
Matrix Profile Index Approximation for Streaming
Time Series

Maryam Shahcheraghi1, Trevor Cappon1, Samet Oymak2, Evangelos Papalexakis1,
Eamonn Keogh1, Zachary Zimmerman1, and Philip Brisk1

1dept. of Computer Science and Engineering
2dept. of Electrical and Computer Engineering

University of California Riverside
{sshah073, tcapp001, zzimm001}ucr.edu, oymak@ece.ucr.edu, {epapalex, eamonn, philip}@cs.ucr.edu

Abstract—Discovery of motifs (repeated patterns) in time
series is a key factor across numerous industries and scientific
fields. These and related problems have effectively been solved
for offline analysis of time series; however, these approaches
are computationally intensive and do not lend themselves to
streaming time series, where the sampling rate imposes real-time
constraints on computation and there is strong desire to locate
computation as close as possible to the sensor. One promising
solution is to use low-cost machine learning models to provide
approximate answers to these problems. For example, prior
work has trained models to predict the similarity of the most
recently sampled window of data points to a representative time
series used for training. This work addresses a more challenging
problem: to predict not only the “strength” of the match, but
also the relative location in the representative time series where
the match occurs. We evaluate our approach on two different
real world datasets; we demonstrate speedups as high as 40⇥
compared to exact computations, with predictive accuracy as
high as 87.9%, depending on the granularity of the prediction.

Index Terms—Streaming time series, Matrix Profile, Indexing

I. INTRODUCTION

This paper describes a machine learning system that predicts
similarities between a streaming time series and a represen-
tative time series used to train the model. Specifically, the
system predicts the regions in the representative time series
that closely match the window containing the most recently
sampled data points from the streaming time series. Prior work
has computed this information exactly at great cost [2], [15],
[17], [18], [20], [21], and cannot meet the real-time constraints
on computation that are needed to process streaming data. One
existing technique can predict similarities to a representative
time series, but without predicting where these similarities
occur [1]. For example, this method predicts if a recently
sampled window of seismograph readings matches something
in the historical record; whereas, the system presented in this
paper predicts whether or not a match occurs, and what region
or regions within in the historical record are likely to contain
the match.

This paper solves the index prediction problem using a
tree of machine learning models of varying granularity. Using
seismic activity prediction as an example, suppose that our
window contains the most recent minute of sampled data-
points. An exact search would compute the similarity of this

window to each minute in the historical record. Assuming that
we limit the historical record to a year’s worth of data, the
tree would first predict the month(s) during which similar
subsequences occur; then, within each predicted month, it
would then predict the weeks, days, hours, and finally minutes,
leveraging the tree structure to limit the search to the most
promising regions of the historical record. This approach
readily generalizes to other domains.

This paper makes the following contributions:
• We introduce a novel machine learning system that pre-

dicts if and when newly-observed time series patterns
have occurred in the time series used for training.

• We introduce a retraining mechanism which significantly
improves the accuracy of our system.

• We show how to extend our system to support incremen-
tal updates and online retraining in the face of new data.

• We report predictive accuracy up to 87.9% and speedups
as high as 40⇥ compared to computing the similarities
exactly.

The paper is organized as follows: Section II presents
definitions and background context that form the basis for the
technical contribution. Section III summarizes related work
on time series and data structures that influenced our work.
Section IV describes training and inference using our system
in detail. Section V presents the empirical evaluation of our
system. Section VI concludes the paper and outlines directions
for future work.

II. BACKGROUND MATERIAL

In this section, a summary of the required background and
definitions of commonly-used terms are introduced.

Time series: A Time series T = ht1, t2, . . . , tni is an
ordered sequence of n scalar data points.

Subsequence: Ti,m = hti, ti+1, . . . , ti+m�1i is the subse-
quence of T starting at position i and having length m⌧ n;
if m is obvious, we can write Ti in place of Ti,m. We write
Ti � T to denote that Ti is a proper subsequence of T 0.

Correlation Profile: Let ci,j be the Pearson correlation
between subsequences Ti, Tj � T [17]. The vector Ci =
hci,j | 1  j  n � m + 1i is Ti’s Correlation Profile.
Figure 1(b) shows the Correlation Profile of subsequence T1,10

of a synthetic time series T (n = 100).

T1

(a)

(b)

Fig. 1: (a) A synthetic time series T with subsequence T1,10

identified; and (b) the correlation profile C1.

Exclusion Zone: Any subsequence matches itself perfectly.
By convention, an exclusion zone, defined by an integral
parameter � � 0, forces ci,j to 0 if |i� j|  �. The exclusion
zone is implicit in all subsequent definitions.

The maximum Pearson correlation value in Ci is defined as

c
max
i = max

1jn�m+1
{ci,j}. (1)

Nearest Neighbor: The Nearest Neighbor of Ti, denoted
⌘(Ti), is any subsequence Tj � T satisfying ci,j = c

max
i .

The Matrix Profile (see Figure 2(b)), introduced below, is
expensive to compute, but renders many important time series
data analysis trivial, including motif discovery, classification,
clustering, anomaly detection, etc. The Matrix Profile Index
and Self-Join, which associate each subsequence with its
nearest neighbor, are naturally computed as side products.
These definitions emphasize the similarity (or lack thereof)
among subsequences within a single time series.

Matrix Profile (MP): The Matrix Profile is a vector that
contains the correlations of the nearest neighbors of each
subsequence in T : P (T) = hcmax

i | 1  i  n � m + 1i;
the MP is itself a time series [15].

Matrix Profile Index (MPI): The Matrix Profile Index is a
vector containing the index of each nearest neighbor: I(T) =
hj | Tj = ⌘(Ti), 1  i  n � m + 1i. Figure 2 shows the
Matrix Profile and its Index for a time series that contains the
index of each subsequence’s nearest neighbor.

We do not use the Matrix Profile Index directly in this
paper; however, we do use machine learning to predict general
regions of a time series where the nearest neighbor of a
subsequence is likely to occur. Moreover, we often care not so
much about one specific nearest neighbor of a subsequence,
but any neighbor with a sufficiently high correlation.

k Nearest Neighbors (kNN): Let c
(j)
i denote the rank-

j Pearson correlation value in Ci. The k Nearest Neighbors

0 10 20 30 40 50 60 70 80 90 100
Time

T
T1

T23

0 10 20 30 40 50 60 70 80 90 100
Subsequences of T

0.6

0.7

0.8

0.9

1

M
ax

. C
or

r.

MP

c1
max

0 10 20 30 40 50 60 70 80 90 100
Subsequences of T

0

50

100

N
.N

. L
oc

.

MPI
Loc(1,23)

(a)
0 10 20 30 40 50 60 70 80 90 100

Time

T
T1

T23

0 10 20 30 40 50 60 70 80 90 100
Subsequences of T

0.6

0.7

0.8

0.9

1

M
ax

. C
or

r.

MP

c1
max

0 10 20 30 40 50 60 70 80 90 100
Subsequences of T

0

50

100

N
.N

. L
oc

.

MPI
Loc(1,23)

(b)

0 10 20 30 40 50 60 70 80 90 100
Time

T
T1

T23

0 10 20 30 40 50 60 70 80 90 100
Subsequences of T

0.6

0.7

0.8

0.9

1

M
ax

. C
or

r.

MP

c1
max

0 10 20 30 40 50 60 70 80 90 100
Subsequences of T

0

50

100

N
.N

. L
oc

.

MPI
Loc(1,23)

(c)

Fig. 2: (a) A synthetic time series T with length-10 subse-
quence T1 and its nearest neighbor T23 identified; (b) Matrix
Profile (MP) and (c) Matrix Profile Index (MPI).

of Ti are collected into a vector of subsequences, denoted
⌘
[k](T) = hTl � TB | ci,l = c

(j)
i , 1  j  ki.

kNN Correlation Profile: The kNN Correlation Profile
C

[k]
i = hc(j)i | 1  j  ki is the vector of the k highest-ranked

Pearson correlation values in Ci .
kNN Matrix Profile (kNN MP): The kNN Matrix Profile

is an (n�m+1)⇥ k matrix that contains the correlations of
the k Nearest Neighbors of each subsequence in T , denoted
P

[k](T) = hC [k]
i | 1  i  n�m+ 1i.

The preceding definitions are limited to correlations of
equal-length subsequences within a single time series; they
naturally generalize to correlations between equal-length sub-
sequences occuring within two distinct time series.

AB-Correlation Profile: Let TA and TB be distinct time
series having lengths nA and nB , respectively. Let Ti � TA

and Tj � TB be length-m subsequences whose Pearson
correlation is c

AB
i,j . The AB-Correlation Profile for Ti is the

vector C
AB
i = hcAB

i,j | 1  j  nB �m + 1i. The maximum
Pearson correlation in C

AB
i is

c
AB,max
i = max

1jnB�m+1
{cAB

i,j }. (2)

AB-Nearest Neighbor: The AB-Nearest Neighbor of Ti �
TA in TB , denoted ⌘AB(Ti), is any subsequence Tj � TB

satisfying c
AB
i,j = c

AB,max
i .

AB-Matrix Profile (MP): The AB-Matrix Profile is a vector
that contains the AB-nearest neighbors of each subsequence
in TA: PAB(TA, TB) = hcAB,max

i | 1  i  nB �m+ 1i.
AB-kNN Correlation Profile: Let c

AB(j)
i be the rank-j

Pearson correlation in C
AB
i . The AB-kNN Correlation Profile

is the vector C
AB[k]
i = hcAB(j)

i | 1  j  ki, which contains
the k highest-ranked Pearson correlation in C

AB
i .

AB-k Nearest Neighbors (AB-kNN): The k Nearest
Neighbors of Ti � TA in TB are a vector of subsequences
⌘
[k]
AB(Ti) = hTl � TB | cAB

i,l = c
AB(j)
i , 1  j  ki.

AB-kNN Matrix Profile (AB-kNN MP): The kNN Matrix
Profile is an (nA � m + 1) ⇥ k matrix that contains the
correlations of the AB-k Nearest Neighbors: P [k]

AB(TA, TB) =

hCAB[k]
i | 1  i  nB �m+ 1i.
Computing and updating the Matrix Profile and/or any of

its various is impractical for streaming time series. Doing so
would entail running O(n2) algorithms, with n!1.

Learned Approximate Matrix Profile (LAMP): A Learned
Approximate Matrix Profile (LAMP) is a learned function
L : T ! [0, 1) that predicts the Matrix Profile of a time
series T . A LAMP model is trained on a labeled dataset
� = (TR, P (TR)), where a representative time series TR

comprises the features and the target is its Matrix Profile
P (TR) [1].

The LAMP concept is independent of the choice of machine
learning model; the LAMP paper employed a 1-dimensional
convolutional neural network (1D-CNN) with residual con-
nections; this paper adopts the same model. In the streaming
context, LAMP predictions (1D-CNN inference) run orders of
magnitude faster than computing Matrix Profiles or AB-joins
directly. This makes LAMP a suitable option for real-time
applications deployed on embedded systems.

III. RELATED WORK

Time series analysis is generally concerned with techniques
such as classification, clustering, motif discovery, and anomaly
detection [14]–[16], [22]. Among the techniques presented in
the preceding section, the Matrix Profile and its extensions
can solve these problems offline once the time series has been
fully collected [2], [15], [17], [18], [20], [21], while LAMP
can solve them online through prediction [1].

The work presented here exhibits similarities to time series
indexing methods such as iSAX [6], iSAX 2.0 [7], iSAX2+
[8] and ADS+ [9], among others. Our technique constructs a
tree of LAMP models of varying granularity, which is similar
to TARDIS [12], which is a tree-structured indexing method
built upon iSAX. All these methods index a time series, not
its Matrix Profile.

Our work is also influenced by a learned indexing methods
for database structures, such as B-Trees [23]. This paper claims
that all indices can be learned and predicted, while focusing on
the location of keys within a specific range of an in-memory
data set. Our system applies a similar approach to streaming
time series data, and serves as an additional use case that adds
credence to their claim.

The TSR and BTSR-Trees [11] extend the R-Tree to index
geolocated time series. The R-Tree [25] is a data structure that
indexes multi-dimensional information, such as geographical
coordinates, with each node pointing to the disk page that
contains it; geo-iSAX [13] uses the BTSR-tree for supports
visual exploration and analysis of geolocated time series.

These tools represent potential directions for future work,
including the specification of a Matrix Profile, LAMP, etc.
tailored to geolocated time series.

IV. MATRIX PROFILE INDEX APPROXIMATION

Matrix Profile Index Approximation aims to find general
regions of the nearest neighbors of a relatively short time
series segment within a longer time series. In the context of
LAMP, the shorter time series is the recently sampled window
of data points from a streaming time series, and the longer
time series is the representative time series TR, used to train
the LAMP model. Our solution employs a LAMP-Tree: a tree
of LAMP models of varying granularity, which we use to
predict approximate nearest neighbor indices. Figure 3 shows
a generic example which has been trained on a representative
time series TR containing 48 weeks of data.

In Figure 3, the root node (w1�48) contains a LAMP model
that encompasses 48 weeks of TR; the internal (non-leaf)
nodes, (w1�4, etc.) encompass 4-week intervals; and the leaf
nodes (w1 ... w48) encompass one-week intervals.

Leaf node wi represents the i
th week; internal node wi�j

represents weeks i through j; the corresponding subsequences
of TR are Twi and Twi�j . It is important not to conflate Twi

with Ti, the subsequence starting at the ith datapoint in TR, not
the i

th week. Lwi and Lwi�j are the LAMP models associated
with wi and wi�j .

A. LAMP-Tree Queries (Inference)
LAMP-Trees predict which regions (Tw1 ...TwN) of the

representative time series (TR) likely contain a match to the
input. The input is a time series segment TQ called a query,
which represents the m most recently-sampled datapoints of
a streaming time series, and a threshold value ✓ 2 [0, 1).

The next two definitions are provided here for context but
are solely used when evaluating LAMP-Trees in Section V.
The predictive querying (inference) procedure for LAMP-
Trees is defined afterwards.

Exact LAMP-Tree Query: An Exact LAMP-Tree Query
returns the set of leaves whose time series contain at least
one subsequence whose Pearson correlation to TQ is at least
✓, i.e., the set QExact = {wi| PAB(Twi , TQ) � ✓}. Since
subsequence length is |TQ|, the AB-Correlation Profile is (one-
dimensional), i.e., identical to the AB-Matrix Profile.

Exact kNN LAMP-Tree Query: An Exact kNN LAMP-Tree
Query returns the set of leaves whose time series contain at
least k subsequences whose Pearson correlations with TQ are
at least ✓, i.e., the set Q

[k]
Exact = {wi| cAB(k)

wi � ✓}, where
c
AB(j)
wi denotes the rank-j Pearson correlation value returned

by the AB-kNN Matrix profile P
[k]
AB(Twi , TQ).

Predicted LAMP-Tree Query: QExact and Q
[k]
Exact are

expensive to compute. As an alternative, a Predicted LAMP-
Tree Query returns the set of leaves whose LAMP models
predict Pearson correlations for TQ that are at least ✓, i.e., the
set QLAMP = {wi| Lwi(TQ) � ✓}.

Match: A match occurs at leaf node wi if Lwi(TQ) � ✓, or
at internal node wi�j if Lwi�j (TQ) � ✓.

w1�48

w1�4

w1 w2 w3 w4

w45�48

w45 w46 w47 w48

Figure 1: A full 48-week LAMP-Tree

1 Introduction

1

Fig. 3: A representative LAMP-Tree trained on 48 week’s of
data: internal nodes represent 4-week intervals and leaf nodes
represent individual weeks.

Let wj be a leaf where PAB(Twj , TQ) � ✓; then there exists
a subsequence Tl � Twj whose Pearson correlation with TQ

exceeds ✓. Internal node wi�k is an ancestor of wj if i  j 
k; then Tl � Twj � Twi�k implies that PAB(Twi�k , TQ) � ✓.

Accuracy Assumption: The LAMP Tree accuracy assump-
tion is satisfied if the following holds for each leaf node wj :
Lwj (TQ) � ✓ =) Lwi�k(TQ) � ✓, 1  j  k.

Starting at the root, the search descends in depth- or breadth-
first order. At each internal node, the search continues if a
match occurs; otherwise, the search is pruned. Each leaf node
where a match occurs is added to QLAMP .

Lemma: A Predicted LAMP-Tree Query correctly computes
QLAMP if the accuracy assumption is satisfied.

Figure 4 shows an example. A match occurs at the root,
w1�48. The search proceeds to each of the root’s children
in succession : w1�4, . . . , w13�16, . . . , w45�48 (other subtrees
are not shown for brevity). No match occurs at w1�4 so the
search is pruned there; a match occurs at w13�16, so the search
continues to its children: w14 and w16 match and are added
to QLAMP . No matches occur at w45�48.

B. LAMP-Tree Training

Without loss of generality, we describe how to train the 48-
week LAMP-Tree in Figure 3 on representative time series
TR. The model developer specifies the arity of each level
of the tree. Figure 3 has an arity of 12 at the root and 4
at internal nodes. We introduce overlap between consecutive
training segments Twi , Twi+1 to ensure that no correlations are
lost at subsequence boundaries. Training proceeds bottom-up,
starting at the leaves. Let wi be a leaf node. We construct a
LAMP model Lwi trained on dataset �wi = (Twi , P (Twi)).
A Merge Operation (defined below) creates LAMP models at
internal nodes.

LAMP Profile: Let L[k] = {L1, L2, . . . Lk} be a set of k

LAMP models. The LAMP Profile of time series T applies
each LAMP model to each subsequence Ti � T (recall: n is
the length of T and m⌧ n is the length of Ti), and collects
the maximum predicted correlations in a vector:

PLAMP (T, L
[k]) = h max

1jk
{Lj(Ti)}| 1  i  n�m+1i (3)

Merge Operation: Consider an internal node wi�k whose
children are leaves wi, wi+1, . . . wk with LAMP models
Lwi , Lwi+1 , . . . Lwk ; we collect the LAMP models into a
vector L[k�i+1]

wi�k and construct a new training dataset �wi�k =

(Twi�k , PLAMP (Twi�k , L
[k�i+1]
wi�k)). We then construct a new

LAMP model Lwi�k for wi�k that is trained on �wi�k .

The merge operation proceeds analogously if the children are
internal nodes rather than leaves.

C. LAMP-Tree Retraining
The LAMP-Tree training algorithm described above suffers

from one key drawback: LAMP models for nodes further
from the root are trained on shorter subsequences, and tend
to be more susceptible to misprediction as a result. We have
observed inconsistencies where matches predicted at internal
nodes disappear at the leaves. Our solution is to retrain the
leaves with additional training data prior to deployment. The
user specifies a parameter p, which throttles the amount of
additional training data provided to each leaf node; recalling
that N is the number of leaves in the LAMP-Tree, each leaf
node is retrained with up to dpNe additional subsequences, in
order to yield a more robust LAMP model.

Figure 5(a) depicts the training process for the first four
leaves of the LAMP-Tree shown in Figure 3. The matrix
indicates that the LAMP model Lwi for each leaf node
wi, 1  i  4, was trained on �wi = {(Twi , P (Twi)}, as
described in the preceding section. To illustrate the problem,
consider subsequence Tw2 ; toward the right-side of Tw2 , there
is a tall peak, followed by a smaller double-peak. In the context
of P (Tw2), this tall peak is an anomaly; however, there is
a similar tall peak in Tw3 , which suggests that it might be
a motif in representative time series TR. If the query TQ

contains a similar tall peak, the LAMP model Lw1�48 at the
root should predict a match if it is accurate; however the
LAMP models Lw2 and Lw3 at the leaves might not, because
those models view the peak as an anomaly. Our proposed
solution is to retrain LAMP model Lw2 using the AB-Matrix
Profile PAB(Tw2 , Tw3). To do this, we construct a new training
data set �w2,w3 = (Tw2 , PAB(Tw2 , Tw3)) and use it to retrain
LAMP model Lw2 .

To automate this process, we consider time series subse-
quence Twi for 1  i  N . We randomly select min{i �
1, dpNe} leaf nodes in the range {w1, w2, . . . , wi�1} to be
retrained using Twi . For each selected leaf node wj , we
construct a retraining dataset �wj ,wi = (Twj , PAB(Twj , Twi))
which we use to retrain LAMP model Lwj with AB-Matrix
Profile PAB(Twj , Twi) as the new target. Once Lwj has been
retrained, PAB(Twj , Twi) can be discarded; alternatively, the
retraining datasets for all LAMP models can be generated
upfront, followed by batch retraining.

The process for retraining internal nodes is identical to what
was described in the preceding section. The only difference is
that the LAMP Profile is constructed from LAMP models at
the leaves that have been retrained.

Fairness: We use a weighted random selection function to
select which leaf nodes to retrain. Let ri denote the number

w1�48

w1�4

w1 w2 w3 w4

w13�16

w13 w14 w15 w16

w45�48

w45 w46 w47 w48

Figure 1: Evaluation Process. Evaluation does not continue for the children of
a node when a low correlation occurs for that node.

1 Introduction

1

Node pruned from search

Match not predicted

Match predicted

Fig. 4: Querying the LAMP tree is a top-down process: when an internal node predicts a match, the inference process visits
each of its children, eventually stopping at leaves; otherwise the search is pruned.

of times LAMP model Lwi is retrained. The selection weight
associated with wi is set to 1

ri+1 ; ri is incremented each time
wi is selected for retraining. This ensures that the probability
that wi is subsequently selected for retraining is reduced, but
never fully eliminated, which ensures fairness.

Diversity: Let wj be a leaf node selected to have its LAMP
model Lwj retrained using AB-Matrix Profile PAB(Twj , Twi).
Retraining could alter “facts” that the LAMP model sans
retraining would have learned differently. For example, the
retrained LAMP model could learn that an anomaly within
Twj is actually a motif due to a similar subsequence occurring
in Twi ; this provides diversity.

Symmetric Retraining: Under retraining, as described
above, leaf nodes with smaller indices are more likely to be
selected than leaf nodes with larger indices. To offset this
bias, we propose symmetric retraining. Assume that we are
processing subsequence Twi and leaf node wj is selected
for retraining. Under the prior scheme, we retrain LAMP
model Lwj using data set �wj ,wi = (Twj , PAB(Twj , Twi));
under symmetric retraining, we also retrain LAMP model Lwi

using training data set �wi,wj = (Twi , PAB(Twi , Twj)). This
reduces the aforementioned bias.

V. EXPERIMENTAL RESULTS

Experimental Setup: We used an Intel Core i9-9900 CPU
running at 3.1 GHz with 32 GB RAM and running Ubuntu
18.04.4 LTS. We trained the 1D-CNNs employed in our
LAMP models and computed Matrix Profiles (for comparative
purposes) using the SCAMP algorithm [17] on an Nvidia
TU102 GPU.

Datasets: Table I summarizes two publicly available
datasets that we used for evaluation: Seismic: a dataset
collected near Parkfield, CA in 2004 that contains several
catalogued earthquakes [26]; and Chicken: a dataset obtained
by attaching an accelerometer to a chicken and tracking its
movements for one day [24].

LAMP-Trees: We trained five LAMP-Trees for the Seismic
dataset and four for the Chicken dataset. We use naming
convention aL-b for each tree, where a is the number of levels

TABLE I: Summary of the time series used for evaluation.
Length (last column) is the number of datapoints in the time
series.

DATASET DURATION START DATE LENGTH
SEISMIC 112 DAYS 2004-08-15 140 M
CHICKEN 1 DAY - 8 M

TABLE II: Summary of the LAMP-trees used for evaluation.

DATASET STRUCTURE LEAVES INTERNAL

SEISMIC

3L-4M 30⇥4M 5⇥24M
3L-10M 12⇥10M 3⇥40M
2L-20M 6⇥20M -
2L-24M 5⇥24M -
2L-40M 3⇥40M -

CHICKEN

3L-500K 12⇥0.5M 3⇥2M
3L-1M 6⇥1M 3⇥2M
2L-2M 3⇥2M -
2L-3M 2⇥3M -

and b is the number of datapoints per leaf. For example, a 3L-
4M LAMP-Tree has three levels and four million datapoints
per leaf. The first 85% of each time series is used for training;
the remaining 15% is used for evaluation.

Table II summarizes the LAMP-Trees that we trained,
including the number of leaves and internal nodes, as well
as the number of datapoints per leaf and internal node. For
example 30⇥4M leaves means that the tree contains thirty
leaves and that each leaf encompasses four million datapoints.

Table III reports each LAMP-Tree’s training time; those
with the most nodes tend to have the longest training times.

Our evaluation procedure mimicked a streaming scenario
using the remaining 15% of both time series. The evaluation
subsequence was partitioned into 256-bit windows from which
32 subsequences of length 100 were formed. If we relabel
the first datapoint in each window to start with index 1, the
subsequences are ht1 . . . t100i, ht33 . . . t132i, ht65 . . . t164i, etc.,
within the window; note that some of the sequences start
within the window but extend beyond it. Each subsequence
was then used to query the LAMP-Tree.

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

(a) (c)

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

(b)

Not computed

Training

Retraining

Symmetric Retraining

!!1 !!2 !!3 !!4 !!1 !!2 !!3 !!4 !!1 !!2 !!3 !!4
"!1

"!2

"!3
"!4

Fig. 5: (a) LAMP-Tree Training: we train a LAMP model Lwi to predict wi’s Matrix Profile P (Twi); (b) LAMP-Tree retraining:
for subsequence Twi , a leaf node wj , j < i is selected randomly; AB-Matrix Profile PAB(Twj , Twi) is added to �wj , which
we use to retrain Lwj ; (c) Symmetric Retraining: in addition, AB-Matrix Profile PAB(Twi , Twj) is added to �wi , which we
use to retrain Lwi .

TABLE III: LAMP-Tree structures training time (T) in minutes

DATASET STRUCTURE TIME (MINUTES)

SEISMIC

3L-4M 533.11
3L-10M 293.57
2L-20M 154.96
2L-24M 149.86
2L-40M 118.37

CHICKEN

3L-500K 16.898
3L-1M 11.926
2L-2M 6.4085
2L-3M 5.3755

Tradeoffs: There is an inherent tradeoff between the number
of leaves and the efficiency of index prediction. Increasing
the number of leaves (fewer datapoints per leaf) leads to
more precise predictions and faster AB-Matrix Profile Index
computation when a match occurs; however, this also means
that less data is available to train the LAMP model at the
leaf, so model accuracy becomes a concern. Fewer leaves
trained with more datapoints per leaf are likely to yield higher
accuracy LAMP models, but will require more expensive
computations to identify the matching indices.

A. Indexing Evaluation

We evaluate the accuracy of the LAMP-Tree in terms
of precision, recall, and F1 score (the harmonic mean of
precision and recall). For a given threshold ✓:

• A true positive (tp) occurs when the LAMP-Tree predicts
a match at leaf wi and the AB-Matrix Profile confirms
the match, i.e., wi 2 QExact \QLAMP .

• A false positive (fp) occurs when the LAMP-Tree predicts
a match at leaf wi, but the AB-Matrix Profile yields no
match, i.e., wi 2 QLAMP \QExact.

• A false negative (fn) occurs when the LAMP-Tree pre-
dicts no match at leaf wi, but the AB-Matrix Profile yields
a match, i.e., wi 2 QExact \QLAMP .

Let ⌃tp, ⌃fp, and ⌃fn be the number of true positives,
false positives, and false negatives observed across all leaves
when querying the LAMP-Tree during evaluation; pruning a
leaf is interpreted as a prediction of a non-match. Then:

Precision =
⌃tp

⌃tp+⌃fp
(4)

Recall =
⌃tp

⌃tp+⌃fn
(5)

F1 =
2⇥ Precision⇥Recall

Precision+Recall
(6)

Figure 6 reports the F1 scores for all nine LAMP-Trees
generated for the Seismic and Chicken datasets, without re-
training, and with varying threshold (✓) values.

The general trend is that the highest accuracy (F1 scores in
the 75-80% range) is obtained for LAMP-Trees whose nodes
have been trained on the largest subsequence lengths; this
led us to suspect that the inaccuracies observed for LAMP-
Trees whose nodes have been trained on shorter subsequence
lengths could be improved through retraining. The most accu-
rate threshold values for the most accurate LAMP-Trees are
✓ = 0.75 for Seismic and ✓ = 0.60 for Chicken.

B. Retraining Evaluation
Next, we evaluated the impact of retraining on LAMP-

Trees’ predictive accuracy. We set the threshold (✓) value to
0.75 for Seismic and 0.65 for Chicken, with p 2 {0.0, 0.3, 0.6}
to vary the amount of retraining; we used symmetric retraining
in all cases. The tree 2L-3M for Chicken had a small number
of leaf nodes, which were fully retrained with p = 0.3;
subsequent retraining with p = 0.6 were not needed in this
case. Figure 7 reports the F1 scores.

Increasing p from 0 to 0.3 significantly improved the F1

score for most LAMP-Trees, most notably for tree 3L-4M and
2L-20M for Seismic and 3L-1M for Chicken; subsequently
increasing p from 0.3 to 0.6 led to marginal improvements in

.

0

20

40

60

80

100

3L-4M 3L-10M 2L-20M 2L-24M 2L-40M

F1
-s

co
re

 (%
)

LAMP-Trees

! = 0.65
! = 0.70
! = 0.75
! = 0.80
! = 0.85
! = 0.90

(a) Seismic

0

20

40

60

80

100

3L-500K 3L-1M 2L-2M 2L-3M

F1
-s

co
re

 (%
)

LAMP-Trees

! = 0.55
! = 0.60
! = 0.65
! = 0.70
! = 0.75

(b) Chicken

Fig. 6: F1 scores for different LAMP-Trees and threshold (✓)
values for the (a) Seismic and (b) Chicken datasets.

0

20

40

60

80

100

3L
-4
M

3L
-1
0M

2L
-2
0M

2L
-2
4M

2L
-4
0M

3L
-5
00
K

3L
-1
M

2L
-2
M

2L
-3
M

Seismic Chicken

F1
-s

co
re

 (%
)

LAMP-Trees

p = 0.0
p = 0.3
p = 0.6

Fig. 7: F1 score for each LAMP-Tree using symmetric retrain-
ing (p 2 {0, 0.3, 0.6}).

most other cases. In general, LAMP-trees whose leaf nodes
trained on the shortest subsequence lengths benefitted the
most from symmetric retraining. Lamp-Trees 3L-4M and 3L-
10M (Chicken) demonstrated incremental improvements in F1

score, but remain substantially less accurate than the other
seven.

C. Retraining Evaluation (kNN Matrix Profile)

We recomputed the accuracy results from V-A substituting
Q

[k]
Exact for QExact in the definitions of true positive, false

positive, and false negative. Figure 8 reports the F1-score
results of this experiment with k 2 1, 2, 4-nearest neighbors
and p = 0.3.

Figure 8 shows that F1-score increases up to 80% or more
with k = 2 and 85% or more with k = 4 for the seven
most accurate LAMP-Trees. The definitions of true and false
positive do not change under Q[k]

Exact, i.e., if wi is a true/false
positive with QExact, then it will remain a true/false positive

0
20
40
60
80
100

3L
-4
M

3L
-1
0M

2L
-2
0M

2L
-2
4M

2L
-4
0M

3L
-5
00
K

3L
-1
M

2L
-2
M

2L
-3
M

Seismic Chicken

F1
-s

co
re

 (%
)

LAMP-Trees

1-NN
2-NN
4-NN

Fig. 8: F1 score for each LAMP-Tree using the AB-kNN
Matrix Profile (k 2 {1, 2, 4}).

with Q
[k]
Exact. Thus, Precision will not change. Recall, on the

other hand, can go down. Suppose that no match is predicted
at leaf node wi.We can test wi for membership in both QExact

and Q
[k]
Exact using the AB-kNN Matrix Profile at wi, itself a

vector of correlations: P [k]
AB(Twi , TQ) = {cAB(j)

wi | 1  j  k}.
• If cAB(1)

wi � ✓, then wi 2 QExact, which classifies wi as
a false negative by the original definition; this increases
⌃fn in the denominator of Equation 5.

• If, in addition, cAB(j)
wi < ✓ for any j 2 {2, . . . k}, then

wi /2Q[k]
Exact which classifies wi as a true negative under

Q
[k]
Exact; wi does affect ⌃fn or Equation 5.

Our intent is not to claim that LAMP-Tree evaluation using
Q

[k]
Exact is inherently superior to using QExact because it leads

to higher Recall, nor is it to demonstrate how to proverbially
“cook the books;” in fact, there is room to debate alternative
ways to compute Q

[k]
Exact. Our opinion is that the evaluation

mechanism should be appropriate to the larger system or
context in which a LAMP-Tree is deployed.

D. Correlation Prediction Error
For query TQ, the error at leaf node wj is defined as

Ewj (TQ) = |Lwj (Twj , TQ) � PAB(Twj , TQ)|; the error at
internal node wi�k, denoted Ewi�k(TQ) is defined similarly.
A query that is pruned at wi�k never reaches the leaves; in
this case, we propagate wi�k’s error to the leaves in its subtree
by setting Ewj (TQ) Ewi�k(TQ), i  j  k.
TQ’s error is averaged over all N leaves in the LAMP-Tree:

EQuery(TQ) =
1

N

NX

i=1

Ewi(TQ) (7)

Figure 9 displays the error distribution, which exhibits two
peaks. At the first peak, approximately 80% of queries are
predicted with error of 4% or less. The second peak, which
occurs in the 20-30% error range, is an artifact of pruning.
For a match, the typical Pearson Correlation computed by the
AB-Matrix Profile is around 0.80-0.85; for a non-match, the
typical Pearson correlation is 0.55-0.60. When a non-match
(false positive or false negative) occurs, the typical difference
between the Pearson correlation computed by the AB-Matrix
profile and the Pearson correlation predicted by the LAMP
Model is in around 0.20-0.25.

0

20

40

60

80

100

[0
.0

0
- 0

.0
2)

[0
.0

2
- 0

.0
4)

[0
.0

4
- 0

.0
6)

[0
.0

6
- 0

.0
8)

[0
.0

8
- 0

.1
0)

[0
.1

0
- 0

.2
0)

[0
.2

0
- 0

.3
0)

[0
.3

0
- 0

.4
0)

[0
.4

0
- 0

.5
0)

[0
.5

0
- 0

.6
0)

[0
.6

0
- 0

.7
0)

[0
.7

0
- 0

.8
0)

[0
.8

0
- 0

.9
0)

[0
.9

0
- 1

.0
0)

%
 o

f Q
ue

rie
s

Error Range

3L-4M
3L-10M
2L-20M
2L-24M
2L-40M

Interval width = 0.02 Interval width = 0.1

(a) Seismic

0

20

40

60

80

100

[0
.0

0
- 0

.0
2)

[0
.0

2
- 0

.0
4)

[0
.0

4
- 0

.0
6)

[0
.0

6
- 0

.0
8)

[0
.0

8
- 0

.1
0)

[0
.1

0
- 0

.2
0)

[0
.2

0
- 0

.3
0)

[0
.3

0
- 0

.4
0)

[0
.4

0
- 0

.5
0)

[0
.5

0
- 0

.6
0)

[0
.6

0
- 0

.7
0)

[0
.7

0
- 0

.8
0)

[0
.8

0
- 0

.9
0)

[0
.9

0
- 1

.0
0)

%
 o

f Q
ue

rie
s

Error Range

3L-500K
3L-1M
2L-2M
2L-3M

Interval width = 0.02 Interval width = 0.1

(b) Chicken

Fig. 9: Error distribution for all queries in the (a) Seismic and
(b) Chicken datasets. Non-uniform x-axis spacing is used to
illustrate the respective locations of the two peaks.

E. Hard vs. Easy Queries
We wish to differentiate between easy and hard queries.

We leverage the 2NN-AB-Matrix Profile P
[2]
AB(Twi , TQ) =

hcAB[1]
wi , c

AB[2]
wi i at leaf node wi. Intuitively, we expect a

query (including parameter ✓) to be “hard” if the difference
between the first and second nearest neighbor correlations,
�wi = |cAB[1]

wi � c
AB[2]
wi | is large. We offer two interpretations

of this claim: (1) �wi being large implies that TQ’s nearest
neighbor in Twi is likely an anomaly; (2) �wi being large
increases the likelihood that cAB[1]

wi � ✓ ^ c
AB[2]
wi < ✓, which

increases the likelihood of misprediction.
Difficulty: We quantify the difficulty of TQ at leaf wj as:

Dwj (TQ) =
c
AB(1)
wj

c
AB(2)
wj

(8)

If TQ fails to match at an internal node wi�k, the difficulty
Dwi�k(TQ) is computed using the same formula and is
propagated to all of the leaf nodes in wi�k’s subtree, i.e.,
Dwj (TQ) Dwi�k(TQ), i  j  k.

Difficulty Threshold: In order to categorize TQ as easy
or hard, we need to compare Dwj (TQ) to an appropriately-
defined difficulty threshold. Considering leaf node wj in
isolation, we might categorize the query as being hard if
c
AB(2)
wj > c

AB(1)
wj � Ewj (TQ), where Ewj (TQ) is the error at

wj , as defined in the preceding subsection: as Ewj (TQ) grows,
the matches become more difficult to accurately predict. At
the same time, our notion of hardness need not consider a

single leaf node in isolation. To account for these factors, we
introduce the following difficulty threshold:

⌧Q =
1

N

NX

j=1

c
AB(1)
wj

c
AB(1)
wj � Ewj (TQ)

(9)

Hardness: We categorize query TQ as being hard if
Dwj (TQ) > ⌧Q; otherwise, we categorize TQ as easy.

Table IV reports the error and difficulty threshold for the
nine LAMP trees, averaged over all queries; all LAMP-Trees
were symmetrically retrained with p = 0.3. The queries in our
evaluation datasets are categorized as easy and hard. Table IV
also reports the Precision, Recall, and F1 scores for the easy
and hard queries for each LAMP-Tree.

Except for 3L-500K and 3L-1M (Chicken), which are
wholly inaccurate, Precision tends to be higher for hard queries
and lower for easy queries: matches are less likely, since only
the first nearest neighbor is correlated correlation to the query;
thus, there are fewer false positives. Recall tends to be higher
for easy queries and lower for hard queries: with multiple
nearest neighbors being correlated to the query, false negative
rates tend to decrease. These factors also lead to higher F1

scores for easy queries.

F. Indexing Time
Lastly, we compare the runtime of querying the nine LAMP-

Trees to computing the AB-Matrix Profile Index directly.
These LAMP trees did not include retraining, and the re-
ported runtimes do not factor accuracy. Figure 10 reports
the speedup for both datasets, varying the accuracy threshold
✓ in increments of 0.05. The speedups were an order of
magnitude greater for the Seismic Dataset compared to the
Chicken dataset, due to its larger size, which manifests in
substantially greater Matrix Profile computation times [17].
In general, speedups increased as ✓ increased due to fewer
matches and more pruning.

The two most inaccurate LAMP-Trees, 3L-500K and 3L-
1M, had the highest and lowest reported speedups for Chicken
(technically, a slowdown for 3L-1M). Here, the dataset is
small enough that the time required to compute the AB-Matrix
Profile Index directly so small that LAMP-Tree-based index
cannot achieve a substantial speedup.

Notably, the LAMP-Tree with the fewest datapoints per leaf
node achieved the highest speedup for Chicken (3L-500K) and
the lowest speedups for Seismic (3L-4M). Beyond that, there
were no discernable trends that indicated better performance
for 2- or 3-level LAMP-Trees.

VI. CONCLUSION AND FUTURE WORK

Approximating the Matrix Profile Index is considerably
faster than computing the Matrix Profile directly, especially
for large time series, while achieving what we consider to
be acceptable accuracy when (re-)trained on a sufficiently
large representative data set. Consequently, we believe that
the LAMP-Trees will be sufficiently fast for deployment in
real-time applications on cost-constrained embedded systems.
Future work will examine implementation issues in greater

TABLE IV: Error and Diffuclty Threshold (DT) for each LAMP-Tree, averaged over all queries; each tree was trained with
symmetric retraining and p = 0.3. Precision, Recall, and F1 scores for the Hard (-H) and Easy (-E) queries.

DATASET LAMP-TREE ERROR DT PREC-H PREC-E REC-H REC-E F1-H F1-E

SEISMIC

3L-4M 0.0568 1.062 81.67 71.51 38.02 70.04 51.89 70.95
3L-10M 0.0467 1.049 85.68 76.42 43.41 75.52 57.62 75.97
2L-20M 0.0388 1.040 85.33 76.72 52.98 81.90 65.37 79.23
2L-24M 0.0383 1.040 85.83 78.22 57.06 83.56 68.55 80.80
2L-40M 0.0376 1.039 86.95 79.74 53.91 82.89 66.56 81.28

CHICKEN

3L-500K 0.0702 1.075 17.25 24.84 31.18 17.97 22.21 20.85
3L-1M 0.2247 1.290 46.26 48.89 85.14 36.71 59.95 41.93
2L-2M 0.0418 1.044 86.79 77.62 60.07 82.13 71.00 79.81
2L-3M 0.0356 1.037 85.16 84.59 53.58 80.83 65.78 82.67

0

10

20

30

40

0.65 0.7 0.75 0.8 0.85 0.9

Sp
ee

du
p

(X
)

Threshold (!)

3L-4M
3L-10M
2L-20M
2L-24M
2L-40M

(a) Seismic Dataset

0

1

2

3

0.55 0.6 0.65 0.7 0.75

Sp
ee

du
p

(X
)

Threshold (!)

3L-500K
3L-1M
2L-2M
2L-3M

(b) Chicken Dataset

Fig. 10: Indexing speedup of LAMP-Tree compared to exact
Matrix Profile Index computation. LAMP-Tree predictions
may terminate early if no matches are found. Increasing the
threshold (fewer matches) tends to reduce the LAMP-Tree
prediction time.

detail, including lower-cost machine learning models than 1D-
CNN that we are presently using, and detection of concept drift
and online retraining after a system employing the LAMP-Tree
has been deployed.

Another direction for future work is to focus on specific
deployment scenarios. For example, the original LAMP paper
[1] evaluated a single LAMP model (equivalent to the root of
a LAMP-Tree) on a Raspberry Pi, and showed that real-time
inference could be achieved, depending on the target sam-
pling rate and the length of the query. LAMP-Tree could be

evaluated on Raspberry Pi or another ARM-based embedded
CPU platform as well. LAMP and LAMP-Tree could also
benefit from hardware acceleration, for example, leveraging
technologies such as FPGAs, Edge TPUs, or other AI-specific
architectures.

ACKNOWLEDGMENT

This work was supported in part by NSF Awards #1528181,
#1763795, #1901379, and #1932254. P. Brisk has a small
equity stake in Shapelets, a company providing decision-
support software for time series. The authors declare no other
competing interests.

REFERENCES

[1] Z. Zimmerman, N. Shakibay Senobari, G. Funning, E. Papalexakis,
S. Oymak, P. Brisk, and E. Keogh, “Matrix Profile XVIII: Time
Series Mining in the Face of Fast Moving Streams using a Learned
Approximate Matrix Profile,” 2019 IEEE International Conference on
Data Mining (ICDM), pp. 936–945.

[2] Y. Zhu, Z. Zimmerman, N. Shakibay Senobari, C. M. Yeh, G. Funning,
A. Mueen, P. Brisk, and E. Keogh, “Matrix profile ii: Exploiting a novel
algorithm and gpus to break the one hundred million barrier for time
series motifs and joins,” 2016 IEEE 16th international conference on
data mining (ICDM), pp. 739–748, 2016.

[3] Y. Zhu, M. Imamura, D. Nikovski, and E. Keogh , “Matrix profile VII:
Time series chains: A new primitive for time series data mining (best
student paper award),” 2017 IEEE International Conference on Data
Mining (ICDM), pp.695–704.

[4] K.P. YChan, and A. W. Fu, “Efficient time series matching by wavelets,”
Proceedings 15th International Conference on Data Engineering (Cat.
No. 99CB36337), pp.126–133, 1999.

[5] Lin, Jessica and Keogh, Eamonn and Wei, Li and Lonardi, Stefano,
“Experiencing SAX: a novel symbolic representation of time series,”
Data Mining and knowledge discovery, vol. 15, pp.107–144, 2007 .

[6] J. Shieh, and E. Keogh, “i SAX: indexing and mining terabyte sized time
series,” Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp.623–631, 2008.

[7] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh, “iSAX 2.0: Indexing
and mining one billion time series,” 2010 IEEE International Conference
on Data Mining, pp.58–67, 2010.

[8] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. Keogh,
“Beyond one billion time series: indexing and mining very large time
series collections with iSAX2+,” Knowledge and information systems,
vol. 39, No. 1, pp.123–151, 2014.

[9] K. Zoumpatianos, S. Idreos, T. Palpanas, “Indexing for interactive
exploration of big data series,” Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pp.1555–1566, 2014.

[10] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger, “The R*-
tree: an efficient and robust access method for points and rectangles,”
Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, pp.322–331, 1990.

[11] G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, S. Athanasiou, and
S. Skiadopoulos, “Indexing geolocated time series data,” Proceedings of
the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp.1–10, 2017.

[12] L. Zhang, N. Alghamdi, M. Y Eltabakh, and E. A Rundensteiner,
“TARDIS: Distributed Indexing Framework for Big Time Series Data,”
2019 IEEE 35th International Conference on Data Engineering (ICDE),
pp.1202–1213, 2019.

[13] G. Chatzigeorgakidis, K. Patroumpas, D. Skoutas, S. Athanasiou, and
S. Skiadopoulos, “Visual Exploration of Geolocated Time Series with
Hybrid Indexing,” Big Data Research , vol.15, pp.12–28, 2019.

[14] M. Linardi, Y. Zhu, T. Palpanas, and E.Keogh, “Matrix profile X:
VALMOD-scalable discovery of variable-length motifs in data series,”
Proceedings of the 2018 International Conference on Management of
Data, pp.1053–1066, 2018.

[15] C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F.
Silva, A. Mueen, and E. Keogh , “Matrix profile I: all pairs similarity
joins for time series: a unifying view that includes motifs, discords and
shapelets,” 2016 IEEE 16th international conference on data mining
(ICDM), pp.1317–1322, 2016.

[16] N. Shakibay Senobari, G. J Funning, E. Keogh, Y. Zhu, C. M. Yeh, Z.
Zimmerman, and A. Mueen, “Super-Efficient Cross-Correlation (SEC-
C): A Fast Matched Filtering Code Suitable for Desktop Computers,”
Seismological Research Letters, vol. 90, No, 1, pp.322–334, 2019.

[17] Z. Zimmerman, K. Kamgar, N. Shakibay Senobari, B. Crites, G.
Funning, P. Brisk, and E. Keogh, “Matrix Profile XIV: Scaling Time
Series Motif Discovery with GPUs to Break a Quintillion Pairwise
Comparisons a Day and Beyond,” Proceedings of the ACM Symposium
on Cloud Computing, pp.74–86, 2019b.

[18] F. Madrid, S. Imani, R. Mercer, Z. Zimmerman, N. Shakibay, and
E. Keogh, “Matrix Profile XX: Finding and Visualizing Time Series
Motifs of All Lengths using the Matrix Profile,” 2019 IEEE International
Conference on Big Knowledge (ICBK), pp.175–182, 2019.

[19] Z. Zimmerman, K. Kamgar, Y. Zhu, N. Shakibay Senobari, B. Crites,
G. Funning, P. Brisk, and E. Keogh, “Scaling Time Series Motif
Discovery with GPUs: Breaking the Quintillion Pairwise Comparisons
a Day Barrier,” Preprint],[Online]. Available at: https://www. cs. ucr.
edu/% 7Eeamonn/public/GPU% 5C Matrix% 5C profile% 5C VLDB%
5C 30DraftOnly. pdf, 2018.

[20] C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, Z.
Zimmerman, D. F. Silva, A. Mueen, and E. Keogh, “Time series joins,
motifs, discords and shapelets: a unifying view that exploits the matrix
profile,” Data Mining and Knowledge Discovery, vol. 32, No. 1, pp.83–
123, 2018.

[21] Y. Zhu, C. M. Yeh, Z. Zimmerman, and E. Keogh, “Matrix Profile
XVII: Indexing the Matrix Profile to Allow Arbitrary Range Queries,”
2020 IEEE 36th International Conference on Data Engineering (ICDE),
pp.1846–1849, 2020.

[22] M. Karimi, A. Jahanshahi, A. Mazloumi, and H. Zamani Sabzi, “Border
Gateway Protocol Anomaly Detection Using Neural Network,” 2019
IEEE International Conference on Big Data (Big Data), pp.6092–6094,
2019.

[23] T. Kraska, A. Beutel, E. H Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” Proceedings of the 2018 International
Conference on Management of Data, pp.489–504, 2018.

[24] A. Abdoli, S. Alaee, S. Imani, A. Murillo, A. Gerry, L. Hickle, and
Keogh, Eamonn, “Fitbit for Chickens? Time Series Data Mining Can
Increase the Productivity of Poultry Farms,” Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp.3328–3336, 2020.

[25] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
Proceedings of the 1984 ACM SIGMOD international conference on
Management of dat, pp.47–57, 1984.

[26] Northern California Earthquake Data Center, “Northern California Earth-
quake Data Center,” HRSN (2014), High Resolution Seismic Network.
UC Berkeley Seismological Laboratory. Dataset. doi:10.7932/HRSN.,
2014.

[27] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.
A Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, and et.
al., “roceedings of the national academy of sciences, vol. 114, No. 13,
pp.3521–3526, 2017.

[28] X. Chen, S. Wang, B, Fu, M. Long, and J. Wang, “Catastrophic
forgetting meets negative transfer: Batch spectral shrinkage for safe

transfer learning,” Advances in Neural Information Processing Systems,
pp.1908–1918, 2019.

[29] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong,
and Q. He, “A Comprehensive Survey on Transfer Learning,” CoRR,
vol.abs/1911.02685, 2019.

