
To appear in the IEEE Symposium on Security & Privacy, 2022

Back to the Drawing Board:
A Critical Evaluation of Poisoning Attacks on

Production Federated Learning
Virat Shejwalkar⇤, Amir Houmansadr⇤, Peter Kairouz†, Daniel Ramage†

⇤University of Massachusetts Amherst †Google Research
⇤
{vshejwalkar, amir}@cs.umass.edu, †

{kairouz, dramage}@google.com

Abstract—While recent works have indicated that federated

learning (FL) may be vulnerable to poisoning attacks by com-

promised clients, their real impact on production FL systems

is not fully understood. In this work, we aim to develop a

comprehensive systemization for poisoning attacks on FL by

enumerating all possible threat models, variations of poisoning,

and adversary capabilities. We specifically put our focus on un-

targeted poisoning attacks, as we argue that they are significantly

relevant to production FL deployments.

We present a critical analysis of untargeted poisoning at-

tacks under practical, production FL environments by carefully

characterizing the set of realistic threat models and adversarial

capabilities. Our findings are rather surprising: contrary to the

established belief, we show that FL is highly robust in practice

even when using simple, low-cost defenses. We go even further

and propose novel, state-of-the-art data and model poisoning

attacks, and show via an extensive set of experiments across

three benchmark datasets how (in)effective poisoning attacks are

in the presence of simple defense mechanisms. We aim to correct

previous misconceptions and offer concrete guidelines to conduct

more accurate (and more realistic) research on this topic.

I. INTRODUCTION

Federated learning (FL) is an emerging learning paradigm
in which data owners (called clients) collaborate in training a
common machine learning model without sharing their private
training data. In this setting, a central server (e.g., a service
provider) repeatedly collects some updates that the clients
compute using their local private data, aggregates the clients’
updates using an aggregation rule (AGR), and finally uses
the aggregated client updates to tune the jointly trained model
(called the global model), which is broadcasted to a subset
of the clients at the end of each FL training round. FL
is increasingly adopted by various distributed platforms, in
particular by Google’s Gboard [1] for next word prediction,
by Apple’s Siri [49] for automatic speech recognition, and by
WeBank [62] for credit risk predictions.
The threat of poisoning FL: A key feature that makes FL
highly attractive in practice is that it allows training models in
collaboration between mutually untrusted clients, e.g., Android
users or competing banks. Unfortunately, this makes FL sus-
ceptible to a threat known as poisoning: a small fraction of FL
clients, called compromised clients, who are either owned or
controlled by an adversary, may act maliciously during the FL

training process in order to corrupt the jointly trained global
model. Specifically, the goal of the poisoning adversary is to
attack FL by instructing its compromised clients to contribute
poisoned model updates during FL training in order to poison

the global model.
There are three major approaches to poisoning FL: targeted,

backdoor, and untargeted poisoning; Figure 1 briefly illus-
trates them. The goal of this work is to understand the sig-
nificance of poisoning attacks to production FL systems [11],
[32], and to reevaluate the need for sophisticated techniques
to defend against FL poisoning. We choose to focus on

untargeted FL poisoning as we find it to be significantly
relevant to production deployments: it can be used to impact
a large population of FL clients and it can remain undetected
for long duration. As we focus on untargeted poisoning, in the
rest of this paper “poisoning” refers to untargeted poisoning,
unless specified otherwise.
The literature on FL poisoning attacks and defenses: Re-
cent works have presented various techniques (Section IV-A)
to poison FL [5], [23], [55]. Their core idea is to generate
poisoned updates (either by direct manipulation of model
updates, called model poisoning [3], [5], [7], [23], [55], or
through fabricating poisoned data, called data poisoning [59],
[61]) that deviate maximally from a benign direction, e.g.,
the average of benign clients’ updates, and at the same
time circumvent the given robust AGR, i.e., by bypassing
its detection criteria. To protect FL against such poisoning
attacks, the literature has designed various robust aggregation
rules [10], [15], [23], [41], [55], [70] (Section II-B) which aim
to remove or attenuate the updates that are more likely to be
malicious according to some criterion.
The gap between the literature and practice: The existing
literature on poisoning attacks and defenses for FL makes
unrealistic assumptions that do not hold in real-world FL
deployments, e.g., assumptions about the percentages of com-
promised clients, total number of FL clients, and the types of
FL systems [32]. For instance, state-of-the-art attacks [5], [23],
[55] (defenses [10], [16], [68], [70]) assume adversaries who
can compromise up to 25% (50%) of FL clients. For an app
like Gboard with ⇠ 1B installations [32], 25% compromised
clients would mean an attacker controls 250 million Android

Specific target set/class
of images

Targeted attacks
(discriminate availability)

All the other images

Samples to
misclassify

Samples to
correctly classify

Car images with stripes
in background

Semantic
(discriminate availability)

All images without "cars with
stripes in background"

All images with the
trigger pattern

Backdoor attacks

Artificial
(indiscriminate integrity)

All images without
the trigger pattern

All images from the
distribution

Untargeted attacks
(indiscriminate availability)

No images

Figure 1: Classes of FL poisoning attacks and their objectives defined using the taxonomy in Section III-A1: Targeted attacks [7],
[58] aim to misclassify only a specific set/classes of inputs (e.g., certain 10 samples from CIFAR10), semantic backdoor

attacks [3], [61] aim to misclassify inputs with specific properties (e.g., cars with stripes in background), artificial backdoor

attacks [67] aim to misclassify inputs with an artificial (visible or invisible) trigger pattern (e.g., shape of letter ”F”), and
untargeted attacks [23], [55] aim to reduce model accuracy on arbitrary inputs (e.g., the entire CIFAR10 distribution).

devices! We argue that, although interesting from theoretical
perspectives, the assumptions in recent FL robustness works
do not represent common real-world adversarial scenarios that
account for the difficulty and cost of at-scale compromises.
Our contributions: In this work, we perform a critical
analysis of the literature on FL robustness against (untargeted)
poisoning under practical considerations. Our ultimate goal is
to understand the significance of poisoning attacks and the
need for sophisticated robust FL algorithms in production FL.
Specifically, we make the following key contributions:

I. Systemization of FL poisoning threat models. We start by
establishing a comprehensive systemization of threat models of
FL poisoning. Specifically, we discuss three key dimensions of
the poisoning threat to FL: The adversary’s objective, knowl-
edge, and capability. We discuss the practicality of all possible
threat models obtained by combining these dimensions. As we
will discuss, out of all possible combinations, only two threat
models, i.e., nobox offline data poisoning and whitebox online

model poisoning, are of practical value to production FL. We
believe that prior works [5], [10], [23], [55] have neglected the
crucial constraints of production FL systems on the parameters
relevant to FL robustness. Our work is the first to consider

production FL environments [11], [32] and provide practical
ranges for various parameters of poisoning threat models. As a
result, our evaluations lead to conclusions that contradict the

common beliefs in the literature, e.g., we show that production
FL even with the non-robust Average AGR is significantly
more robust than previously thought.

II. Introducing improved poisoning attacks. First, we
overview all of the existing untargeted poisoning attacks
on FL that consider the two aforementioned threat models
(Section IV-A). Then, we design improved attacks for these
threat models. 1) Our improved data poisoning attacks: We
present the first attacks that systematically consider the data
poisoning threat model for FL (Section IV-B2). We build on
the classic label flipping data poisoning attack [45], [64],
[65] designed for centralized ML. Our data poisoning attacks

rely on the observation that increasing the amount of label
flipped data increases the loss and norm of the resulting
updates, and therefore, can produce poisoned updates that
can effectively reduce the global model’s accuracy. However,
using arbitrarily large amounts of label flipped data may result
in updates that cannot circumvent the robustness criterion of
the target AGR. Hence, to circumvent the target AGR, we
propose to adjust the amount of label flipped data used. 2)

Our improved model poisoning attacks: We propose novel
model poisoning attacks that outperform the state-of-the-art.
Our attacks (Section IV-B3) use gradient ascent to fine-tune
the global model and increase its loss on benign data. Then,
they adjust the L2-norm of the corresponding poisoned update
in order to circumvent robustness criterion of the target AGR.
III. Analysis of FL robustness in practice. We extensively
evaluate all existing poisoning attacks as well as our own
improved attacks across three benchmark datasets, for various
FL parameters, and for different types of FL deployments.
We make several significant deductions about the state of FL
poisoning literature for production FL. For production cross-
device FL, which contains thousands to billions of clients,
following are our key lessons:
(1) For practical percentages of compromised clients (M),

even the most basic, non-robust FL algorithm, i.e., Average

AGR, converges with high accuracy, i.e., it is highly robust. For
instance, data poisoning with M = 0.1% (model poisoning
with M = 0.01%) reduces the global model accuracy of
FEMNIST from 83.4% to 81.4% (73.4%), CIFAR10 from
86.6% to 85.1% (82.9%), and Purchase from 85.4% to 85.3%
(76.4%). These findings directly contradict the claims of
previous works [10], [41], [68] that Average AGR cannot
converge even with a single compromised client.
(2) Poisoning attacks have no impact on existing robust FL

algorithms even with impractically high M ’s: At M=1%, data
or model poisoning attacks reduce the accuracy by only <1%
for most of the settings.
(3) Enforcing a limit on the size of the dataset contributed by

each client can act as a highly effective (yet simple) defense

2

against data poisoning attacks with no need to any of the state-
of-the-art, sophisticated robust FL aggregation algorithms.
(4) While recent works have introduced sophisticated and
theoretically robust AGRs that incur high computation and
memory costs, the simple and low-cost defenses, e.g., norm-

bounding [58], provide an equivalent protection to FL against

state-of-the-art poisoning attacks.

For production cross-silo FL, which contains up to hundred
clients [32], we show that data poisoning attacks are com-

pletely ineffective, even against non-robust Average AGR. We
also argue that model poisoning attacks are unlikely to play
a major risk to production cross-silo FL, where the clients
involved are bound by contract and their software stacks are
professionally maintained (e.g., in banks, hospitals, etc.).
Implications of our study: Numerous recent works have
proposed sophisticated aggregation rules for FL with strong
theoretical robustness guarantees [2], [10], [20], [21], [41],
[50], [68], [70]. However, our work shows that, when it
comes to production FL deployments, even simple, low-cost
defenses can effectively protect FL against poisoning. We also
believe that our systematization of practical poisoning threat
models can steer the community towards practically significant
research problems in FL robustness.

II. BACKGROUND

A. Federated Learning (FL)

In FL [32], [33], [40], a service provider, called server,
trains a global model, ✓g , on the private data of multiple
collaborating clients without directly collecting their data. In
the tth FL round, the server selects n out of total N clients
and shares the most recent global model, i.e., ✓tg , with them.
Then, a client k uses their local data Dk to fine-tune ✓tg using
stochastic gradient descent (SGD) for a fixed number of local
epochs E and obtains updated model by ✓tk. Then, the kth

client computes her FL update as the difference rt
k = ✓tk�✓tg

and shares rt
k with the server. The server then computes

an aggregate of all client updates using some aggregation
rule, fagg, i.e., using rt

agg = fagr(rt
{k2[n]}). Then, the server

updates the global model of the (t + 1)th round using SGD
as ✓t+1

g ✓tg + ⌘rt
agg; here ⌘ is the server’s learning rate.

Section III-B1 discusses salient features of production FL.

B. Existing Defenses Against Untargeted Poisoning

As we focus on untargeted poisoning, below we discuss
defenses against untargeted poisoning in detail and defer the
discussion for targeted/backdoor poisoning to Appendix A.

The literature has presented various directions towards mak-
ing FL robust against Byzantine or compromised clients. Note
that, from detection perspective, there is no difference between
untargeted attacks (adversary deliberately corrupts model up-
dates) and Byzantine failures (arbitrary system failures corrupt
updates). The core approach is to replace FL’s vanilla average
aggregation rule (AGR) [40] with a robust AGR (also called
a defense). Below, we introduce the types of robust AGRs
designed to defend FL against untargeted poisoning attacks.

Dimension-wise filtering defenses separately filter potentially
malicious values for each dimension of clients’ updates. Ex-
ample AGRs are Median [70], Trimmed-mean [70], and sign-
SGD with majority voting [6].
Vector-wise filtering defenses aim at removing potentially
poisoned client updates. They differ from dimension-wise
filtering, as they attempt to remove entire malicious updates,
as opposed to removing malicious values. Example AGRs
include RFA [50], RSA [36], Krum [10], Multi-krum [10],
Bulyan [41], and Divide-and-conquer (DnC) [55].
Vector-wise scaling defenses, e.g., Norm-bounding [58], re-
duce the impact of poisoned updates by scaling their norms.
Certified defenses [14], [66] provide certified accuracy for
each test input when the number of compromised clients or
perturbation to the test sample is below a certified threshold.
Knowledge transfer based defenses [15], [38] aim to reduce
the dimensionality of the client updates, because theoretical
robustness guaranty of most of robust AGRs is directly propor-
tional to updates’ dimensionality. Hence, they use knowledge
transfer and, instead of sharing parameters of client models,
share predictions of client models on some public data.
Personalization techniques, e.g. Ditto [37] and EWC [71],
fine-tune the potentially corrupt global model on each client’s
private data to improve its performance for the client.

C. Defenses We Evaluate in Our Work

For a robust AGR to be usable in production FL, it needs
to provide high performing models at low compute and

memory costs. In Table I, we compare the performance and
overhead implications of state-of-the-art defenses overviewed
above. Each red cell demonstrates a hindrance to adoption in
production FL. In particular, (1) SignSGD + majority voting,
Krum, Bulyan, RSA, and certified defenses incur significant
performance losses, (2) certified defenses incur high memory
cost to clients, (3) knowledge transfer based defenses require
public data and incur high performance losses in cross-device,
non-iid FL settings, and (4) personalization techniques cannot
improve performance if the global model is significantly
corrupt. Hence, to be effective, they should be coupled with a
robust AGR and rely completely on the robustness of the AGR
against poisoning. Therefore, the evaluation of personalization
techniques is orthogonal to our evaluation of robust AGRs.

As the focus of our work is production FL, for brevity and
space limitations, we only choose representative AGRs (bold
in Table I) from each class that offer practical performance and
overheads. Below we introduce the selected defenses in detail.
Note that more sophisticated (e.g., higher overhead) defenses
may provide better robustness to poisoning, however this does
not impact our main conclusions: we will show that even such
simple defenses are enough to protect production FL.

1) Average: In non-adversarial FL settings, dimension-wise
Average [40] is an effective AGR. Due to its efficiency,
Average is the only AGR implemented by FL applications
in practice [1], [39], [49], [62].

2) Norm-bounding: This AGR [58] bounds the L2 norm
of all submitted client updates to a fixed threshold, with the

3

Table I: Comparing state-of-the-art aggregation rules (AGRs) in terms of accuracy, computation/memory cost, and theoretical
guarantees. We show results for CIFAR10 with 1,000 clients. Red cells show limitations of the corresponding AGR.

Type of aggregation
rule (AGR) Example AGR Accuracy

in non-iid FL
Computation

at server
Memory cost

to client
Theoretical robustness

based on
Non-robust Average [40] 86.6 O(d) O(d) None

Dimension-wise
filtering

Median [70] 84.2 O(dnlogn)
O(d)

convergence
Trimmed-mean [70] 86.6 O(dnlogn) convergence

Sign-SGD +
majority voting [6] 35.1 O(d) convergence

Vector-wise scaling Norm-bound [58] 86.6 O(d) O(d) Not established

Vector-wise
filtering

Krum [10] 46.9 O(dn2)

O(d)

convergence
Multi-krum [10] 86.2 O(dn2) convergence

Bulyan [41] 81.1 O(dn2) convergence
RFA [50] 84.6 O(dn2) convergence
RSA [36] 35.6 O(d) convergence
DnC [55] 86.1 O(d) filtering

Certification Emsemble [14] 74.2
O(d)

Certification
CRFL [66] 64.1 O(Md) Certification

Knowledge
transfer Cronus [15] Needs public

data O(d) O(d) filtering

Personalization Ditto [37]
EWC [71] 86.6 O(d) O(d)

None (depends
on server’s AGR)

intuition that the effective poisoned updates should have high
norms. For a threshold ⌧ and an update r, if the norm,
krk2 > ⌧ , r is scaled by ⌧

krk2
, otherwise the update is not

changed. The final aggregate is an average of all the updates,
scaled or otherwise.

3) Multi-krum: Blanchard et al. [10] proposed Multi-krum
AGR as a modification to their own Krum AGR [10]. Multi-
krum selects an update using Krum and adds it to a selection

set, S. Multi-krum repeats this for the remaining updates

(which remain after removing the update that Krum selects)
until S has c updates such that n � c > 2m + 2, where n
is the number of selected clients and m is the number of
compromised clients in a given round. Finally, Multi-krum
averages the updates in S.

4) Trimmed-mean: Trimmed-mean [68], [70] aggregates
each dimension of input updates separately. It sorts the values
of the jth-dimension of all updates. Then it removes m (i.e.,
the number of compromised clients) of the largest and smallest
values of that dimension, and computes the average of the rest
of the values as its aggregate of the dimension j.

III. SYSTEMIZATION OF FL POISONING THREAT MODELS

We discuss the key dimensions of the threat models of
poisoning attacks on FL, and argue that only two combinations
of these dimensions are of practical interest for production FL.
Note that, there exist taxonomies of FL poisoning attacks [27],
[31] which provide comprehensive overviews of the poisoning
attacks in existing literature. In contrast, our work aims to
provide a systematic framework to model the existing and
future poisoning threats to federated learning.

A. Dimensions of Poisoning Threat to FL

In this section, we build on previous systemization efforts
for adversarial ML [4], [9], [29], [43] and present three key
dimensions for the threat model of FL poisoning, as shown in
Table II.

1) Adversary’s Objective: Inspired by [9], we define three
attributes of the adversary’s objectives.
Security violation: The adversary may aim to cause an
integrity violation, i.e., to evade detection without disrupting
normal service operations, or an availability violation, i.e., to
compromise the service for legitimate users.
Attack specificity: The attack is discriminate if it aims to
cause misclassification of a specific set/class of samples; it is
indiscriminate otherwise.
Error specificity: This attribute is especially relevant in multi-
class classification settings. It is specific if the attacker’s goal
is to have a sample misclassified as a specific class; the attack
is generic if the attacker does not care about the wrong label
assigned to the misclassified samples.
Adversary objectives in different classes of poisoning: Here,
based on the above taxonomy, we discuss the adversary’s
objective for different types of poisoning attacks (Figure 1).
Targeted attacks [7], [59] aim to misclassify specific sets/-
classes of input, hence they are “discriminate.” Such discrimi-
nate attacks can be either used for “integrity” or “availability”
violations, depending on how the poisoned data is used.
Semantic backdoor attacks [3], [61] have the same goal as the
targeted attacks, but the targeted inputs should have specific
properties, e.g., a pixel pattern or a word sequence. Hence,
these are “discriminate,” “availability” or “integrity” attacks.
Artificial backdoor attacks [67] aim to misclassify any

input containing a backdoor trigger, hence these attacks are
“indiscriminate” attacks. Note that, such test inputs should be
modified to have the backdoor trigger and only the adversary
or a malicious client know the trigger. Hence, these attacks
aim to evade the detection, i.e., cause an integrity violation.
Hence, these are “integrity indiscriminate” attacks.
Untargeted attacks [5], [23], [55] aim to misclassify any test
input, i.e., they are “indiscriminate” attacks. But, test inputs
need not be modified in order to misclassify. Hence, these are
“availability” attacks.

4

Table II: The key dimensions of the threat models of poisoning attacks on FL. Each combination of these dimensions constitutes
a threat model (Table IV). However, we argue in Section III-B2 that only two of these combinations are practical threat models.

Dimension Attribute Values Description

Objective

of the

adversary

Security violation
Integrity Misclassify a (adversarially crafted) test input in order to evade detection.
Availability Misclassify an unmodified test input to cause service disruption for benign users.

Attack specificity
Discriminate Misclassify a small and/or specific set of inputs at the test time.
Indiscriminate Misclassify all or most of inputs at the test time.

Error specificity
Specific Misclassify a given modified/pristine test input to a specific class.
Generic Misclassify a given modified/pristine test input to any class.

Knowledge

of the

adversary

Knowledge of

the global model

Whitebox Adversary can access the global model parameters as well as its predictions, e.g., in the model
poisoning case.

...

Nobox Adversary cannot access parameters or predictions of global model, e.g., in the data poisoning case.

...

...

Knowledge of

the data from

the distribution of

benign clients’

data

Full

Adversary can access local data only of the compromised
clients, but not of the benign clients.

Adversary can access the local data of all of the collaborating
clients, i.e., benign and compromised clients, in FL.

Full knowledge Partial knowledge

Partial

Capabilities

of the

adversary

Capabilities in

terms of access

to client devices

Model poison Adversary breaks into the compromised clients (e.g., by circumventing security protocols of operating
systems such as Android) and directly manipulates their model updates.

Data poison Adversary can only manipulate local data of the compromised clients; the clients use this data to
compute their updates. Adversary does not break into the compromised clients.

Capabilities in

terms of frequency

of the attack

(Attack mode)

Online Adversary repeatedly and adaptively poisons the compromised clients during FL, e.g., model poisoning
attacks [7], [23], [55]. Impacts of these attacks can persist over the entire FL training.

...

Offline Adversary poisons the compromised clients only once at the beginning of FL, e.g., baseline label
flipping attacks [23], [61]. Impact of such attacks may quickly fade away.

...

Finally, the error specificity of each of these attacks can be
either “specific” or “generic.”

Focus of our work: In this work, we focus on untargeted

attacks, i.e., indiscriminate availability attacks with generic
error specificity, for the following reasons.

Untargeted attacks pose a great threat to production FL:

Untargeted attacks are designed to impact all clients and
all test inputs. For instance, FL on FEMNIST achieves an
85% [52] accuracy in a benign setting, and untargeted attacks
reduce the accuracy to, e.g., [78, 82]% depending on the
percentages of compromised clients. Such an accuracy drop is
significant for production FL, as a malicious service provider

can gain advantage over their competitors by causing such

small, yet noticeable, accuracy reductions in the competing

services and such small accuracy reductions can impact most

clients and data from all classes in arbitrary fashion.

Untargeted attacks can go undetected for long duration: As
discussed above, the untargeted attack aims at reducing the
overall accuracy of the global model, even by only a few
percentage points. Such a small reduction in accuracy is
hard to detect in practical settings due to the absence of
reliable benchmarks for the target application. For instance,
the affected service provider will never know that they could
have achieved an 85% accuracy and will believe that [78, 82]%
is the highest achievable accuracy.
Constructing untargeted attacks is more challenging: Un-
targeted attacks aim to solve a more challenging problem,
which is affecting arbitrary test inputs. However, while there
exist several defenses to protect FL against untargeted poison-
ing [10], [41], [55], [70], these attacks are not studied under

production FL environments (as discussed later on).
2) Adversary’s Knowledge: Below we elaborate on two

dimensions of adversary’s knowledge: knowledge of the global

5

model and knowledge of the data from the benign distribution.
Knowledge of the global model: This can be nobox or
whitebox. In the nobox case, the adversary does not know the
model architecture, parameters, or outputs, and is the most
practical setting in FL [32], e.g., the data poisoning adversary
has nobox knowledge of the global model. In the whitebox
case, the adversary knows the global model parameters and
outputs, whenever the server selects at least one compromised
client. The model poisoning adversary always has whitebox
knowledge of the global model. As we will explain in Sec-
tion III-B3, this is a relatively less practical setting in FL, as
it assumes complete control of the compromised devices.
Knowledge of the data from benign distribution: This can
be full or partial. In full knowledge case, the adversary can
access the benign local data of compromised as well as benign
clients. In partial knowledge case, the adversary can access the
benign local data only of the compromised clients. We only
consider the partial knowledge case, because accessing the
data of all the clients is impractical in production FL.

3) Adversary’s Capability: Below, we elaborate on the the
adversary’s capability in terms of access to client devices and
frequency of attack, i.e., the attack mode.
Capability in terms of access to client devices: Based on
the FL stages (part of FL pipeline on client device) that the
adversary poisons, there can be a model poisoning adversary

or a data poisoning adversary. The model poisoning adversary
can break into a compromised device (e.g., by circumventing
the security protocols of operating systems such as Android)
and can directly manipulate the poisoned updates [5], [10],
[23], [41], [50], [55]. This adversary can craft highly effective
poisoned updates, but due to unreasonable amount of access
to client devices, it can compromise very small percentages of
FL clients [24], [32].

On the other hand, a data poisoning adversary cannot
break into a compromised device and can only poison its
local dataset. The compromised clients use their local poi-
soned datasets to compute their poisoned updates, hence this
adversary indirectly manipulates the poisoned updates. Due
to the indirect manipulation, these updates may have less
poisoning impact than the model poisoning updates. But, due
to the limited access required to the compromised clients, this
adversary can compromise relatively large percentages of FL
clients [24], [32].
Capability in terms of attack frequency (Attack mode): The
mode of poisoning attacks on FL can be either offline or online.
In the offline mode, the adversary poisons the compromised
clients only once before the start of FL training, e.g., the
baseline label flip attack [23] flips the labels of data of
compromised clients once before the FL training starts. In the
online mode, the adversary repeatedly and adaptively poisons
the compromised clients, e.g., existing model poisoning at-
tacks [5], [55] repeatedly poison the updates of compromised
clients selected by the server.

Finally, we assume that the compromised clients can collude
to exchange their local data and model updates in order to

increase impacts of their attacks.

B. Practical Considerations for Poisoning Threat Models

1) Salient Features of Production Federated Learning:

Production FL can be either cross-device or cross-silo [32].
In cross-device FL, the number of clients (N) is large (from
few thousands to billions) and only a small fraction of them
is chosen in each FL training round, i.e., n ⌧ N . In cross-
device FL, clients’ devices are highly resource constrained,
and therefore, they can process only a limited amounts of data
in an FL round. Also, as the devices have highly unreliable
network connections, it is expected that a small fraction of
the selected devices may drop out in any given FL round.
Note that, this equally impacts both benign and compromised
clients and does not affect the robustness; this is similar
to how the choice of n has no impact on the robustness
(Section V-C3). In cross-silo FL, N is moderate (up to 100)
and all clients are selected in each round, i.e., n = N . Clients
are large corporations, e.g., banks, and have devices with
ample resources. Hence, they can process very large amounts
of data and client drop-outs do not happen.

In both FL types, the on-device model used for inference
and the on-device model being trained are different. Hence, an
adversary cannot gain any insight into the training-model by
querying the inference-model, i.e., nobox access (Table II), and
must break into the device, i.e., get whitebox access (Table II).

Finally, we assume that production systems are adequately
protected against standard attack vectors and vulnerabilities
such as Sybil attacks. For instance, if the adversary manages
to operate millions of fake accounts [22], we argue that the
service provider should prioritize improving their security
attestation protocols instead of deploying FL. Section III-B3
also explains that the cost of operating a large scale, persistent
botnet in modern operating systems, e.g., Android, is non-
trivial. Please refer to [32] for more details on production FL.

2) Understanding the practicality of threat models: For our
goal of untargeted poisoning with the partial knowledge of
the benign data, we can combine the rest of the dimensions in
Table II and obtain eight possible threat models (Table IV). We
argue that only T4 (nobox offline data poison) and T5 (white-
box online model poison) are of practical value, and below,
justify why other models are less relevant in practice: (1) With
model poisoning capability, the adversary has whitebox access
by default, hence, T1 and T2 in Table IV are not valid. (2)

In cross-device FL, only a few selected clients get the most
recent global model in each round. Hence, to gain whitebox
access to the model, the adversary needs to control (i.e., break
into) a large number of devices (so that in most FL rounds,
the FL server picks at least one of them), which is impractical
in practice as we explain in Section III-B3. With whitebox
access, the adversary can mount the stronger online model
poisoning attacks (MPAs) instead of data poisoning attacks
(DPAs). Therefore, T3, T7, and T8 are not reasonable threat
models, as they combine whitebox access with either offline
attacks or DPAs. (3) Under T6 (nobox online data poison), the
adversary mounts an online attack, i.e., they adaptively poison

6

Table III: Practical ranges of FL parameters based on the literature and discussions on FL production systems [11], [24], [32]
and the ranges used in untargeted FL poisoning and robust AGRs literature [5], [10], [23], [41], [55]. MPA means model
poisoning attack and DPA means data poisoning attack. Red (green) cells denote impractical (practical) ranges.

Parameters/Settings What we argue to be practical
Used in previous

untargeted works

FL type + Attack type Cross-silo + DPAs
Cross-device + {MPAs, DPAs}

Cross-silo + MPAs

Total number of FL
clients, N

Order of [103, 1010] for cross-device
[2, 100] for cross-silo

[50, 100]

Number of clients
chosen per round, n

Small fraction of N for cross-device
All for cross-silo

All

% of compromised
clients, M

M 0.1% for DPAs
M 0.01% for MPAs

[20, 50]%

Average size of benign
clients’ data, |D|avg

[50, 1000] for cross-device
Not applicable to cross-silo

Not studied for cross-device
[50, 1000] for cross-silo

Maximum size of
local poisoning data

Up to 100⇥ |D|avg for DPAs
Not applicable to MPAs

⇠ |D|avg

Table IV: The eight possible threat models for untargeted

poisoning attacks on FL. T3-T8 are valid, but only T4 and
T5 represent practical FL deployments (Section III-C).

Capability Knowledge Attack mode
2 {MP,DP} 2 {Nb,Wb} 2 {Off,On}

T1 Model poison Nobox Offline
T2 Model poison Nobox Online
T3 Model poison Whitebox Offline
T4 Model poison Whitebox Online
T5 Data poison Nobox Offline
T6 Data poison Nobox Online
T7 Data poison Whitebox Offline
T8 Data poison Whitebox Online

the local data of compromised clients. But, as the adversary
has no knowledge of the (current) global model due to nobox
access, they cannot generate new poisoning data adaptively.
Hence, the combination of nobox and online is not practical.

3) Practical Ranges of FL Parameters: We argue that
the literature on untargeted poisoning [5], [10], [23], [41],
[55] rarely evaluates their proposed attacks/defenses for the
production FL settings, primarily due to their motivation to
perform worse-case analyses. But, we show that such analyses
lead to conclusions that do not apply to production FL.

Table III demonstrates the stark differences between the
parameter ranges used in the untargeted poisoning literature
and their practical ranges, which we have obtained from recent
surveys [11], [32] and discussion among FL experts [24]. This
is due to the more challenging nature of untargeted poisoning
in FL. We attribute this to the difficulty of establishing
successful untargeted attacks for practical settings, as we will
also show in our evaluations.

Contrary to what production FL settings encounter, previous
works commonly evaluate robustness using very high percent-
ages of compromised clients and/or using model poisoning
attacks on cross-silo FL (Table III). However, we use small
percentages of compromised clients M 1, for cross-device
FL, use large numbers of clients N 2[1, 000, 34, 000] and use
n 2 [25, 50]⌧ N in each round; we use N=n=50.

In particular, consider the percentages of compromised
clients; state-of-the-art attacks [5], [23], [55] (defenses [10],
[16], [68], [70]) assume adversaries who can compromise up
to 25% (50%) of FL clients. The cost of creating and operating

a compromised client botnet at scale (which includes breaking
into devices) is non-trivial. To create the botnet, the adversary
would need to either buy many physical devices (⇠$25 each)
and root them (for state-of-the-art model poisoning attacks [5],
[23], [55]), pay for access to large but undetected botnets with
remote administrative access, or develop an entirely new bot-
net via compromising a popular app/sdk to exploit unpatched
security holes and gain persistence. To operate the botnet, the
adversary must avoid detection by antimalware services [28]
as well as dynamic anti-abuse services (such as Android’s
SafetyNet [53]). With a botnet in place, the adversary may
further need to pay for a skilled engineering team to keep
malicious FL code in sync with the target FL-enabled app and
to reverse-engineer frequently-shifting ML workloads. Such
an engineering team could instead change apps’ behaviors to
mimic the effect of a compromised FL-trained model, they
might use their privileged access to steal login credentials
for account hijacking, or they might participate in ad/click
fraud or bank fraud or ransomware for financial gain. More
plausible scenarios for an adversary reaching double-digit
client percentages—such as an app insider—likely enable
attacker-controlled FL servers, thereby removing them from
the literature’s standard threat model.

For data poisoning attacks, we assume that compromised
clients can have a limited amount of poisoned data Dp.
Because, in cross-device FL, the devices with low processing
powers (e.g., smart phones and watches) can process limited
Dp in the short duration of FL rounds. However, in cross-
silo FL, silos can inspect Dp and remove Dp with sizes much
larger than the average size of clients’ data |D|avg. Hence, we
argue that |Dp| should be up to 100⇥ |D|avg. We discuss rest
of the parameters from Table III in the corresponding sections.

C. Threat Models in Practice

Here we discuss the two threat models of practical interest.
1) Nobox Offline Data Poisoning (T4): In this setting,

the adversary does not know the architecture, parameters, or
outputs of the global model. The adversary knows the server’s
AGR, but may or may not know the global model architecture;
we evaluate both cases. We assume that the adversary knows

7

the benign data of the compromised clients and mounts offline
data poisoning attacks (DPAs).

This adversary does not require any access to the internals
(e.g., FL binaries, memory) of compromised devices, and
therefore, can compromise large percentages of production
FL clients, e.g., on order of up to 0.1% [24], [32]. However,
the poisoning impact of the corresponding poisoned updates
is very limited. This is partly because arbitrarily poisoned
updates (e.g., of model poisoning attacks (MPAs) [5], [23],
[55]) need not map to the valid data domain. For instance,
consider the standard max function: f(x, y)=max(x, y). Gra-
dient of this function with respect to either x or y is always 0
or 1 [19]. Hence, a DPA cannot have a poisoned update with
an arbitrary value for gradients of the parameters. But an MPA
can, because it can directly assign any arbitrary value to the
parameters’ gradients.

2) Whitebox Online Model Poisoning (T5): The adversary
knows the parameters and predictions of the global model
whenever the server selects at least one compromised client.
We assume that the adversary knows the server’s aggregation
rule and the benign data on the compromised devices. The
adversary mounts online MPAs.

Unlike data poisoning adversary, this adversary breaks into
the compromised devices, which is extremely costly as dis-
cussed in Section III-B3. Hence, in practice, a model poisoning
adversary can compromise very small percentages of FL
clients, e.g., on order of up to 0.01% [24], [32]. However,
due to their ability to directly manipulate the model updates, in
theory, a model poisoning adversary can craft highly poisonous
updates. We can justify this claim from the example of a zero-
value parameter discussed in Section III-C1.

IV. EXPLORING THE SPACE OF FL POISONING ATTACKS

A. Existing FL Poisoning Attacks

1) Data Poisoning Attacks (DPAs): DPAs have been studied
mainly for centralized ML [17], [44], [64], [65], [69], and no
prior work has studied untargeted DPAs that are tailored to
FL settings. Fang et al. [23] show the possibility of applying
simple label flipping attacks to FL, where each compromised
client flips the labels of their data from true label y 2 [0, C�1]
to false label (C�1�y) if C is even and to false label (C�y)
if C is odd, where C is the number of classes.

2) Model Poisoning Attacks (MPAs): These consider our
whitebox online model poisoning threat model (T4) from
Section III-C2).
Little Is Enough (LIE) attack [5] adds small amounts of
noise to each dimension of the average of the benign updates.
Specifically, the adversary computes the average (rb) and
the standard deviation (�) of the available benign updates;
then computes a coefficient z based on the number of benign
and compromised clients; and finally computes the poisoned
update as r0 = rb + z�. [5] shows that such noises easily
evade the detection by robust AGRs as well as effectively
poison the global model.
Static Optimization (STAT-OPT) attack [23] proposes a gen-
eral FL poisoning framework and then tailors it to specific

AGRs. STAT-OPT computes the average (rb) of the available
benign updates and computes a static malicious direction,
! = �sign(rb); the final poisoned update, r0, is ��! and
the attack finds a suboptimal � that circumvents the target
AGR; for details please refer to [23]. Unlike LIE, STAT-OPT
attacks carefully tailor themselves to the target AGR, and
hence, perform better.
Dynamic Optimization (DYN-OPT) attack [55] proposes a
general FL poisoning framework and then tailors it to specific
FL settings. DYN-OPT computes an average of the available
benign updates, rb, and perturbs it in a dynamic, data-

dependent malicious direction ! to compute the final poisoned
update r0 = rb + �!. DYN-OPT finds the largest � that
successfully circumvents the target AGR. DYN-OPT is much
stronger, because unlike STAT-OPT, it finds the largest � and
uses a dataset tailored !.

B. Our Improved FL Poisoning Attacks

We first present a general optimization problem to model
FL poisoning attacks. Then we use it to design improved
poisoning attacks on state-of-the-art AGRs from Section II-B.

1) Formulating FL Poisoning as an Optimization Problem:

Our optimization problem for poisoning attacks is based on
that of [55]. Specifically, we aim to craft poisoned updates
(via data or model poisoning) which will increase the overall
distance between the poisoned aggregate (computed using
poisoned and benign updates) and the benign aggregate (com-
puted using only benign updates). This can be formalized as
follows:

argmax
r02Rd

kr
b
�r

p
k (1)

...rb =favg(ri2{[n0]}), r
p = fagr(r

0
{i2[m]},r{i2[n0]})

where, m is the number of compromised clients selected in the
given round, fagr is the target AGR, favg is the Average AGR,
r{i2[n0]} are the benign updates available to the adversary
(e.g., updates computed using the benign data of compromised
clients), rb is a reference benign aggregate, and r0

{i2[m]} are
m replicas of the poisoned update, r0, of our attack. rp is
the final poisoned aggregate.

Although our optimization problem in (1) is same as [55],
two key differences from [55] are: (1) We are the first to use (1)
to construct systematic data poisoning attacks on FL. (2) Our
model poisoning attacks not only tailor the optimization in (1)
to the given AGR (as in [55]), but also to the given dataset and
global model, by using stochastic gradient ascent algorithm
(Section IV-B3); this boosts the efficacy of our attack.

2) Our Data Poisoning Attacks (DPAs): We formulate a
general DPA optimization problem using (1) as follows:

argmax
Dp⇢D

kr
b
�r

p
k (2)

...rb and rp as in (1) and r0 = A(Dp, ✓
g)� ✓g

where D is the entire input space and Dp is the poisoning
data used to compute the poisoned update r0 using a training
algorithm A, e.g., mini-batch SGD, and global model ✓g . The

8

Figure 2: Effect of varying the sizes of poisoned data, Dp, on
the objectives of DPAs (Section IV-B2) on various AGRs. We
compute Dp by flipping the labels of benign data.

rest of the notations are the same as in (1). To solve (2),
we find Dp such that when ✓g is fine-tuned using Dp, the
resulting model ✓0 will have high cross-entropy loss on some
benign data Db (e.g., that of compromised clients), i.e., high
L(Db; ✓0), and the corresponding update r0 = ✓0 � ✓g will
circumvent the target AGR. Our intuition is that, when the
global model is updated using such r0, it will have high loss
on benign data [8], [30], [43].

Sun et al. [57] propose DPAs on federated multi-task
learning where each client learns a different task. Hence, their
attacks are orthogonal to our work. On the other hand, as [23]
demonstrates, backgradient optimization based DPAs [43] are
computationally very expensive (⇠10 days to compute poison
for a subset of MNIST task) yet ineffective.

Instead, because the central server has no visibility into the
clients’ data or their sizes, we propose to use an appropriate
amount of label flipped data as Dp for each of the compro-
mised clients. Our intuition behind this approach is the same
as before: the larger the amount of label flipped data used to
compute ✓0, the larger the L(Dp; ✓0) and kr0

k, and therefore,
the higher the deviation in (2). We validate this intuition using
FEMNIST dataset in Figure 2 for various AGRs. For instance,
Figures 2 (a) and (b) show that increasing |Dp| monotonically
increases update’s loss and norm, respectively, and hence, can
effectively poison the Average AGR [10], [41].

In our work, we propose two label flipping (LF) strategies:
static LF (SLF) and dynamic LF (DLF). In SLF, for a
sample (x, y), the adversary flips labels in a static fashion
as in Section IV-A1. On the other hand, in DLF, the adversary
computes a surrogate model ✓̂, an estimate of ✓g , e.g., using
the available benign data, and flips y to the least probable
label with respect to ✓̂, i.e., to argmin ✓̂(x). We observe that

Benign updates

Poisoned aggregates

Updates scaled

using

Benign aggregate

Highest deviating poisoned aggregate

and

corresponding scaled update

Figure 3: Schematic of our PGA attack: PGA first computes
a poisoned update r

0 using stochastic gradient ascent (SGA).
Then, fproject finds the scaling factor � that maximizes the de-
viation between benign aggregate rb and poisoned aggregate
r

p
� . Robust aggregations easily discard the scaled poisoned

updates, �r0, with very high � (e.g., �{4,5}), while those with
very small � (e.g., �{1,2}) have no impact.

the impacts of the two LF strategies are dataset dependent.
Therefore, for each dataset, we experiment with both of the
strategies and, when appropriate, present the best results. We
now specify our DPA for the AGRs in Section II-B.
Average: To satisfy the attack objective in (2) for Average
AGR, we produce updates with large loss and norm [10], [41]
using very large amounts of label flipped data (Figures 2-(a,b)).

To obtain large |Dp|, we combine the benign data of all
compromised clients and flip their labels using either SLF or
DLF strategy (simply SLF/DLF). To increase |Dp| further, we
add Gaussian noise to existing feature vectors of |Dp| to obtain
new feature vectors and flip their labels using SLF or DLF.
Norm-bounding: To attack Norm-bounding AGR (Sec-
tion II-C2), we use large |Dp| to generate poisoned updates
that incur high losses on benign data (as we show in Figure 2-
(b)). As our evaluations will show, even if their norms are
bounded, such poisoned updates remain far from benign up-
dates and have high poisoning impacts. This leads to effective
attacks, but only at high percentages of compromised clients
(e.g., M=10%). Due to space restrictions, we provide the
details of our DPAs on Mkrum and Trmean in Appendix B1.

3) Our Model Poisoning Attacks (MPAs): We use (1) as
the general optimization problem for our MPAs. To solve this
optimization, we craft a poisoned model ✓0 with high L(Db; ✓0)
while ensuring that the corresponding poisoned update, r0,
circumvents the target AGR.

Model poisoning adversary can directly manipulate the
compromised clients’ updates (Section III-C2). Hence, first,
our attack uses the stochastic gradient ascent (SGA) algorithm
(instead of SGD) and fine-tunes ✓g to increase (instead of
decreasing) the loss on some benign data, Db, to obtain a
malicious ✓0. But, in order to ensure that the corresponding
poisoned update, i.e., r0 = ✓0 � ✓g , circumvents the target
AGR, we project the update on a ball of radius ⌧ around
origin, i.e., scale the update to have a norm kr0

k  ⌧ , where
⌧ is the average of norms of the available benign updates.
Hence, we call our attack projected gradient ascent (PGA).
To perform stochastic gradient ascent, we increase the loss on

9

batch b of data by using the opposite of a benign gradient

direction, i.e., �r✓L(✓; b).
Algorithm 1 (Appendix B) gives the overview of our MPA.

The adversary first computes ⌧ (line 2), an average of the
norms of some benign updates available to her (r{i2[n0]}).
Then, the adversary fine-tunes ✓g using Dp and SGA to
compute a poisoned updater0; our attack computesr0 for any
AGR in the same manner. Finally, the adversary uses fproject
function to appropriately project r0 in order to circumvent the
robustness criteria of the target AGR, fagr.

Algorithm 2 (Appendix B) describes fproject: It computes
r

b = favg(r{i2[n0]}). Then, it finds a scaling factor � for r0

that maximizes the distance between the benign aggregate rb

and the poisoned aggregate rp = fagr(�r0
{i2[m]},r{i2[n0]}).

Note that, there can be many ways to optimize � [55], but
we empirically observe that simply searching for � in a pre-
specified range (e.g., [1,�] with � 2 R+) yields strong attacks
(line 6). Figure 3 depicts the idea of fproject algorithm.

Due to the modular nature of our attacks, one can attack any
given AGR by plugging its algorithm in Algorithm 2. This is
unlike Sun et al. [58], who propose a similar targeted attack
which only works against norm-bounding AGR.

Furthermore, to reduce computation, below we tailor fproject
to the state-of-the-art AGRs from Section II-B; note that, the
adversary obtains a poisoned update, r0, using Algorithm 1
before tailoring fproject to the target AGR.
Average: Average does not impose any robustness constraints,
therefore, we simplify fproject by scaling r0 by an arbitrarily
large constant, e.g., 1020. If the server selects a compromised
client, such poisoned update suffices to completely poison ✓g .
Norm-bounding: Following the Kirchoff’s law, we assume
that the attacker knows the norm-bounding threshold, ⌧ , and
therefore, fproject scales r0 by ⌧

kr0k , so that the norm of the
final r0 will be ⌧ . We provide the details of our MPAs on
Mkrum and Trmean in Appendix B2.

V. ANALYSIS OF FL ROBUSTNESS IN PRACTICE

In this section, we evaluate state-of-the-art data (DPAs) and
model poisoning attacks (MPAs) against non-robust and robust
FL algorithms (Section II-B), under practical threat models
from Section III-C. We start by analyzing cross-device FL
(Sections V-A to V-C), as it is barely studied in previous works
and is more susceptible to poisoning. Then, we will analyze
cross-silo FL in Section V-D.
Experimental setup: Please refer to Appendix C.
Attack impact metric: A✓ denotes the maximum accuracy
that the global model achieves over all FL training rounds,
without any attack. A⇤

✓ for an attack denotes the maximum
accuracy of the model under the given attack. We define attack

impact, I✓, as the reduction in the accuracy of the global model

due to the attack, hence for a given attack, I✓ = A✓ �A⇤
✓ .

A. Evaluating Non-robust FL (Cross-device)

We study Average AGR due to its practical significance
and widespread use. Previous works [5], [10], [23], [41], [55],
[70] have argued that even a single compromised client can

prevent the convergence of FL with Average AGR. However,
our results contradict those of previous works: we show that
this established belief about Average AGR is incorrect for
production cross-device FL.

Figure 4a shows the attack impacts (I✓) of various DPAs and
MPAs. Note that, for the Average AGR, all MPAs [5], [23],
[55], including ours, are the same and craft arbitrarily large
updates in a malicious direction. Hence, we show a single line
for MPAs in Figure 4a.

We see that for cross-device FL, when percentages of

compromised clients (M) are in practical ranges (Table III),

I✓’s of all the attacks are very low, i.e., the final ✓g converges

with high accuracy. For FEMNIST, I✓ of MPAs at M=0.01%
is ⇠2% and I✓ of DPAs at 0.1% is ⇠5%. In other words,
compared to the no attack accuracy (82.3%), the attacks reduce
the accuracy by just 2% and 5%. Similarly, we observe very
low I✓’s for the Purchase and CIFAR10 datasets.

Note that, here we use very large local poisoned data (Dp)
for our DPAs, as DPAs on Average AGR become stronger with
higher |Dp| (Section IV-B2); |Dp|’s are 20,000, 50,000, and
20,000 for FEMNIST, CIFAR10, and Purchase, respectively.
However, as we will show in Section V-C1, under practical

|Dp|, I✓’s of DPAs are negligible even with M=10%.
The inherent robustness of cross-device FL is due to its

client sampling procedure. In an FL round, the server selects
a very small fraction of all FL clients. Hence, in many FL
rounds no compromised clients are chosen when M (< 1%)
is in practical ranges.
(Takeaway V-A) Contrary to the common belief, produc-
tion cross-device FL with (the naive) Average AGR con-
verges with high accuracy even in the presence of untargeted
poisoning attacks.

B. Evaluating Robust FL (Cross-device)

In this section, contrary to previous works, we study the ro-
bustness of robust AGRs for cross-device FL when percentages
of compromised clients (M) are in practical ranges. Figure 4b
shows the poisoning impact (I✓) of DPAs and MPAs for Norm-
bounding (Normb), Multi-krum (Mkrum), and Trimmed-mean
(Trmean) AGRs. Below, we discuss three key takeaways:

1) Cross-device FL with robust AGRs is highly robust

in practice: I✓ of attacks on robust AGRs are negligible in
practice, i.e., when M  0.1% for DPAs and M  0.01% for
MPAs. For instance, I✓  1% for all of state-of-the-art attacks
on all the three datasets, i.e., the attacks reduce the accuracy
of ✓g by less that 1 percent.

We also run FL with a robust AGR for a very large
number (5,000) of rounds to investigate if the strongest of
MPAs against the AGR with M = 0.1% can break the AGR
after long rounds of continuous and slow poisoning. Figure 6
shows the results: Mkrum and Trmean remain completely
unaffected (in fact accuracy of the global model increases),
while accuracy due to Normb reduces by <5%.

In summary, state-of-the-art poisoning attacks [5], [23], [55]
demonstrate that the robust AGRs are significantly less robust

10

(a) Non-robust FL (b) Robust FL

Figure 4: (4a) Attack impacts (I✓) of state-of-the-art data (DPA-DLF/SLF) and model (MPA) poisoning attacks on cross-device
FL with average AGR. I✓’s are significantly low for practical percentages of compromised clients (M0.1%). (4b) I✓ of
various poisoning attacks (Section IV) on robust AGRs (Section II-B). These AGRs are highly robust for practical M values.

than their theoretical guarantees. On the other hand, our find-
ings show that these AGRs are more than sufficient to protect,
more practical, production cross-device FL against untargeted
poisoning. This is due to the peculiar client sampling of cross-
device FL, as discussed in Section V-A.

(Takeaway V-B1) Cross-device FL with robust AGRs
is highly robust to state-of-the-art poisoning attacks under
production FL environments (M <0.1%, n⌧ N).

2) Investigating simple and efficient robustness checks

is necessary: Most of the state-of-the-art robust AGRs with
strong theoretical guarantees [10], [41], [68], [70] have com-
plex robustness checks on their inputs, which incur high
computation and storage overheads. For instance, to process n
updates of length d, the computational complexity of Mkrum
is O(dn2) and that of Trmean is O(dnlogn). Therefore, in
production FL systems where n can be up to 5, 000 [11], [32],
the computation cost prohibits the use of such robust AGRs.

On the other hand, Norm-bounding only checks for the
norm of its inputs and has computation complexity of O(d),

same as Average. Figure 4b shows that a simple and efficient
AGR, Norm-bounding, protects cross-device FL against state-
of-the-art poisoning attacks similarly to the theoretically robust
(and expensive) AGRs, under practical M . For instance, for
all the datasets with M  1%, I✓ < 1% for all of the
AGRs (Figure 4b). Our evaluation highlights that simple robust
AGRs, e.g., Norm-bounding, can effectively protect cross-
device FL in practice, and calls for further investigation and
invention of such low-cost robust AGRs.

(Takeaway V-B2) Even the simple, low-cost Norm-
bounding AGR is enough to protect production FL against
untargeted poisoning, questioning the need for the more
sophisticated (and costlier) AGRs.

3) Thorough empirical assessment of robustness is in-

evitable: Theoretically robust AGRs claim robustness to
poisoning attacks at high M ’s, e.g., in theory, Mkrum [10] and
Trmean [70] are robust for M  25%. But, we observe that,
even at the theoretically claimed values of M , these robust
AGRs do not exhibit high robustness; in fact, simple AGRs,
e.g., Norm-bounding, are equally robust. Note in Figure 4b

11

Figure 5: Effect of varying sizes of local poisoned dataset Dp

on impacts I✓ of the best of DPAs. When |Dp| and M are in
practical ranges, I✓’s are negligible for robust AGRs and are
dataset dependent for non-robust Average AGR.

that, for FEMNIST at M=10%, I✓’s on Trmean are higher

than on Norm-bounding. For CIFAR10 at M=10%, I✓’s for
Norm-bounding and Trmean are almost similar.

Sections V-B2 and V-B3 show that, some of the sophisti-
cated, theoretically robust AGRs do not outperform simpler
robust AGRs at any ranges of M . More importantly they
demonstrate the shortcomings of the methodology used to as-
sess the robustness of AGRs in previous works [10], [41], [68],
[70] (because these works use very preliminary attacks) and
highlight that a thorough empirical assessment is necessary to
understand the robustness of AGRs in production FL systems.

(Takeaway V-B3) Understanding the robustness of AGRs
in production FL requires a thorough empirical assessment
of AGRs, on top of their theoretical robustness analysis.

C. Effect of FL Parameters on Poisoning (Cross-device)

1) Effect of the Size of Local Poisoning Datasets (|Dp|)

on DPAs.: The success of our state-of-the-art data poison-
ing attacks depends on |Dp| of compromised clients (Sec-
tion IV-B2). In Sections V-A and V-B, we use large |Dp| (e.g.,
50,000 for CIFAR10) to find the highest impacts of DPAs. But,
as argued in Section III-B3, in practice |Dp|  100⇥ |D|avg;

|D|avg is the average size of local datasets of benign clients
and it is around 20 (50) for FEMNIST (CIFAR10). In Figure 5,
we report I✓ of the best of DPA-SLF or DPA-DLF for
|Dp| 2 {1, 10, 102, 103, 104} · |D|avg; we use impractically
high |Dp|’s of up to 104·|D|avg only for experimental analyses.

Figure 5 shows that I✓’s of DPAs slightly increase with
|Dp|. For FEMNIST and CIFAR10 with any AGR, including
Average, I✓’s are negligible even for unrealistically high |Dp|

of 1000⇥ |D|avg for M  1%. We omit Mkrum here, as |Dp|

of the effective DPAs on Mkrum is always in practical ranges
and close to |D|avg (Section IV-B2).

To summarize, for all robust AGRs, DPAs have negligible

impacts on FL when |Dp| and M are in practical ranges, while

for non-robust AGRs, the reductions in I✓ are non-trivial and

dataset dependent. This also means that using a reasonable
upper bound on the dataset sizes of FL clients can make FL
highly robust to DPAs.

(Takeaway V-C1) Enforcing a limit on the size of the
local dataset of each client can act as a highly effective (yet
simple) defense against untargeted DPAs in production FL.

2) Effect of the Average Dataset Size of Benign FL Clients

(|D|avg): Figure 9 in Appendix E shows I✓ when we vary
|D|avg. To emulate varying |D|avg, we vary the total num-
ber of FL clients, N , for given dataset, e.g., for CIFAR10,
|D|avg is 50 (10) for N=1,000 (N=5,000). As discussed in
Section III-B3, we use |Dp|=100⇥ |D|avg for DPAs.

We observe no clear effect of varying |D|avg on I✓’s.
For instance, at M=1%, I✓’s of our PGA and DPA-SLF on
CIFAR10 + Normb reduce with increase in |D|avg, while I✓
of any attacks on FEMNIST with robust AGRs do not change
with varying |D|avg. Due to space restrictions, we defer the
explanations of each of these observations to Appendix D.

More importantly, we observe that even with moderately

high |D|avg, cross-device FL completely mitigates state-of-

the-art DPAs and MPAs despite M being impractically high,
with an exception of MPAs on Average AGR. For instance,
for CIFAR10 with |D|avg=50 and FEMNIST with |D|avg=200,
all robust AGRs almost completely mitigate all of DPAs and
MPAs, while Average AGR mitigates all DPAs. However, as
MPAs are very effective against Average, their I✓ remains
high. As clients in FL continuously generate data locally [12],
[40], it is common to have large |D|avg in practice. Interest-
ingly, our evaluation also implies that simply lower bounding
the dataset sizes of FL clients improves FL robustness.

(Takeaway V-C2) When local dataset sizes of benign
clients are in practical regimes (Table III), cross-device FL
with robust AGRs is highly robust to untargeted poisoning.

3) Number of Clients Selected Per Round.: Figure 10
(Appendix B2) shows the effect of varying the number of
clients (n) selected by the server in each round (for M=1%).
Similar to [23], we do not observe any noticeable effect of
n on the impact of attacks, since the expected percentage of
compromised clients (M) does not change with n. But, we

12

observe the opposite behavior for MPAs on Average AGR.
This is because, as soon as the server selects even a single
compromised client, MPA prevents any further learning of
the global model. An increase in n increases the chances of
selecting compromised clients, hence amplifying the attack.
(Takeaway V-C3) The number of clients selected in each
round of production cross-device FL has no noticeable effect
on the impacts of untargeted poisoning attacks, with the
exception of MPAs on Average AGR.

4) Effect of Unknown Global Model Architecture on DPAs:

DPA-DLF attack (Section IV-B2) uses the knowledge of global
model’s architecture to train a surrogate model. However, in
practice, the nobox offline data poisoning adversary (Sec-
tion III-C1) may not know the architecture. Hence, we evaluate
impact of DPA-DLF under the unknown architecture setting.

We emulate the unknown architecture setting for FEMNIST
dataset. We assume that the adversary uses a substitute con-
volutional neural network given in Table V (Appendix E) as
they do not know the true architecture, which is LeNet in our
experiments. Figure 7 (Appendix E) compares the impacts of
DPA-DLF when the adversary uses the true and the substitute
architectures. Note that, impacts of DPA-DLF reduce when the

adversary uses the substitute architecture.

(Takeaway V-C4) The DPAs that rely on a surrogate model
(e.g., our DLF) are less effective if the architectures of the
surrogate and global models do not match.

D. Evaluating Robustness of Cross-silo FL

In cross-silo FL, each of N clients, i.e., silos (e.g., corpo-
rations like banks, hospitals, insurance providers, government
organizations, etc.), collects data from many users (e.g., bank
customers or hospital patients) and collaboratively train the FL
model; we denote the total number of users by N 0.

Recall from Section III-C2 that the model poisoning ad-
versary completely breaks into the devices of compromised
clients and, to be effective, persists in their systems for long
duration because model poisoning attacks are online attacks
(Section III-C2). For cross-silo FL, this means that the adver-
sary should break into large corporations, e.g., a bank, who are
bound by contract and have professionally maintained software
stacks. Plausible cross-silo poisoning scenarios involve strong
incentives (e.g., financial) and require multiple parties to be
willing to risk the breach of contract by colluding or for one
party to hack thereby risking criminal liability. This makes
breaking into these silos practically unlikely, hence we argue
that model poisoning threats in cross-silo FL are impractical.

Note that this is unlike the large scale data-breaches [46]–
[48] which are short-lived and are only capable of stealing
information, but not changing the infrastructure.

Hence, we only study the data poisoning threat for cross-
silo FL. For worse-case analyses, we assume that the silos train
their models on all the data contributed by their users. If the
silos inspect the users’ data and remove the mislabeled data,
one should consider clean-label data poisoning attacks [27],

[54]; we leave this study to future work. Note that, data
inspection is not possible in cross-device FL as data of clients
(who are also the users) is completely local, hence clean-label
poisoning is not relevant in cross-device FL.

We assume that each silo collects data from equal number
(i.e., N 0/N) of users. For DPAs, we assume M% of the N 0

users are compromised and each of them shares poisoned
data Dp (computed as described in Section IV-B2) with their
parent silo; as discussed in Section III-B3, we assume |Dp| =
100 ⇥ |D|avg for each user. We distribute the compromised
users either uniformly across the silos or concentrate them in a
few silos. For instance, consider 50 silos and 50 compromised
users and that, each silo can have a maximum of 50 users.
Then in the uniform case, a single compromised user shares
her Dp with each silo, while in the concentrated case, all the
50 compromised users share their Dp with a single silo.

Figure 8 (Appendix E) shows the impacts of best of DPAs
for the concentrated case. We see that cross-silo FL is highly

robust to state-of-the-art DPAs. Because, in the concentrated
case, very large numbers of benign silos mitigate the poisoning

impact of the very few (M%) compromised silos. We observe
the same results for the uniform distribution case, because
very large numbers of benign users in each silo mitigate the

poisoning impacts of the very few (M%) compromised users.

(Takeaway V-D) In production cross-silo FL, model poi-
soning attacks are not practical, and state-of-the-art data
poisoning attacks have no impact even with Average AGR.

VI. CONCLUSIONS

In this work, we systematized the threat models of poisoning
attacks on federated learning (FL), provided the practical
ranges of various parameters relevant to FL robustness, and
designed a suite of untargeted model and data poisoning
attacks on FL (including existing and our improved attacks).
Using these attacks, we thoroughly evaluated the state-of-the-
art defenses under production FL settings. We showed that
the conclusions of previous FL robustness literature cannot
be directly extended to production FL. We presented concrete
takeaways from our evaluations to correct some of the estab-
lished beliefs and highlighted the need to consider production
FL environments in research on FL robustness.

We hope that our systematization of practical poisoning
threat models can steer the community towards practically
significant research problems in FL robustness. For instance,
one such open problem is to obtain concrete theoretical
robustness guarantees of existing defenses in production FL
settings where only a very small fraction of all clients is
randomly selected in each FL round.

ACKNOWLEDGEMENTS

The work was supported by DARPA and NIWC under
contract HR00112190125, and by the NSF grants 1953786,
1739462, and 1553301. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views,

13

opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S.
Government.

REFERENCES

[1] “Federated learning: Collaborative machine learning without cen-
tralized training data,” https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html, 2017.

[2] D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine stochastic gradient
descent,” in NeurIPS, 2018.

[3] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in AISTATS, 2020.

[4] M. Barreno, B. Nelson, and A. D. Joseph, “The security of machine
learning,” Machine Learning, 2010.

[5] M. Baruch, B. Gilad, and Y. Goldberg, “A Little Is Enough: Circum-
venting Defenses For Distributed Learning,” in NeurIPS, 2019.

[6] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar,
“signSGD with Majority Vote is Communication Efficient and Fault
Tolerant,” in ICLR, 2018.

[7] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in ICML, 2019.

[8] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in ICML, 2012.

[9] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognition, 2018.

[10] P. Blanchard, R. Guerraoui, J. Stainer et al., “Machine learning with
adversaries: Byzantine tolerant gradient descent,” in NeurIPS, 2017.

[11] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, B. McMahan, T. V.
Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards federated
learning at scale: System design,” in MLSys, 2019.

[12] M. H. Brendan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private recurrent language models,” in ICLR, 2018.

[13] S. Caldas, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith,
and A. Talwalkar, “LEAF: A benchmark for federated settings,”
arXiv:1812.01097, 2018.

[14] X. Cao, J. Jia, and N. Z. Gong, “Provably Secure Federated Learning
against Malicious Clients,” in AAAI, 2021.

[15] H. Chang, V. Shejwalkar, R. Shokri, and A. Houmansadr, “Cronus:
Robust and Heterogeneous Collaborative Learning with Black-Box
Knowledge Transfer,” arXiv:1912.11279, 2019.

[16] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, “Draco:
Byzantine-resilient distributed training via redundant gradients,” in
ICML, 2018.

[17] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks
on deep learning systems using data poisoning,” arXiv:1712.05526,
2017.

[18] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “EMNIST: Extend-
ing MNIST to handwritten letters,” in IJCNN, 2017.

[19] “CS231n: Convolutional Neural Networks for Visual Recognition,”
https://cs231n.github.io/optimization-2/#grad, 2021.

[20] D. Data and S. Diggavi, “Byzantine-resilient SGD in high dimensions
on heterogeneous data,” arXiv:2005.07866, 2020.

[21] E.-M. El-Mhamdi, R. Guerraoui, A. Guirguis, and S. Rouault, “Sgd:
Decentralized byzantine resilience,” arXiv:1905.03853, 2019.

[22] “Facebook has shut down 5.4 billion fake accounts this year,” https:
//www.cnn.com/2019/11/13/tech/facebook-fake-accounts/index.html,
2019.

[23] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local Model Poisoning
Attacks to Byzantine-Robust Federated Learning,” in USENIX, 2020.

[24] “Google Workshop on Federated Learning and Analytics,”
https://docs.google.com/document/d/1dWzVeFLrPinonQMauxIo0oI-
Vbvqup5cZzgdPXvu97Y/edit#heading=h.7dsxad3c3nf7, 2020.

[25] S. Fu, C. Xie, B. Li, and Q. Chen, “Attack-resistant federated learning
with residual-based reweighting,” arXiv:1912.11464, 2019.

[26] C. Fung, C. J. Yoon, and I. Beschastnikh, “The limitations of federated
learning in sybil settings,” in RAID, 2020.

[27] M. Goldblum, D. Tsipras, C. Xie et al., “Dataset Security for Ma-
chine Learning: Data Poisoning, Backdoor Attacks, and Defenses,”
arXiv:2012.10544, 2020.

[28] “Google Play Protect,” https://developers.google.com/android/play-
protect, 2021.

[29] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in AISec, 2011.

[30] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
against regression learning,” 39th IEEE Symposium on S&P, 2018.

[31] M. S. Jere, T. Farnan, and F. Koushanfar, “A taxonomy of attacks on
federated learning,” IEEE Security & Privacy, 2020.

[32] P. Kairouz, H. B. McMahan, B. Avent et al., “Advances and open
problems in federated learning,” arXiv:1912.04977, 2019.

[33] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” NIPS Workshop on Private Multi-Party ML, 2016.

[34] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

[35] Y. LeCun, L. Bottou, Y. Bengio et al., “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, 1998.

[36] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from
heterogeneous datasets,” in AAAI, 2019.

[37] T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust federated
learning through personalization,” in ICML, 2021.

[38] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for
robust model fusion in federated learning,” in NeurIPS, 2020.

[39] H. Ludwig, N. Baracaldo, G. Thomas et al., “IBM Federated Learning:
An Enterprise Framework White Paper v0.1,” arXiv:2007.10987, 2020.

[40] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[41] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The Hidden Vulner-
ability of Distributed Learning in Byzantium,” in ICML, 2018.

[42] T. Minka, “Estimating a Dirichlet distribution,” 2000.
[43] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongras-

samee, E. C. Lupu, and F. Roli, “Towards poisoning of deep learning
algorithms with back-gradient optimization,” in AISec, 2017.

[44] L. Muñoz-González, B. Pfitzner, M. Russo, J. Carnerero-Cano, and
E. C. Lupu, “Poisoning attacks with generative adversarial nets,”
arXiv:1906.07773, 2019.

[45] A. Newell, R. Potharaju, L. Xiang, and C. Nita-Rotaru, “On the
practicality of integrity attacks on document-level sentiment analysis,”
in AISec, 2014.

[46] “Billion Passwords Stolen: Change All of Yours, Now!”
https://www.nbcnews.com/tech/security/billion-passwords-stolen-
change-all-yours-now-n174321, 2014.

[47] “Hackers Expose 8.4 Billion Passwords Post them Online in Possibly
Largest Dump of Passwords Ever,” https://www.thegatewaypundit.com/
2021/06/hackers-expose-8-4-billion-passwords-post-online-possibly-
largest-dump-passwords-ever/, 2014.

[48] “26 million stolen passwords found online — see if you’re affected,”
https://www.tomsguide.com/news/mystery-malware-info-stealer, 2021.

[49] M. Paulik, M. Seigel, H. Mason et al., “Federated Evaluation and
Tuning for On-Device Personalization: System Design & Applications,”
arXiv:2102.08503, 2021.

[50] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” arXiv:1912.13445, 2019.

[51] “Acquire Valued Shoppers Challenge at Kaggle,” https:
//www.kaggle.com/c/acquire-valued-shoppers-challenge/data, 2019.

[52] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive Federated Optimization,” in
ICLR, 2020.

[53] “SafetyNet Attestation API,” https://developer.android.com/training/
safetynet/attestation, 2021.

[54] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” in NeurIPS, 2018.

[55] V. Shejwalkar and A. Houmansadr, “Manipulating the Byzantine: Opti-
mizing Model Poisoning Attacks and Defenses for Federated Learning,”
in NDSS, 2021.

[56] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[57] G. Sun, Y. Cong, J. Dong, Q. Wang, L. Lyu, and J. Liu, “Data poisoning
attacks on federated machine learning,” IEEE IoT Journal, 2021.

14

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://cs231n.github.io/optimization-2/#grad
https://www.cnn.com/2019/11/13/tech/facebook-fake-accounts/index.html
https://www.cnn.com/2019/11/13/tech/facebook-fake-accounts/index.html
https://docs.google.com/document/d/1dWzVeFLrPinonQMauxIo0oI-Vbvqup5cZzgdPXvu97Y/edit#heading=h.7dsxad3c3nf7
https://docs.google.com/document/d/1dWzVeFLrPinonQMauxIo0oI-Vbvqup5cZzgdPXvu97Y/edit#heading=h.7dsxad3c3nf7
https://developers.google.com/android/play-protect
https://developers.google.com/android/play-protect
https://www.nbcnews.com/tech/security/billion-passwords-stolen-change-all-yours-now-n174321
https://www.nbcnews.com/tech/security/billion-passwords-stolen-change-all-yours-now-n174321
https://www.thegatewaypundit.com/2021/06/hackers-expose-8-4-billion-passwords-post-online-possibly-largest-dump-passwords-ever/
https://www.thegatewaypundit.com/2021/06/hackers-expose-8-4-billion-passwords-post-online-possibly-largest-dump-passwords-ever/
https://www.thegatewaypundit.com/2021/06/hackers-expose-8-4-billion-passwords-post-online-possibly-largest-dump-passwords-ever/
https://www.tomsguide.com/news/mystery-malware-info-stealer
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation

[58] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” NeurIPS FL Workshop, 2019.

[59] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks
against federated learning systems,” in ESORICS, 2020.

[60] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 40th IEEE Symposium on S&P, 2019.

[61] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J.-
y. Sohn, K. Lee, and D. Papailiopoulos, “Attack of the tails: Yes, you
really can backdoor federated learning,” in NeurIPS, 2020.

[62] “Utilization of FATE in Risk Management of Credit in Small and Mi-
cro Enterprises,” https://www.fedai.org/cases/utilization-of-fate-in-risk-
management-of-credit-in-small-and-micro-enterprises/, 2019.

[63] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks in
federated learning,” arXiv:2011.01767, 2020.

[64] H. Xiao, H. Xiao, and C. Eckert, “Adversarial label flips attack on
support vector machines,” in ECAI, 2012.

[65] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli, “Support
vector machines under adversarial label contamination,” Neurocomput-

ing, 2015.
[66] C. Xie, M. Chen, P.-Y. Chen, and B. Li, “CRFL: Certifiably Robust

Federated Learning against Backdoor Attacks,” in ICML, 2021.
[67] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “DBA: Distributed backdoor

attacks against federated learning,” in ICLR, 2019.
[68] C. Xie, O. Koyejo, and I. Gupta, “Generalized byzantine-tolerant sgd,”

arXiv:1802.10116, 2018.
[69] C. Yang, Q. Wu, H. Li, and Y. Chen, “Generative poisoning attack

method against neural networks,” arXiv:1703.01340, 2017.
[70] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-robust

distributed learning: Towards optimal statistical rates,” in ICML, 2018.
[71] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated learning

by local adaptation,” arXiv:2002.04758, 2020.

APPENDIX

A. Related Work

1) Targeted and Backdoor Attacks: Section IV-A discusses
all state-of-the-art untargeted attacks in detail. Below, we
discuss existing works on targeted and backdoor attacks.
Targeted attacks [7], [58], [59] aim to make the global model
misclassify a specific set of samples at test time. Bhagoji et
al. [7] aimed to misclassify a single sample and proposed a
model poisoning attack based on alternate minimization to
make poisoned update look similar to benign updates. [7]
shows that their attack, with a single attacker, can misclassify
a single sample with 100% success against the non-robust
Average AGR. try Sun et al. [58] investigated constrain-and-
scale attack [3] with the aim to misclassify all samples of a
few victim FL clients. Tolpegin et al. [23], [59] investigated
targeted data poisoning attacks when compromised clients
compute their updates by mislabeling the target samples.
Backdoor attacks [3], [61], [67] aim to make the global
model misclassify the samples with adversary-chosen back-
door trigger. Backdoor attacks are semantic, if the trigger
is naturally present in samples [3], [61] and artificial if the
trigger needs to manually added at test time [67]. Bagdasaryan
at al. [3] demonstrate a constrain-and-scale attack against
simple Average AGR to inject semantic backdoor in the global
model. They show that their attacks achieve accuracy of >90%
on backdoor task in a next word prediction model. Wang et
al. [61] propose data and model poisoning attacks to inject
backdoor to misclassify out-of-distribution samples. Xie et
al. [67] show how multiple colluding clients can distribute
backdoor trigger to improve the stealth of poisoned updates.

Backdoor (as well as targeted) attacks can be further divided
in specific-label and arbitrary-label attacks. For a backdoored
test sample, specific-label attack aims to misclassify it to
a specific target class, while arbitrary-label attack aims to
misclassify it to any class.

Note that, trivial extensions of the targeted and backdoor
attack algorithms to mount untargeted attacks cannot succeed,
because untargeted attacks aim at affecting almost all FL
clients and test inputs. For instance, a simple label flipping
based data poisoning [61] can insert a backdoor in FL with
state-of-the-art defenses. However, such label flipping based
untargeted poisoning attacks have no effect even on unpro-
tected FL (Section V-A).

2) Existing Defenses Against Targeted and Backdoor At-

tacks: In Section II-B, we discuss the defenses against untar-
geted poisoning in detail. Here, we review existing defenses
against targeted and backdoor attacks. FoolsGold [26] identi-
fies clients with similar updates as attackers, but incur very
high losses in performances as noted in [25]. Sun et al. [58]
investigate efficacy of norm-bounding to counter targeted
poisoning and, as we will show, is also effective against
untargeted poisoning. CRFL [66] counters backdoor attacks by
providing certified accuracy for a given test input, but incurs
large losses in FL performance (Table I). Defenses based on
pruning techniques [60], [63] remove parts of model that are
affected by targeted/backdoor attacks, and hence cannot be
used against untargeted attacks which affect the entire model.

Algorithm 1 Our PGA model poisoning attack algorithm
1: Input: r{i2[n0]}, ✓g , fagr, Dp

2: ⌧ = 1
n0

P
i2[n0] krik .Compute norm threshold

.⌧ is given for norm-bounding AGR

3: ✓0 ASGA(✓
g, Dp) .Update using stochastic gradient ascent

4: r0 = ✓0 � ✓g .Compute poisoned update

5: r0 = fproject(fagr,r0, ⌧,r{i2[n0]}) .Scale r0
appropriately

6: Output r0

Algorithm 2 The projection function (fproject) of our PGA
from Section IV-B3.

1: Input: fagr, r0, ⌧ , r{i2[n0]}
2: d⇤ = 0 .Initialize maximum deviation

3: �⇤ = 1 .Optimal scaling factor that maximizes deviation in (1)
4: r0 = r0⇥⌧

kr0k .Scale r0
to have norm ⌧

5: rb = favg(r{i2[n0]}) .Compute reference benign update

6: for � 2 [1,�] do

7: r00 = � ·r0

8: d = kfagr(r00
{i2[m]},r{i2[n0]})�rbk

9: �⇤ = � if d > d⇤ .Update optimal �
10: � = � + � .Update �
11: end for

12: Output �⇤ ·r0

B. Missing details of our data and model poisoning attacks

from Sections IV-B2 and IV-B3

1) Missing data poisoning attack methods: Multi-krum.

Following [55], our attack aims to maximize the number of
poisoned updates in the selection set (S) of Multi-krum AGR

15

https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/
https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of-credit-in-small-and-micro-enterprises/

(Section II-C3). As the size of S is fixed, maximizing the
number of poisoned updates in S implicitly means minimizing
the number of benign updates. This objective is formalized as:

argmax
Dp⇢D0

p

m0 = |{r 2 r
0
{i2[m]}|r 2 S}| (3)

where D0
p is all the available labels flipped data and m0 is the

final number of poisoned updates in S of Multi-krum.
We solve (3) based on an observation: In Figure 2-(d) we

vary |Dp| and plot the fraction of corresponding poisoned up-
dates that Multi-krum selects. Let |D|avg be the average dataset
size of benign clients, e.g., |D|avg is 23.7 for FEMNIST.
Note from Figure 2-(d) that, even for |Dp| slightly higher
than |D|avg, Multi-krum easily discards most of the poisoned
updates. Only when |Dp| is small (⇠10), Multi-krum selects
most of the poisoned updates. Hence, we sample Dp ⇢ D0

p,
where we vary |Dp| 2 [0.5 · |D|avg, 3 · |D|avg], and check the
poisoning impact of Dp on Multi-krum; to reduce variance,
we repeat this 10 times for each |Dp|. We report the results
for Dp with the maximum poisoning impact.
Trimmed-mean. For Trimmed-mean AGR (Section II-C4),
we use the objective in (2), but it is cumbersome to solve it
directly. Hence, similar to our attacks on Average and Norm-
bounding AGRs, we use large |Dp| for poisoned data on each
of the compromised clients. Our approach is based on the
observation in Figure 2-(c): The higher the |Dp| (obtained
using DLF/SLF strategies), the higher the Trimmed-mean
objective value, i.e., krp

�r
b
k.

2) Missing model poisoning attack methods: Multi-krum.

Similar to our DPA (Section IV-B2), the objective of our MPA
on Multi-krum is to maximize the number of poisoned updates
in the selection set S. We aim to find a scaling factor � for
r

0 such that maximum number of r00 = �r0 are selected in
S. This is formalized below:

argmax
�⇤2R

m = |{r 2 r
00
{i2[m]}|r 2 S}| (4)

To solve the optimization in (4), our fproject searches for the
maximum � in a pre-specified range [1,�] such that Multi-
krum selects all the scaled poisoned updates. Specifically, in
Algorithm 2, instead of computing the deviation (line-8), we
compute the number of r00 selected in S and update �⇤ if S
has all of r00s.
Trimmed-mean. Here, we directly plug Trimmed-mean al-
gorithm in Algorithm 2 (line-8). Our attack is similar to
that of [55], but instead of using one of several perturbation
vectors, !’s, we use stochastic gradient ascent to tailor ! to
the entire FL setting (e.g., ✓g , data, optimizer, etc.) to improve
the attack impact.

C. Experimental setup

Real-world FL datasets [1], [49] are proprietary and cannot
be publicly accessed. Hence, we follow the literature on
untargeted poisoning in FL [5], [23], [55], [59] and focus on
image and categorical datasets. But, we ensure that our setup
embodies the production FL [32], e.g., by using large number
of clients with extremely non-iid datasets.

1) Datasets and Model Architectures: FEMNIST [13],

[18] is a character recognition classification task with 3,400
clients, 62 classes (52 for upper and lower case letters and 10
for digits), and 671,585 grayscale images. Each client has data
of her own handwritten digits or letters. Considering the huge
number of clients in real-world cross-device FL (up to 1010),
we further divide each of the clients’ data in p 2 {2, 5, 10}
non-iid parts using Dirichlet distribution [42] with ↵ = 1.
Increasing the Dirichlet distribution parameter, ↵, generates
more iid datasets. Unless specified otherwise, we set p = 10,
i.e., the total number of clients is 34,000. We use LeNet [35]
architecture.
CIFAR10 [34] is a 10-class classification task with 60,000
RGB images (50,000 for training and 10,000 for testing), each
of size 32 ⇥ 32. Unless specified otherwise, we consider
1,000 total FL clients and divide the 50,000 training data
using Dirichlet distribution [42] with ↵ = 1. We use VGG9
architecture with batch normalization [56].
Purchase [51] is a classification task with 100 classes and
197,324 binary feature vectors each of length 600. We use
187,324 of total data for training and divide it among 5,000
clients using Dirichlet distribution with ↵ = 1. We use
validation and test data of sizes 5,000 each. We use a fully
connected network with layer sizes {600, 1024, 100}.

2) Details of Federated learning and attack parameters:

For FEMNIST, we use 500 rounds, batch size, � = 10, E = 5
local training epochs, and in the eth round use SGD optimizer
with a learning rate ⌘ = 0.1 ⇥ 0.995e for local training;
we select n = 50 clients per round and achieve baseline
accuracy A✓=82.4% with N=34,000 clients. For CIFAR10,
we use 1,000 rounds, � = 8, E = 2, and in the eth round use
SGD with momentum of 0.9 and ⌘ = 0.01⇥ 0.9995e; we use
n = 25 and achieve A✓=86.6% with N=1,000. For Purchase,
we use 500 rounds, � = 10, E = 5, and in the eth round
use SGD with ⌘ = 0.1⇥ 0.999e; we use n = 25 and achieve
A✓=81.2% with N=5,000.

We generate large poisoned data Dp required for our DPAs
(Section IV-B2) by combining the dataset of compromised
clients and adding Gaussian noise to their features. We round
the resulting feature for categorical Purchase dataset.

D. Explanations of effects of |D|avg from Section V-C2

At M=1%, I✓’s of STAT-OPT on CIFAR10 + Normb reduce
with increase in |D|avg. This is because, increasing |D|avg

improves the quality of updates of benign clients, but does
not improve the attacks. Hence, when the benign impact of
benign updates overpowers the poisoning impact of poisoned
updates, I✓’s reduce.

On the other hand, I✓’s of any attacks on FEMNIST with
robust AGRs do not change with varying |D|avg. This is
because, FEMNIST is an easy task, and therefore, the presence
of compromised clients does not affect the global models.

Interestingly, I✓ of MPAs on CIFAR10 with Average AGR
increases with |D|avg. This is because, due to the difficulty
of CIFAR10 task, MPAs on CIFAR10 with Average AGR

16

Figure 6: Even with a very large number of FL rounds (5,000),
the state-of-the-art model poisoning attacks with M=0.1%
cannot break the robust AGRs (Section V-B).

Table V: The architecture of the surrogate model that we use
to emulate the unknown architecture setting (Section V-C4).

Layer name Layer size
Convolution + Relu 5⇥ 5⇥ 32

Max pool 2⇥ 2
Convolution + Relu 5⇥ 5⇥ 64

Max pool 2⇥ 2
Fully connected + Relu 1024

Softmax 62

are very effective and when the server selects even a single
compromised client, it completely corrupts the global model.

E. Miscellaneous figures

Below, we provide all the missing figures and the corre-
sponding sections in main paper.

• Figure 6 for Section V-B shows the impacts of strongest
of model poisoning attacks on robust AGRs over a very
large number of FL rounds.

• Figure 7 for Section V-C4 shows impact of unknown
architecture on our state-of-the-art data poisoning attacks
from Section IV-B2. Table V shows the convolutional
neural network architecture that the adversary uses as a
substitute to the true LeNet architecture.

• Figure 8 for Section V-D shows impacts of data poisoning
attacks on cross-silo FL.

• Figure 10 for Section V-C3 shows impacts of poisoning
attacks for increasing the number of clients selected in
each FL round.

• Figures 9 and 11 for Section V-C2 show the attack
impacts and accuracy of the global model, respectively,
when the average size of benign clients’ local data
increases.

• Figure 12 for Section V-C2 shows attack impacts (on the
left y-axes) and global model accuracy (on the right y-
axes) for Multi-krum and Trimmed-mean robust AGRs
for CIFAR10 and FEMNIST datasets.

Figure 7: As discussed in Section V-C4, impacts of the DPA-
DLF attack from Section IV-B2 reduce if the architectures of
the surrogate and the global model are different.

Figure 8: All data poisoning attacks have negligible impacts on
cross-silo FL, when compromised clients are concentrated in a
few silos or distributed uniformly across silos (Section V-D).

17

Figure 9: With 1% compromised clients, increasing |D|avg

has no clear pattern of effects of on attack impacts, but it

increases the global model accuracy as shown in Figure 11.
Figure 12 shows the plots of attack impacts and the global
model accuracy for Multi-krum and Trimmed-mean AGRs.

18

Figure 10: As discussed in Section V-C3, the number of clients, n, chosen in each FL round has no noticeable effect on the
attack impacts, with the exception of model poisoning on Average AGR. We use M = 1% of compromised clients.

Figure 11: Effect on the accuracy of global models of the
average of local dataset sizes, |D|avg, of the benign clients,
with 1% compromised clients. As discussed in Section V-C2,
increasing |D|avg increases the accuracy of the global models.

Figure 12: We make observations similar to Average and
Norm-bound AGRs (Figures 9, 11 in Section V-C2) for Multi-
krum and Trimmed-mean about the effect of |D|avg on the
attack impacts (left y-axes, solid lines) and on the global model
accuracy (right y-axes, dotted lines), with M=1%. All y-axes
are from 0 to 100.

19

	Introduction
	Background
	Federated Learning (FL)
	Existing Defenses Against Untargeted Poisoning
	Defenses We Evaluate in Our Work
	Average
	Norm-bounding
	Multi-krum
	Trimmed-mean

	Systemization of FL Poisoning Threat Models
	Dimensions of Poisoning Threat to FL
	Adversary's Objective
	Adversary's Knowledge
	Adversary's Capability

	Practical Considerations for Poisoning Threat Models
	Salient Features of Production Federated Learning
	Understanding the practicality of threat models
	Practical Ranges of FL Parameters

	Threat Models in Practice
	Nobox Offline Data Poisoning (T4)
	Whitebox Online Model Poisoning (T5)

	Exploring the Space of FL Poisoning Attacks
	Existing FL Poisoning Attacks
	Data Poisoning Attacks (DPAs)
	Model Poisoning Attacks (MPAs)

	Our Improved FL Poisoning Attacks
	Formulating FL Poisoning as an Optimization Problem
	Our Data Poisoning Attacks (DPAs)
	Our Model Poisoning Attacks (MPAs)

	Analysis of FL Robustness in Practice
	Evaluating Non-robust FL (Cross-device)
	Evaluating Robust FL (Cross-device)
	Cross-device FL with robust AGRs is highly robust in practice
	Investigating simple and efficient robustness checks is necessary
	Thorough empirical assessment of robustness is inevitable

	Effect of FL Parameters on Poisoning (Cross-device)
	Effect of the Size of Local Poisoning Datasets (|Dp|) on DPAs.
	Effect of the Average Dataset Size of Benign FL Clients (|D|avg)
	Number of Clients Selected Per Round.
	Effect of Unknown Global Model Architecture on DPAs

	Evaluating Robustness of Cross-silo FL

	Conclusions
	References
	Appendix
	Related Work
	Targeted and Backdoor Attacks
	Existing Defenses Against Targeted and Backdoor Attacks

	Missing details of our data and model poisoning attacks from Sections IV-B2 and IV-B3
	Missing data poisoning attack methods
	Missing model poisoning attack methods

	Experimental setup
	Datasets and Model Architectures
	Details of Federated learning and attack parameters

	Explanations of effects of |D|avg from Section V-C2
	Miscellaneous figures

