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ABSTRACT
Scienti�c breakthroughs in biomolecular methods and improve-
ments in hardware technology have shifted from a single long-
running simulation to a large set of shorter simulations running
simultaneously, called an ensemble. In an ensemble, each indepen-
dent simulation is usually coupled with several analyses that apply
identical or distinct algorithms on data produced by the correspond-
ing simulation. Today, in situ methods are used to analyze large
volumes of data generated by scienti�c simulations at runtime.
This work studies the execution of ensemble-based simulations
paired with in situ analyses using in-memory staging methods. Be-
cause simulations and analyses forming an ensemble typically run
concurrently, deploying an ensemble requires e�cient co-location-
aware strategies, making sure the data �ow between simulations
and analyses that form an in situ work�ow is e�cient. Using an
ensemble of molecular dynamics in situ work�ows with multiple
simulations and analyses, we �rst show that collecting traditional
metrics such as makespan, instructions per cycle, memory usage,
or cache miss ratio is not su�cient to characterize the complex
behaviors of ensembles. Thus, we propose a method to evaluate
the performance of ensembles of work�ows that captures resource
usage (e�ciency), resource allocation, and component placement.
Experimental results demonstrate that our proposed method can
e�ectively capture the performance of di�erent component place-
ments in an ensemble. By evaluating di�erent co-location scenarios,
our performance indicator demonstrates improvements of up to
four orders of magnitude when co-locating simulation and coupled
analyses within a single computational host.
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1 INTRODUCTION
Organizing computations into ensembles is gaining popularity in
many scienti�c domains using computational simulations. Ensem-
bles of work�ows are composed of several inter-related work�ows.
These work�ows typically have a similar structure, but they di�er
in their input data, number of tasks, and individual task sizes [18].
Work�ow ensembles are often used in molecular dynamics (MD)
simulations, which compute the atomic states of a molecular system
evolving over time by observing microscopic interactions between
atoms. Studying the folding process of complex molecules (i.e.,
conformational transition) of a molecular system often requires
running large-scale simulations to thoroughly explore feasible solu-
tions in the con�guration space. Such simulations require consider-
able computing time and resources, which may grow exponentially
with the size of the system. Such simulations are often run on high-
performance computing (HPC) systems in parallel [9]. Ensemble-
based simulation approaches (in which multiple simulations are run
concurrently) may also potentially lead to more e�cient sampling
of the solution space. For instance, multiple-walker [11, 24] em-
ploys multiple replicas of the system, known as walkers, where each
walker simultaneously explores the same free energy landscape
to improve sampling performance. Generalized ensembles [10, 22]
allow sampling a broader con�guration space by partitioning sim-
ulation states into ensembles with optimal weights to perform a
random walk in potential energy spaces. The key challenge for
enabling these approaches on large-scale systems is to e�ciently
execute these concurrent simulations structured as an entity, an
ensemble.
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Traditionally, MD simulations and the follow on data analysis
are loosely coupled, where the analysis is started after the simula-
tion is completed. The coupling of the two components is typically
done via the �le system. However, because of the growing disparity
between storage and computing capabilities in current leadership
computers [27], post-processing of potentially large volume of sim-
ulation data results in I/O bottlenecks [17]. In situ processing has
emerged as an alternative paradigm to overcome such I/O limita-
tion. Rather than post-processing data upon simulation completion,
in situ methods allow scientists to process data during the runtime
of the simulation by leveraging in-memory staging solutions such
as DIMES [30], or fast local storage such as burst bu�ers [14] and
doing the analysis in an iterative manner. MD simulations, like
many scienti�c simulations from diverse scienti�c domains, exhibit
an iterative pattern that can bene�t from the in situ paradigm, i.e.
data generation and analysis can occur in concert. In this paper, the
simulations are coupled with analyses by staging data in memory
for in situ processing.

To denote a collection of work�ows, two terms co-exist in the
literature: work�ow ensemble [8, 15] and ensemble work�ow [3, 23].
Although these terms are used interchangeably, we only refer
to work�ow ensemble in this work. When running ensembles of
in situ work�ows, there is a tension between co-locating simula-
tions, corresponding analyses on the same resources, so that the
data �owing between them can be e�ciently communicated, and
leveraging separate resources for these components to reduce the
computation time of each (as running multiple components on
the same resource usually leads to performance degradation due
to interference [21]). In this paper, we have developed methods
to characterize the execution of the work�ow ensemble and to
decide how the work�ow components need to be place within a
system to optimize the overall work�ow ensemble performance.
We introduce a set of performance metrics that qualify and quantify
the contention between components sharing the same computing
allocation and the bene�ts of the co-location.

Commonly, an ensemble-based simulation is comprised of a
large number of components. Solely observing individual compo-
nents separately is not su�cient to characterize the execution of
a work�ow ensemble, which features concurrently running exe-
cutables that utilize in situ communication techniques. The hetero-
geneous behaviors of coupled tasks, i.e. simulations are normally
compute-intensive while analyses are data-intensive, exacerbate
the management to accommodate e�cient execution and make
performance characterization of work�ow ensembles challenging.
Managing the execution of work�ow ensembles leads to schedul-
ing challenges at multiple levels within the work�ow ensemble,
among both concurrent and coupled applications. In this work,
we aim to design a method that will allow scientists to make ef-
�cient scheduling decisions for a work�ow ensemble of coupled
simulations and in situ analyses. In particular, we formalize the
behavior of work�ow ensembles into a theoretical framework and,
then based on this framework we propose a method to evaluate
resource usage, resource allocation, and resource provisioning for
work�ow ensembles. Our contributions are as follows:

(1) We introduce a set of comprehensive metrics that can charac-
terize the overall work�ow ensembles behavior at di�erent

levels of the application (task, work�ow, and ensemble). Ex-
perimental analysis using a real-world MD in situ work�ows
demonstrates the usefulness of the approach.

(2) We propose a formal executionmodel to capturework�ow en-
semble execution, which is then used to compute the e�-
ciency of coupled components. This formal framework lays
out the foundation for a novel performance indicator, which
allows us to assess the expected e�ciency of a given con�g-
uration of a work�ow ensemble.

(3) We validate our proposed metrics using a realistic MD use
case executing on a leadership class system. Experimental re-
sults demonstrate that our methods can capture co-location
scenarios in which improvements up to four orders of mag-
nitude can be achieved.

2 WORKFLOW ENSEMBLE
In this section, we conduct several experiments using a realistic
use case of molecular dynamics ensembles executing on a large-
scale HPC platforms. We characterize the behavior of the ensemble
use case using traditional metrics and discuss their limitations.
The analysis of the obtained results demonstrates the need for
new metrics that can accurately capture performance behaviors of
ensemble-based computations. Based on these results, we developed
new metrics that can better capture ensemble behavior.

2.1 De�nitions
A work�ow ensemble is a collection of inter-related ensemble mem-
bers/work�ows executing in parallel. Each ensemble member may
be comprised of multiple ensemble components – a component can
be a simulation or an analysis as is the case in our MD example
(Figure 1). Note that even though a work�ow ensemble can be com-
prised of parallel and sequential work�ows, we can always group
work�ows (ensemble members) running in parallel into a work�ow
ensemble. We focus on the set of ensemble members running con-
currently and starting their executions at the same time, to mimic
how multiple MD simulations are executed simultaneously in en-
semble methods [10, 11, 22, 24]. In this work, we restrict ourselves
to a single simulation per ensemble member. This simulation is
coupled with at least one analysis component. In this work, we as-
sume that ensemble members do not exchange information and are
independent of each other (i.e., the analysis component of a given
ensemble member only requires data generated by the simulation
of that ensemble member [5]). The type of coupling is de�ned by
the ensemble components. In our MD application, the simulation
periodically writes out the data, which is read synchronously by the
analyses. Although the simulation can compute while the analyses
are reading the data, the simulation does not write any new data
until the data from the previous iteration is read.

2.2 Experimental Setup
In situ processing, combinedwith in-memory computing, has emerged
as a solution to overcome I/O bottlenecks in large-scale systems,
because moving data in memory rather than via the �le system
provides much better performance. However, using in situ process-
ing, often implies that the communicating components need to
share a node on an HPC system (in case of a distributed memory
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Figure 1: Ensemble of in situ work�ows: Ensemble Compo-
nent, Ensemble Member, and Work�ow Ensemble.

architecture). However, this co-location can also lead to resource
contention and reduce the bene�t of in situ communications. In
the context of work�ow ensembles, a large number of components
sharing resources may exacerbate resource contention. To measure
the impact of resource contention, we monitor a set of traditional
metrics (see Table 1) that are classi�ed into three levels of granular-
ity: (i) ensemble component, (ii) ensemble member/work�ow, and
(iii) work�ow ensemble.

Metric Description

Ensemble Component
Execution time Time spent in one component (e.g., simulation or analyses)
LLC miss ratio Number of LLC misses / Number of LLC references
Memory intensity Number of LLC misses / Number of instructions
Instructions per cycle Number of instructions / Number of cycles

Ensemble Member
Member makespan Timespan between simulation start time and the latest analysis end time

Work�ow Ensemble
Ensemble makespan Maximum makespan among all ensemble members in the work�ow

Table 1: Set of metrics. (LLC stands for Last-level cache.)

At the ensemble component level, cache miss ratio and mem-
ory intensity [12] indicate the degree of resource contention; in-
structions per cycle shows the raw performance of the ensemble
component. At the ensemble member level, we calculate the turn-
around time (makespan) of each member, by taking the di�erence
between the end time of the latest analysis and the start time of the
simulation. The ensemble makespan is de�ned as the maximum
makespan of all ensemble members. (Recall that all members run
concurrently and all simulations start simultaneously.)

Application. In this experiment, an ensemble member is comprised
of a MD simulation coupled with analysis kernels using in situ
processing. Speci�cally, the simulation simulates a medium-scale
all-atom system containing the GltPh transporter protein [4]. Molec-
ular interactions are implemented in GROMACS [7], with standard
simulation settings at a time-step of 2 femtoseconds. The simula-
tion periodically sends in-memory generated frames, i.e. atomic
positions, to the analyses coupled with it. In our application, the
analysis computes the largest eigenvalue of bipartite matrices [16]
as a collective variable [6] of the frames. This captures molecular
motions of the system. The frequency at which data is sent for

analysis is determined by the stride, which represents the number
of simulation steps computed before a frame is generated.

Workflow ensemble runtime. For our experiments, we developed
a runtime system (Figure 2) that manages the execution of work-
�ow ensembles on a target HPC platform. This runtime includes
two main components: (i) a data transport layer (DTL), and (ii) a
DTL plugin. The former represents a variety of storage tiers, in-
cluding in-memory [30], burst-bu�ers [14], or parallel �le systems.
In this paper, we target in-memory DTL. The latter acts as a middle
layer between the ensemble components (simulations/analyses)
and the underlying DTL and is responsible for data handling. The
simulation using the DTL plugin to write out data abstracted into a
chunk, which is the base data representation manipulated within
the entire runtime. This abstraction allows the system to be adapt-
able to a variety of simulations and eases the burden of developing
special-purpose code to pair with diverse simulation types. The
chunk also de�nes a unique data type standard for the analysis
kernels, though each of them may perform di�erent computations.
The DTL plugin does data marshaling to support various DTL im-
plementations. Speci�cally, the abstract chunk is serialized to a
bu�er of bytes, which is easy to manage for most DTL. The DTL
plugin interfaces also hide the complexities of managing di�erent
I/O staging protocols in the DTL.
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Figure 2: Architectural overview of the proposed runtime
system for managing work�ow ensemble executions. The
Data Transport Layer (DTL) represents in-memory staging
area, and the DTL plugins provide the interface between the
ensemble components and the underlying DTL.

To optimize the in situ data processing, coupled components
in an ensemble member are synchronized as they progress con-
currently over time. For example, in an ensemble of simulations,
analysis steps can only execute upon completion of the current
simulation step.

Experimental platform. Our execution platform is Cori [1], a
Cray XC40 supercomputer located at the National Energy Research
Scienti�c Computing Center (NERSC). Each compute node is equipped
with two Intel Xeon E5-2698 v3 (16 cores each) sharing 128 GB of
DRAM and are connected through a Cray Aries dragon�y topology.
To test the impact of co-locating the analyses and the simulation,
we set the simulation to a prede�ned stride and choose the settings
for the analysis that satisfy two conditions: (i) a simulation step
takes longer than an analysis step so that the analysis does not
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slow down the simulation; (ii) the idle time in the analysis (waiting
for simulations’ chunks) is minimized, so that we maximize the
time that the analyses and simulations are running at the same
time. Section 3.4 provides more details about the approach. For
our experiments, the two constraints are satis�ed by the following
resource allocations: every simulation runs on 16 physical cores of
a computing node with a stride equal to 800 and 30, 000 simulation
steps and each analysis uses 8 physical cores.

We leverage DIMES [30] to deploy the in-memory staging area
for the DTL. DIMES is an in situ implementation in which data is
kept locally in the node memory on which the simulation is run-
ning and distributed over network to nodes upon request. We use
TAU [25] to collect runtimes, performance counters, and memory
footprints. Measurements are averaged over 5 trials.

Workflow con�gurations. In this work, we experiment with an
work�ow ensembles with di�erent con�gurations (e.g., number of
ensemble members, component placements) to study co-location be-
haviors. Table 2 shows the 7 con�gurations used in our experiments.
These con�gurations include the number of ensemble members,
number of computing nodes allocated for the entire work�ow en-
semble , and node indexes in the allocation on which each ensemble
component is running. Every ensemble member is comprised of
one simulation coupled with one analysis. Cf and Cc are two ele-
mentary con�gurations in which each con�guration has a single
ensemble member. Cf describes a co-location-free placement, i.e.
the simulation and the analysis are located on two separate nodes.
Cc co-locates the simulation and the analysis on a single compute
node. The con�gurations for 2 ensemble members explore a number
of co-location scenarios of ensemble components. In C1.1, the two
analyses run on the same node and each simulation on a dedicated
node; in C1.2, both simulations share a node and analyses run on
dedicated nodes. In C1.3, the simulation and the analysis of the
�rst ensemble member share the same node, while the other en-
semble member has the simulation and the analysis running on
two di�erent nodes. In C1.4, the two simulations share a node and
the two analyses share another node. Finally, C1.5 represents the
setup where each simulation shares a node with its corresponding
analysis.

Con�g-
uration

Number of
computing

nodes

Number of
ensemble
members

Node indexes

Ensemble member 1 Ensemble member 2

Simulation 1 Analysis 1 Simulation 2 Analysis 2

Cf 2 1 n0 n1 - -
Cc 1 1 n0 n0 - -
C1.1 3 2 n0 n2 n1 n2
C1.2 3 2 n0 n1 n0 n2
C1.3 3 2 n0 n0 n1 n2
C1.4 2 2 n0 n1 n0 n1
C1.5 2 2 n0 n0 n1 n1

Table 2: Experimental scenarios con�guration settings.

2.3 Analyzing work�ow ensemble co-location
Figures 3 to 5 show measurements obtained with the set of tradi-
tional metrics (Table 1) for the various con�guration settings (Ta-
ble 2). Higher LLC miss ratios in Figure 3 (compared to co-location-
free con�guration Cf ) capture the cache misses in Cc , and C1.1 to
C1.5 due to resource contention from the co-located ensemble com-
ponents. In our application, analyses are more memory-intensive
than the simulations, thus co-locations of the analyses, i.e. C1.1
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Figure 3: Metrics at ensemble component level.
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Figure 5: Work�ow ensemble
makespan.

and C1.4, result in higher cache misses than the co-location of the
simulations, i.e. C1.2. The co-location of heterogeneous tasks (the
simulation and the analysis) lead to higher miss rates in C1.3 and
C1.5 compared to C1.1, C1.2, and C1.4. That said, C1.5 yields the
shortest member makespan among all con�gurations (Figures 4
and 5). We argue that co-locating coupled components within an
ensemble member leads to execution e�ciency despite the elevated
degree of LLC interference. However, only simulation and analyses
that exchange data should be co-located.

The overall conclusion is that evaluating each set of metrics
exclusively does not guarantee a thorough understanding of the
work�ow ensemble performance. Metrics at the component level
yield insights into the characteristics of individual components, but
fail to capture the overall work�ow ensemble behavior. For example,
in our case, analyses are more memory-intensive than simulations,
which leads to increased cache miss ratio or higher memory inter-
ference. As a result, resource contention may arise due to co-located
analyses, thereby not only leading to increased execution time of
these components, but also increased ensemble member makespan
(recall the simulation and analyses execute synchronously). Conse-
quently, the overall work�ow ensemble makespan may be harmed
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due to slow ensemble members. Therefore, in order to identify strag-
glers among the members one would need to diligently inspect and
relate the independent measurements to draw conclusions of the
work�ow ensemble performance. We argue then that there is a
need to develop a method that captures the performance within a
work�ow ensemble at multiple levels of granularity. To this end, in
the next section, we present an e�ciency metric that indicates e�ec-
tive computation during the execution of an ensemble member. We
then consolidate measurements collected at the ensemble member
level into an indicator of overall work�ow ensemble e�ciency.

3 EFFICIENCY MODEL
To assess the performance of the work�ow ensembles, we �rst
address the demand of execution characterization at the level of
ensemble members. In this section, we present an in situ execu-
tion model for a single ensemble member. Based on this model, we
propose an indicator to estimate the computational e�ciency for
an ensemble member. We expanded the single simulation/single
analysis model presented in [13] to include multiple analysis com-
ponents coupled to a single simulation (Figure 1). We leverage this
e�ciency indicator as one of the prerequisites to synthesize the
performance of work�ow ensembles in Section 4.

3.1 Application Model
In our model, every simulation step is divided into three �ne-
grained stages: a simulation stage S , an idle stage IS , and a writing
stageW in order, i.e. S occurs before IS , IS happens beforeW . The
simulation performs the computation during S , waits for the time
when data are ready to stage in IS , and then sends data to the
analysis duringW . Similarly, every analysis step is comprised of:
a reading stage R, an analyzing stage A, and an idle stage IA, exe-
cuted in that order. The analysis reads data sent by the simulation
in R, performs certain analyses during A, and then waits until the
next chunk of data is available for processing during IA. These
�ne-grained stages can be organized into three sub-groups: compu-
tational stages (S,A), I/O stages (W ,R), and idle stages (IS , IA).

The synchronous communication pattern discussed in Section 2
enforces the coordination among I/O stages such thatWi of step i
occurs before Ri , and Ri happens beforeWi+1 of the next iteration
(Figure 6) so that the simulation does not overwrite data, which
have not been read yet (i.e., we assume no bu�ering of the sim-
ulation output in this work, in conformity with [13]). Thanks to
the iterative relationship between simulations and analyses, their
executions, after a few warm-up steps, reach a steady-state where
each stage has a similar execution time as measure over many steps.
As a result, rather than considering a particular step i for a given
stage (e.g.,Wi ), we use a star symbol to denote steady-state stages.
Then, S⇤, IS⇤ ,W⇤,R⇤,A⇤, and IA⇤ denote the steady-state stages of
S, IS ,W ,R,A, and IA respectively.

3.2 In Situ Step
A given ensemble member is composed of a single simulation Sim
coupled with K analyses Ana1,Ana2, . . . ,AnaK . An in situ step is
de�ned as the duration between the beginning of the stage S in the
simulation and the end of the stage IA that �nishes last among the

K analyses. We characterize the execution of a coupled simulation-
analysis into two scenarios (Figure 6): (i) Idle Simulation – a given
analysis step runs longer than the corresponding simulation step;
(ii) Idle Analyzer – a given analysis step runs faster than the associ-
ated simulation step. In Idle Simulation, the simulation step waits
for the completion of the analysis step. In contrast, in Idle Analyzer
the analysis step waits for data available from the corresponding
simulation step. For example, in Figure 6, the coupling of the sim-
ulation and the analysis 1 falls into the Idle Simulation scenario,
while the simulation and the analysis 2 are paired under the Idle
Analyzer scenario.

An ensemble member with one simulation and K analyses has
K di�erent couplings {(Sim,Ana1), . . . , (Sim,AnaK )} shortened in
this work as (Sim,Anai ) with 1  i  K . (Each of these couplings
can be categorized as either Idle Simulation or Idle Analyzer scenar-
ios.) Note that multiple in situ steps may overlap due to concurrent
executions. Thus, computing the makespan of an ensemble member
should also account for this behavior – by simply expressing the
makespan as the aggregation of in situ steps durations, its value is
likely to be overestimated. As a result, we de�ne an “actual" in situ
step as the non-overlapped segment � ⇤ (Figure 6).

Intuitively, the non-overlapped segment � ⇤ of a given in situ
step is the section between two consecutive simulation stages S
(recall an in situ step starts with the stage S). There are two possible
scenarios: (i) the simulation and the write stage run longer (Idle
Analyzer scenario), then the non-overlapped segment is equals to
S⇤ +W⇤; or (ii) one of the K analysis, Anai , has the longest runtime
(Idle Simulation scenario) then, the non-overlapped step is equals
to Ri⇤ +Ai⇤. Hence,

� ⇤ = max(S⇤ +W⇤,R1⇤ +A
1
⇤, . . . ,R

K
⇤ +A

K
⇤ ). (1)

Given the non-overlapped segment of in situ steps, we compute
the execution time of one ensemble member (also known as the
makespan) as:

M������� = nsteps ⇥ � ⇤ , (2)

where nsteps is the total number of in situ steps.

3.3 Computational E�ciency
To characterize the execution of an ensemble member, in this sec-
tion, we propose an indicator to capture the e�ciency of the exe-
cution of an ensemble member from a computational standpoint,
where we want to minimize the idle time, and as a result increase re-
source usage. To compute the idle time per in situ step, we use Equa-
tion (1) to derive the duration of the idle stage on the simulation
component: IS⇤ = � ⇤�(S⇤+W⇤) and, the duration of the idle stage for
the analysis i as IAi⇤ = � ⇤�(Ai⇤+Ri⇤). For each coupling (Sim,Anai ),
the portion of e�ective computation, i.e. not sitting idle, of an actual
in situ step is de�ned as � ⇤ � (IS⇤ + IAi⇤ ). Since the computational
e�ciency of an ensemble member depends on the amount of time
the ensemble components are idle, we compute a computational
e�ciency E to be the average time of e�ective computation over
the actual in situ step of K couplings in the ensemble member:

E =
1
K

K’
i=1

 
1 � IS⇤ + I

Ai⇤
� ⇤

!
=

S⇤ +W⇤
� ⇤

+

ÕK
i=1A

i
⇤ + R

i
⇤

K � ⇤
� 1. (3)
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Figure 6: Example of �ne-grained execution steps for a member of one ensemble. (Idle simulation and analyzer represent
coupled simulation-analysis scenarios.)

Since this indicator is derived from � ⇤, which is used to estimate
the makespan, maximizing E implies minimizing the idle time and
thereby the makespan.

3.4 Discussion
In this section, we use our e�ciency model to substantiate the
choice of settings (i.e, number of cores and stride) used to run
the experiments shown in Section 2.2. Recall that for that set of
experiments, we consider a MD simulation coupled with an in situ
analysis. The parameter space is intractable as we can vary the
number of cores per component, their respective placements, and
the stride of the simulation. Thus, an exhaustive search is out of
reach. However, we can de�ne a heuristic that �nds parameters that
minimize the makespan and maximize the computational e�ciency
of an ensemble member. In this context, we make the following
assumptions:

• The simulation settings are considered as an input of the
problem and are provided by the user. In most cases sci-
entists have a rough estimate of the best settings for their
simulations, but not for the analyses.

• Although our theoretical framework supports coupling to
di�erent types of analyses simultaneously, we limit our ex-
periments to only identical analyses – thus narrowing the
con�guration space.

We �rst consider the scenario without co-location, and we argue
that settings provisioned to the simulation and the analysis within
that context act as a baseline when contrasting to other co-location
scenarios. Based on our �rst assumption, we arbitrarily set the
settings of a simulation as follows: 16 cores and a stride of 800
(recall that our execution platform has compute nodes embedding
32 cores).We then vary the number of cores allocated to the analyses
to determine for which number of cores the makespan is minimized
and the computational e�ciency E is maximized.

We notice that minimizing the makespan is equivalent to mini-
mizing � ⇤ (Equation (2)). Thus, given an ensemble member with a
certain simulation with a prede�ned con�guration coupled with
in situ analyses, in order to minimize the makespan, we need to
assign a number of cores the to the analyses such that:

Ri⇤ +A
i
⇤  S⇤ +W⇤,8i 2 {1, 2, . . . ,K}. (4)

This inequality implies that each of the K coupling (Sim,Anai ) falls
into the Idle Analyzer scenario, then from Equation (1) we obtain
� ⇤ = S⇤ +W⇤. Figure 7 shows the impact, when the number of

cores assigned to the analysis ranges from 1 to 32, on the in situ
step � ⇤, the simulation component S⇤ +W⇤, the analysis compo-
nent R⇤ +A⇤, and the computational e�ciency E. The analysis step
when using 1 to 4 cores takes longer than the simulation step, i.e.
R⇤+A⇤ > S⇤+W⇤, thus � ⇤ = R⇤+A⇤. The inequality in Equation (4)
is satis�ed once the analysis uses between 8 and 32 cores, which
minimizes � ⇤, thereby minimizing the member makespan. Among
executions whose makespan is minimized, we optimize the compu-
tation e�ciency by selecting the con�guration that leads tomax(E).
Hence, we decide to assign 8 cores to each analysis, which results
in the highest computational e�ciency, i.e. the smallest amount of
idle time.
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Figure 7: Execution time of the in situ step and computa-
tional e�ciency when varying the number of cores assigned
to an analysis with a �xed simulation setting.
4 PERFORMANCE INDICATORS
In this section, we leverage the e�ciency indicator described above
to evaluate the performance of work�ow ensembles. We extend
the notion of e�ciency from the individual member to the work-
�ow ensemble level. (Note that di�erent ensemble members can
have di�erent e�ciency values.) To synthesize the performance of
work�ow ensembles, we introduce a three-stage approach in which
each stage adds a new layer of information to further re�ne the
indicator with desired features such as resource usage, resource
provisioning, and resource allocation. The goal of this multi-stage
approach is to provide a methodology to assess the impact of each
layer of information and come up with an overall performance
indicator that can characterize the performance of the entire work-
�ow ensemble. Below, we de�ne a set of notations (Table 3) used to
de�ne the indicator.
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4.1 Notations
Given awork�ow ensemblewithN ensemblemembers {EM1, . . . ,EMN },
let Pi be the performance indicator of the ensemble member EMi ,
and Ei be its computational e�ciency. The ensemble member EMi
contains a simulation Simi coupledwithKi analyses,Ana1i , . . . ,Ana

Ki
i ,

thus EMi has Ki couplings (Simi ,Ana
j
i ), where j 2 {1, . . . ,Ki }. Let

csi be the number of cores used by Simi , these cores belong to nodes
whose indexes are listed in set si . Similarly, the analysis Anaji uses
caji cores of nodes whose indexes are de�ned in set aji . For example,
in Table 2, C1.1 has s1 = {0},a11 = {2}, s2 = {1},a12 = {2}. Let ci
denote the total number of cores assigned to all ensemble compo-
nents, i.e. simulation Simi and Ki analyses Ana

j
i , in a given ensem-

ble member EMi . We have ci = csi +
ÕKi
j=1 ca

j
i . Let di be the number

of computing nodes allocated to the ensemble member EMi . Then,
the number of compute nodes di allocated to the ensemble member
EMi is calculated by di =

���si [ –Ki
j=1 a

j
i

���. If the simulation and some

analyses share compute nodes, we have di  |si | +
ÕKi
j=1 |a

j
i |. (Note

that this inequality becomes an equality if each component runs on
dedicated nodes.) LetM be the total number of computing nodes
used by the entire work�ow of N ensemble members. Similarly,
we haveM  ÕN

i=1 di . In the absence of resource sharing (i.e, each
ensemble member runs on dedicated nodes), we haveM =

ÕN
i=1 di .

Notation Description

Work�ow Ensemble
N Number of ensemble members
M Number of nodes used by the work�ow ensemble

Ensemble Member
EMi Ensemble member i
Pi Performance indicator of EMi
Ki Number of couplings in EMi
ci Total number of cores used by components of EMi
di Number of nodes allocated to EMi

Ensemble Component
Simi Simulation of EMi (one simulation per member)
Ana ji Analysis j of EMi (Ki analysis for each EMi )
csi Number of cores used by Simi of EMi
ca ji Number of cores used by Ana ji from EMi
si Set of node indexes on which Simi from EMi is executed
a ji Set of node indexes on which Ana ji from EMi is executed

Table 3: Notations.

4.2 Member Resource Usage (U)
Our goal is to build an indicator that can compare di�erent execu-
tions of work�ow ensembles using di�erent numbers of resources
(e.g., number of cores). The �rst stage PUi of the performance in-
dicator calculation models the e�ciency of an ensemble member
in terms of resource usage. We de�ne PUi as the smallest unit of
e�ciency in terms of single core usage. Precisely, PUi computes the
ratio between the the computational e�ciency Ei of an ensemble
member EMi and the total number of cores ci used by EMi , then:

PUi =
Ei
ci
. (5)

Recall that maximizing Ei is equivalent to minimizing the idle time
and the makespan (Section 3.3). High values of PUi indicate that a
large portion of the execution is spent on computing (in contrast
to idling), thus the ensemble member makespan is reduced.

4.3 Member Resource Allocation (A)
Since an ensemble member can have concurrent execution of multi-
ple components, the component can be co-located on the same node
or distributed across nodes. Finding an optimal placement among
the numerous placement con�gurations is challenging. Therefore,
we propose the second stage PU,Ai to quantify the bene�t of a certain
placement.

Lets consider the coupling (Simi ,Ana
j
i ) part of the ensemble

member EMi , then Simi is co-located with Anaji if and only if
|si | = |si [ aji |. Otherwise, if |si | < |si [ aji |, then they are assigned
to di�erent nodes. Based on this observation, we de�ne a placement
indicator obtained from the ratio 0 < |si |

|si[a ji |
 1 to represent

a placement of a work�ow ensemble. Let CPi be the placement
indicator for the ensemble member EMi :

CPi =
1
Ki

( |si |
|si [ a1i |

+ · · · + |si |
|si [ aKii |

) = |si |
Ki

Ki’
j=1

1
|si [ aji |

. (6)

Intuitively, CPi describes the placement of EMi . It decreases with
the number of computing nodes used for a given work�ow ensem-
ble. CPi = 1 indicates that the EMi components are all co-located,
andCPi close to 0 indicates that more dedicated resources are used
and that the components of EMi are distributed across them. Maxi-
mizing the placement indicator for each ensemble member results
in prioritizing placements that minimize the number of computing
resources used by that ensemble member. As a result, the placement
indicator not only re�ects placement characteristics but also the
number of resources used at the ensemble member level.

To evaluate the e�ciency of a placement (i.e., a mapping be-
tween ensemble members and available resources), we include the
proposed placement indicator in the next stage of the performance
indicator. Speci�cally, wemultiply the �rst stage of our performance
indicator by the corresponding placement indicator as follows:

PU,Ai = PUi ⇥CPi =
Ei
ci

|si |
Ki

Ki’
j=1

1
|si [ aji |

. (7)

Deriving from the discussed insight of the placement indicator, max-
imizing the performance indicator at this stage favors the resource
con�guration that occupies a small number of compute nodes while
maximizing the e�ectiveness of the execution.

4.4 Ensemble Resource Provisioning (P)
Finally, by just considering the execution features at the level of
ensemble member might not be su�cient to capture the overall
performance of the entire work�ow ensemble. To that end, we
extend the performance indicator with the number of resources
provisioned for the entire work�ow ensemble, i.e. the number of
computing nodes the work�ow ensemble resides on. When compar-
ing two executions using a di�erent number of computing nodes,
the run using a smaller number of nodes should yield better e�-
ciency in two settings with the same performance. Therefore, to
obtain the last stage PU,A,Pi , we weigh the performance indicator
by the total number of compute nodes M so that the number of
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resources provisioned for the entire work�ow ensemble is consid-
ered:

PU,A,Pi =
PU,Ai
M
=

Ei
ciM

|si |
Ki

Ki’
j=1

1
|si [ aji |

. (8)

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the ability of the proposed perfor-
mance indicators to characterize the execution performance of
work�ow ensembles. First, we propose a method for aggregating
indicator values from individual ensemble members into a global
indicator at the work�ow ensemble level. Then, we extend our previ-
ous experimental con�guration settings (Section 2.2) with scenarios
in which multiple analyses are coupled with the simulation.

5.1 Ensemble-level Performance Indicator
In order to compute a global indicator, we synthesize performance
indicators of every ensemble member. A simple approach would
be to consider the average values for all Pi . However, the large
variation between these valuesmay lead to inaccurate assessment of
the overall performance. Tominimize the variability in performance
among ensemble members, we consider the mean performance P
from which we subtract the standard deviation:

F (Pi ) = P �

vut
1
N

N’
i=1

(Pi � P)2 where P =
1
N

N’
i=1

Pi . (9)

The intuition behind Equation (9) is to favor work�ow ensemble’s
con�gurations with good makespan, i.e. con�gurations with a low
variability between work�ow ensemble members (recall that the
makespan of a work�ow ensemble is de�ned as the maximum
completion time among its members). The goal of an e�cient con-
�guration, as de�ned in this work, is to maximize the objective
function F (Pi ). The higher the value of the objective function, the
better the performance of the entire work�ow regarding e�ciency,
makespan, resource usage, and component placement.

5.2 Results and Analysis

Workflow ensemble con�gurations. In this work, we apply our
multi-stage performance indicators to two sets of con�gurations,
each of these sets speci�es the number of ensemble members and
the node assignment for each ensemble components. In this paper,
we consider only work�ow ensembles comprised of 2 ensemble
members. The �rst set of con�gurations includes C1.1 to C1.5 (Ta-
ble 2). For every con�gurations in this set, each ensemble member
is a single coupling of a simulation and an in situ analysis. A sec-
ond set is comprised of con�gurations ranging from C2.1 to C2.8
(Table 4). For con�gurations in this set, the simulation of each en-
semble member is coupled with two analyses. Since we propose a
multi-stage method for evaluating the performance of an ensem-
ble member as well as the entire work�ow ensemble, we examine
the impact and the order of each stage on the quality of the per-
formance indicator Pi by accumulating in the objective function
F (Pi ) for the performance of the entire work�ow ensemble. To this
end, we explore two feasible paths that can be followed to concate-
nate performance indicator stages: (1) PUi ! PU,Pi ! PU,P,Ai ; or

(2) PUi ! PU,Ai ! PU,A,Pi . For path (1), PU,Pi = PUi /M , whereM is
the total number of nodes used by the work�ow ensemble (see Ta-
ble 3) and PU,P,Ai = PU,Pi ⇥CPi , whereCPi is the placement indicator
de�ned in Section 4.3. Note that PU,P,Ai = PU,A,Pi . Speci�cally, we
observe changes in F (Pi ) when adding a new stage (i.e., resource
usage U, resource provisioning P, resource allocation A) to the per-
formance indicator Pi , which can be either PUi , P

U,P
i , P

U,A
i , PU,P,Ai ,

and PU,A,Pi , and assess the ability of our indicator to accurately
assess the performance of di�erent co-location con�gurations.

Results. Figure 8 demonstrates the results of the objective perfor-
mance function at each of the multiple stages of Pi over di�erent
con�gurations in the �rst set. After the initial stage of PUi ( Figure 8
left), a new layer is added, either P in the middle top �gure or A on
the middle bottom to form the next stage. On the contrary of PU,Ai ,
PU,Pi is not able to di�erentiate the performance of C1.4 from C1.5
as these two con�gurations both use 2 compute nodes. Recall that
in C1.4, the two simulations share a node while the two analyses
share another node. As shown in Figures 3 and 4,C1.4 does not lead
to good member makespans due to the contention of co-location
between two analyses. With PU,A,Pi , we observe the characteriza-
tion where the performance ofC1.4 is degraded to lower thanC1.5,
but higher thanC1.1,C1.2,C1.3. Finally, our performance indicator
con�rms thatC1.5 is the best choice, as demonstrated by traditional
metrics in Figures 4 and 5 that C1.5 has the smallest makespans.
C1.5 outperforms other con�gurations, which also validate the
common intuition behind in situ processing that simulations and
analyses must be co-located when possible. Since the in-memory
staging mechanism in this work is implemented by DIMES [30],
in which data resides on the memory of the simulation node, co-
locating the analysis having data coupling with such the simulation
can be bene�cial from data locality to shorten the time of staging
data.

By opposition to the �rst set of con�gurations, for the second set,
we do not show the results of traditional metrics (described in Ta-
ble 1) due to the lack of space. However, experimental results of
these metrics when using the second set of con�gurations are not as
straightforward as the �rst on inferring from the metrics monitored
which con�guration is the best. More number of analyses involved
in an ensemble member complicates the performance evaluation
using traditional metrics. The fact of utilizing the whole cores of
compute nodes in several con�gurations, e.g.C2.6,C2.7,C2.8, likely
saturates the resources, which brings di�culties in comparing them
with other con�gurations where compute nodes are not entirely
occupied by ensemble components. This situation motivates the
need for a performance indicator able to elect the best potential con-
�guration in terms of e�ciency of the work�ow ensemble. Figure 9
shows the values taken by the objective function when instantiated
with di�erent con�gurations in the second set. In this case, PU,Pi
separates the set of con�gurations in two groups de�ned by the
number of compute nodes used by the work�ow ensemble (C2.6,
C2.7 and C2.8 uses 2 nodes when the other con�gurations use 3
nodes). Then, PU,P,Ai keeps this distinction but in addition indicates
that con�guration C2.8 should return better performance than the
others. On the other hand, when adding layer A, we �rst isolateC2.8
from the other con�gurations, and further di�erentiate C2.6,C2.7
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Con�guration
Number of
computing
nodes (N )

Number of
ensemble
members

Node indexes

Ensemble member 1 Ensemble member 2

Simulation 1 Analysis 1.1 Analysis 1.2 Simulation 2 Analysis 2.1 Analysis 2.2

C2.1 3 2 n0 n2 n2 n1 n2 n2
C2.2 3 2 n0 n1 n1 n0 n2 n2
C2.3 3 2 n0 n1 n2 n0 n1 n2
C2.4 3 2 n0 n0 n2 n1 n1 n2
C2.5 3 2 n0 n1 n2 n1 n0 n2
C2.6 2 2 n0 n1 n1 n0 n1 n1
C2.7 2 2 n0 n0 n1 n1 n0 n1
C2.8 2 2 n0 n0 n0 n1 n1 n1

Table 4: Experimental con�gurations with two ensemble members, each ensemble member has two analyses per simulation.
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Figure 8: F (Pi ) on di�erent Pi orders over con�gurations which have one analysis per simulation (the higher the better).
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Figure 9: F (Pi ) on di�erent Pi orders over con�gurations which have two analyses per simulation (the higher the better).

from C2.1,C2.2,C2.4 at the last stage. Note that, similarly to con-
clusions reached in the previous setup, the chosen con�guration
C2.8 is also the optimal con�guration in terms of co-location (i.e,
simulation is collocated with its analyses) which again con�rms
the bene�ts of co-locating coupled components of an ensemble
member.

6 RELATEDWORK
Modern scienti�c work�ows commonly feature multiple coupled
components, which need to be monitored at the same time to under-
stand the global performance of the work�ow. Recent monitoring
systems for scienti�c work�ows use system-level information to
extract insights into the execution of the work�ows. LDMS [2]
developed distributed pro�ling services to periodically sample re-
source utilization metrics of compute nodes the work�ow runs
on. SOS [28] relied on conventional HPC monitoring tools [25]
to build an online characterization that can be run alongside the
work�ow execution to analyze work�ow behaviors. However, tra-
ditional performance tools are not designed for modern work�ows
featuring in situ processing. They collect potentially unnecessary
data and incur potentially signi�cant overheads of pro�ling. Several
works have addressed monitoring overhead by introducing their

particular methods to evaluate a subset of desired features of the
work�ows. Taufer et al. [26] leveraged domain-speci�c metrics such
as lost frames to characterize in situ analytic tasks using various job
mappings. Zacarias et al. [29] estimated the performance degrada-
tion arising from co-located applications using a machine learning
model. SeeSAw [19] maximized the performance of in situ analysis
under power constraints using energy management approaches.
WOWMON [31] implemented a runtime that provides a monitor-
ing scheme for scienti�c work�ows composed of in situ tasks by
collecting a set of proposed metrics, and a machine learning-based
performance diagnosis to validate if the collected metrics are neces-
sary or redundant. While these works focused on in situ work�ows,
evaluating the performance of the work�ow ensembles is not a
straightforward extension of evaluating individual work�ows. Our
work de�nes the performance of ensembles of in situ work�ows.

Ensemble-based methods [10, 11, 22, 24] recently gained atten-
tion in the computational science, mainly due to the growth of
computing power of large-scale systems allowing more simulations
to run in parallel. Ensembles are an e�cient approach for enhancing
sampling techniques, exploring broader con�guration space and
overcoming the local minima problem observed in scienti�c simu-
lations. Multiple-walker [11, 24] allowed faster convergence and
better sampling by exploiting multiple replicas that simultaneously
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explore free-energy landscape along with transition coordinates
of the system. Generalized ensembles [10, 22] explored multiple
states of a simulation in ensembles with a probability weight factor
so that a random walk in a particular state can escape the energy
barrier.

Several recent e�orts attempted to e�ciently manage the execu-
tion of ensemble-based simulations combined with analysis tasks.
John et al. [23] proposed awork�owmanagement system that stores
task provenances to enable adaptive ensemble simulation. EnTK [5]
is a general-purpose toolkit that abstracts components and tasks
in an ensemble-based work�ow to support various scenarios in
which the number of tasks or task dependencies can vary. Both
of these works rely on RADICAL-Pilot as a runtime system [20].
However, these works study work�ow ensembles with traditional
data coupling among tasks (i.e., non in situ) while, in this paper, we
focus on ensembles work�ows comprising in situ tasks.

7 CONCLUSION
In this paper, we have characterized an ensemble of in situ work-
�ows using multiple con�gurations and placements. Based on the
insights gained from this characterization, we have introduced a
theoretical framework that models the execution of work�ow en-
sembles when multiple simulations are coupled with multiple anal-
yses using in situ techniques. We have then de�ned the notion
of e�ciency for work�ow ensembles at component, member, and
ensemble levels, and we designed several performance indicators.
These indicators capture the performance of work�ow ensemble
by aggregating several metrics of the given work�ow ensemble in
terms of resource usage e�ciency and resources allocated for com-
ponents, members and the entire ensemble. By evaluating these
indicators on a real molecular dynamic simulation use case, we
have shown the advantages of data locality when co-locating the
simulation with the corresponding analyses in an ensemble mem-
ber. This �nding allows us to schedule each ensemble member of
the work�ow ensemble individually on a distinct allocation, wor-
rying only about the co-location among ensemble components
of each ensemble member. Future work will consider leveraging
the proposed indicators for scheduling in situ components of a
work�ow ensemble under resource constraints.
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