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ABSTRACT
Tra�c analysis is essential to network security by enabling the cor-
relation of encrypted network �ows; in particular, tra�c analysis
has been used to detect stepping stone attackers and de-anonymize
anonymous connections. A modern type of tra�c analysis is �ow
�ngerprinting, which works by slightly perturbing network �ows
to embed secret information into the �ows that later can be used for
tra�c analysis. It is shown that �ow �ngerprinting enables the use
of tra�c analysis in a wide range of applications. In this paper, we
introduce an e�ective �ow �ngerprinting technique by leveraging
neural networks. Speci�cally, our system uses a fully connected
network to generate slight perturbations that are then added to
the live �ows to �ngerprint them. We show that our �ngerprint-
ing system o�ers reliable performance in the di�erent network
settings, outperforming the state-of-the-art. We also enforce an
invisibility constraint in generating our �ow �ngerprints and use
GAN to generate �ngerprinting delays with Laplacian distribution
to make it similar to natural network jitter. Therefore, we show that
our �ngerprinted �ows are highly indistinguishable from benign
network �ows.
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1 INTRODUCTION
Linking network �ows is an important problem in network security.
In particular, network intruders can relay their attack tra�c through
intermediate devices (e.g., public proxies) in order to evade detection
and hide their identities, a problem known as stepping stones [13,
15, 23, 33]. In such settings, network defenders need to be able to
link the intruder’s ingress and egress network �ows (i.e., going into
and leaving the stepping stone node) in order to trace back to the
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intruder. Linking network �ows can also be used as a technique to
compromise anonymous communication systems like Tor [7] by
correlating the tra�c patterns of the �ows entering and leaving
such anonymity systems [6, 13–15, 18, 27, 28, 32].

The naive, traditional approach for linking network �ows is
matching packet contents; however, with the increasing use of
encryption on network tra�c, packet contents are becoming unus-
able in linking network �ows. Instead, the literature has developed
techniques that link network �ows based on tra�c characteris-
tics [14, 15], such as packet timings and packet sizes, as such fea-
tures are mainly left intact by encryption; such approaches are
broadly referred to as tra�c analysis. The work on tra�c analy-
sis is divided into two categories. Some works focus on analyzing
network �ows passively [6, 8, 10, 20, 26, 30, 31], which requires
relatively long �ows to perform well. Alternatively, other methods
perturb some characteristics of network �ows to embed one or
more bits of information. This approach is called active tra�c anal-
ysis [13–15, 23, 27, 28, 32]. Active tra�c analysis is more e�cient
and requires shorter �ows to link the �ows. However, they might
introduce large delays to the packets, which may impact the activity
of benign users and also potentially give them away [16, 23]. In
this work, we focus on active tra�c analysis.

The main body of work on active tra�c analysis is known as
watermarking [14, 15, 24, 27, 29, 32], which attempts to embed a
single bit of information into a �ow. In watermarking, two entities
are involved: watermarker and detector. Watermarker receives the
�ow and inserts a single bit of data, which conveys the information
that whether the �ow is watermarked or not. The detector receives
the message on another side of the network and attempts to decode
this message. A more recently proposed (and less studied) variant
of active tra�c analysis is called �ow �ngerprinting [9, 13, 25].
Fingerprinting is used to embed multiple bits of information into a
�ow to convey more complex data such as the origin of the �ow.
In this work, we present a novel �ow �ngerprinting technique, as
motivated below.
Our �ow �ngerprinting technique: Previous �ngerprinting
schemes are non-blind [9, 13], which requires the two involved
entities to build a secret channel to convey information about the
received �ows to perform the �ngerprinting. However, in practical
scenarios, blind schemes are preferable since they reduce communi-
cation and computation overhead. In a �ngerprinting scenario with
n ingress andm egress �ows, the blind technique has a computa-
tion overhead ofO(m) as opposed toO(nm) in a non-blind scenario,
which is imposed by correlation of every ingress and egress �ows.
Moreover, the blind scenario imposes a communication overhead
of only O(1) compared to O(n) in non-blind situations. However,
designing blind �ngerprinting techniques is signi�cantly more dif-
�cult as they do not have access to the side-channel available to
non-blind schemes.

https://doi.org/10.1145/3485832.3488010
https://doi.org/10.1145/3485832.3488010


ACSAC ’21, December 6–10, 2021, Virtual Event, USA Fatemeh Rezaei and Amir Houmansadr

FI1 FE1

FEm

...

FIn

(a) Stepping stone scenario

FI1

Malicious node
Malicious node

FE1

FEm

...

...

FIn

(b) Anonymity scenario

Figure 1: Example application scenarios of network �ow �ngerprints. (F I⇤ and F
E
⇤ represent ingress and egress �ows).

In this work, we take the �rst steps towards designing practical
blind �ow �ngerprinting techniques by proposing a novel system
called FINN. Our work is motivated by DeepCorr [20], which lever-
ages neural networks to perform passive correlation of network
�ows. FINN inserts �ngerprints into �ows by slightly delaying the
packets while keeping the �ngerprints invisible (in order to evade
detection and avoid interfering benign tra�c). FINN uses a DNN,
trained on a large corpora of network �ows, to decide on how to
generate such �ngerprinting delays for each target connection. We
have simulated FINN to evaluate its performance and we have used
statistical measures to evaluate its invisibility. Additionally, we
have implemented FINN in real network environments (wireless
and cellular networks) in order to validate our simulation results.

In summary, the main contributions of our paper are as follows:
• Wedesign a novel �ow �ngerprinting system based on neural
networks. To the best of our knowledge, we are the �rst
to use deep neural networks for �ow �ngerprinting. We
show that the use of DNNs improves the performance of our
�ngerprinting substantially compared to prior works.

• We have performed thorough experiments, using both sim-
ulations and real-world implementations, to evaluate the
performance of our �ngerprinting system in various net-
work settings, e.g., di�erent noise environments. We �nd
that our system can embed an average of 0.96 bits of infor-
mation in every ten packets, which is almost twice the state
of the art. We also measure the extraction rate and bit error
rate of our system and show that it can reach more than 96%
extraction rate and around 2% bit error rate using �ows as
short as 10 packets to embed 1 bit of data. This is close to
twice the state of the art blind �ngerprinting, TagIt [25].

• To ensure the invisibility of our �ngerprint delays, we design
a novel GAN-based technique that generates �ngerprinting
delays with Laplacian distribution in order to be indistin-
guishable from natural network noise [21]. We demonstrate
the strong invisibility if FINN through extensive evaluations.

The rest of this paper is organized as follows. We review some
background on tra�c analysis on Section 2 and discuss the threat
model. In Section 3, we describe the components of our neural
network model. In Section 4, we present the dataset that we use

for training our model. We evaluate the performance of our system
through simulations and experiments in Section 5 and 6. Finally,
we discuss the invisibility of our system in Section 7 and conclude
in Section 8.

2 BACKGROUND
In this section, we discuss the threat model of our problem. Also,
we talk about passive and active tra�c analysis, and mention the
pros and cons of each one.

2.1 Threat Model
The problem studied in this paper is �ow �ngerprinting. Flow �n-
gerprinting has two main applications: deanonymizing Tor and
stepping stone detection. A �ow �ngerprinting system consists of
two entities: �ngerprinter (encoder) and extractor (decoder). Fin-
gerprinter inserts a message to the network �ow, and the decoder
tries to extract the inserted message from the �ow.

Detecting stepping stone attackers is our main attack scenario.
The stepping stone attacker relays her tra�c through compromised
machines in an enterprise in order to hide her identity. Figure 1a
shows this scenario in which the �ngerprinter sits on the border
routers of an enterprise and inserts a �ngerprint to the incoming
�ows. Then, it attempts to extract the inserted �ngerprint from the
outgoing �ows of the enterprise. Two compromised entities are
involved in deploying the attack.

Moreover, Tor [7] tunnels the network tra�c through three
nodes (entry, middle, and exit node) to enable anonymous com-
munication. In the Tor scenario, the attacker controls some entry
and exit nodes. Then, it inserts a message to the incoming �ows
of the entry node and aims to extract the inserted message in the
exit node. Doing this, it links the �ows in the entry and exit nodes,
and therefore, compromise the anonymity of Tor. For instance, the
attacker in Figure 1b can de-anonymize a Tor connection using two
compromised guard and exit relays.

2.2 Passive Tra�c Analysis
Passive tra�c analysis techniques use intrinsic characteristics in
the �ows such as packet timings, sizes, ordering, direction, etc. to
correlate �ows. For example, in [33], they divide the �ow to on/o�
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periods and use the timing of these periods to correlate two con-
nections. In [30], authors use the inter-packet-delays to correlate
the connections using four di�erent correlation functions. In [5],
authors use random walks and computational learning theory to
give an upper bound on the number of packets needed to detect
stepping stone connections. Also, they study the scenario in which
the attacker uses cha�ng to avoid detection, and give bounds on
amount of needed cha�. Moreover, in [12], authors introduce meth-
ods to detect stepping stone when the attacker uses cha�ng and
delaying packets to avoid detection. They show that the number
of cha� packets that their algorithm can tolerate depends on the
size of the attacking tra�c. Note that they use synthetic and real
Internet traces to evaluate their theoretical results. The most recent
work in passive tra�c analysis is [20], which uses neural networks
to link Tor[7] connections.

The biggest advantage of passive tra�c analysis is that adversary
cannot learn that somebody is listening to the �ows to correlate
them (invisibility).

2.3 Active Tra�c Analysis
The signi�cant disadvantage of the passive approach is that it needs
long �ows to correlate them. This is not always possible since some
connections do not have adequate packets to correlate. For example,
an SSH connection in an stepping stone scenario might be too
short for this method. Another disadvantage of this technique is its
scalability. For instance, in a network withm incoming �ows and
n outgoing �ows, we need O(m) and O(mn) communication and
computation overhead, respectively. The active analysis is used to
address the weaknesses of the passive approach. Using active tra�c
analysis, this overhead is reduced toO(1) andO(m) communication
and computation, respectively, by inserting hidden messages to the
�ows. Note that we also require much shorter �ows in this method
to link the �ows. Modifying the packets’ timings in the �ow by
delaying each packet is the main method that is used for active
tra�c analysis [13–15, 25]. We study the previous work in tra�c
analysis in two subcategories of watermarking and �ngerprinting.

2.3.1 Watermarking. In this technique, a tra�c analysis party em-
beds a single bit of information on the network �ow by perturbing
some of its characteristics. This bit of data conveys that if a tag
exists on the �ow or not. As we mentioned earlier, the main body
of work on active tra�c analysis utilizes the packet timings to em-
bed a secret message to the �ow. There are two ways to employ
watermarks on the timings: inter-packet-delay based (IPD-based)
and interval-based approach.

In the IPD-based approach, the watermark is embedded into
the IPDs, which is introduced in [30] for the �rst time. In RAIN-
BOW [15], authors use IPDs to embed watermarks to the �ows in a
non-blind architecture in which they share the timing information
of packets -through a side-channel- with the watermarking parties.

The alternative approach (interval-based) delays the packets
into speci�c time intervals to embed the watermark. Most of the
recent work on watermarking uses the latter approach [24, 27, 32]
since this method is more resilient to packet-loss and re-ordering
compared to the IPD-based approach. Most of the previous interval-
based methods are susceptible to multi-�ow attacks [16] in which
an attacker accumulates multiple watermarked �ows and use them

to recover the secret key and remove the watermark from the �ows.
Swirl [14]was designed to be resistant to this attack.

2.3.2 Fingerprinting. As discussed in part 2.3.1, we only add a
single bit of information to the �ow in watermarking, which con-
veys the information that the �ow is tagged or not. On the other
hand, we can embed multiple bits of information to the �ows using
�ngerprinting, which can convey more complex data such as the
origin of the �ow and identify the �ngerprinter. Fingerprinting
was introduced in Fancy [13] in which authors use a non-blind
IPD-based �ngerprinting system using a similar architecture as
RAINBOW [15]. In a non-blind technique, the �ngerprinter and
extractor establish a secret channel to share information about the
intercepted �ows making the system less scalable. TagIt [25] was
introduced as the �rst blind interval-based �ngerprinting system.
It used a similar architecture as Swirl [14] for �ngerprinting, and
employed randomization to avoid multi-�ow attacks.

In this paper, we design the �rst blind IPD-based technique,
which uses a much less number of packets to reach the same perfor-
mance as previously introduced �ngerprinting systems. There are
two main things to consider when watermarking/�ngerprinting a
�ow:

• Watermark/�ngerprint needs to be invisible to the adversary.
It should be tough for an adversary to detect whether a �ow is
watermarked/�ngerprinted. Otherwise, it would be trivial to
remove the watermark from the �ow. To achieve invisibility,
such systems should not introduce large delays to packets
in the �ow.

• Watermark/�ngerprint should be robust to network jitters.
As we know, jitters in the network would change the timings
of the packets, and these systems should be robust to those
jitters and detect/extract the watermark/�ngerprint in the
presence of such noises. The watermark/�ngerprint that we
embed to the �ow should be big enough not to be removed
by the network jitters to achieve robustness.

It is evident from the above explanation that robustness and
invisibility are the two sides of the same coin. A system cannot
have perfect robustness and be entirely invisible simultaneously.
We need to play with system parameters to reach an acceptable
invisibly and robustness.

3 DESIGN OF FINN FINGERPRINTING
SYSTEM

In this section, we design a �ow �ngerprinting technique using
neural networks. Flow �ngerprinting is a fundamental problem for
enterprises that want to detect compromised machines used as step-
ping stones to relay cybercriminal’s tra�c. Our system works by
delaying packets in the �ow to embed secret �ngerprints. Previous
methods use statistical approaches [14, 15, 25] for �ngerprinting,
which requires careful selection of features to manipulate for em-
bedding the �ngerprints.We leverage neural networks in our design
to avoid the limitation of using a manual process for embedding
and extracting �ngerprints. Neural networks learn the tra�c and
extract the complex features from it instead of using carefully en-
gineered features. In designing our system, we follow three main
goals:
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• Invisibility. Introducing small delays to the packets makes
the system invisible to the adversary, which has access to
the �ngerprinted �ows and attempts to see any di�erence
in the tra�c compared to the regular tra�c. We use small
�ngerprinting delays to the packets. Also, we use a Genera-
tive Adversarial Network to generate �ngerprinting delays
that follow Laplace distribution, which is known to be the
distribution of network jitter [22].

• Robustness. A robust system can extract the �ngerprint
from the �ows even in the presence of large network jitter.
We train our model with network jitter. Our model learns
network noise and can de-noise the �ows and extract the
�ngerprints.

• Scalability. We use a blind approach to lower the cost of
computation and storage to provide scalability. FINN uses
a blind approach to �ngerprint �ows. In a blind approach,
we do not need to store or share any information about
the �ow between the �ngerprinting entities, which imposes
no communication and storage overhead. To extract the
�ngerprint from �ows, we do not need to compare it with all
incoming �ows (compared to non-blind approaches), which
reduces the computation overhead signi�cantly.
FINN’s low cost allows it to be implemented in a real-world
setting.

• Speed.We want to use a small number of packets for �nger-
printing since many �ows in real-word do not contain a few
packets. Also, this helps in �nding the attacker early.

Next, we present the design of FINN, which consists of two main
components: a �ngerprinter (encoder) and an extractor (decoder).
The encoder embeds the secret �ngerprint into the �ows. The de-
coder extracts the �ngerprint from the �ows.

Figure 2 shows the architecture of these two components.
We show the input of the model as following:

Input = [Fi ,&i ] (1)

Where Fi is the �ngerprint that we intend to embed to the �ow i ,
and &i is the network noise on the �ow i. Note the Ti and &i has
the size of N , and the Fi has the length of `. Fi is an all zero vector
with a single one.

Encoder. is a fully connected network. It takes the Fi and &i ,
and passes it to a fully connected network with four hidden layers to
generate the �ngerprinting delays. This �ngerprinting delay is used
to delay the packets in the �ow i to embed the secret �ngerprint of
Fi . The fully connected network has layers of size 1000, 2000, 2000,
and 1000, and has a output layer of N , which is our �ngerprinting
delays. The detail description of the layers is represented in Table 2.
The �ngerprinting delays are added to the vector of inter-packet-
delays (IPD),Ti , and &i to create the noisy �ngerprinted IPD, which
would be the input for the decoder.

Decoder. The decoder receives the �ow (IPDs) when it passes
the network and accumulates the network noise.

Our decoder consists of two parts: convolutional and fully con-
nected. The convolutional part is responsible for de-noising the
�ow and removing the extra network noise added to the �ow. The
fully connected part is responsible for decoding the embedded �n-
gerprint.

Table 1: FINN Parameters

Parameter De�nition

N Number of packets in each �ow
` Length of inserted �ngerprint
� Amplitude of the �ngerprint
� Standard deviation of noise
� Ratio of � to �
Kw Weight of the decoder-loss to ensure robustness
Iw Weight of the encoder-loss to ensure invisibility

The convolution layers have a kernel size of 10 and �lter sizes
of 50 and 10, respectively. The output of the convolution part �at-
tens (�atten layer) to feed the fully connected network. The �rst
fully connected layer’s size is 256, and the size of the second fully
connected layer is �ngerprint length. We use a Softmax function
to normalize the output of the decoder. Softmax scales the output
between zero and one. Each element of the output vector is a prob-
ability that the corresponding element is 1. To get the extracted
�ngerprint, which is in on One-hot format, we make the largest
element one and the rest to be zero. This output is the F 0i , which is
the extracted �ngerprint.

3.1 Training
As we mentioned earlier, FINN has two main components: encoder
and decoder. The encoder is responsible for generating the �nger-
printing delays for each �ow, and the decoder is responsible for
extracting the �ngerprints from the �ngerprinted �ows. We de-
�ne two loss functions: decoder-loss and encoder-loss to control
how well each of these tasks work. For the �rst task, we use mean-
absolute-error (MAE) that tries to reduce the error in the �ngerprint
generation. For the second task, we use categorical-cross-entropy
to minimize the error in decoding the embedded �ngerprints. The
encoder-loss is an MAE loss. Note that we tune the weights of
these loss functions (Kw and Iw ) to reach required robustness and
invisibility. As we increase the Kw , we are giving more weight to
reducing the �ngerprint extraction error.

In the loss function, n is the size of the training data, K is the
number of possible �ngerprints, � is a binary indicator that the
observation o is of class c (1 or 0), and p is the probability that
the observation is of class c . We use an Adam optimizer [17] to
minimize the loss.

L = Iw
n
|
n’
i=1

Îi | +
Kw
n

n’
i=1

K’
c=1

��io,c logpo,c (2)

4 EXPERIMENTAL SETUP
In this section, we discuss our dataset, hyperparameter selection,
and evaluation metrics.

4.1 Dataset
As we explained in Section 3, FINN consists of two main entities:
encoder (�ngerprinter) and decoder (extractor). The encoder takes
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Figure 2: The network architecture of the FINN.

IPDs and �ngerprints to generate �ngerprinting delays. The de-
coder receives the �ngerprinted IPD, which is generated by adding
�ngerprinting delays to the IPDs and extract the embedded �nger-
print. Note that we have an additional input of network noise to
make the robust extraction of �ngerprints from the �ngerprinted
�ows possible. To train our model, we need to feed our network
with quintuples (IPD, �ngerprint, �ngerprinting delay, network
noise). In the following, we explain the dataset that we use for each
of these quintuple components.

IPDs. We use CAIDA’s 2016 and 2018 anonymized traces [19]
to build our IPD dataset. We use CAIDA because we want to have
IPDs of real network traces to simulate the actual network tra�c.
We extract the �ows in this database based on the IP addresses, port
numbers, and protocol types of the end-hosts, which is enough to
separate the network connections. Note that we build each �ow
by considering only one side of the tra�c between two end-hosts
because, in �ngerprinting, we only have access to one side of a
connection.

Fingerprints. Fingerprints are the messages that we embed in
each �ow. There are two options to consider for �ngerprints: binary
or One-hot representation. We employ the one-hot encoding to
build our �ngerprint dataset. One-hot is a group of K bits that
only have a single one. Assume that we want to embed 2 bits of
information in each �ow. Using a binary representation, we have
following options as secret message: 01, 00, 11, 10. For the one-
hot representation, we have the following options for the one-hot
encoding: 0001, 0010, 0100, 1000. We choose the second format for
our �ngerprints since it gives us better performance. It is because
we are using categorical-loss as the decoder loss, which works
better when its data has a one-hot representation. Note that in our
above example for one-hot encoding, the �ngerprint length (K ) is
4, enabling us to embed log2 K bits in each �ow.

Fingerprinting Delays. As discussed earlier, FINN is an IPD-based
approach, which means it embeds the secret �ngerprints into the
IPDs. FINN modi�es the timings of the packets in the �ow in a way
to embed the �ngerprint into the IPDs. In order to train our model,
we need to build �ngerprinting delays for many pairs of (�ow, �n-
gerprint). Here, we describe how we generate these �ngerprinting
delays.

Suppose that we have a network �ow with the following timings:
fi = {t0, t1, ...tn }. We compute the inter-packet-delays as : ipdi =
{t1 � t0, ..., tn � tn�1} and delays the packets such that the jth
element of the ipdi changes to ipdi j = ipdi j+�i j . The �ngerprinting
delay components are as following:

�ngerprinting delayi = {�i0,�i1, ...,�i(n�1)} (3)

in which, �i s are chosen from a Laplacian distribution with a
standard deviation of �i . Note that we choose �i s according to the
standard deviation of noise in each network connection. To embed
the �ngerprint into the �ow, the �ngerprinter delays the jth packet
in the ith �ow using the following formula:

n=(j�1)’
n=0

�in (4)

We need to choose �i0 large enough to avoid having negative de-
lays on packets. Also, we have to choose �i as small as possible to
avoid �ngerprint detection by an adversary. Note that we generate
�ngerprinting delays for every pair of (�ow, �ngerprint), as men-
tioned above. We expect to achieve high invisibility since we are
generating all of the �i randomly for every pair.

Network Noise. Network noise is one of the main inputs of our
�ngerprinting model. Since network jitter delays the packets and
might eventually remove the embedded message, we need to feed
it to our model to de-noise it. Also, it is essential to know the jitter
since we need to generate the �ngerprints according to it. If a
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link has high jitter, we need to embed �ngerprints with a higher
amplitude to resist the network jitter and vice versa. We estimate
this jitter by sending several packets through the link and use the
standard deviation of jitter as the amplitude of our �ngerprint.

4.2 Evaluation Metrics
We use the following metrics to analyze FINN:

• Extraction Rate (ER): The ratio of �ngerprints that we suc-
cessfully extract from �ngerprinted �ows to the number of
all �ngerprinted �ows. This metric shows how many of the
�ngerprinted �ows lost their embedded �ngerprint due to
the network noise.

• Bit Error Rate (BER): Bits of error that occurs for each
wrongly extracted �ngerprint. We convert each �ngerprint
to its binary representation to compute bit rate error. This
metric shows the number of bits that have been altered due
to the �uctuations caused by the network noise.

BER is important when using error correction codes to recover the
lost bits. Since we are not using any error correction codes, the BER
is the main metric here.

4.3 Choosing FINN’s Hyperparameters
Table 1 shows the main parameters of FINN. Here, we select our
system’s hyperparameters, including Iw , and Kw . Iw is the weight
of our encoder loss, and selecting larger Iw s enhances the invis-
ibility of FINN. Kw is the weight of decoder loss, and selecting
larger numbers for this parameter improves the performance of
FINN. Also, we select our model’s learning rate, which controls how
quickly a neural network model updates its weight, and therefore
learns the problem. Note that we train our model with a standard
deviation of noise (� ) in the range of (2, 10) msec. It is because the
nodes that we used in our experiments showed a standard deviation
of noise in this range. Also, in our experiments, for the value of � ,
we choose values in this range.

Model parameters. As we discussed in Section 3, our encoder
consists of a fully-connected network with three hidden layers. We
tried [32, 64, 128, 256] for the size of these layers and learned that
[128, 32, 64]works the best on our data. The decoder consists of two
convolutional layers and one fully-connected layer. For the window
sizes, we tried values in [5, 10, 20, 40, 50, 80, 100], and we learned
that [50, 10]works the best.We tried values in [5, 10, 20, 50, 100, 200]
for the kernel size and learned that [10, 10] gives us the best perfor-
mance. Table 2 shows the structure of the encoder and decoder in
detail.

Optimum learning rate: This is one of the hyperparameters of
each neural network model. It represents the rate at which weights
are updated in each iteration. Setting a large number for the learning
rate may cause an unstable training process. On the other hand,
setting a very small number may result in a long training process.
To choose the optimum value for this hyperparameter, we try the
values in [1e � 2, 5e � 3, 2e � 3, 1e � 3, 1e � 4, 1e � 5] while �xing the
other parameters: number of training data = 500K , N = 100, and
` = 212. Through this experiment, we �nd that 1e � 3 works the
best for our model. Therefore, in the following experiments, we use

Table 2: FINN �ngerprint model hyperparameters.

Layer Details

Encoder Fully Connected 1 Size: 1000, Activation: Relu
Fully Connected 2 Size: 2000, Activation: Relu
Fully Connected 3 Size: 2000, Activation: Relu
Fully Connected 4 Size: 500, Activation: Relu

Decoder

Convolution Layer 1

Kernel number: 50
Kernel size: 10
Stride: (1, 1)

Activation: Relu

Convolution Layer 2

Kernel number: 10
Kernel size: 10
Stride: (1, 1)

Activation: Relu
Fully Connected 1 Size: 128, Activation: Relu

1e � 3 as the learning rate. Note that we use 5000 �ows to evaluate
our model in all of the experiments in this section.

Selecting Iw and Kw : Two main things to consider when �n-
gerprinting is robustness and invisibility, and we de�ne two loss
functions to control them.We use amean absolute error for encoder-
loss to force the system to avoid generating �ngerprinting delays
that are too large, resulting in low invisibility. The decoder-loss is
a categorical-cross-entropy that minimizes the di�erence between
the extracted and inserted �ngerprint to ensure robustness. Iw and
Kw are the weights that control the impact of encoder-loss and
decoder-loss on the total loss, respectively. We need to choose these
two values in a way to achieve optimum invisibility and extraction
rate. We try the values in [1, 5, 50] for Iw and values in [1, 5, 10, 50]
for Kw while �xing the ` = 212,N = 100. We get the optimum re-
sult when we set the pair of (1, 5) for (Iw ,Kw ). Note that choosing
larger values for Kw improves the extraction rate, but at the same
time lowers the invisibility. We use the pair (Iw = 1,Kw = 5) for
the rest of the experiments.

5 SIMULATIONS
In this section, we run simulations to evaluate the performance of
FINN o�ine. We show the impact of �ngerprint length (`) and �ow
length (N ) on the performance. Note that we train our model using
the 2018 CAIDA anonymized traces of equinix-nyc link and test
it using the CAIDA anonymized traces of 2016 equinix-chicago
link. This ensures that we do not tailor the model for a speci�c link,
and it is transferable to di�erent network conditions.

5.1 Impact of Fingerprint Length (`) on
Performance

One of the main parameters of FINN is the �ngerprint length (`).
To evaluate this parameter’s impact on the performance, we �x the
other parameters (N = 100) and increase ` until the extraction rate
drops signi�cantly. Figure 4 shows the impact of increasing ` and
size of training data on the performance of FINN. The �gure shows
our model’s performance for ` = 29, 210, 211, 212, 213, and 214. As
the �gure shows, when the size of training data is 500K , we have a
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Figure 3: Result of increasing � on performance of FINN �n-
gerprint in di�erent network conditions (�ow length = 100,
` = 210).

Figure 4: Result of increasing ` and number of training data
on performance of FINN �ngerprint(�ow length = 100).

96.6% extraction rate and 1.6% bit error rate when ` = 29, and this
result degrades to 94.9% and 2.8% when we increase it to 212.

Also, we get similar results for ` of 212, and the performance of
FINN drops when we increase ` to 214 (14 bits). Note that although
` = 212 gives better performance than 212, we choose 212 since we
can send more data on average when using ` = 212. The following
formula computes the number of bits that we can embed on average
when the N = 100 for ` = 29 and 212. We multiply the extraction
rate by the number of bits embedded in the �ow to �nd the number
of bits that are correctly extracted from the �ows on average.

log2(212) ⇥ 0.949 = 11.38

log2(29) ⇥ 0.966 = 8.69
(5)

Also, as is expected, increasing the size of the training data improves
our performance. This is because having more samples in training
results in having a more generalized model, and therefore, better
performance.

5.2 Impact of Fingerprint Amplitude (� ) on
Performance

In this experiment, we want to see how � impacts the performance
of our model. We �x the other parameters as: N = 100, ` = 212.

Figure 5: Result of increasing �ow length and number of
training data on performance of FINN �ngerprint (�nger-
print length = 210).

Figure 3 shows the result of this experiment. We train our model
with � in the range [5, 10, 20, 30, 40] for three ranges of the standard
deviation of the noise. For the � = (2, 10) msec, we have more than
94% extraction rate for all amplitudes. However, as the � increases,
we need to use a �ngerprint with a higher amplitude to get the
same results.

5.3 Impact of Increasing the Flow Length
Flow length is another main parameters of FINN. As expected,
increasing it improves the performance of our system. Our goal is
to �nd the optimum number of packets for �ngerprinting when
�xing other parameters as following: �ngerprint length = 1024,
� 2 (2, 10). Figure 5 shows the result of our experiment. Note that
the number of epochs is 100. As the �gure shows, as we increase
the �ow length, our results improve. For example, when we have
500K of training data, the extraction rate for �ow length of 50, 100,
and 150 are : 79.5%, 94.9%, and 97%, respectively. Also, the bit error
rate is 10.2%, 2.8%, and 1.5% for the �ow length of 50, 100, and
150, respectively. Moreover, it is evident from the �gure that as we
increase the size of training data, our results improve. For example,
for the �ow length of 100, we improve from 88.4% to 94.9% as we
increase the size of training data from 200K to 500K .

Additionally, we increase the number of epochs to 200 to evaluate
the model’s performance with higher epochs and learn that the
performance enhances as following: 85.3%, 96.1%, 97.4%, and the
bit rate error enhances as following: 7.3%, 1.8% and 1.2% for the
�ow length of 50, 100, and 150, respectively. Since the model’s
performance does not change much in higher epochs when we
increase the �ow length (with the �x parameters) from 100 to 150
(96.1% to 97.4%), we conclude that the �ow length of 100 is enough
to embed 10 bits (�ngerprint length of 1024) of information and
achieve good performance.

5.4 FINN as a Watermark
In this experiment, we want to evaluate our algorithm’s perfor-
mance when used as a watermark. Due to the space limitation, we
move the results of its simulation and implementation to Appen-
dix 9.1 and 9.3, respectively.
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6 REAL-WORLD IMPLEMENTATION
In this section, we implement FINN in real-time to evaluate it on
actual network �ows. We implement FINN on Ubuntu Linux (ver-
sion 5.4.0-58-generic) using iptables (version 1.8.4), and using
libnetfilter_queue library (version 1.0.4) [3].We add rules to the
iptables’s OUTPUT chain to keep the packets, and our program
obtains them for �ngerprinting using the libnetfilter_queue
library. To evaluate the performance of FINN, we set up an encoder
on campus and a decoder, which is a digital ocean node [2] located
in Bangalore. The goal is to see if FINN works in a real-time setup.
Note that the network �ows that we use are replayed SSH connec-
tions extracted from the CAIDA dataset. To evaluate our system
in di�erent network conditions, we replace the Bangalore node
with seven Amazon EC2 nodes worldwide, and perform the same
experiments. Also, we test FINN on a cellular network to ensure
that it works on di�erent network settings.

6.1 Impact of Fingerprint Length on
Performance

As we explained in Section 4, we can embed log2(`) bits in each
�ow. As expected, increasing the �ngerprint length (`) worsens the
performance of the system. To evaluate the impact of this param-
eter on performance, we set the N = 100 and � in range of (2, 10)
msec, and choose ` from 29, 210, 212 and 214. Moreover, we use
500K as the training size since Section 5 showed that this training
size was enough to have a generalized model. Figure 7 shows the
result of this experiment for eight di�erent nodes located world-
wide. The encoder (�ngerprinter) is on a PC on campus, while the
decoder locates in seven Amazon EC2 nodes and one digital ocean
node in Bangalore. Note that our decoder nodes are in South and
North America, Australia, Europe, and Asia. As shown in the �gure,
we can extract the �ngerprints with a high extraction rate for all
eight links. Using N of 100, we see that we have more than 96%
extraction rate when the �ngerprint length is 212 and lower, which
degrades to around 75% as we increase the �ngerprint length to 214
(14 bits). This result is better than what we got from the simula-
tions. We believe it is because the noise that we faced in real-world
experiments was lower than the noise that we introduced in our
simulations, which improved the results. we compute the number
of bits embedded in a �ow as:

0.962 ⇥ log 212 = 11.54 (6)

6.2 Experiments on Cellular Network
To evaluate the performance of FINN in a di�erent network setting,
we implement it on the cellular network. To do so, we hotspot a
cellular phone network with 2.4GHz bandwidth and connect the
PC to it (encoder). The decoder is set up on the Bangalore node.
Figure 8 shows the result of our experiment for di�erent ` for two
nodes located in Bangalore and Frankfurt. As the �gure shows, we
achieve lower extraction rates on these experiments compared to
thewireless network in Figure 7.More speci�cally, for the Bangalore
link, we get a 93% extraction rate and a 0.05 bit error rate when
the ` is 210. For the Frankfurt link, we gt 87% extraction rate, and
0.1 bit error rate when the ` = 29. The reason for having lower
performance is that the � in our links when we connect to the

Figure 6: Performance of the real-time FINN �ngerprint
experiment from campus to various nodes (Wireless, �ow
length = 100).

Figure 7: Performance of the real-time FINN �ngerprint ex-
periment from Bangalore to various nodes (Wireless, �ow
length = 100).

Figure 8: Performance of the real-time FINN �ngerprint
experiment from campus to various nodes (Cellular, �ow
length = 100).

cellular network is (7.17, 64.65) msec, which is much larger than
the wireless network, which was in the range of (2, 10) msec. Note
that the model that we used here was trained on � in the range
of (2, 10) msec. To improve the results, we should train our model
with a larger range of � , which as Figure 5.2 shows, would improve
the results.
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Table 3: Performance comparison of TagIt and FINN

Method ER BER Average # of bits # of �ows

FINN 96.2 2.1% 11.54
190TagIt (T=1620) 90.1 2.2% 5.32

TagIt (T=2160) 96.8 1.4% 4.13

6.3 Comparing FINN with Previous Methods
We want to compare the performance of FINN with previous �nger-
printing systems. TagIt [25] is the most recent blind �ngerprinting
system that uses an interval-based scheme. It embeds �ngerprints
on the �ows by sending the packets to speci�c intervals. Each in-
terval, T, is used to embed a single bit of information to the �ows.
To compare our system’s performance to TagIt, we implement it in
real-time on our Bangalore link to evaluate its performance in the
same condition. The main parameter of TagIt is the interval length,
and the packet rate is the main factor to consider when choosing
this parameter. We choose 190 �ows with packet rates in the range
of [5, 25] and select the interval length accordingly. Table 3 shows
the result of TagIt for two di�erent interval length. As the table
suggests, we can embed 5.3 bits per-�ow using TagIt, while this
number is 11.54 for FINN. We compute the average number of bits
embedded in each �ow and learn that FINN can embed 11.54 bits per
�ow, which is 2.18 of TagIt (5.3 bits per �ow). Moreover, �xing the
ER for FINN and TagIt at around 96%, TagIt has better Bit Error Rate
(BER), which is important in the case we are using error correction
codes to recover the lost bits. ER and average number of embedded
bits are more important metrics for us since we are not using error
correction codes. Comparing the average number of bits embedded
in each �ow, FINN wins with a large margin (11.54 vs 4.13 in TagIt,
which is reaching near 3 times more capacity). Moreover, Fancy [13]
is a non-blind �ngerprinting approach, therefore, it is not fair to
compare it our work. Since non-blind techniques have access to
more information, they intuitively o�er better performances, but
they are hard to deploy in practice.

6.4 FINN’s Scalability
We compute the resources required for a stepping stone detection
scenario using FINN for the CICS building. The number of graduate
employees and sta� in CICS is around 450. The only thing that
we store is the trained model, which has around 3 MB size. We
compute the time it takes to decode the �ngerprint from the �ows
in the worst-case scenario that every person has one connection.
Performing the FINN’s decoding for N=100 and ` = 212 for 450
�ows on a 3.5 GHz Ubuntu machine with a 32 GB of RAM, takes
1.57 seconds. Note that this time linearly increases as the organi-
zation becomes larger. For a larger organization, we might need
a Commodity PC. For a vast organization, every sub-network can
run its �ngerprinting system. Our system runs on a gateway, and
the router connects to the gateway to send the IPDs. Then, the
gateway runs the encoder model and returns its output, the �n-
gerprinting delay, to the router. The router uses the �ngerprinting
delay that receives to delay the current packet. The average tra�c
size and time required for our �ngerprinting system is 155KB and
6.2 seconds, respectively. Therefore, if we deploy our system on a

Table 4: Discriminator model hyperparameters.

Layer Details

Fully Connected 1 Size: 100, Activation: Relu
Fully Connected 2 Size: 1, Activation: Sigmoid

10Gbps link, the link will consist 50K number of �ows with size
166KB each, which will takes around 43 seconds to correlate the
�ows using FINN. The time can signi�cantly reduce by performing
the computations in parallel.

7 FINGERPRINT INVISIBILITY
A useful �ngerprint needs to be invisible to prevent being detected
by an adversary and eventually removed. Also, a �ngerprint needs
to be invisible to not interfere with the activities of benign users. As
we discussed earlier, we insert �ngerprints by changing the IPDs
of the �ows. We have to be careful not to add a signi�cant delay,
which makes the �ngerprint visible and easily removable. To study
the invisibility of our system, we use the Kolmogorov�Smirnov
test, which has been used in [15, 25] to detect watermarks added
to IPDs in a �ow.

7.1 Generative Adversarial Network
Generative Adversarial Network is a class of machine learning
introduced by Ian Goodfellow et al. [11]. In a GAN framework,
two models contest to win a zero-sum game. At the end of the
learning, the model learns to generate new data with the same
statistics as the training data. A GAN framework consists of two
contestants: discriminator and generator. The discriminator gets
trained with real and fake data. Real data is the data that we are
interested in generating. The fake data is a set of randomly gener-
ated data. The discriminator attempts to distinguish between real
and fake data,. The generator attempts to generate data similar to
the real data to fool the discriminator. GANs have been used to
generate real-looking images, human faces,image-to-image transla-
tion, text-to-image translation, etc. Here, we use GANs to create
Laplace �ngerprinting delays. This improves the invisibility of the
system since the �ngerprinting delays added to the �ow get lost
in the network jitter imposed on the �ows, which also has Laplace
distribution [21, 22]. This method has been used in [21] to generate
Laplace distribution. The generator and extractor are borrowed
from our original model. The discriminator is a fully-connected
network with one hidden layer with size of 100. The discriminator
uses a binary-crossentropy as its loss function. Figure 5 shows the
architecture of FINN while using GAN.

The detail of the architecture is as follows:

• Train the discriminator with Laplace and uniform data.
• Freeze the discriminator and train generator (�ngerprinter)
to generate Laplace �ngerprinting delays.

• Freeze Generator and discriminator. Feed the extractor with
the noise and IPDs. Have an Add layer to add IPDs, noise,
and the output of generator. Train the extractor.
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Figure 9: Using GAN to improve invisibility.

Figure 10: K-S Test Di�erence for di�erent methods (Finger-
print:�ow length = 100,�ngerprint length = 210,Watermark:
�ow length = 50).

7.2 Kolmogorov�Smirnov Similarity Test
Kolmogorov�Smirnov (K-S test) is used to determine if a �ow
is from a certain distribution, or if two �ows belong to the same
distribution bymeasuring themaximum distance between the �ows.
In the second case, K-S statistics is:

Dn,m = sup
x

|F1,n (x) � F1,m (x)| (7)

F1,n and F1,m are the empirical distribution of the �rst and sec-
ond �ows. The null hypothesis (two �ows are from the same distri-
bution) is rejected at level of � if

Dn,m > c(�)
r

n +m

nm
(8)

In which, n and m are the sizes of two �ows and c(�) can be
computed as following:

c(�) =
p
�0.5 ln� (9)

We �x our parameters as �ow length = 100 and �ngerprint length
= 1024, and use 500 �ngerprinted and non-�ngerprinted �ows to
evaluate the invisibility of our �ngerprinting system. We do our
investigation on the Bangalore node, where the standard deviation
of the noise is 2-10 milliseconds. Figure 10 shows the result of the
Kolmogorov-Smirnov test on our data. Using (8), we compute the
KS threshold for 0.95 con�dence interval, which is 0.19205. As the
Figure 10 shows, only 1 of our �ows (0.2%) fails to pass the K-S test.

Table 5: Result of clustering the �ngerprinted and non-
�ngerprinted samples

Clustering Algorithm True Positive False Positive

GMM 0.63 0.6
K-Means 0.0002 0.0002
DBSCAN 0.90 0.91

7.3 Clustering
A clustering algorithm groups the data so that the samples in the
same group aremore similar than those in other groups.We use clus-
tering algorithms to see if the �ngerprinted and non-�ngerprinted
samples can be clustered in two groups.We use three prominent clus-
tering algorithms from Python Scikit-learn packages: Distribution-
based, Centroid-based, and Density-based clustering.

The distribution-based clustering, samples most likely to belong
to the same distribution would be clustered in the same group.
This type of clustering generates complex models that captures
the correlation and dependence of attributes. The downside of this
technique is that theremight not exist a concisemathematical model
for many real datasets. We use a prominent method that is known
as Gaussian mixture models to cluster our dataset. GMM assumes
that data consists of a certain number of gaussian distributions.
For the centroid-based clustering, we use the K-Means algorithm.
K-Means represents each cluster with a single mean vector and has
some interesting theoretical properties: it partitions the data space
into a structure known as the Voronoi diagram. It can be considered
a variation of distribution-based clustering.

DBSCAN is a density-based Spatial clustering that de�nes the
clusters as connected dense regions [1]. In this method, the data in
sparse space are considered noise and outlier, therefore, ignored.
This clustering algorithm is suitable for the discovery of clusters
with arbitrary shapes. We use the inter-packet-delays as the feature
vector for the clustering task. The length of the feature vector is 100,
which was used in our experiments for �ngerprinting. To represent
the features in two dimensions, we use the principal component
analysis to reduce the dimensionality of the feature space. Figure 11
shows the �ngerprinted and non-�ngerprinted samples. As the
�gure shows, �ngerprinted and non-�ngerprinted �ows are not
easily separable. However, we use the three mentioned clustering
algorithms to see if it is possible to group the �ngerprinted and
non-�ngerprinted samples separately.
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Figure 11: We reduce the dimensionality of the samples us-
ing principal component analysis (PCA) to represent it in
two dimensions.

Note that we run the GMM clustering algorithm with the num-
ber of components as 2, which is the number of groups we expect
to have. The random state is initialized as 0 to make the results
reproducible. For the K-Means, we set the number of clusters to
2, and initialize the random state to 0. The DBSCAN algorithm
takes two main arguments: the number of samples and epsilon.
The number of samples is the required number of samples in the
neighborhood of a point to consider it a core point. Epsilon is the
maximum distance between two points to be considered neighbors.
Table 5 shows the result of these clustering algorithms. All of these
three clustering algorithms fail to group the data correctly and o�er
a random grouping. In other words, they could not �nd a clear pat-
tern separating the �ngerprinted �ows from the non-�ngerprinted
ones.

8 CONCLUSIONS
In this paper, we introduced the �rst blind �ow �ngerprinting sys-
tem using neural networks,FINN, which is robust to network noise.
FINN learns the network noise through training, and thus, it is able
to de-noise the noisy �ngerprinted �ows to decode the embedded
message. We evaluated the performance of our system thorough
simulations and experiments on live network connections. Our
experiments evaluate the impact of di�erent parameters, and �nd
the optimum values for di�erent settings. We compute the capacity
of FINN to be 0.96 bits in every ten packets, which is nearly twice
the state of the art. Moreover, we show that FINN performs well in
conditions where real-time noise is di�erent from what it is trained
on. This is important as it prevents us from needing to re-train the
model for every connection with di�erent network jitter. Finally, we
measure the invisibility of our system using Kolmogorov�Smirnov
test and show that it is extremely hard for an attacker to detect the
presence of our �ngerprint.

An important avenue for future work is to investigate e�ec-
tive countermeasures against DNN-based �ngerprinting systems
like FINN. Note that traditional countermeasures against tra�c
analysis work by adding substantial delays to the packets or by
inserting dummy packets [22]. Such countermeasures are not prac-
tical for the underlying scenarios of �ow �ngerprinting, as these

countermeasures will likely cause intolerable perturbations (like
excessive delays) on benign network connections. Therefore, we
suggest future work to investigate the use of DNN-speci�c coun-
termeasures, like adversarial perturbations [4, 21], which work by
applying signi�cantly smaller amplitudes of tra�c perturbations.
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Figure 12: FINN watermarking system.
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9 APPENDICES
9.1 Simulations
As we explained before, a watermark carries a single bit of informa-
tion, which is if the �ow is marked or not. Therefore, it is a more
straightforward task compared to �ngerprinting, which conveys
multiple bits.

Here, we train our model with two keys (0 and 1) to distinguish
the watermarked (true �ow) and non-watermarked �ows (false
�ow). When the key is 0, we do not watermark the �ow, and when
the key is 1, we add a watermark to the �ow. Figure 12 shows our

Figure 13: Performance of the FINNwatermark for di�erent
�ow length.

Figure 14: Selectingweight of false class by�xing theweight
of class of true (tw = 1 and�ow length = 50, and fw is increas-
ing).

watermarking system. As the �gure shows, the system consists of
two components: encoder and decoder, borrowed from the FINN
�ngerprinting system. We introduce three parameters here: elec-
tor and fw and tw . The elector divides the model into two parts:
watermarking and non-watermarking. The Elector is a vector of
all ones or zeros depending on the type of corresponding �ow. It
would multiply into the watermarking delays, and its result adds
to the IPDs. It ensures that the true �ow adds to the watermarking
delays to generate the watermarked IPDs by multiplying it in an
array of all ones, and the false �ow adds to 0 to remain intact.
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Figure 15: Performance of the watermark for di�erent �. �
is the ratio of watermark amplitude to network noise (�ow
length=50).

Two metrics that we use to evaluate the system are TP and FP,
which is de�ned in below. According to each application, one of
these metrics might be more critical. Therefore, we use two weights
to specify the importance of each class. We weigh the FP class
with fw and the FP class with tw . Increasing each of these weights
implies that we care about the speci�c metric more.

Metrics: To evaluate the performance of the watermark, we use
FP and TP:

• False Positive: fraction of unwatermarked �ows that we
wrongly �ag as watermarked.

• True Positive: fraction of the watermarked �ows that we �ag
as watermarked.

9.2 Discussion
For a speci�c link, the error rate is a function of watermark ampli-
tude (� ) and the �ow length (`). Choosing an appropriate watermark
amplitude depends on the jitter of the link. We need to use a larger
amplitude for a link with a high network jitter and a smaller am-
plitude for a lower network jitter link. We de�ne � as the ratio of
watermark amplitude to the SD of jitter on the link. We expect to
get better TP and FP by increasing this parameter. When choos-
ing this parameter, we need to keep in mind that increasing this
parameter decreases the system’s invisibility. Figure 15 shows the
result of having � in [2, 1, 0.75, 0.5, 0.25]. As the �gure shows, we
get better results as we increase this parameter. In particular, we
get near 100% true positive and lower than 10�3 FP when setting
the � to 1. Houmansadr et al. show in the Rainbow [15]; this value
ensures that our system is invisible to the adversary.

In our experiments, we choose larger fw to decrease the false
positive and try it with the values in [1, 5, 10, 15, 20, 25, 30] while
�xing the tw at 1. Figure 14 shows the tradeo� of FP and TP as we
increase this fp , which shows that as we increase the fw , the false
positive improves, and the true positive degrades.

9.3 Implementations
We implement FINN as a watermark, embedding one bit of data
in the �ows. We use six di�erent links to evaluate its performance
on cellular and wireless network. The links are from the Bangalore

Figure 16: Performance of the real-time FINNwatermark ex-
periment on Frankfurt-Bangalore link with di�erent band-
widths (�ow length = 50).

Figure 17: Performance of the real-time FINNwatermark ex-
periment on São Paulo-Bangalore link with di�erent band-
widths (�ow length = 50).

or campus node to 6 Amazon EC2 located worldwide (Sao Paulo,
Dublin, Ohio, Frankfurt, Mumbi, Tokyo). We send more than 100
watermarked and non-watermarked �ows in each link. Note that
we use 50 packets in the watermarking �ow. Table 7 and 8 show
results of our experiment for the wireless and cellular experiments,
respectively. Our results show that we get a false positive of 0
and a true positive larger than 90% for all links in both network
conditions. Note that the jitter’s SD in these links is in the range
(0.05, 32.02) msec. The Bangalore-Ohio link has a lower detection
rate because the SD of noise was higher compared to the other links
with a comparatively smaller SD of noise. Remember, we train our
model to assume that the SD of noise is in ranger(2, 10 msec. We
can improve the results by training our model with a larger SD of
noise.

Di�erent bandwidths. To further investigate the FINN water-
mark’s performance, we implement it on di�erent bandwidths
starting from 10KB to more than 10MB per second. Figures 16
and 17 show the result of our experiment on two links (Frankfurt-
Bangalore and Sao Paulo-Bangalore). We notice that the watermark
detection rate degrades in very low bandwidth. To be more speci�c,
our system shows a low TP when the bandwidth is lower than 50KB.
A bandwidth of 500KB/sec is enough to get the TP arbitrarily close



ACSAC ’21, December 6–10, 2021, Virtual Event, USA Fatemeh Rezaei and Amir Houmansadr

Table 7: Performance of FINN watermark experiment on
wireless connection for di�erent links (False positive is
�xed at 0)

Link True Positive False Positive

Campus - (Dublin, Ohio) 0.98

0

Campus - (Tokyo, São Paulo) 0.96
Campus - (Frankfurt) 0.96
Campus - (Mumbai) 0.94
Bangalore - (Dublin) 0.98
Bangalore - (Tokyo) 0.97
Bangalore - (São Paulo, Frankfurt) 0.96
Bangalore - (Ohio) 0.94

Table 8: Performance of watermark on cellular connection
for di�erent links (False positive is �xed at 0)

Link True Positive False Positive

Campus - (Tokyo) 0.98
0Campus - (São Paulo) 0.97

Campus - (Bangalore, Frankfurt) 0.93

to 1 and FP arbitrarily close to 0. We do not have similarly good
results on low bandwidth because we train our model with higher
bandwidth. Therefore, our performance degrades for the conditions
that we have not trained our model for. To improve our results, we
need to train the model using samples for di�erent bandwidths.

Comparing to previous work. We use FINN for the application of
stepping stone detection. For our scenario, we use network jitter
with Laplacian distribution, and for packet loss, we use Bernoulli
distribution. The SD of jitter is between [2, 10] msec, and we use
the amplitude of 0.75� and � , and the loss rate of 2%. This is similar
to the setting of DeepCorr [20] in its stepping stone scenario. Our
results show that we get slightly better results than the DeepCorr
by using much fewer packets (50 packets compare to 300 packets
in DeepCorr). Speed of correlation is one of the main principles in
designing our model and comparing it to the previous work, and
we reduce the number of packets needed to 1/6 of state of the art.
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