Assessing Resource Provisioning and Allocation of Ensembles of
In Situ Workflows

Tu Mai Anh Do
Information Sciences Institute
University of Southern California
Marina Del Rey, CA, USA
tudo@isi.edu

Silvina Caino-Lores
University of Tennessee at Knoxville
Knoxville, TN, USA
scainolo@utk.edu

ABSTRACT

Scientific breakthroughs in biomolecular methods and improve-
ments in hardware technology have shifted from a single long-
running simulation to a large set of shorter simulations running
simultaneously, called an ensemble. In an ensemble, each indepen-
dent simulation is usually coupled with several analyses that apply
identical or distinct algorithms on data produced by the correspond-
ing simulation. Today, in situ methods are used to analyze large
volumes of data generated by scientific simulations at runtime.
This work studies the execution of ensemble-based simulations
paired with in situ analyses using in-memory staging methods. Be-
cause simulations and analyses forming an ensemble typically run
concurrently, deploying an ensemble requires efficient co-location-
aware strategies, making sure the data flow between simulations
and analyses that form an in situ workflow is efficient. Using an
ensemble of molecular dynamics in situ workflows with multiple
simulations and analyses, we first show that collecting traditional
metrics such as makespan, instructions per cycle, memory usage,
or cache miss ratio is not sufficient to characterize the complex
behaviors of ensembles. Thus, we propose a method to evaluate
the performance of ensembles of workflows that captures resource
usage (efficiency), resource allocation, and component placement.
Experimental results demonstrate that our proposed method can
effectively capture the performance of different component place-
ments in an ensemble. By evaluating different co-location scenarios,
our performance indicator demonstrates improvements of up to
four orders of magnitude when co-locating simulation and coupled
analyses within a single computational host.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP Workshops 21, August 9-12, 2021, Lemont, IL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8441-4/21/08...$15.00
https://doi.org/10.1145/3458744.3474051

Loic Pottier
Information Sciences Institute
University of Southern California
Marina Del Rey, CA, USA
Ipottier@isi.edu

Michela Taufer
University of Tennessee at Knoxville
Knoxville, TN, USA
mtaufer@utk.edu

Rafael Ferreira da Silva
Information Sciences Institute
University of Southern California
Marina Del Rey, CA, USA
rafsilva@isi.edu

Ewa Deelman
Information Sciences Institute
University of Southern California
Marina Del Rey, CA, USA
deelman@isi.edu

KEYWORDS

Scientific workflow, Ensemble workflow, In situ model, Molecular
dynamics, High-performance computing

ACM Reference Format:

Tu Mai Anh Do, Loic Pottier, Rafael Ferreira da Silva, Silvina Caino-Lores,
Michela Taufer, and Ewa Deelman. 2021. Assessing Resource Provisioning
and Allocation of Ensembles of In Situ Workflows. In 50th International
Conference on Parallel Processing Workshop (ICPP Workshops 21), August
9-12, 2021, Lemont, IL, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3458744.3474051

1 INTRODUCTION

Organizing computations into ensembles is gaining popularity in
many scientific domains using computational simulations. Ensem-
bles of workflows are composed of several inter-related workflows.
These workflows typically have a similar structure, but they differ
in their input data, number of tasks, and individual task sizes [18].
Workflow ensembles are often used in molecular dynamics (MD)
simulations, which compute the atomic states of a molecular system
evolving over time by observing microscopic interactions between
atoms. Studying the folding process of complex molecules (i.e.,
conformational transition) of a molecular system often requires
running large-scale simulations to thoroughly explore feasible solu-
tions in the configuration space. Such simulations require consider-
able computing time and resources, which may grow exponentially
with the size of the system. Such simulations are often run on high-
performance computing (HPC) systems in parallel [9]. Ensemble-
based simulation approaches (in which multiple simulations are run
concurrently) may also potentially lead to more efficient sampling
of the solution space. For instance, multiple-walker [11, 24] em-
ploys multiple replicas of the system, known as walkers, where each
walker simultaneously explores the same free energy landscape
to improve sampling performance. Generalized ensembles [10, 22]
allow sampling a broader configuration space by partitioning sim-
ulation states into ensembles with optimal weights to perform a
random walk in potential energy spaces. The key challenge for
enabling these approaches on large-scale systems is to efficiently
execute these concurrent simulations structured as an entity, an
ensemble.

https://doi.org/10.1145/3458744.3474051
https://doi.org/10.1145/3458744.3474051
https://doi.org/10.1145/3458744.3474051

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Traditionally, MD simulations and the follow on data analysis
are loosely coupled, where the analysis is started after the simula-
tion is completed. The coupling of the two components is typically
done via the file system. However, because of the growing disparity
between storage and computing capabilities in current leadership
computers [27], post-processing of potentially large volume of sim-
ulation data results in I/O bottlenecks [17]. In situ processing has
emerged as an alternative paradigm to overcome such I/O limita-
tion. Rather than post-processing data upon simulation completion,
in situ methods allow scientists to process data during the runtime
of the simulation by leveraging in-memory staging solutions such
as DIMES [30], or fast local storage such as burst buffers [14] and
doing the analysis in an iterative manner. MD simulations, like
many scientific simulations from diverse scientific domains, exhibit
an iterative pattern that can benefit from the in situ paradigm, i.e.
data generation and analysis can occur in concert. In this paper, the
simulations are coupled with analyses by staging data in memory
for in situ processing.

To denote a collection of workflows, two terms co-exist in the
literature: workflow ensemble [8, 15] and ensemble workflow [3, 23].
Although these terms are used interchangeably, we only refer
to workflow ensemble in this work. When running ensembles of
in situ workflows, there is a tension between co-locating simula-
tions, corresponding analyses on the same resources, so that the
data flowing between them can be efficiently communicated, and
leveraging separate resources for these components to reduce the
computation time of each (as running multiple components on
the same resource usually leads to performance degradation due
to interference [21]). In this paper, we have developed methods
to characterize the execution of the workflow ensemble and to
decide how the workflow components need to be place within a
system to optimize the overall workflow ensemble performance.
We introduce a set of performance metrics that qualify and quantify
the contention between components sharing the same computing
allocation and the benefits of the co-location.

Commonly, an ensemble-based simulation is comprised of a
large number of components. Solely observing individual compo-
nents separately is not sufficient to characterize the execution of
a workflow ensemble, which features concurrently running exe-
cutables that utilize in situ communication techniques. The hetero-
geneous behaviors of coupled tasks, i.e. simulations are normally
compute-intensive while analyses are data-intensive, exacerbate
the management to accommodate efficient execution and make
performance characterization of workflow ensembles challenging.
Managing the execution of workflow ensembles leads to schedul-
ing challenges at multiple levels within the workflow ensemble,
among both concurrent and coupled applications. In this work,
we aim to design a method that will allow scientists to make ef-
ficient scheduling decisions for a workflow ensemble of coupled
simulations and in situ analyses. In particular, we formalize the
behavior of workflow ensembles into a theoretical framework and,
then based on this framework we propose a method to evaluate
resource usage, resource allocation, and resource provisioning for
workflow ensembles. Our contributions are as follows:

(1) We introduce a set of comprehensive metrics that can charac-
terize the overall workflow ensembles behavior at different

Do et al.

levels of the application (task, workflow, and ensemble). Ex-
perimental analysis using a real-world MD in situ workflows
demonstrates the usefulness of the approach.

(2) We propose a formal execution model to capture workflow en-
semble execution, which is then used to compute the effi-
ciency of coupled components. This formal framework lays
out the foundation for a novel performance indicator, which
allows us to assess the expected efficiency of a given config-
uration of a workflow ensemble.

(3) We validate our proposed metrics using a realistic MD use
case executing on a leadership class system. Experimental re-
sults demonstrate that our methods can capture co-location
scenarios in which improvements up to four orders of mag-
nitude can be achieved.

2 WORKFLOW ENSEMBLE

In this section, we conduct several experiments using a realistic
use case of molecular dynamics ensembles executing on a large-
scale HPC platforms. We characterize the behavior of the ensemble
use case using traditional metrics and discuss their limitations.
The analysis of the obtained results demonstrates the need for
new metrics that can accurately capture performance behaviors of
ensemble-based computations. Based on these results, we developed
new metrics that can better capture ensemble behavior.

2.1 Definitions

A workflow ensemble is a collection of inter-related ensemble mem-
bers/workflows executing in parallel. Each ensemble member may
be comprised of multiple ensemble components — a component can
be a simulation or an analysis as is the case in our MD example
(Figure 1). Note that even though a workflow ensemble can be com-
prised of parallel and sequential workflows, we can always group
workflows (ensemble members) running in parallel into a workflow
ensemble. We focus on the set of ensemble members running con-
currently and starting their executions at the same time, to mimic
how multiple MD simulations are executed simultaneously in en-
semble methods [10, 11, 22, 24]. In this work, we restrict ourselves
to a single simulation per ensemble member. This simulation is
coupled with at least one analysis component. In this work, we as-
sume that ensemble members do not exchange information and are
independent of each other (i.e., the analysis component of a given
ensemble member only requires data generated by the simulation
of that ensemble member [5]). The type of coupling is defined by
the ensemble components. In our MD application, the simulation
periodically writes out the data, which is read synchronously by the
analyses. Although the simulation can compute while the analyses
are reading the data, the simulation does not write any new data
until the data from the previous iteration is read.

2.2 Experimental Setup

In situ processing, combined with in-memory computing, has emerged
as a solution to overcome I/O bottlenecks in large-scale systems,
because moving data in memory rather than via the file system
provides much better performance. However, using in situ process-
ing, often implies that the communicating components need to
share a node on an HPC system (in case of a distributed memory

Assessing Resource Provisioning and Allocation of Ensembles of In Situ Workflows

(- - ‘ = ~
1 Iterative process
Ensemble L
member 1 Simulation 1 F
Ensemble L . . Workflow
Simulation 2

member 2

ensemble
L)

e
s |

Ensemble Simulation 3
member 3

|::> Data staging ‘

‘ I:l Ensemble components

Figure 1: Ensemble of in situ workflows: Ensemble Compo-
nent, Ensemble Member, and Workflow Ensemble.

architecture). However, this co-location can also lead to resource
contention and reduce the benefit of in situ communications. In
the context of workflow ensembles, a large number of components
sharing resources may exacerbate resource contention. To measure
the impact of resource contention, we monitor a set of traditional
metrics (see Table 1) that are classified into three levels of granular-
ity: (i) ensemble component, (ii) ensemble member/workflow, and
(iii) workflow ensemble.

Metric Description

Ensemble Component
Time spent in one component (e.g., simulation or analyses)
LLC miss ratio Number of LLC misses / Number of LLC references
Memory intensity Number of LLC misses / Number of instructions
Instructions per cycle Number of instructions / Number of cycles

Execution time

Ensemble Member

Member makespan Timespan between simulation start time and the latest analysis end time

Workflow Ensemble
Ensemble makespan ~ Maximum makespan among all ensemble members in the workflow

Table 1: Set of metrics. (LLC stands for Last-level cache.)

At the ensemble component level, cache miss ratio and mem-
ory intensity [12] indicate the degree of resource contention; in-
structions per cycle shows the raw performance of the ensemble
component. At the ensemble member level, we calculate the turn-
around time (makespan) of each member, by taking the difference
between the end time of the latest analysis and the start time of the
simulation. The ensemble makespan is defined as the maximum
makespan of all ensemble members. (Recall that all members run
concurrently and all simulations start simultaneously.)

Application. In this experiment, an ensemble member is comprised
of a MD simulation coupled with analysis kernels using in situ
processing. Specifically, the simulation simulates a medium-scale
all-atom system containing the GltPh transporter protein [4]. Molec-
ular interactions are implemented in GROMACS [7], with standard
simulation settings at a time-step of 2 femtoseconds. The simula-
tion periodically sends in-memory generated frames, i.e. atomic
positions, to the analyses coupled with it. In our application, the
analysis computes the largest eigenvalue of bipartite matrices [16]
as a collective variable [6] of the frames. This captures molecular
motions of the system. The frequency at which data is sent for

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

analysis is determined by the stride, which represents the number
of simulation steps computed before a frame is generated.

Workflow ensemble runtime. For our experiments, we developed
a runtime system (Figure 2) that manages the execution of work-
flow ensembles on a target HPC platform. This runtime includes
two main components: (i) a data transport layer (DTL), and (ii) a
DTL plugin. The former represents a variety of storage tiers, in-
cluding in-memory [30], burst-buffers [14], or parallel file systems.
In this paper, we target in-memory DTL. The latter acts as a middle
layer between the ensemble components (simulations/analyses)
and the underlying DTL and is responsible for data handling. The
simulation using the DTL plugin to write out data abstracted into a
chunk, which is the base data representation manipulated within
the entire runtime. This abstraction allows the system to be adapt-
able to a variety of simulations and eases the burden of developing
special-purpose code to pair with diverse simulation types. The
chunk also defines a unique data type standard for the analysis
kernels, though each of them may perform different computations.
The DTL plugin does data marshaling to support various DTL im-
plementations. Specifically, the abstract chunk is serialized to a
buffer of bytes, which is easy to manage for most DTL. The DTL
plugin interfaces also hide the complexities of managing different
1/0 staging protocols in the DTL.

In-memory Staging Area (DTL)

Workflow Ensemble Runtime

Ensemble Ensemble
component 1 component 2

Simulation Analysis
! DTL plugin DTL plugin H
| i
: 1t :
1
i g[)emor}; Data chunk abstraction > ?/11)3111&?\5[})7 E
| |
1 1
1 1
1 1
1 1
1

Figure 2: Architectural overview of the proposed runtime
system for managing workflow ensemble executions. The
Data Transport Layer (DTL) represents in-memory staging
area, and the DTL plugins provide the interface between the
ensemble components and the underlying DTL.

To optimize the in situ data processing, coupled components
in an ensemble member are synchronized as they progress con-
currently over time. For example, in an ensemble of simulations,
analysis steps can only execute upon completion of the current
simulation step.

Experimental platform. Our execution platform is Cori [1], a
Cray XC40 supercomputer located at the National Energy Research
Scientific Computing Center (NERSC). Each compute node is equipped
with two Intel Xeon E5-2698 v3 (16 cores each) sharing 128 GB of
DRAM and are connected through a Cray Aries dragonfly topology.
To test the impact of co-locating the analyses and the simulation,
we set the simulation to a predefined stride and choose the settings
for the analysis that satisfy two conditions: (i) a simulation step
takes longer than an analysis step so that the analysis does not

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

slow down the simulation; (ii) the idle time in the analysis (waiting
for simulations’ chunks) is minimized, so that we maximize the
time that the analyses and simulations are running at the same
time. Section 3.4 provides more details about the approach. For
our experiments, the two constraints are satisfied by the following
resource allocations: every simulation runs on 16 physical cores of
a computing node with a stride equal to 800 and 30, 000 simulation
steps and each analysis uses 8 physical cores.

We leverage DIMES [30] to deploy the in-memory staging area
for the DTL. DIMES is an in situ implementation in which data is
kept locally in the node memory on which the simulation is run-
ning and distributed over network to nodes upon request. We use
TAU [25] to collect runtimes, performance counters, and memory
footprints. Measurements are averaged over 5 trials.

Workflow configurations. In this work, we experiment with an
workflow ensembles with different configurations (e.g., number of
ensemble members, component placements) to study co-location be-
haviors. Table 2 shows the 7 configurations used in our experiments.
These configurations include the number of ensemble members,
number of computing nodes allocated for the entire workflow en-
semble , and node indexes in the allocation on which each ensemble
component is running. Every ensemble member is comprised of
one simulation coupled with one analysis. Cy and C, are two ele-
mentary configurations in which each configuration has a single
ensemble member. Cr describes a co-location-free placement, i.e.
the simulation and the analysis are located on two separate nodes.
C. co-locates the simulation and the analysis on a single compute
node. The configurations for 2 ensemble members explore a number
of co-location scenarios of ensemble components. In C1.1, the two
analyses run on the same node and each simulation on a dedicated
node; in C1.2, both simulations share a node and analyses run on
dedicated nodes. In C1.3, the simulation and the analysis of the
first ensemble member share the same node, while the other en-
semble member has the simulation and the analysis running on
two different nodes. In C1.4, the two simulations share a node and
the two analyses share another node. Finally, C1.5 represents the
setup where each simulation shares a node with its corresponding

analysis.
Config- Numbelf of Number of Node indexes
K computing ensemble
uration nodes members Ensemble member 1 Ensemble member 2
Simulation 1 Analysis 1 Simulation 2 Analysis 2

Cf 2 1 no ny = =
Ce 1 1 ny ny - -
C11 3 2 ng ny ny ny
C1.2 3 2 ny ni ng ny
C13 3 2 ng no ny ny
Cl4 2 2 no ny no ni
C15 2 2 ny no ny ny

Table 2: Experimental scenarios configuration settings.

2.3 Analyzing workflow ensemble co-location

Figures 3 to 5 show measurements obtained with the set of tradi-
tional metrics (Table 1) for the various configuration settings (Ta-
ble 2). Higher LLC miss ratios in Figure 3 (compared to co-location-
free configuration Cr) capture the cache misses in Ce, and C1.1 to
C1.5 due to resource contention from the co-located ensemble com-
ponents. In our application, analyses are more memory-intensive
than the simulations, thus co-locations of the analyses, i.e. C1.1

Do et al.

1800 Simulations Analyses
= BN Simulation 1
P L
£ B Simulation2 | o |
= 1600 -
kS , j s -@ . ig
§ - - | - Analysis 1
35 1400 M 14004 HEEEE Analysis 2
¢y Co cll cl2 ¢l3 ¢l4 Cls ¢y Co cl1 cl2 ¢l3 ¢l4 Cls
T Simulations 9 Analyses
= . B Analysis 1
.2 | B Analysis 2
2101, = e Jap 10 y:
8
E 8 I Simulation 1 384 i]
3 BN Simulation 2
¢ — 3
G SN RN K NG e Cl1 Cl2 €13 Cl4 C15
0.00016 Simulations 0.0020 Analyses .
> N
"2 0.00014
8 - i —= -;: e !j 0.0018{ = i *Ij E i;l ?F [
2 .
-.0.00012
g 0.00010 I Simulation 1 0.0016 MEEE Analysis 1
s [Simulation 2 [Analysis 2
0.00008 41— - — 00014 ——— -
¢y C. Cl1 Cl2 Cl3 Cl4 CL5 ¢y Co €11 Cl2 Cl3 Cl4 CL5
090 Simulations 20 Analyses
p) o g
g, . .A_il - T -.-] I Analysis 1
] [Analysis 2
ols 1.8
2
S
© I Simulation 1 ; * L
S X
5101 = Simulation 2 161 L
2
¢y Co Cl1 Cl12 Cl3 Cl4 Cl5 ¢y C. Cl1 Cl2 C13 Cl4 Cl5
Configurations Configurations
Figure 3: Metrics at ensemble component level.
= 1700 o
(= N g .
31600 ' . a
¢ - B ¢ .)
-,‘E‘, solE T _é 1600 !
H L]
2 11004 I Ensemble Member 1 2 !
£ EEE Ensemble Member 2 £ -
] 3 -
= 13001 ————————— 2 1500
C; Co Cclicl2clsclacls @ Cll Cl2 Cl13 Cl4 C15

Configurations Configurations
Figure 4: Ensemble member Figure 5: Workflow ensemble
makespan. makespan.

and C1.4, result in higher cache misses than the co-location of the
simulations, i.e. C1.2. The co-location of heterogeneous tasks (the
simulation and the analysis) lead to higher miss rates in C1.3 and
C1.5 compared to C1.1, C1.2, and C1.4. That said, C1.5 yields the
shortest member makespan among all configurations (Figures 4
and 5). We argue that co-locating coupled components within an
ensemble member leads to execution efficiency despite the elevated
degree of LLC interference. However, only simulation and analyses
that exchange data should be co-located.

The overall conclusion is that evaluating each set of metrics
exclusively does not guarantee a thorough understanding of the
workflow ensemble performance. Metrics at the component level
yield insights into the characteristics of individual components, but
fail to capture the overall workflow ensemble behavior. For example,
in our case, analyses are more memory-intensive than simulations,
which leads to increased cache miss ratio or higher memory inter-
ference. As a result, resource contention may arise due to co-located
analyses, thereby not only leading to increased execution time of
these components, but also increased ensemble member makespan
(recall the simulation and analyses execute synchronously). Conse-
quently, the overall workflow ensemble makespan may be harmed

Assessing Resource Provisioning and Allocation of Ensembles of In Situ Workflows

due to slow ensemble members. Therefore, in order to identify strag-
glers among the members one would need to diligently inspect and
relate the independent measurements to draw conclusions of the
workflow ensemble performance. We argue then that there is a
need to develop a method that captures the performance within a
workflow ensemble at multiple levels of granularity. To this end, in
the next section, we present an efficiency metric that indicates effec-
tive computation during the execution of an ensemble member. We
then consolidate measurements collected at the ensemble member
level into an indicator of overall workflow ensemble efficiency.

3 EFFICIENCY MODEL

To assess the performance of the workflow ensembles, we first
address the demand of execution characterization at the level of
ensemble members. In this section, we present an in situ execu-
tion model for a single ensemble member. Based on this model, we
propose an indicator to estimate the computational efficiency for
an ensemble member. We expanded the single simulation/single
analysis model presented in [13] to include multiple analysis com-
ponents coupled to a single simulation (Figure 1). We leverage this
efficiency indicator as one of the prerequisites to synthesize the
performance of workflow ensembles in Section 4.

3.1 Application Model

In our model, every simulation step is divided into three fine-
grained stages: a simulation stage S, an idle stage I°, and a writing
stage W in order, i.e. S occurs before IS, IS happens before W. The
simulation performs the computation during S, waits for the time
when data are ready to stage in I°, and then sends data to the
analysis during W. Similarly, every analysis step is comprised of:
a reading stage R, an analyzing stage A, and an idle stage I, exe-
cuted in that order. The analysis reads data sent by the simulation
in R, performs certain analyses during A, and then waits until the
next chunk of data is available for processing during I4. These
fine-grained stages can be organized into three sub-groups: compu-
tational stages (S, A), I/O stages (W, R), and idle stages (I°, I4).

The synchronous communication pattern discussed in Section 2
enforces the coordination among I/O stages such that W; of step i
occurs before R;, and R; happens before W of the next iteration
(Figure 6) so that the simulation does not overwrite data, which
have not been read yet (i.e., we assume no buffering of the sim-
ulation output in this work, in conformity with [13]). Thanks to
the iterative relationship between simulations and analyses, their
executions, after a few warm-up steps, reach a steady-state where
each stage has a similar execution time as measure over many steps.
As a result, rather than considering a particular step i for a given
stage (e.g., W;), we use a star symbol to denote steady-state stages.
Then, S., IS, Wy, Ry, As, and I2 denote the steady-state stages of
S, IS, W,R, A, and [4 respectively.

3.2 In Situ Step

A given ensemble member is composed of a single simulation Sim
coupled with K analyses Anal, And?, . .., AnaX. Anin situ step is
defined as the duration between the beginning of the stage S in the
simulation and the end of the stage I that finishes last among the

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

K analyses. We characterize the execution of a coupled simulation-
analysis into two scenarios (Figure 6): (i) Idle Simulation — a given
analysis step runs longer than the corresponding simulation step;
(ii) Idle Analyzer — a given analysis step runs faster than the associ-
ated simulation step. In Idle Simulation, the simulation step waits
for the completion of the analysis step. In contrast, in Idle Analyzer
the analysis step waits for data available from the corresponding
simulation step. For example, in Figure 6, the coupling of the sim-
ulation and the analysis 1 falls into the Idle Simulation scenario,
while the simulation and the analysis 2 are paired under the Idle
Analyzer scenario.

An ensemble member with one simulation and K analyses has
K different couplings {(Sim, Anal),..., (Sim, Ana®)} shortened in
this work as (Sim, Ana’) with 1 < i < K. (Each of these couplings
can be categorized as either Idle Simulation or Idle Analyzer scenar-
ios.) Note that multiple in situ steps may overlap due to concurrent
executions. Thus, computing the makespan of an ensemble member
should also account for this behavior — by simply expressing the
makespan as the aggregation of in situ steps durations, its value is
likely to be overestimated. As a result, we define an “actual” in situ
step as the non-overlapped segment o (Figure 6).

Intuitively, the non-overlapped segment o of a given in situ
step is the section between two consecutive simulation stages S
(recall an in situ step starts with the stage S). There are two possible
scenarios: (i) the simulation and the write stage run longer (Idle
Analyzer scenario), then the non-overlapped segment is equals to
S« + Ws; or (ii) one of the K analysis, Ana', has the longest runtime
(Idle Simulation scenario) then, the non-overlapped step is equals
to RL + AL. Hence,

Tv = max(S, + Wi, RL + AL, ... REK 4+ AK), (1)

Given the non-overlapped segment of in situ steps, we compute
the execution time of one ensemble member (also known as the
makespan) as:

MAKESPAN = Ngpeps X O (2)

where ngteps is the total number of in situ steps.

3.3 Computational Efficiency

To characterize the execution of an ensemble member, in this sec-
tion, we propose an indicator to capture the efficiency of the exe-
cution of an ensemble member from a computational standpoint,
where we want to minimize the idle time, and as a result increase re-
source usage. To compute the idle time per in situ step, we use Equa-
tion (1) to derive the duration of the idle stage on the simulation
component: IS = 7. —(S«+W,) and, the duration of the idle stage for
the analysis i as If‘i = G — (AL +RL). For each coupling (Sim, Ana’),
the portion of effective computation, i.e. not sitting idle, of an actual
in situ step is defined as o — s+ If 7). Since the computational
efficiency of an ensemble member depends on the amount of time
the ensemble components are idle, we compute a computational
efficiency E to be the average time of effective computation over
the actual in situ step of K couplings in the ensemble member:

1K
E=—

©)

O Ko,

I£+I:‘f) S.+W, XK AL+RI
1- 22— = + -1
[

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

non-overlapped o p|

Do et al.

matation| s W s, Wl s, (Wl s, [s s, [W s, [| W s, |
Analysis 1 R, A, |R2 A, | R, A, | R, A, Rg As
Analysis 2 R, A, | |R2| A, | R3| A, | A R4| A, | |R5| As | |R6| As |

@Idle Simulation @Idle Analyzer

|:| Idle stages

in situ step 04 >

in situ step 05

|:| I/0 stages |:| Computation stages

Figure 6: Example of fine-grained execution steps for a member of one ensemble. (Idle simulation and analyzer represent

coupled simulation-analysis scenarios.)

Since this indicator is derived from o, which is used to estimate
the makespan, maximizing E implies minimizing the idle time and
thereby the makespan.

3.4 Discussion

In this section, we use our efficiency model to substantiate the
choice of settings (i.e, number of cores and stride) used to run
the experiments shown in Section 2.2. Recall that for that set of
experiments, we consider a MD simulation coupled with an in situ
analysis. The parameter space is intractable as we can vary the
number of cores per component, their respective placements, and
the stride of the simulation. Thus, an exhaustive search is out of
reach. However, we can define a heuristic that finds parameters that
minimize the makespan and maximize the computational efficiency
of an ensemble member. In this context, we make the following
assumptions:

o The simulation settings are considered as an input of the
problem and are provided by the user. In most cases sci-
entists have a rough estimate of the best settings for their
simulations, but not for the analyses.

o Although our theoretical framework supports coupling to
different types of analyses simultaneously, we limit our ex-
periments to only identical analyses — thus narrowing the
configuration space.

We first consider the scenario without co-location, and we argue
that settings provisioned to the simulation and the analysis within
that context act as a baseline when contrasting to other co-location
scenarios. Based on our first assumption, we arbitrarily set the
settings of a simulation as follows: 16 cores and a stride of 800
(recall that our execution platform has compute nodes embedding
32 cores). We then vary the number of cores allocated to the analyses
to determine for which number of cores the makespan is minimized
and the computational efficiency E is maximized.

We notice that minimizing the makespan is equivalent to mini-
mizing o (Equation (2)). Thus, given an ensemble member with a
certain simulation with a predefined configuration coupled with
in situ analyses, in order to minimize the makespan, we need to
assign a number of cores the to the analyses such that:

Ri+ AL <S,. +W,,Vie{L,2,...,K}. 4

This inequality implies that each of the K coupling (Sim, Ana?) falls
into the Idle Analyzer scenario, then from Equation (1) we obtain
o« = Si + W,. Figure 7 shows the impact, when the number of

cores assigned to the analysis ranges from 1 to 32, on the in situ
step o+, the simulation component S. + W, the analysis compo-
nent R, + A, and the computational efficiency E. The analysis step
when using 1 to 4 cores takes longer than the simulation step, i.e.
R+ Ay > Si+W,, thus 0 = R+ A,. The inequality in Equation (4)
is satisfied once the analysis uses between 8 and 32 cores, which
minimizes ¢+, thereby minimizing the member makespan. Among
executions whose makespan is minimized, we optimize the compu-
tation efficiency by selecting the configuration that leads to max(E).
Hence, we decide to assign 8 cores to each analysis, which results
in the highest computational efficiency, i.e. the smallest amount of
idle time.

1001

300

60

Time (s)

40
100

Computational Efficiency E (%)

Number of cores assigned to an analysis

Figure 7: Execution time of the in situ step and computa-
tional efficiency when varying the number of cores assigned
to an analysis with a fixed simulation setting.

4 PERFORMANCE INDICATORS

In this section, we leverage the efficiency indicator described above
to evaluate the performance of workflow ensembles. We extend
the notion of efficiency from the individual member to the work-
flow ensemble level. (Note that different ensemble members can
have different efficiency values.) To synthesize the performance of
workflow ensembles, we introduce a three-stage approach in which
each stage adds a new layer of information to further refine the
indicator with desired features such as resource usage, resource
provisioning, and resource allocation. The goal of this multi-stage
approach is to provide a methodology to assess the impact of each
layer of information and come up with an overall performance
indicator that can characterize the performance of the entire work-
flow ensemble. Below, we define a set of notations (Table 3) used to
define the indicator.

Assessing Resource Provisioning and Allocation of Ensembles of In Situ Workflows

4.1 Notations

Given a workflow ensemble with N ensemble members {EMq, . . .
let P; be the performance indicator of the ensemble member EM; ,
and E; be its computational efficiency. The ensemble member EM;
contains a simulation Sim; coupled with K; analyses, Ana}, o, Anaf("
thus EM; has K; couplings (Simi,Anag), where j € {1,...,K;}. Let
cs; be the number of cores used by Sim;, these cores belong to nodes
whose indexes are listed in set s;. Similarly, the analysis Anaé uses

ca{ cores of nodes whose indexes are defined in set ai . For example,
in Table 2, C1.1 has s; = {0}, a% = {2},s2 = {1}, a% = {2}. Let¢;
denote the total number of cores assigned to all ensemble compo-
nents, i.e. simulation Sim; and K; analyses Ana{ ,in a given ensem-
ble member EM;. We have ¢; = c¢s; + Zf.(:"l ca{ Let d; be the number
of computing nodes allocated to the ensemble member EM;. Then,
the number of compute nodes d; allocated to the ensemble member

EM,; is calculated by d; = |s; U U aJ If the simulation and some

|sl'| + ijll |a'i | (Note
that this inequality becomes an equality if each component runs on
dedicated nodes.) Let M be the total number of computing nodes
used by the entire workflow of N ensemble members. Similarly,
we have M < Zﬁ\i 1 di- In the absence of resource sharing (i.e, each

analyses share compute nodes, we have di <

ensemble member runs on dedicated nodes), we have M = Zfi 1 d

Notation Description

Workflow Ensemble
N Number of ensemble members
M Number of nodes used by the workflow ensemble
Ensemble Member
EM; Ensemble member i
P; Performance indicator of EM;
K; Number of couplings in EM;
ci Total number of cores used by components of EM;
d; Number of nodes allocated to EM;
Ensemble Component
Sim; Simulation of EM; (one simulation per member)
Ana? Analysis j of EM; (K; analysis for each EM;)
cs; Number of cores used by Sim; of EM;
ca; Number of cores used by Ana) from EM;
Si Set of node indexes on which Sim; from EM; is executed
a? Set of node indexes on which Anaé from EM; is executed

Table 3: Notations.

4.2 Member Resource Usage (U)

Our goal is to build an indicator that can compare different execu-
tions of workflow ensembles using different numbers of resources
(e.g., number of cores). The first stage Pl.U of the performance in-
dicator calculation models the efficiency of an ensemble member
in terms of resource usage. We define PiU as the smallest unit of
efficiency in terms of single core usage. Precisely, PlU computes the
ratio between the the computational efficiency E; of an ensemble
member EM; and the total number of cores ¢; used by EM;, then:

Wt ©)

i’
Recall that maximizing E; is equivalent to minimizing the idle time
and the makespan (Section 3.3). High values of PlU indicate that a
large portion of the execution is spent on computing (in contrast

to idling), thus the ensemble member makespan is reduced.

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

4.3 Member Resource Allocation (A)

,EMp}, Since an ensemble member can have concurrent execution of multi-

ple components, the component can be co-located on the same node
or distributed across nodes. Finding an optimal placement among
the numerous placement configurations is challenging. Therefore,
we propose the second stage P}J’A to quantify the benefit of a certain
placement.

Lets consider the coupling (Simi,Anaf:) part of the ensemble
member EM;, then Sim; is co-located with Anaf if and only if
Isi| = |s; U aﬂ Otherwise, if |s;| < |s; U af|, then they are assigned
to different nodes. Based on this observation, we define a placement
a placement of a workflow ensemble. Let CP; be the placement
indicator for the ensemble member EM;:

indicator obtained from the ratio 0 < < 1 to represent

l Is;| [s]
i |siVa |

K;

CP; = _ il Z ©)
|s; U a K; 3 lsi a{
Intuitively, CP; describes the placement of EM;. It decreases with
the number of computing nodes used for a given workflow ensem-
ble. CP; = 1 indicates that the EM; components are all co-located,
and CP; close to 0 indicates that more dedicated resources are used
and that the components of EM; are distributed across them. Maxi-
mizing the placement indicator for each ensemble member results
in prioritizing placements that minimize the number of computing
resources used by that ensemble member. As a result, the placement
indicator not only reflects placement characteristics but also the
number of resources used at the ensemble member level.

To evaluate the efficiency of a placement (i.e., a mapping be-
tween ensemble members and available resources), we include the
proposed placement indicator in the next stage of the performance
indicator. Specifically, we multiply the first stage of our performance
indicator by the corresponding placement indicator as follows:

K;

E; |si] 1
PUA - pUsp = BN 1 (7)

! ! ¢i Ki | Ud

j=1 Si i |

Deriving from the discussed insight of the placement indicator, max-
imizing the performance indicator at this stage favors the resource
configuration that occupies a small number of compute nodes while
maximizing the effectiveness of the execution.

4.4 Ensemble Resource Provisioning (P)

Finally, by just considering the execution features at the level of
ensemble member might not be sufficient to capture the overall
performance of the entire workflow ensemble. To that end, we
extend the performance indicator with the number of resources
provisioned for the entire workflow ensemble, i.e. the number of
computing nodes the workflow ensemble resides on. When compar-
ing two executions using a different number of computing nodes,
the run using a smaller number of nodes should yield better effi-
ciency in two settings with the same performance. Therefore, to
obtain the last stage PU AP we weigh the performance indicator
by the total number of compute nodes M so that the number of

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

resources provisioned for the entire workflow ensemble is consid-
ered:
U, A K;
puap _ P Ei lsil Z 1 ®
i - s . T
M ciM K; = |s,~Uaé|

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the ability of the proposed perfor-
mance indicators to characterize the execution performance of
workflow ensembles. First, we propose a method for aggregating
indicator values from individual ensemble members into a global
indicator at the workflow ensemble level. Then, we extend our previ-
ous experimental configuration settings (Section 2.2) with scenarios
in which multiple analyses are coupled with the simulation.

5.1 Ensemble-level Performance Indicator

In order to compute a global indicator, we synthesize performance
indicators of every ensemble member. A simple approach would
be to consider the average values for all P;. However, the large
variation between these values may lead to inaccurate assessment of
the overall performance. To minimize the variability in performance
among ensemble members, we consider the mean performance P
from which we subtract the standard deviation:

F(P;))=P-

1 N — - 1 N
NZ(J.Di—P)Z where P = NZP, ©)
i=1 i=1

The intuition behind Equation (9) is to favor workflow ensemble’s
configurations with good makespan, i.e. configurations with a low
variability between workflow ensemble members (recall that the
makespan of a workflow ensemble is defined as the maximum
completion time among its members). The goal of an efficient con-
figuration, as defined in this work, is to maximize the objective
function F(P;). The higher the value of the objective function, the
better the performance of the entire workflow regarding efficiency,
makespan, resource usage, and component placement.

5.2 Results and Analysis

Workflow ensemble configurations. In this work, we apply our
multi-stage performance indicators to two sets of configurations,
each of these sets specifies the number of ensemble members and
the node assignment for each ensemble components. In this paper,
we consider only workflow ensembles comprised of 2 ensemble
members. The first set of configurations includes C1.1 to C1.5 (Ta-
ble 2). For every configurations in this set, each ensemble member
is a single coupling of a simulation and an in situ analysis. A sec-
ond set is comprised of configurations ranging from C2.1 to C2.8
(Table 4). For configurations in this set, the simulation of each en-
semble member is coupled with two analyses. Since we propose a
multi-stage method for evaluating the performance of an ensem-
ble member as well as the entire workflow ensemble, we examine
the impact and the order of each stage on the quality of the per-
formance indicator P; by accumulating in the objective function
F(P;) for the performance of the entire workflow ensemble. To this
end, we explore two feasible paths that can be followed to concate-

U,P,A.

nate performance indicator stages: (1) P}J - P}J’P — P, or

Do et al.

(2) PlU - PIU’A — P}J’A’P. For path (1), PIU’P = PIU/M, where M is
the total number of nodes used by the workflow ensemble (see Ta-
ble 3) and PIU’ PA _ P}J’P XCP;, where CP; is the placement indicator

defined in Section 4.3. Note that Pl.U’P’A = P}J’A’P. Specifically, we
observe changes in F(P;) when adding a new stage (i.e., resource

usage U, resource provisioning P, resource allocation A) to the per-

o . . U pUP ,U,A UPA
formance indicator P;, which can be either P; ’Pi ’Pi , Pi ,
and PIU’A’P, and assess the ability of our indicator to accurately

assess the performance of different co-location configurations.

Results. Figure 8 demonstrates the results of the objective perfor-
mance function at each of the multiple stages of P; over different
configurations in the first set. After the initial stage of PIU (Figure 8
left), a new layer is added, either P in the middle top figure or A on
the middle bottom to form the next stage. On the contrary of PIU’A,
Pl.U’P is not able to differentiate the performance of C1.4 from C1.5
as these two configurations both use 2 compute nodes. Recall that
in C1.4, the two simulations share a node while the two analyses
share another node. As shown in Figures 3 and 4, C1.4 does not lead
to good member makespans due to the contention of co-location
between two analyses. With P}J’A’P, we observe the characteriza-
tion where the performance of C1.4 is degraded to lower than C1.5,
but higher than C1.1,C1.2, C1.3. Finally, our performance indicator
confirms that C1.5 is the best choice, as demonstrated by traditional
metrics in Figures 4 and 5 that C1.5 has the smallest makespans.
C1.5 outperforms other configurations, which also validate the
common intuition behind in situ processing that simulations and
analyses must be co-located when possible. Since the in-memory
staging mechanism in this work is implemented by DIMES [30],
in which data resides on the memory of the simulation node, co-
locating the analysis having data coupling with such the simulation
can be beneficial from data locality to shorten the time of staging
data.

By opposition to the first set of configurations, for the second set,
we do not show the results of traditional metrics (described in Ta-
ble 1) due to the lack of space. However, experimental results of
these metrics when using the second set of configurations are not as
straightforward as the first on inferring from the metrics monitored
which configuration is the best. More number of analyses involved
in an ensemble member complicates the performance evaluation
using traditional metrics. The fact of utilizing the whole cores of
compute nodes in several configurations, e.g. C2.6, C2.7, C2.8, likely
saturates the resources, which brings difficulties in comparing them
with other configurations where compute nodes are not entirely
occupied by ensemble components. This situation motivates the
need for a performance indicator able to elect the best potential con-
figuration in terms of efficiency of the workflow ensemble. Figure 9
shows the values taken by the objective function when instantiated
with different configurations in the second set. In this case, PIU’P
separates the set of configurations in two groups defined by the
number of compute nodes used by the workflow ensemble (C2.6,
C2.7 and C2.8 uses 2 nodes when the other configurations use 3
nodes). Then, PIU’ P.A keeps this distinction but in addition indicates
that configuration C2.8 should return better performance than the
others. On the other hand, when adding layer A, we first isolate C2.8
from the other configurations, and further differentiate C2.6,C2.7

Assessing Resource Provisioning and Allocation of Ensembles of In Situ Workflows

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

Number of Number of

Node indexes

Configuration 100125:3:% :1: ;n;z: Ensemble member 1 Ensemble member 2
Simulation 1 Analysis 1.1 ~ Analysis 1.2 Simulation 2 Analysis 2.1 Analysis 2.2
C21 3 2 ny ny ny ni ny ny
C2.2 3 2 no ny np no na na
C2.3 3 2 noy np ny no np ny
C2.4 3 2 ny no ny ny ni ny
C2.5 3 2 ny ny ny n noy ny
C2.6 2 2 ny ny ni ny ni ny
C2.7 2 2 no no np np no ni
C2.8 2 2 no ny no ny ny ny

Table 4: Experimental configurations with two ensemble members, each ensemble member has two analyses per simulation.

Py p—pU p - pUP p — pupA _ ptAP

Q: 1 i . L i L i - i

— 1.754 el

k3.6 . 1.501 - !
S 1.251 + - + , , 157

T . ¢ cl1 Cl2 C13 Cl4 Cl5

= 3.4+ O p— puA

= = =4 1.04

= ' ! 34 - -

5 3.2 ? , L

= ‘ : ‘ ‘ ‘ e = v = s+ =+ ‘
o cl1 C12 C13 Cl4 Cl5 cl11 Cl2 Cl13 Cl4 Cl5 cl1 Cl2 C13 Cl4 Cls

Figure 8: F(P;) on different P; orders over configurations which have one analysis per simulation (the higher the better).

N
=1

b

]
>

[}
Tt

]
f

Objective function F(F))

P =pY P, = pUr P, = PUPA — pUAr
| C 1.25 + ¥ < v
. L0 = - x & = |10
, 2 C2.102.202.3C2.402.502.6C2.7C2.8
o & .- p- =
Q 9] 1 0.5 _ -
M T’ - - - -+

102.202.3C"

[Nl

R |

‘
02.102.202.302.4C2.5C2.602.7C2.8 C

- -
1C2.5C2.602.7C2.8 02.102.202.302.4C2.5C2.602.7C2.8

Figure 9: F(P;) on different P; orders over configurations which have two analyses per simulation (the higher the better).

from C2.1,C2.2,C2.4 at the last stage. Note that, similarly to con-
clusions reached in the previous setup, the chosen configuration
(2.8 is also the optimal configuration in terms of co-location (i.e,
simulation is collocated with its analyses) which again confirms
the benefits of co-locating coupled components of an ensemble
member.

6 RELATED WORK

Modern scientific workflows commonly feature multiple coupled
components, which need to be monitored at the same time to under-
stand the global performance of the workflow. Recent monitoring
systems for scientific workflows use system-level information to
extract insights into the execution of the workflows. LDMS [2]
developed distributed profiling services to periodically sample re-
source utilization metrics of compute nodes the workflow runs
on. SOS [28] relied on conventional HPC monitoring tools [25]
to build an online characterization that can be run alongside the
workflow execution to analyze workflow behaviors. However, tra-
ditional performance tools are not designed for modern workflows
featuring in situ processing. They collect potentially unnecessary
data and incur potentially significant overheads of profiling. Several
works have addressed monitoring overhead by introducing their

particular methods to evaluate a subset of desired features of the
workflows. Taufer et al. [26] leveraged domain-specific metrics such
as lost frames to characterize in situ analytic tasks using various job
mappings. Zacarias et al. [29] estimated the performance degrada-
tion arising from co-located applications using a machine learning
model. SeeSAw [19] maximized the performance of in situ analysis
under power constraints using energy management approaches.
WOWMON [31] implemented a runtime that provides a monitor-
ing scheme for scientific workflows composed of in situ tasks by
collecting a set of proposed metrics, and a machine learning-based
performance diagnosis to validate if the collected metrics are neces-
sary or redundant. While these works focused on in situ workflows,
evaluating the performance of the workflow ensembles is not a
straightforward extension of evaluating individual workflows. Our
work defines the performance of ensembles of in situ workflows.
Ensemble-based methods [10, 11, 22, 24] recently gained atten-
tion in the computational science, mainly due to the growth of
computing power of large-scale systems allowing more simulations
to run in parallel. Ensembles are an efficient approach for enhancing
sampling techniques, exploring broader configuration space and
overcoming the local minima problem observed in scientific simu-
lations. Multiple-walker [11, 24] allowed faster convergence and
better sampling by exploiting multiple replicas that simultaneously

ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

explore free-energy landscape along with transition coordinates
of the system. Generalized ensembles [10, 22] explored multiple
states of a simulation in ensembles with a probability weight factor
so that a random walk in a particular state can escape the energy
barrier.

Several recent efforts attempted to efficiently manage the execu-
tion of ensemble-based simulations combined with analysis tasks.
John et al. [23] proposed a workflow management system that stores
task provenances to enable adaptive ensemble simulation. EnTK [5]
is a general-purpose toolkit that abstracts components and tasks
in an ensemble-based workflow to support various scenarios in
which the number of tasks or task dependencies can vary. Both
of these works rely on RADICAL-Pilot as a runtime system [20].
However, these works study workflow ensembles with traditional
data coupling among tasks (i.e., non in situ) while, in this paper, we
focus on ensembles workflows comprising in situ tasks.

7 CONCLUSION

In this paper, we have characterized an ensemble of in situ work-
flows using multiple configurations and placements. Based on the
insights gained from this characterization, we have introduced a
theoretical framework that models the execution of workflow en-
sembles when multiple simulations are coupled with multiple anal-
yses using in situ techniques. We have then defined the notion
of efficiency for workflow ensembles at component, member, and
ensemble levels, and we designed several performance indicators.
These indicators capture the performance of workflow ensemble
by aggregating several metrics of the given workflow ensemble in
terms of resource usage efficiency and resources allocated for com-
ponents, members and the entire ensemble. By evaluating these
indicators on a real molecular dynamic simulation use case, we
have shown the advantages of data locality when co-locating the
simulation with the corresponding analyses in an ensemble mem-
ber. This finding allows us to schedule each ensemble member of
the workflow ensemble individually on a distinct allocation, wor-
rying only about the co-location among ensemble components
of each ensemble member. Future work will consider leveraging
the proposed indicators for scheduling in situ components of a
workflow ensemble under resource constraints.

ACKNOWLEDGMENTS

This work is funded by NSF contracts #1741040 and #1741057; and
DOE contract #DE-SC0012636. This research used resources of
NERSC, a U.S. Department of Energy Office of Science User Facility
operated under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] 2021. NERSC, Lawrence Berkeley National Laboratory’s Supercomputer Cori.

https://www.nersc.gov/users/computational-systems/cori

Anthony Agelastos et al. 2014. The Lightweight Distributed Metric Service: A

Scalable Infrastructure for Continuous Monitoring of Large Scale Computing

Systems and Applications. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (SC ’14). 154-165.

[3] Dong H Ahn et al. 2020. Flux: Overcoming scheduling challenges for exascale
workflows. Future Generation Computer Systems 110 (2020), 202-213.

[4] Nurunisa Akyuz et al. 2015. Transport domain unlocking sets the uptake rate of
an aspartate transporter. Nature 518, 7537 (2015).

[5] Vivek Balasubramanian et al. 2020. Adaptive Ensemble Biomolecular Applications
at Scale. SN Computer Science 1, 2 (2020), 104.

[2

[

Do et al.

[6] Alessandro Barducci et al. 2011. Metadynamics. WIREs Computational Molecular
Science 1, 5 (2011).

[7] PBjelkmar et al. 2010. Implementation of the CHARMM Force Field in GROMACS:
Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction
Sites, and Water Models. . Chem. Theory Comput. 6, 2 (2010).

[8] S. Caino-Lores et al. 2020. Applying big data paradigms to a large scale scientific
workflow: Lessons learned and future directions. Future Generation Computer
Systems 110 (2020), 440-452.

[9] T. E. Cheatham III et al. 2015. The Impact of Heterogeneous Computing on
Workflows for Biomolecular Simulation and Analysis. Computing in Science
Engineering 17, 2 (2015).

[10] Riccardo Chelli et al. 2012. Serial Generalized Ensemble Simulations of

Biomolecules with Self-Consistent Determination of Weights. Journal of Chemical

Theory and Computation 8, 3 (2012).

Jeffrey Comer et al. 2014. Multiple-Replica Strategies for Free-Energy Calculations

in NAMD: Multiple-Walker Adaptive Biasing Force and Walker Selection Rules.

Journal of Chemical Theory and Computation 10, 12 (2014).

Daniel Dauwe et al. 2014. Modeling the Effects on Power and Performance

from Memory Interference of Co-located Applications in Multicore Systems. In

Proceedings of the International Conference on Parallel and Distributed Processing

Techniques and Applications. WorldComp.

Tu Mai Anh Do et al. 2021. A lightweight method for evaluating in situ workflow

efficiency. Journal of Computational Science 48 (2021).

Rafael Ferreira da Silva et al. 2019. Measuring the impact of burst buffers on

data-intensive scientific workflows. Future Generation Computer Systems 101

(2019).

Q. Jiang et al. 2015. Executing Large Scale Scientific Workflow Ensembles in

Public Clouds. In 2015 44th International Conference on Parallel Processing. IEEE,

Beijing, China, 520-529.

Travis Johnston et al. 2017. In situ data analytics and indexing of protein trajec-

tories. Journal of Computational Chemistry 38, 16 (2017).

Mahzad Khoshlessan et al. 2020. Parallel performance of molecular dynamics

trajectory analysis. Concurrency and Computation: Practice and Experience 32

(2020).

Maciej Malawski et al. 2015. Algorithms for cost- and deadline-constrained

provisioning for scientific workflow ensembles in Iaa$S clouds. Future Generation

Computer Systems 48 (2015), 1-18. Special Section: Business and Industry Specific

Cloud.

[19] 1. Marincic et al. 2020. SeeSAw: Optimizing Performance of In-Situ Analytics
Applications under Power Constraints. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, New Orleans, LA, USA, 789-798.

[20] Andre Merzky et al. 2019. Using Pilot Systems to Execute Many Task Workloads

on Supercomputers. In Job Scheduling Strategies for Parallel Processing, Dalibor

Klusacek, Walfredo Cirne, and Narayan Desai (Eds.).

Oscar H. Mondragon et al. 2016. Understanding Performance Interference in

Next-Generation HPC Systems. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis (SC ’16). Article

33, 12 pages.

[22] Yuko Okamoto. 2004. Generalized-ensemble algorithms: enhanced sampling
techniques for Monte Carlo and molecular dynamics simulations. Journal of
Molecular Graphics and Modelling 22, 5 (2004).

[23] John Ossyra et al. 2019. Porting Adaptive Ensemble Molecular Dynamics Work-

flows to the Summit Supercomputer. In High Performance Computing.

Paolo Raiteri et al. 2006. Efficient Reconstruction of Complex Free Energy Land-

scapes by Multiple Walkers Metadynamics. The Journal of Physical Chemistry B

110, 8 (2006), 3533-3539. PMID: 16494409.

[25] Sameer S. Shende et al. 2006. The Tau Parallel Performance System. The Interna-
tional Journal of High Performance Computing Applications 20, 2 (2006).

[26] M. Taufer et al. 2019. Characterizing In Situ and In Transit Analytics of Molecular
Dynamics Simulations for Next-Generation Supercomputers. In 15th International
Conference on eScience (eScience).

[27] Jeffrey S. Vetter et al. 2018. Extreme Heterogeneity 2018 - Productive Computational
Science in the Era of Extreme Heterogeneity: Report for DOE ASCR Workshop on Ex-
treme Heterogeneity. Technical Report. Lawrence Berkeley National Lab.(LBNL).

[28] Chad Wood et al. 2016. A Scalable Observation System for Introspection and in
Situ Analytics. In Proceedings of the 5th Workshop on Extreme-Scale Programming
Tools (ESPT ’16). IEEE Press, Salt Lake City, Utah, 42-49.

[29] F.V.Zacarias et al. 2019. Intelligent Colocation of Workloads for Enhanced Server

Efficiency. In 2019 31st International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD). IEEE, Campo Grande, Brazil, 120-127.

Fan Zhang et al. 2017. In-memory staging and data-centric task placement for

coupled scientific simulation workflows. Concurrency and Computation: Practice

and Experience 29, 12 (2017).

Xuechen Zhang et al. 2016. WOWMON: A Machine Learning-based Profiler for

Self-adaptive Instrumentation of Scientific Workflows. Procedia Computer Science

80 (2016), 1507-1518. International Conference on Computational Science 2016,

ICCS.

[11

[12

[13

[14

=
&

[16

[17

[18

[21

[24

%
=

[31

https://www.nersc.gov/users/computational-systems/cori

	Abstract
	1 Introduction
	2 Workflow ensemble
	2.1 Definitions
	2.2 Experimental Setup
	2.3 Analyzing workflow ensemble co-location

	3 Efficiency Model
	3.1 Application Model
	3.2 In Situ Step
	3.3 Computational Efficiency
	3.4 Discussion

	4 Performance Indicators
	4.1 Notations
	4.2 Member Resource Usage (U)
	4.3 Member Resource Allocation (A)
	4.4 Ensemble Resource Provisioning (P)

	5 Experimental Evaluation
	5.1 Ensemble-level Performance Indicator
	5.2 Results and Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

