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Abstract—The goal of this research is to develop a predictive
analytics technique based on manifold clustering of mixed data
type. In this research, we explore the concept of statistically
significant association patterns to induce an initial partition on
data for deriving manifolds. Manifolds are hyperplanes
embedded in low dimensions. The advantage of this novel
technique is a bootstrap on data clusters that reveals statistical
associations from the information-theoretic perspective. As an
illustration, the proposed technique is applied to a real data set
of diabetes patients. An assessment on the proposed technique
is performed to investigate the effect of bootstrap based on
association patterns. Results of the preliminary study
demonstrate the feasibility of applying the proposed technique
to real-world data.
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1. INTRODUCTION

Prediction techniques such as linear regression and
Principal Component Analysis (PCA) [1] rely on the linearity
of the data of Real in the dimensions that the data reside.
These techniques work well when the data distribution
exhibits linearity. On the other hand, information-theoretic
based techniques such as ID3 [2], utilize an entropy reduction
concept for deriving a decision tree that maximizes
information gain in each traversal step of the decision tree.
Such a technique, although exponential with respect to the
enumeration of the finite discrete types of multi-dimensional
data, can be effective when the data distribution lends itself
to rapid pruning of impossible cases.

A hyperplane is defined by a cluster of a data subset,
which is not necessarily linear. Manifold clustering provides
a means to discover data subsets that can be projected onto
hyperplanes embedded in low dimensions. In contrast to
techniques such as PCA, manifold clustering does not rely on
the linearity of the data subset. However, manifold clustering
techniques, such as Spectral Clustering [3], suffer from two
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limitations. First, it is sensitive to the initial seeding of the
clusters and often requires a 2-phase approach [4]. Second, it
cannot handle a data set composed of data with mixed data
types, for example, data of Real (e.g., floating point) and data
of finite discrete type (e.g., binary valued data).

This research addresses these two limitations via the
following approach:

1. Data of Real will be discretized via an entropy
approach that optimizes the trade-off between
information loss and the granularity of the discrete
representation of the information carried by the data of
Real. The discrete representation of the data of Real
then enables the discovery of statistically significant
association patterns, which will be detailed at a later
section.

2. Each of the statistically significant association patterns
then induces an initial cluster for aggregating data
within the proximity that characterizes the hyperplane
embedded in the low dimension. This initial cluster
then serves as initial seeding for clustering when
applying techniques such as spectral clustering and
allows a semantic interpretation from the information-
theoretic perspective.

In section II a brief overview on the state-of-state on
manifold clustering is presented. In section III the notations
and definitions required for presenting this manifold-based
predictive analytics technique will be given. The algorithmic
steps will be detailed in section IV. A use case of this
approach on a real-world pilot study for assisting a diabetes
individual on self-health management will be described in
section V, followed by the results obtained from applying the
proposed approach in section VI. This paper will then be
concluded with insights on future research direction.

II. STATE-OF-THE-ART MANIFOLD CLUSTERING

Many researchers have proposed clustering algorithms to
avoid the issue of linearity, but each comes with its own
disadvantages. K-means, suggested by MacQueen in 1967 is
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one of the most popular algorithms due to its O(n?)
complexity. The algorithm consists of selecting the first &
data points to be the centers of k clusters and finding the
minimum arithmetic mean between each data point and the &
clusters [5]. However, k-means breaks down in higher
dimensions. Zhang and Kwok suggest using an applied
Nystrom method to approximate the eigen-decomposition
with low rank kernel matrices [6]. Alternatively, Wang et. al
suggest using local adaptive learning to perform graph
embedding and k-means simultaneously, thereby reducing
dimensionality [7]. Both algorithms decrease run-time of
typical clustering methods, but do not address the
information lost in the dimension reduction process. Our
proposed approach allows one to investigate the effect of
dimension reduction on information loss from an
information-theoretic perspective, as well as from a
reconstruction error perspective during the projection of a
data point to a hyperplane of a cluster.

Recent clustering research focuses on minimizing
dimensionality without losing meaning in the data. Gong et.
al propose using a structured sparse k-means algorithm to
reduce the randomness of clusters. In doing so, they used
Laplacian smoothing to exploit the correlation information
among features, thereby improving clustering accuracy and
retaining meaning [8]. Faivishevsky and Goldberger take a
different approach by combining spectral clustering with a
nonparametric information theoretic clustering algorithm to
retain information via mutual information measure [9].
However, their algorithm assumes that the conditional
density of each cluster follows a Gaussian distribution. Our
approach differs from Faivishevsky’s in that our approach
does not make an assumption on Gaussian distribution, but
rather the assumption on asymptotic convergence of mutual
information measure towards Chi-Square as Kullback [10]
has proven for the low-dimension, and extensible to high
dimension [11].

Other researchers consider alternative methods for
manifold clustering. Ge et. al suggest a geometrically local
embedding (GLE) process that reduces dimensionality by
assigning clusters according to geometric distance in the
higher dimension. After finding optimal reconstruction
weights, the algorithm filters for outliers and the manifold is
mapped to a lower dimension [12]. Although GLE is
effective, the procedure is computationally slow and may be
too extensive for large datasets. While there is a large body
of knowledge to advance research on manifold clustering, it
remains scarce on their practical applications in the real
world. This research intends to contribute to a better
understanding of our proposed approach to solve a real-world
problem on assisting diabetes patients to better self-manage
their disease condition using predictive analytics to assess
their behavior readiness.

III. NOTATION, DEFINITION, AND PROBLEM FORMULATION

Let X = {X; | X; = [x} XMT e R fori=1,..,N} be
a data set of Real.

Let Y={¥|¥= [y} - YN €z"forY/ =0,.. K-

1<N;i=1,.,K<N} be a data set of discrete non-
negative integers.

Let M ={M; | M, € X for k=1,...,|M|} be the set of |[M|
manifold clusters.

Let F:X/ >Y/ be a one-on-one bijective mapping
function that defines the discretization of the multivariate
data set X.

Let S(My) = {ij"’ | Given My, ij‘a = (val]’-f'lo,...,val;f;f)
forj=1,..,IS(M)[}. P/ is an o" (2 <o <n) order
statistically significant association pattern [11] when
Pr(val]lf'o, ...,val}"(’f) > a for some predefined threshold @, and

Mi(valy, ..., val’y) - x* as defined below:
k,0 k0 1 X (E,)"/2
Ml(valj'l ) --.;Ualj‘o - (Pr(val}cf valf,zo Val;-c":))(ZN) E (1)

k.o k.0
Pr(val;y,..,val;;)

Pr(valf’lo) Pr(valﬁf)...Pr(valf’;)

where MI(val}’y,

o val}f;") =Log,
and
N is the sample size
x2 is the Pearson chi-square defined as (o; — ¢,)*/e;
E is the expected entropy measure

E' is the maximum possible entropy

A. Definition 1

The scope coverage SC(ij"’), with respect to a set ¥, is
defined as a subset of ¥ in which the semantic interpretation
of the existence of ij"’ is always true.

Example
LetY = {[d1:0, d2:0, d3:0, d4:0],
[d1:0, d2:0, d3:0, d4: 1], ..., [d1: 1, d2: 1, d3: 1, d4: 1]}; i.e.,
|Y|=16.
Let P*° = [d1:1, d3:0].
Then, SC(P/*°) = {[d1:1, d2:0, d3:0, d4:0],
[d1:1, d2:0, d3:0, d4:1],[d1:1, d2:1, d3:0, d4:0],
[d1:1, d2:1, d3:0, d4: 1]}

B. Definition 2
The membership function f (Pq""’, Pj"""’) - [0,1] is
defined by the geometric mean measure below:

f (qu"’,Pj"""’) _ \/|sc(P,;"”) nsc(PF™") 9 |sc(pge) nsc(pk")

[sc(PE)]| |sc(pfer)

)
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k1,01
B

k = ArgMaxqy f(P,°, P["°"); where P, is a statistically
significant association pattern including the 4 manifold.

is a member of the £ manifold induced by qu"’ when

Example
Let’s assume Pll’2 =[d1:1, d3:0]
PP* = [d1:0,d2:1d3:1d4:1]
P?? =[d1:0, d3:1,d4:1]
PF'? = [d1:1,d3:0,d4:1]

The following terms could be derived based on the
definitions:
sc(P?) = {[d1:1, d2:0, d3:0d4:0],
[d1:1, d2:0, d3:0, d4:1],
[d1:1, d2:1, d3:0, d4:0],
[d1:1, d2:1, d3:0, d4: 1]}
Sc(P?*) =[d1:0, d2:1, d3:1d4:1]
SC(P?®) = {[d1:1, d2:0, d3:1d4:1],
[d1:1, d2:1, d3:1, d4:1]}
SC(Pf"?) = {[d1:1, d2:0, d3:0d4:1],
[d1:1, d2:1, d3:0, d4: 1]}

) = ()6
e = [G)6)
e = G )

Pj? is member of the /* manifold induced by P>
because ArgMax, f(P)°, %) = 1.

IV. MANIFOLD CLUSTERING BASED ON ASSOCIATION
PATTERNS

The significance of the proposed technique is the ability
to provide a semantic meaning on the clusters based on
association patterns. Specifically, each cluster is a collection
of data that are “closest” to a statistically significant
association pattern in terms of semantic similarity as
measured by the membership function. By referencing the
definition of statistically significant association pattern [11],
such a pattern manifests a frequent occurrence as defined by
the support measure exceeding a predefined threshold, as
well as an inter-relationship among the underlying variables
of the pattern.

Manifold clustering based on association patterns is
comprised of four tasks. First, deriving the corresponding
discrete data representation of a given set of data of Real.
Second, identifying the statistically significant association
patterns of the discrete mapping. Third, assigning each
discretely represented data point of real to a cluster based on
the evaluation of the membership function against every

statistically significant association pattern. Fourth, deriving
the data clustering on manifold by minimizing reconstruction
error.

4.1) Deriving Discrete Data Representation of Data of Real
Consider a discrete variable Y of N possible states, the

entropy of a system defined by Y:

Hy(Py ..Py) = %Il —Pr (Y = y) Log,Pr (Y = y;)

=YX, —PLog,P; 3)

It can be shown that the following equality holds [11]:
Hy(Py ... Py) = Hy_{(P; + P,,P; ... Py)

P. P.
P AP G @)

In the quantization process, combining two terms will
reduce the number of terms by one, while resulting in an
information loss amounting to the second term on the right-
hand side of equation (4). The quantization of a data set of
Real proposed in this paper will utilize the above entropy
equations to incrementally combine terms until it reaches the
inflection point where there is a change of direction on the
rate of change of information loss. The details of the
algorithm are shown below.

Let X = {X; | X; = [x} XMT eR" fori=1,..,N} be
a data set of Real. For each dimensionj = /,...,n of X, perform
the following steps for the data of the j dimension:

Step 1: Order X/ in an ascending order. Create a bin for each
term in X/. Treat each bin as a state of a discrete
variable of ¥ and associate a value for a bin equal to
the mean of its term(s). In other words, Y/ is a
discrete variable of N states. If the values of X/ are
all different, the initial distribution of ¥/ is then even
and the probability of Y/ is equal to 1/N.

Step 2: Initialize an iteration count C = /. Derive the
entropy Hy(P; ... Py) and record it as HS.

Step 3: Increment the iteration count by /. Identify two
adjacent bins, / and /+1 in the ordered list where the
difference between the mean of the terms in the /”
and (/+1)" bins is the smallest. Merge the two
adjacent /" and (I+1)" bins via arithmetic mean and
update the probability distribution of ¥. Re-derive
the entropy HS*1. Record the information loss 1¢*1
(i.e., the 2" term in equation (4)) from combining
the two terms.

Step 4: Repeat step 3 until the direction on the rate of
change of 1** is changed. When this occurs at the
k™ iteration, the following result is obtained:

Y={¥|%=[r} v ezt fory] =
0,.,K—1<N;i=1,..,K<N}

A one-on-one bijective mapping function F:X/ - Y/ can
then be defined for discretizing X to Y.
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4.2) Algorithm for Deriving Data Clustering on Manifolds
Given X, ¥, F, and a predefined error threshold 6, the

algorithm for the proposed manifold clustering based on

statistically significant association patterns is shown below:

Step 1: Based on Y, derive the set of statistically significant
association patterns S(My,).

Step 2: Define |S(M,)| disjoint clusters such that initially
each cluster has one and only one statistically
significant association pattern. Let 7 be the set of
clusters “holding” the data points in X; i.e., W =
(X" X =U; X" fork = 1, ..., IS(M) |}

Step 3: Partition X by assigning each data point X; to the
cluster X"/ if ArgMax f(F(X),P}°) = k; where
Pq""’ is a pattern that defines the cluster X™/. If

f(F(X)),P)°) is zero in all cases, X; is assigned to a
non-semantic cluster NS.

Step 4: LetS = {S;|j = 1,..,1S(M,) [} be the set of subspaces
corresponding to the clusters defined in step 2.
Repeat the following for each ; where the
corresponding cluster has more than one element:

Let D™ = {d:'j| k = 1,...,]X™/|} be the data set of
the cluster X™/. The subspace S; corresponding to
X™J is then derived based on the following:

Step 4.1: Derive the mean vector and variance
matrix of D™ for each j = I,...,|S(M})]| i.e.,

nj — 1 |DZJ| dnrf _ gnj d"']' —_ yn\T
- |Dn’j| k=1 ( k # )( k /1 )
where umi = ——312"1(d@).

Dn|

Step 4.2: Conduct eigen decomposition on A™/ to
obtain the eigenvector matrix Q™ and the
eigenvalue  matrix ~ A™/ such  that
Ami = (@A ().

Step 4.3: Let P <n be the number of non-zero
eigenvalues obtained in step 4.2. Sort the P
eigenvalues and define a cut-point based on
some pre-defined criteria to split the
corresponding eigenvectors into P’ leading
eigenvectors and n — P’ remaining eigenvectors.

Step 4.4: Use the eigenvectors in Q™ that
correspond to P’ leading eigenvalues in the
sorted array to define the local coordinate frame
for the subspace S;, and  rewrite
Qn,j — [WP’,]' Wn—P’,j].

Step 4.5: The projection error of mapping a data
point d,f’j to the subspace S; defined by the local
coordinate frame is e = (W) (d™ — y™);
where W"P"J is a n by (n-P') matrix. Or the
square-magnitude projection error of dz'j to the
subspace S; is then equal to Err(d}’,s;)=

(a7 = ) (WP Y (a = ),
Calculate the total error: X, 3 Err(dy”, S)).

Step 4.6: Repeat steps 4.4 and 4.5 with a new P’
(leading eigenvectors) that is one less; i.e., P’ —
1. Record the total error.

Step 4.7: Compute the total reconstruction error
ratio of two successive rounds in step 4.6; i.e.,
(total reconstruction error using P'’-g-I leading
eigenvectors)/(total reconstruction error using
P'-q leading eigenvector) where g = 0,...,P"-2.

Step 4.8: Finalize the local coordinate frame for the
subspace S; with a dimension P'-¢ when the error
ratio in step 4.7 is the largest for the given g.

Step 5: Merge two or more clusters that do not involve NS.

If there are clusters with only one data point, these

clusters will take the priority; then repeat step 4.

Retain the solution with a lower total error.

Step 6: Repeat step 5 until the total error is below the
predefined error threshold &, or the algorithm
reaches the maximum number of iterations allowed.

One noteworthy observation on step 5 of algorithm 4.2
above is that a merged cluster will be characterized by not
one, but multiple statistically significant association patterns.
The meaning of a data point will now be its closeness to some
association pattern in a merged cluster, in terms of the
semantic interpretation defined by the scope coverage and the
membership function.

V. APPLICATION OF MANIFOLD CLUSTERING TO PREDICTIVE
ANALYTICS

The manifold clustering based on association patterns is
applied to personalized health coaching for understanding its
practicality. A pilot study on engaging individuals on self-
health management using the SIPPA Health Informatics
Platform was conducted. The aim is to understand the
feasibility of affecting behavior change toward a healthy
lifestyle through a behavior model grounded on the Theory
of Planned Behavior [13]. In this study, a validated survey
instrument [14] is used to discover the behavior readiness
measure of an individual to engage in actionable health
activities. Behavior readiness measure is a vector of Real
characterizing four behavior attributes [motivation, intention,
attitude, ownership]. On a daily basis, actionable health
recommendations which range from daily advice on healthy
diet and setting goals on physical activities, to self-
monitoring of vitals such as blood glucose/pressure readings,
were sent to each individual.

In this research, a preliminary experiment was conducted
to evaluate the feasibility of applying the proposed manifold
clustering for predictive analytics to identify behavior
characteristics accounting for compliance to daily messages.
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In the pilot study, daily messages are sent via push
notifications to a subject’s mobile device. A subject is then
asked to provide feedback on each message in terms of “like”
(equivalent to useful), “dislike” (not useful), and “dismiss”
(neutral). If a daily message is actionable such as self-
monitoring of one’s glucose level, the subject is expected to
carry out the self-monitoring activities.

This paper will focus on illustrating the predictive
analytics based on proposed manifold clustering to identify
non-trivial subgroups of pilot participants who are responsive
to the daily messages. The testbed for this preliminary study
is a sample collection of data from 53 individuals for the
behavior attributes; among them eight have participated in
the pilot for about three months. The average number of days
of participation of the eight is 96.43 days.

A compliance index was derived for measuring the
average responsiveness of a subject to the push notifications
over a subject participation period. The self-monitoring
compliance index is defined as the (average) number of self-
monitoring performed per day divided by the physician
recommended number of self-monitoring per day according
to clinical guidelines and the diabetes condition of an
individual. Similarly, the daily wisdom compliance index is
defined as the number of responses to daily wisdom divided
by the number of daily wisdom notifications. Daily wisdom
consists of healthy tips from a pool of over 100 messages;
e.g., “Getting enough sleep is critical to keeping stress under
control.” This is in addition to a push notification that could
carry an actionable message such as “It’s time to self-monitor
your glucose level and sync the reading to your personal
health record.”

The training data set is used to derive the manifold spaces
and identify the manifolds that are induced by statistically
significant association patterns, thereby defining the clusters
of the pilot participants. The spanning space is a 6-
dimensional space composed of behavior constructs
[motivation, intention, attitude, ownership], together with the
self-monitoring compliance index and the daily wisdom
compliance index.

VI. EXPERIMENTAL RESULTS, ANALYSIS AND DISCUSSION

Behavior readiness measure is a 1x4 vector of Real
composed of behavior constructs [motivation, intention,
attitude, ownership]. There are 53 such vectors, and each
vector is discretized using algorithm 4.1. The vectors of
discrete values are used to discover statistically significant
association patterns based on equation 1. Using a support
measure threshold 0.2, twenty-five statistically significant
association patterns are found and shown in table 1.

One would expect 25 manifold clusters when there are 25
statistically significant association patterns; but, the number
of non-empty manifold clusters can be fewer. For example,

pattern 25 [ownership:1 self- monitoring:1 daily-wisdom:1]
is a special case under the scope covered by pattern 9
[ownership:1 daily-wisdom:1]. In addition, there may be
clusters with only one data point when the data set is sparse,
as in our case. As a result, only six manifold clusters are non-
empty, and four of them contain only one data point. The
manifolds containing only one data point are merged with
others as depicted in algorithm 4.2 step 5:

TABLE I STATISTICALLY SIGNIFICANT ASSOCIATION PATTERNS

Statistically Significant Association Patterns for Motivation
(M), Intention (I), Attitude (A), Ownership (O), Self-
Monitoring (S), and Daily Wisdom (D). Percentage of

patterns identified as statistically significant: 20/1296 = 1.5%

M I A (0] S D

—_
J—
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&} — =] =]~ =
W[~ ©f 93}
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*D-motivation: {0,1,2} , D-intention = {0,1,2,3}, D-
attitude={0,1,2}, D-ownership {0,1,2}, D-daily-wisdom-
engagement: {0,1,2,3}, D-self-monitoring: {0,1,2}
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TABLE II. MANIFOLDS (AFTER MERGING CLUSTERS OF ONLY ONE DATA
POINT WITH OTHERS)

Eigenvectors |Discarded |Reconstr. Error

Cluster 2,3 6 5 0.0807
Cluster 1,4,6 6 4 0.0381
Cluster 5 6 4 0.0241
Total 18 13 0.1429

TABLE III. MANIFOLDS (AFTER MERGING CLUSTERS IN STEP 6)

Eigenvectors |Discarded |Reconstr. Error

Cluster
1,2,3,4,6 6 2 0.0032
Cluster 5 6 4 0.0241
Total 12 4 0.0273

VII. CONCLUSION

This paper presents a novel manifold clustering approach
based on the concept of statistically significant association
patterns. A preliminary study based on real world data was
applied to better understand the proposed approach for
predicting hidden nonlinear sub-population of diabetes
patients. While this paper demonstrates the feasibility of
applying the proposed approach to real world data, the order
sequence effect of merging special case of a cluster of
singletons is not yet well understood. Furthermore,
dimension reduction based on the ratio of incremental change
of the total reconstruction errors, in addition to the
membership function, is just one out of other possible criteria
for deriving the manifold clusters. Future research
opportunities exist regarding these two aspects, which will be
the focus of our future research.
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