., 2021; Jo et al., 2021b). 
When mapped to brain regions, these edge communities naturally form a 
pervasively overlapping structure, such that every node participates in 
multiple communities. The distribution of edge community affiliations 
can be conceptualized as an entropy that describes how dispersed the 
edge community distribution is at each node. Up until this point, this 
family of approaches has been applied to map fMRI data from young and 
healthy samples. Consequently, these approaches have not yet been 
applied to measure the impact of neural dysfunction and/or damage. 

In the present study we explore the utility of edge-centric analytical 
approaches in a clinical setting, by using newly developed measures that 
disclose information at the edge level. More specifically, we measure the 
relation between edge-centric derived measures and metrics of post- 
stroke severity and classification. Additionally, this study examines 
how these edge measurements possibly change across time, in a longi
tudinal neuroimaging setting and its association with the level of pa
tients’ recovery. In this work, we used the Washington University Stroke 
Cohort dataset (Corbetta et al., 2015), a large longitudinal (2 weeks, 3 
months, 12 months) study of heterogeneous first-time single strokes that 
contains in-depth neuropsychological measures of multiple functions 
and multimodal imaging data. From this cohort we selected 96 S pa
tients and 27 healthy subjects for the longitudinal analyses (See more in 
Methods). We found that normalized entropy of the edge community 
distributions increased globally across the time, as patients recovered 
from stroke. Furthermore, we found that a marker of high amplitude co- 

fluctuation has a significant relation with lesion volume and an associ
ation with the patients’ recovery after 1 year. In summary, the current 
study reveals how edge-centric analysis provides indicators that reveal 
lesion severity and reflect lesion recovery, making it the first study with 
edge-centric approach with clinical applications across time. 

2. Methods 

2.1. Sample (Cohort 1) 

The database includes patients with first-time stroke, studied 1–2 
weeks (mean = 13.4 days, SD = 4.8 days), 3 months, and 12 months 
after stroke onset. Also, a group of 27 age-matched control subjects was 
evaluated twice at an interval of 3 months. 

2.1.1. Stroke patients 
Subjects (n = 96) were recruited from the stroke service at Barnes- 

Jewish Hospital (BJH), with the help of the Washington University 
Cognitive Rehabilitation Research Group (CRRG). The complete data 
collection protocol is described in full detail in previous publication 
(Corbetta et al., 2015). 

2.1.2. Healthy 
27 controls were selected based on the same inclusion/exclusion 

criteria of the study (Corbetta et al., 2015). This group was typically 
constituted by spouses or first-degree relatives of the patients, age- and 
education-matched to the stroke sample. 

2.2. Sample (Cohort 2) 

Data from a replication sample was acquired as part of the Wash
ington University Stroke Cohort (See section below) and therefore pro
cessed in a nearly identical manner. The only difference in the 
replication sample’s image processing workflow was the application of 
distortion correction of the fMRI using gradient echo field maps. The 
replication cohort is composed of 10 S patients and 10 healthy controls. 

2.3. fMRI data acquisition and preprocessing 

We use data from the Washington University Stroke Cohort, exten
sively described in previous articles (Corbetta et al., 2015; Siegel et al., 
2016; Siegel et al., 2018). A brief description of the data acquisition and 
preprocessing follows. A complete description of it is explained in detail 
in a previous publication (Griffis et al., 2019). 

Neuroimaging data were collected at the Washington University 
School of Medicine using a Siemens 3 T Tim-Trio scanner with a 12- 
channel head coil. It was obtained sagittal T1-weighted MP-RAGE 
(TR = 1950 msec; TE = 2.26 msec, flip angle = 90 degrees; voxel di
mensions = 1.0 × 1.0 × 1.0 mm), and gradient echo EPI (TR = 2000 
msec; TE = 2 msec; 32 contiguous slices; 4x4 mm in-plane resolution) 
resting-state functional MRI scans from each subject. Participants were 
instructed to fixate on a small centrally-located white fixation cross that 
was presented against a black background on a screen at the back of the 
magnet bore. Between six and eight resting-state scans (128 volumes 
each) were obtained from each participant (~30 min total) giving a total 
of 896 time points for each participant. 

Resting-state fMRI preprocessing included (i) regression of head 
motion, signal from ventricles and CSF, signal from white matter, global 
signal (ii) temporal filtering retaining frequencies in 0.009–0.08 Hz 
band; and (iii) frame censoring, FD = 0.5 mm. Finally, the resulting time 
series were projected on the cortical and subcortical surface of each 
subject divided into the 235 ROIs (200 cortical plus 35 subcortical). 

These areas are taken from the multi-resolution functional 
connectivity-based cortical parcellations developed by Schaefer and 
colleagues (Schaefer et al., 2018), including additional subcortical and 
cerebellar parcels from the Automated Anatomical Labeling (AAL) atlas 
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(Tzourio-Mazoyer et al., 2002) and a brainstem parcel from the Harvard- 
Oxford Subcortical atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). 

2.4. Stroke deficit assessment 

2.4.1. Lesion severity (Lesion volume) 
Lesion severity was calculated based on the topography of stroke 

using a voxel-wise analysis of structural lesions. Each lesion was 
manually segmented on structural MRI scans and checked by two board 
certified neurologists. The location (cortico-subcortical, subcortical, 
white-matter) of each individual lesion was assigned with an unsuper
vised K-means clustering on the percentage of total cortical/subcortical 
gray and white matter masks overlay. The overlap of each lesion group 
with gray matter, white matter and subcortical nuclei is explained in 
detail in a previous publication (see (Corbetta et al., 2015)). 

We summarize the lesion distribution and average of the used sample 
in Sup. Fig. 7. 

2.4.2. Neuropsychological testing 
As reported in a previous work (Corbetta et al., 2018), the same 

subjects (controls and patients) were also examined at each time point 
through a battery of neuropsychological tests in the domains of motor, 
attention, language, visual, and memory functions. Imaging and 
behavioral testing sessions were almost always performed on the same 
day. Scores were only recorded for tasks that subjects were able to 
complete. Dimensionality reduction was applied to the performance 
data using principal component analysis as described in detail in a 
previous publication (Corbetta et al., 2015). In other words, PCA was 
run on each category and the first component was used as a domain 
score. Finally, patients’ behavioral scores were z-scored with regards to 
controls’ scores, to highlight behavioral impairments. 

2.4.3. Stroke symptoms (NIHSS Score) 
In addition to aforementioned domain-specific scores, the patients’ 

clinical severity was assessed through the National Institutes of Health 
Stroke Scale (NIHSS) (Brott et al., 1989), which includes 15 subtests 
addressing: level of consciousness (LOC), gaze and visual field deficits, 
facial palsy, upper and lower motor deficits, limb ataxia, sensory 
impairment, inattention, dysarthria and language deficits. 

Studies on the factor structure of the NIHSS (Lyden et al., 2004; 
Zandieh et al., 2012) capture the great majority of variability in per
formance (Corbetta et al., 2015). The total NIHSS was used as an aver
aged measure of the clinical severity for each patient. 

2.5. Edge-centric calculations: Normalized entropy and high amplitude 
co-fluctuations 

Time series were extracted for each node (N = 235 brain regions) of 
the parcellation by averaging the preprocessed fMRI BOLD signal within 
each node at each timepoint. Taking the statistical similarity, as 
commonly indexed by Pearson correlation, between each possible pair 
of nodal time series would result in a N-by-N (235-by-235) similarity 
matrix. This matrix is commonly referred to as a functional connectivity 
matrix. Recently, a new method has been proposed to represent the time 
series formed by comparing two nodes, by using an intermediate 
calculation of the Pearson correlation (Faskowitz et al., 2020; Zamani 
Esfahlani et al., 2020). The resulting edge time series are formed by first, 
z-scoring each of the two nodal time series independently. Then, the 
element-wise product of the z-scored time series is taken, forming an 
edge time series. Values of the edge time series reflect the co-fluctuation 
pattern between nodes. A positive co-fluctuation results when, at a 
specific point in time, both series are concordant relative to each of their 
mean signals. A negative co-fluctuation value results when, at a specific 
point in time, one time series is above the mean (a positive value) and 
the other is below the mean (a negative value). Notably, the mean of an 
edge time series equals the Pearson correlation. 

Edge time series have the same temporal resolution as the original 
data, allowing for the analysis of instantaneous (i.e., a single time frame) 
co-fluctuation patterns. This data has the dimensionality of edge-by- 
time. At each frame, the overall co-fluctuation activity can be indexed 
by taking the root-sum-square (RSS) of all edge co-fluctuations. Then, 
using these RSS values, the time frames can be ranked. Here, we grouped 
time frames into 10 ordered deciles based on RSS co-fluctuation activity. 

Edges can be clustered based on the similarity of their time course. 
Here, we applied the k-means algorithm (normalized Euclidean distance 
metric) to partition the set of edges into 10 clusters with similar co- 
fluctuation amplitude. The number of clusters was set to match the 
presented results in a previous paper (Faskowitz et al., 2020). K-means 
was repeated 25 times and the partition that was least distant from all 
other clusters (as assessed by minimum variation of information) was 
taken to be the representative solution for a given dataset (Faskowitz 
et al., 2018). This procedure results in a community affiliation for each 
edge. That is, each edge is associated with one of k communities, where 
k is 10. By projecting this partition to the node level, we find that the 234 
edges (excluding self-loops; therefore N-1) emanating from each node 
are affiliated with edge communities. Summing edge communities of 
each node and dividing by 234 provides a probability distribution over 
the k communities. We can then take the entropy of this distribution, to 
obtain a measurement of how dispersed the distribution of edge clusters 
are at each node. A low entropy indicates a relatively even distribution 
of edge communities associated with a node, whereas a high edge 
community indicates a high concentration in relatively few commu
nities. Here, we employ the normalized entropy, which is bounded be
tween the interval [0,1]. 

2.6. Entropy localization 

The difference between patients and controls was calculated for each 
node and then displayed in the brain surface plot (Fig. 3a). 

2.7. Functional system interactions 

To investigate the average correlations between canonical functional 
networks, we compared the within and between network average FC for 
both patients and controls at the three distinct timepoints. The sum of 
weights of the connections between the networks was then Fisher z- 
transformed to be compared between them at the same scale expressing 
the co-activity of these networks after the stroke damage and this co- 
activity recovered across time. The connections displayed exceed the 
chosen threshold of 1.75 to emphasize the effect (Fig. 3b). 

2.8. Participation coefficient 

We calculated the participation coefficient within each time window 
for each node using the Brain Connectivity Toolbox (BCT) (https://sites. 
google.com/site/bctnet/) (Rubinov and Sporns, 2010) function “par
ticipation_coef_sign.m”, averaging across 500 trials of modularity 
maximization with the “negative_asym” null model option (Rubinov and 
Sporns, 2011). The participation coefficient in this study expresses the 
level at which a node is diversely associated with other nodes across all 
modules (Fukushima et al., 2018; Rubinov and Sporns, 2010). The 
(node) modules used for the participation coefficient were obtained by 
using the modularity undirected function (community detection tech
nique from the BCT). As the normalized entropy did not reveal a sig
nificant relation with lesion metrics in an individual level at the acute 
stage of the injury, participation coefficient was calculated given its 
previous importance in the field (Warren et al., 2014). 

2.9. High amplitude co-fluctuations: similarity with FC and principal 
component analysis 

Using the RSS to sort the data (see Edge-centric calculations section), 
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we calculated a similarity matrix by averaging the top 10% RSS frames. 
The elements of this matrix represent the cofluctuation patterns that are 
expressed when the brain is a high-amplitude state (i.e.: the first decile 
as ranked by RSS). The chosen decile was based on previous literature 
(Zamani Esfahlani et al., 2020) while a comparison between the 
different deciles is described in Fig. S4. The obtained similarity matrix 
was then compared to the full FC matrix (calculated from all frames) 
using the Pearson correlation (of the vectorized upper triangle for each 
matrix). This resulted in a coefficient for each subject, representing the 
similarity between a subject’s high-amplitude values and the FC. This 
value was associated with lesion volume and used to reveal the number 
of recovered domains (Fig. 5a) and to be compared with the lowest 10% 
scores (Fig. 5b). Additionally, we calculated the first principal compo
nent (PC) of each edge time series matrix, for each patient, at the three 
different timepoints. This singular value partially describes the first axis 
of the edge-time series variance. With this addition, we can inspect and 
compare our results against a node-centric approach as discussed in 
previous literature (Novelli and Razi, 2021). 

2.10. Classification between left vs right hemisphere 

The normalized entropy calculation was performed in parallel for 
two subsets of patients according to the location of the stroke: 49 left 
hemisphere lesioned patients and 47 right hemisphere lesioned patients. 
In this way, the two groups were compared based on the entropy levels 
of the patients belonging to the corresponding subset. No classification 
model was assessed for this comparison. Supplementary Table 1 sum
marizes the Lesion volume and NIHSS of the groups presented in this 
analysis. 

2.11. Classification between subcortical vs cortical region 

The normalized entropy calculation was performed in parallel for 
two subsets of patients according to the location of the stroke, with 33 
patients with cortical area lesions and 23 patients with subcortical area 
lesions. For remaining patients, the lesion location was unspecific or a 
combination of both tissue areas. As in the previous section, the entropy 
level of the subjects of each sample (in this case, patients with cortical vs 
patients with subcortical lesion) was compared to the other one without 

Fig. 1. Pipeline: (A) All the analysis were performed using the FC of the stroke patients. (B) Edge-FC is calculated by multiplying element-wise the product time series 
and normalizing the sum by the squared root standard deviations of both time series. (C) The elements of the co-fluctuation time series are the element-wise products 
of z-scored regional BOLD time series, from which the highest peaks are selected for further analysis. (D) Normalized entropy and participation coefficient were 
obtained in order to assess their fluctuation across time, their relation with stroke metrics and their collaboration with lesion localization. 
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performing a classification model. Supplementary Table 1 summarizes 
the Lesion volume and NIHSS of the groups presented in this analysis. 

3. Results 

We performed a series of analyses on the functional MRI data of 
stroke patients (Fig. 1a). The first step consisted in obtaining the edge- 
time series (Fig. 1b) which was calculated for the three distinct time
points. After calculating co-fluctuation amplitude, the data was sorted 
and segmented to obtain the 10% of frames with the highest co- 
fluctuation amplitude (Fig. 1c). Lastly, the edge community entropy 
was calculated per node to observe its relationship with stroke metrics, 
its relation with the lesion localization and its fluctuation across time 
both by node and network (Fig. 1d). 

To measure the effect of time, we compared the first principal 
component (PC) singular value for each patient at the three different 

timepoints. There was not a significant effect of time on the first PC (F 
(2,147) = 0.08, p = 0.91). All p-values reported in the results section 
were corrected using False Discovery Rate. The same effect was 
observed on the top 10% high-amplitude values (F(2,132) = 0.47, p =
0.62). There was a significant difference when comparing the level of 
entropy at the three different time points [F(2,702) = 30.64, p < 0.01]. 
Timepoint 3 showed the highest value (mean = 0.74, sd = 0.11) fol
lowed by timepoint 1 (mean = 0.68, sd = 0.11) and timepoint 2 (mean 
= 0.67, sd = 0.14) (Fig. 2). Entropy level revealed an increasing trend 
across time that was not apparent in the other two metrics. Based on 
these results, we selected normalized entropy as the variable of interest 
to be used as a potential fMRI-based indicator of recovery by comparing 
it with the corresponding values in the control group (Fig. 3a). 

In order to investigate the difference in entropy levels between 
controls and patients, we compared both groups at each time point. 
There was a significant difference between patients and controls at time 

Fig. 2. Fluctuation across time of principal components, high amplitude co-fluctuations, and entropy. Representation of participants’ values at three different time 
points after stroke (2 weeks, 3 months, and 1 year) for (top-left) the first PC of static nFC, (top-right) high-amplitude similarity with FC and (bottom) the en
tropy level. 
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point 1 (t(468) = 13.78, p < 0.01), timepoint 2 (t(468) = 10.86, p <
0.01) and time point 3 (t(468) = 5.45, p < 0.01) with the magnitude of 
the difference between the two groups decreasing over time (Fig. 3a). 
The increase in normalized entropy and the reduced difference with the 
control group across time could be interpreted as an indication of 
recovery. 

When visualizing the difference between patients and controls by 
node, there were 83 nodes in which the patients had a higher value than 
the controls in the acute stage (time point 1), 68 at time point 2, and 169 
at time point 3 (Fig. 3a). We explored the surface projection of entropy 
values for each group and both combinations of differences (controls 

minus patients and patients minus controls) to observe both patterns 
(Supplementary Fig. 1). The localization of differences to individual 
nodes could prompt future exploration of this topographic pattern. 
Especially meaningful might be to explore the relationship between 
these maps and maps that index other topographic properties of the 
brain including cortical expansion or gene expression. 

When visualizing the average functional correlation between the 
networks, 8 connections were preserved at time point 1, 10 connections 
at time point 2 and 14 connections at time point 3 (Fig. 3b) indicating 
the recovery of the patients across time. 

To analyze the within-network fluctuation of the entropy level, we 

Fig. 3. Entropy and FC across time: (A) Comparison of entropy between patients and control at each time point. The difference is visualized in each surface for each 
node. (B) FC at each timepoint with the corresponding communication between the networks. (C) Entropy across time segmented by network. Asterisk indicates 
when the comparison between the three time points is significant. Systems labels: V = Visual; Sm = Somato-motor; Dat = Dorso-attentional; Sal = Salience; Lim =
Limbic; Co = Control; Def = Default; Bg = Basal Ganglia; Th = Thalamus; Ce = Cerebellum; Br = Brainstem. 
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compared it for each individual network. Several of them revealed a 
significant difference across time: Visual (F(2,84) = 6.21, p < 0.01), 
Somato-Motor (F(2,102) = 77.45, p < 0.01), Limbic (F(2,33) = 5.87, p 
< 0.01), Control (F(2,87) = 4.72, p = 0.01), Default (F(2,135) = 13.57, 
p < 0.01), Basal ganglia (F(2,15) = 9.26, p < 0.01) and Cerebellum (F 
(2,75) = 39.3, p < 0.01). In contrast, the remaining ones did not expose 
a significant difference between the different timepoints: Dorsal- 
Attention (F(2,75) = 1.58, p = 0.21), Salience-Ventral (F(2,63) =

1.47, p = 0.23), Thalamus (F(2,3) = 9.43, p = 0.05), Brainstem (F(2,1) =
1.32, p = 0.36) (Fig. 3c). The majority of the networks revealed an in
crease across time, indicating that the phenomena could be studied in 
both global and local ways. 

Normalized entropy was found to be negatively associated with 
stroke metrics although these relations were not significant (lesion 
volume: R2 = 0.02, p = 0.37, NIHSS score: R2 = 0.05, p = 0.163) 
(Supplementary Fig. 2a). Therefore, the participation coefficient was 
explored as it was shown to have a strong statistical relationship with 
normalized entropy (Faskowitz et al, 2020). 

The participation coefficient was calculated for each patient in order 
to see its correspondence with the basic stroke severity metrics. Average 
participation coefficient was related in a significant manner with the 
lesion volume (R2 = 0.08, p < 0.01). The same occurred for the NIHSS 
score (R2 = 0.05, p = 0.04) (Fig. 4). Furthermore, the participation co
efficient relation with the stroke metrics was also analyzed in the other 
two time points showing no significant effect (timepoint 2: lesion vol
ume: R2 = 0.04, p = 0.13, NIHSS score: R2 = 0.01, p = 0.63, timepoint 3: 
lesion volume: R2 = 0.01, p = 0.47, NIHSS score: R2 = 0.01, p = 0.42) 
indicating that this effect is only visible at the acute stage (Supple
mentary Fig. 2b). When comparing participation coefficient between 
patients and controls, no difference was found for any of the 3 time
points (Supplementary Fig. 3) as opposed to the increasing trend 
exposed previously by normalized entropy. 

The level similarity of the highest 10% data points (ranked by the 
RSS. For more detail see methods section) with the FC were associated 
with a significant percentage of the lesion volume (R2 = 0.05, p = 0.03). 
Furthermore, they relate to a significant number of domains recovered 
(R2 = 0.07, p = 0.02) (Fig. 5a). When comparing the correlation with the 
complete FC, the top 10% data points showed a significantly higher 
correlation value than the bottom 10% (t(190) = 39.31, p < 0.01)) 
(Fig. 5b). We explored the correlation of each decile of data points (i.e.: 
first 10%, 10% to 20%, and so on) to show the decaying effect of the 

correlation with the FC (Supplementary Fig. 4a). Furthermore, when 
compared to the other deciles, the highest 10% revealed to have the 
highest clustering coefficient, global efficiency and assortativity, next to 
the lowest distance (Supplementary Fig. 4b). The relation between each 
decile with lesion volume revealed that the only decile with a significant 
relation is the top 10% (R2 = 0.05, p = 0.03) while all the others present 
no significant association (p > 0.2) (Supplementary Fig. 5). 

When comparing patients’ entropy level according to lesion locali
zation, we found a significant difference between patients with cortical 
lesions (M = 0.74, SD = 0.12) when compared with the ones with 
subcortical ones (M = 0.68, SD = 0.12) (t(468) = -5.13, p < 0.01). In the 
same way, there is a significant difference between patients with right 
hemisphere lesions (M = 0.67, SD = 0.09) when compared with the ones 
with left hemisphere ones (M = 0.60, SD = 0.14) (t(468) = -6.09, p <
0.01) (Fig. 6), which further illustrates how the topography of normal
ized entropy can be modulated by clinical factors. 

Using a second cohort for replication (see Methods), the fluctuation 
of the first value of the PC across time was performed. As previously 
observed, there was no increase across the three time points while it was 
the case for the entropy level (Supplementary Fig. 6A). Similar results 
were found when comparing entropy across time, which demonstrates a 
distinction between patients and controls (Supplementary Fig. 6B) and 
the fluctuation within-network across time (Supplementary Fig. 6C). 

4. Discussion 

In the current study we applied an edge-centric approach to a lon
gitudinal stroke patient dataset. The analysis revealed a relation be
tween the highest values of co-fluctuation with stroke severity and 
correlated with the number of domains recovered. Furthermore, 
normalized entropy was shown to increase across patient recovery time, 
suggesting a potential utility as an indication of recovery. Moreover, the 
normalized entropy was shown to differentiate patients according to the 
lesion location. Lastly, the participation coefficient’s significant relation 
with stroke metrics adds another useful metric for further exploration. 
Collectively, this series of edge-centric network analyses demonstrate a 
novel direction for mapping the brain in a clinical setting. These ana
lyses could potentially point towards improving diagnostic and treat
ment planning strategies. 

Fig. 4. Relation of Participation coefficient with stroke metrics: Relationship between the participant coefficient of each patient, (left) their lesion volume (Number 
of damaged voxels) and (right) their NIHSS score. Lesion volume was calculated based on the topography of the stroke damage using a voxel-wise analysis of 
structural lesions in order to quantify the amount of damaged voxels. The National Institutes of Health Stroke Scale (NIHSS) includes 15 subtests and was used as a 
clinical measure of severity for each patient. 
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4.1. Discussion of results 

We employ an edge-centric analysis to calculate the normalized en
tropy of each node (Faskowitz et al., 2020) across stroke recovery. First, 
we show that the global average of this measure changes across time 
differently in our stroke sample, relative to the matched healthy control 
sample (Fig. 3a). Furthermore, these changes in normalized entropy are 
differentially expressed within a set of canonical functional networks 
(Schaefer et al., 2018) (Fig. 3c). Regarding the localization of the en
tropy level, previous studies associated the highest levels of entropy to 
specific networks (e.g., dorsal-attention or visual networks; (Faskowitz 
et al., 2020)). In this study we found that the difference between patients 
and healthy controls (i.e., where patients displayed more evenly 
distributed edge communities) is localized around the somatosensory 
cortices for the first two time points, whereas this difference is more 
diffuse in the third time point. We could speculate that as the stroke 
recovery process unfolds, edge community patterns might reconfigure in 
a way to promote globally higher entropies. It could be the case that in 
recovery, edge communities span many nodes more evenly, possibly 
creating higher entropy at more nodes. 

It is important to account for the fact that BOLD signal is an indirect 
measure, reliant on diverse assumptions, and subject to many different 
sources of noise (Veldsman et al., 2015). Furthermore, another factor to 
take into consideration is the neurovascular coupling disruption pro
duced by stroke (Lin et al., 2011). Therefore, the entropy increase across 
time could reflect the vascular coupling stabilization, potentially 
signaling a return to pre-stroke levels, as seen in previous literature 
(Blicher et al., 2012). Nevertheless, it is proposed that in order to study 
stroke populations, resting-state fMRI is better suited than event-related 
fMRI (Veldsman et al., 2015). This is due to its capacity to expose 
network-based pathology beyond the lesion site. 

While analyzing the individual normalized entropy scores at the first 
time point, no significant relationship was found between the patients’ 
globally averaged normalized entropy and stroke metrics. Nevertheless, 
previous studies showed a strong relationship between this measure and 
participation coefficient (Faskowitz et al., 2020). It has been found that 
stroke lesions with damaged gray matter regions and high participation 
coefficient, had a weak association with cognitive outcomes (Reber 
et al., 2021; Warren et al., 2014). Previous studies have shown that 
participation coefficient reflects, at an areal level, the balance between 

Fig. 5. High amplitude informative value: (A) Association between the 10% highest value of each patient with their corresponding (left) lesion volume and (right) 
amount of domains recovered after a year. (B) Comparison between the top and the bottom 10% FC. 
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intra- and inter-modular connections (Sporns et al., 2007). As partici
pation coefficient was shown to be significantly related with edge 
community entropy (Faskowitz et al., 2020), we used the measure here 
to relate to the aforementioned stroke metrics. We found that the 
participation coefficient was related with the lesion volume and the 
NIHSS score, revealing its connection with the post-stroke effects. 
However, in contrast to normalized entropy, we did not find an 
increasing trend across time of participation coefficient, exposing one 
limitation of this specific metric. The fact that normalized entropy 
correlated with NIHSS score in the expected direction of the effect but 
not in a significant way, opens the door to debate if the metric might not 
be beneficial for this specific brain disorder. One possibility would be 
that participation coefficient is only applied to positive weights whereas 
the normalized entropy is based in edge communities that annotate all 
edges regardless of their sign. In order to answer this question, further 
studies should be developed using other clinical populations to 
demonstrate the relation between their severity metrics and normalized 
entropy and/or participation coefficient. 

Previously, studies have tried to localize the spatial components of 
normalized entropy. In those studies, the brain systems associated with 

the highest levels of normalized entropy included visual, attentional, 
somatomotor and temporoparietal systems (Faskowitz et al., 2020). 
These findings were replicated in another study finding that overlap is 
greatest in primary sensory and attentional systems and lowest in as
sociation cortices (Jo et al., 2021b). The current study is the first one to 
examine the distinct entropy pattern regarding stroke lesion by 
comparing subjects with lesions in different hemispheres (left vs right) 
and lesion depth (cortical vs subcortical). The findings presented here 
open the way for further research to explore the use of these metrics to 
explore brain organization of this disorder. 

4.2. Relationship to other methods 

One of the most used techniques to relate neurological symptoms to 
specific brain areas involves identifying overlap in lesion location across 
patients with similar disorders. This approach, also known as lesion 
mapping, has been used profitably for decades, making it a reliable 
source of information for stroke patients diagnostics, treatment, and 
recovery prediction (Boes, 2015). The primary advantage of this method 
is that it is sensitive to even small and hyperacute infarction, and can be 

Fig. 6. Entropy level according to lesion location: Comparison in entropy level according to (top) the injured hemisphere and (bottom) the brain area (sub-cortical 
vs cortical). 
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used to assess if a certain brain region is necessary for a given cognitive 
function (Karnath et al., 2018; Sperber and Karnath, 2018). Neverthe
less, the method could also be limited when the symptoms are not 
dependent on damage to a single brain region (Boes, 2015). Functional 
network metrics complement the anatomical features used in the clinic 
for decades, by adding dynamical and connectional components to study 
the global effect of the lesions, instead of just a local one. Relations 
between areas that before were believed to not be connected, could 
reveal influence on each other by being connected indirectly. 

Recent works has shifted the attention from regions to networks 
damaged under stroke circumstances (Boes, 2015). Along these lines, we 
explore the edge-centric brain dynamics and its fluctuation across time 
in the different functional networks (Fig. 3c). The shift from node 
communities to edge communities provides a novel, and complemen
tary, approach to inspect the brain dynamics in a disorder that not only 
affects the brain locally, but globally. In order to compare the obtained 
results with existing literature of the field, we analyze widely used 
metrics from a previous study (Pustina et al., 2017) and assessed their 
modulation across time (Sup. Fig. 8). As the current study uses func
tional data, a threshold was needed to calculate these corresponding 
network metrics. 

One of the metrics used in this study, normalized entropy, was pre
viously compared to other measures of overlap, like flexibility and 
versatility (Bassett et al., 2011; Betzel et al., 2020; Faskowitz et al., 
2020; Shinn et al., 2017). Furthermore, a previous study linked struc
tural lesions in simulated stroke networks by measuring the diversity of 
weights at each node (Saenger et al., 2018). Here, we added to this 
understanding by constructing a topographic map of entropies derived 
from the range of edge community affiliations at each node. The entropy 
metric here provides a time-averaged index of the diversity of dynamic 
edge co-fluctuation patterns emanating from each node. Future work 
should focus on the intersection between these dynamic patterns and the 
underlying anatomical structure (Davison et al., 2015; Liu et al., 2021), 
particularly in a clinical context. 

Previous literature introduced related approaches such as quasi- 
periodic patterns (QPPs), which represent repeating spatiotemporal 
patterns of neural activity of predefined temporal length (Adhikari et al., 
2020). The QPP involves propagation of activity in the default mode and 
task positive networks of the brain (Abbas et al., 2019). As in similar 
approaches (Petridou et al., 2013) they require picking a seed for its 
analysis, adding a subjective component to the process in contrast to the 
edge-centric approach which requires no seed. A similar technique 
showed that fMRI signals could be represented by a sparse spatiotem
poral point process where the inflection points contained most of the 
signal’s information (Cifre et al., 2020) in a similar way as presented in 
the high amplitude co-fluctuations on this study. 

Previous studies proposed the use of obtained fine-scale dynamics by 
observing brief and intermittent episodes of high-amplitude co-fluctu
ations involving large sets of brain regions (Rabuffo et al., 2021; Zamani 
Esfahlani et al., 2020). In a similar way, a common approach to extract 
and cluster voxel- or vertex level activity during high-activity frames is 
the co-activation patterns, also known as CAPs (Karahanoglu and Van 
De Ville, 2015; Liu and Duyn, 2013). It is relevant to mention that while 
RSS co-fluctuations and CAPs are similar in some ways, our method is 
nonetheless distinct and has unique advantages. Most importantly, our 
method is built upon a mathematically exact decomposition of static 
rsFC into its frame-wise contributions. This decomposition enables us to 
quantify, precisely, how individual time points impact static rsFC. 
Furthermore, our method does not rely on sliding time windows nor 
step-size parameters. Even more, the decomposition does not require 
that we select a seed region or brain system in advance. Rather, our 
decomposition method considers all activity levels and the entire 
network simultaneously (Liu et al., 2021; Zamani Esfahlani et al., 2020). 
These studies show how dynamic information could be utilized to 
analyze case-control differences in a clinical neuroimaging setting. 

Nevertheless, a remaining open question concerns the neurobiology 

underlying high-amplitude co-fluctuations, and how the resultant 
topography of the observed changes relates to stroke recovery at the 
neurological level. On one hand, their infrequent occurrence could 
reflect a dynamic strategy for limiting the consumption of metabolic 
resources. On the other hand, high-amplitude frames are suggested to 
be, to some extent, a mathematical necessity emerging in correlated, 
modular systems (Novelli and Razi, 2021). Another study presented a 
generative model for high-amplitude co-fluctuations in silico using 
computational simulations of whole-brain dynamics and demonstrated 
that such high-amplitude patterns have an origin in modular structural 
connections (Pope et al., 2021). This leads to the suggestion that these 
intermittent events are partly shaped by modular organization of 
structural connectivity indicating a potential overlap of functional and 
structural information (Liu et al., 2021; Pope et al., 2021; Rabuffo et al., 
2021; van Oort et al., 2018). There is a concern that the high-amplitude 
co-fluctuations in the cortical activity that drive the nFC could be arti
facts, potentially specific to fMRI. This has been mitigated by evidence 
showing that the high-amplitude events in the RSS of the edge time 
series are not systematically related to confounding variables including 
in-scanner motion, respiratory and heart rate (Zamani Esfahlani et al., 
2020), and they readily appear in computational simulations (Pope 
et al., 2021; Rabuffo et al., 2021; Wang et al., 2018). 

Based on these conclusions, we performed the analysis using this 
approach and we found how the highest ten percent of the data values, 
(sorted based on the RSS co-fluctuations) not only were associated with 
the lesion volume after stroke but also related to the number of cognitive 
domains in the patients’ recovery (Fig. 5). The ability to inform about 
the recovery of the subjects suggest that the information contained in 
this subset of the data could be more explanatory than previously 
believed. 

While its contributions compared to the nFC are still debated, it has 
been proposed that the RSS peaks not only occur when the Euclidean 
norm of the BOLD signal is large but, most likely, when the expressed 
spatial mode is well aligned with the leading eigenvector of the nFC. The 
leading eigenvector of the static nFC matrix could also be obtained as the 
first component of the BOLD activity, being mathematically equivalent 
(Novelli and Razi, 2021). The fluctuation across time of the first prin
cipal component value at each time point and the edge-centric derived 
metrics (top amplitude co-fluctuations and normalized entropy) reveals 
how the first two maintain consistency across time while the third has an 
increasing trend across time (Fig. 2). The similarities between the edge- 
centric approach and the principal components analysis of the node- 
centric approach reveal the strengths of the first one such as its 
simplicity or not needing any assumption used in sliding-window ap
proaches (Novelli and Razi, 2021; van Oort et al., 2018). The normalized 
entropy fluctuation across time could refine our theoretical under
standing of the patients’ recovery after suffering a stroke. 

4.3. Limitations 

The current study investigates a stroke population using resting-state 
fMRI data. It is worth noting that stroke patients tend to be older than 
the usual populations where the assumptions of neurovascular coupling 
and the typical analysis pipelines are based (Veldsman et al., 2015). 
Additionally, the presented results should be interpreted given the 
caveat that the BOLD signal is not a direct measure of neuronal activity. 
Changes in network dynamics across timepoints thus reflect changes in 
observable BOLD fluctuations, but not necessarily nor specifically 
changes in neuronal dynamics. 

Even though Figure S9 shows possible variation in the results, an 
assumption of the bootstrap procedure is that population variation can 
be estimated from resampling from the available data. However, the 
present dataset contains in general relatively small lesions. With this in 
mind, we note that we are not able to make a confident prediction about 
how these results could be extrapolated to a dataset consisting of pa
tients with larger lesions. 
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The edge-centric approach involves a much larger dimensionality 
than the most-common node-centric methods. In particular, clustering a 
full eFC matrix, of size edge-by-edge, is impractical on personal 
computing hardware. To circumvent this, the edge time series, of size 
edge-by-time, can be clustered directly using k-means. However, this 
computational “shortcut” precludes the usage of other community 
detection methods, such as modularity maximization that operate on 
networked data (i.e., a “square” adjacency matrix). 

Furthermore, the interpretation of the edge-community structure 
remains open to interpretation, and the cognitive relevance of these 
communities has yet to be established. Lastly, throughout this study, the 
comparison of functional signals was done in an undirected manner. 
Measures such as correlation cannot determine the directionality of in
fluence between signals. 

Further studies could analyze the effect of these metrics in asym
metrical networks to benefit from its directionality, such as the ones 
used in effective connectivity. 

4.4. Future directions 

Even if the current study is not focused on improving predictability 
of stroke recovery, we provide novel fMRI connectivity methods that 
could be used in the future for that purpose. Given that the eFC matrix 
can be employed to boost the identifiability of fMRI data (Jo et al., 
2021a), future work could explore if similar improvements to predictive 
models could be obtained using eFC and related edge-centric data 
structures. 

Recent literature has developed strategies to combine different data 
modalities (anatomical, functional, behavior, etc.) of stroke patients 
(Iorga et al., 2021; Kristinsson et al., 2021; Pustina et al., 2017). While 
this study does not include anatomical information of the patients, 
future multimodal studies could adapt the presented methods to include 
the structural constraints of each individual subject. 

The current study demonstrates that relations derived from compu
tational and theoretical research on the human connectome can help to 
advance our understanding of how focal brain lesions are modulated 
across time. Additionally, these data show the emerging possibility of 
how network neuroscience and connectomics can contribute to clinical 
advances. By using the same techniques, future studies could try to 
replicate these results by studying similar brain disorders in which a 
typical recovery pattern is expected. 

The inclusion of animal models could also add more robustness to the 
edge-centric approach providing a natural bridge for testing external 
manipulations and measuring how these metrics are affected by 
different system complexities. Furthermore, computational models 
could contribute to this goal by simulating whole-brain connectivity and 
adding additional information of network interactions. 

4.5. Conclusion 

In conclusion, this study added new evidence for the role of the edge- 
centric approach as a promising bridge between structure and function. 
Also, it revealed how edge-centric analysis provides indicators that 
relate to lesion severity and reveal lesion recovery, making it the first 
study taking an edge-centric approach with clinical applications across 
time. 
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