A FRACTIONAL KORN-TYPE INEQUALITY FOR SMOOTH
DOMAINS AND A REGULARITY ESTIMATE FOR NONLINEAR
NONLOCAL SYSTEMS OF EQUATIONS*
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Abstract. In this paper we prove a fractional analogue of the classical Korn’s first inequality. The
inequality makes it possible to show the equivalence of a function space of vector field characterized by
a Gagliardo-type seminorm with projected difference with that of a corresponding fractional Sobolev
space. As an application, we will use it to obtain a Caccioppoli-type inequality for a nonlinear system
of nonlocal equations, which in turn is a key ingredient in applying known results to prove a higher
fractional differentiability result for weak solutions of the nonlinear system of nonlocal equations. The
regularity result we prove will demonstrate that a well-known self-improving property of scalar nonlocal
equations will hold for strongly coupled systems of nonlocal equations as well.
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1. Introduction and statement of main results For d> 2, suppose that 2 C
R? is a bounded domain with C' boundary. For se (0,1) and 1<p<oo, define the
space A (€2) to be the closure of [C1(Q)]? with respect to the norm ||-||xs» given by

e = ] o)+ 10l oy

where the seminorm [u] xs.»(q) is given by

u(x) - u(y) - 2=
[u]l;(s,p(g) :/Q/Q‘( nydiszl) | dydx.

The space [C1(€2)]¢ denotes the set of continuously differentiable vector fields u:
Q—R? whose support is compactly contained in €. The seminorm [u]iw(m,

which is based on the size of the projected difference ’(u(x)—u(y))~|xy|
X-y
smaller than the well-known Aronszajn-Slobodeckij-Gagliardo seminorm |u\€vs,p(m =

, s

_ P
/ Mdydx that uses the difference |u(x)—u(y)|. Each of these semi-
alo [x—yldter

norms measure somewhat different things. Intuitively this can be seen from the simple
Taylor’s expansion that for a given smooth vector field u, while the difference |u(x)—

hmw—u@»-x_y|

u(y)|=|Vu(x)(y —x)|+O(ly —x|), the projected difference _y] =

yfx
ly —x|

‘Sym(Vu(x))(yx)- +O(]y —x|), where Sym(Vu(x)) is the symmetric part of

1
the gradient matrix defined as §(Vu(x) +Vu(x)").

In this paper we establish connection between these seminorms |-|ys»() and
| |wsr()- In fact, motivated by the classical Korn’s inequality which establishes the
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2 A fractional Korn-type inequality

equivalence of the seminorms ||Vul|z» and ||Sym(Vu)|r» for compactly supported vec-
tor fields, see [3,6] for review, it is reasonable to ask whether this equivalence is true
for [u]x=» and [u|we.r(q). In the event Q=R this question was answered in the affir-
mative by the authors in [15]. For p=2 and Q) the half-space Ri, an affirmative answer
was given earlier in [9]. Continuing that effort we prove in this paper that the space
X*P(Q) is precisely [WP(Q)]? with equivalent norms for sufficiently smooth domains.
The function space [W;P(Q)]¢ is the closure of [C}()]¢ with respect the the norm
[ llwer = alwsr(@)+ [l s () The main result is the following:

THEOREM 1.1 (Fractional Korn’s Inequality for Bounded ct Domains). Let d>2,
s€(0,1), pe(1,00) with sp#1. Let QCR? be a bounded domain with C* boundary €.

Then there exists a constant C'=C(d,s,p,) such that for every ue [Ccl (Q)}d
[l o) < C ([l vege) + 1l o ) - (1.1)

By density the inequality holds for all ue[Wy*(Q)]%.

We emphasize that this work focuses on vector fields that vanish on the boundary
of the domain. As such the fractional Korn’s inequality stated in the above theorem
can be thought of as a fractional analogue to the classical Korn’s first inequality. The
more interesting question of whether [W*P(Q)]¢={ue [LP(Q)]?: |[u|ps» <oc} is equal
to the space {ue€ [LP(Q)]?: [u]xs» < oo} is unanswered here. We believe that a properly
quantified notion of trace on boundary for vector fields in {ue [LP(Q)]%: [u]xs.» < o0},
which we lack now, is the first step in showing the equality of the spaces. We also do not
make any remark on sufficient conditions on a radial kernel p and the domain {2 such that

the general function space SP(2) ={ue [LP(Q))4: [u]sr <oo} where [u]gg = /z/s p(y —
oo

X)

o |P
(U(X)—U(Y))'ziy’ dydx is equal to the space of vector fields W2 (Q2)={ue

-yl

[LP()]?: /Q/Qp(y—x)|u(y) —u(x)|Pdydx <oo}. If p is locally integrable, it is known

that each of these spaces coincide with [LP(£2)]¢ [11]. However, for non-integrable kernels
the spaces are proper subsets of [LP(Q)]%. In fact, under extra assumptions that insure
singularity of the kernel p, the compact embedding of the spaces S7(€2) and W2(Q)
in [LP(Q)]? is proved in [5] and [2,13] respectively. We note that the spaces X*F(Q
and [WP(Q)]? are special subspaces that correspond to the fractional kernel p(|z|) =
|Z|f(d+ps)_

The proof of the theorem follows standard procedures where we first prove the same
result for epigraphs and use a partition of unity to localize near the boundary of the
domain 9. To that end, let f:R¥! SR be a C! globally Lipschitz function, with
f(0)=0 and Vf(0)=0. We say that an open subset D of R? is an epigraph supported
by f if

D={(x',xq) ER?: 24> f(x')}.

The boundary dD of the epigraph D is precisely the graph of the function z4= f(x’).
For a given globally Lipschitz function f as above we denote its Lipschitz constant by
M:= ”foLOO(Rd*l)'

THEOREM 1.2 (Fractional Korn’s Inequality for epigraphs). Let d>1, s€(0,1), p€
(1,00) with sp#1. Then there exists a constant Mg >0 depending only on d, s, and p
with the following property: for any epigraph determined by f with Lipschitz constant
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M <My, there exists a constant C=C(d,s,p,Mg) such that for every uée [C&(D)]d,

lufwsr(p) < Clalxsn(p).

We will prove the fractional Korn’s inequality for an epigraph D by first extending
the vector fields in X*P(D) to be defined in the whole space in such a way that the
extended functions belong to X*?(R?) and their seminorm is controlled by the norm on
the epigraph. Once we establish that we can then apply the fractional Korn’s inequality
for vector fields defined on all of R? that is proved in [15]. Note that extending functions
with proper control of their norms is a nontrivial task as the standard reflection across
the boundary of D would not be preserving the seminorm [-]5 ,. Nor would extending
by zero be appropriate, since it is not clear how to control the norm of the extended
function. We instead use an extension operator that has been used by Nitsche in [12]
in his simple proof of Korn’s second inequality along with the fractional Hardy-type
inequality proved in [9] to show the boundedness of the extension operator with respect
to the seminorm [-]xs». The precise statement is stated as follows.

PRrROPOSITION 1.1. There exists a universal constant My >0 such that for any epigraph
D supported by f whose Lipschitz constant M <My, there exists a bounded extension
operator

E: [CY(D)]!— [C} (R
with the property that for every ue [Cg (D)]d,

[E(u) ”XS:P(Rd) <C (”u”XSwP(D) +M ||u||Ws,p(D)) ) (1.2)

where the constant C depends only on My, d, s, and p. Notice that the proposition
applied to the half-space D:]Rff_ which corresponds to f=0, and so M =0 is precisely
the extension operator proved in [9]. The proposition can therefore be viewed as a
generalization of [9, Theorem 2.2] for general epigraphs. The presence of the Lipschitz
constant M in the left hand side of (1.2) as a multiplier of |[ul|y .., p) is crucial in what
we do next as it will enable us to absorb this term on the right-hand side.

After the submission of this manuscript for publication, we learned of a shorter
proof of Theorem 1.1 in [14] which avoids the use of the extension but uses the fractional
Korn’s inequality proved in [15]. A simplified proof of the estimate for the half-space is
also given using the Hardy-type inequality proved [9)].

As an application of Korn’s inequality, we study the higher fractional differentia-
bility and higher integrability of weak solutions of the nonlinear system of nonlocal
equations

A(x, 9
p.v./Rdb(_(ngzszJD(u)(x,yﬂp D(u)(x,y)dy =1f(x), xeR?, (1.3)

where d>2, p>2, 0<s<1, the quantity D(u)(x,y) denotes the projected difference

given by D(u)(x,y):= (u(x)—u(y))- ;% The function A:R?xR?— (0,00) serves

as a coefficient and is measurable, symmetric (A(x,y)= A(y,x)) and satisfies the ellip-
ticity condition

<A(x,y) <A, x,y €R?. (1.4)

==

0<



4 A fractional Korn-type inequality

The system of equations (1.3) is strongly coupled and for p=2, the equation appears in
linearized peridyanmics, a nonlocal model of continuum mechanics [17-19], correspond-
ing to a singular fractional kernel.

Given f € L}, .(R?), by a weak solution of (1.3) we mean ue [W*?(R%)]? such that

&atug)= [ fpxix, Ve [C(®Y) (15

where the integral form &£ is given by

Epatn)= [ [ i) ) D)6y D)y dy

Existence of solution satisfying (1.5) can be proved via variational methods, say under
some complementary conditions on u outside of a bounded set 2. For example, for

/ 'd 1 1
fe LP-(R?), where (p), = df— T and —+ v =1, we can minimize the energy

u—&, a(u,u)— Ad f(x)u(x)dx

over the subspace {uc [W*?(R%)]?:u=0 on R?\Q}. Notice that the energy space as-
sociated to the above variational problem is precisely X*P(R%), and so by the fractional
Korn’s inequality is equal to [W*P?(R%)]%. Coercivity of this energy can be proved using
the Poincaré-Korn inequality and the fractional Korn’s inequality [15]. Indeed, for a
bounded domain €’ that compactly contains €2, by [11, Proposition 2.7] there exists a
constant C' >0 such that for any u € [L?(R?)]? such that u=0 on R?\Q we have

Ax,y)
||uH1£p(Rd) - ||u||1£p(91) SC/Q/ o W\D(u)(x,yﬂpdydxgCEP7A(u,u)

Now using the fractional Korn’s inequality [15] we see that &£, 4(u,u)>C[ul]},, »(Ra) O

any ue [W*P(R%)]? and so for any ue [W*?(R%)]¢ that vanish outside of Q we have
[l gy < Cpa(a0),

from which coercivity follows.

Our focus here is on the self-improving properties of the nonlinear system of nonlocal
equations. By “self-improving” we mean the increase in higher fractional differentiability
and integrability of solutions to nonlocal equations by virtue of being a solution to the
nonlocal system corresponding to f that has improved integrability. To be precise we
have the following:

THEOREM 1.3. Suppose that p € [2,00) and s€(0,1) with sp<n and sp#1. Let 69 >0

be given, and for 6 € (0,0¢) assume that f € [Lp,* +9 (Rd)]d. Suppose that A satisfies (1.4)
and that u e [Ws’p(]Rd)]d is a weak solution to (1.3) satisfying (1.5). Then there exists
g0 €(0,1—35) depending on d, s, p, § and A such that ue [WS+5° Peo (Rd)]

loc
For scalar equations, such self-improving properties have been proved by [1,8], where
it was explained that this property is unique to solutions of nonlocal equations. The
result stated in the above theorem confirms that such properties also extend to strongly

coupled systems of nonlocal equations such as(1.3).
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The paper is organized as follows. In Section 2 we prove the fractional Korn’s
inequality for epigraphs, Theorem 1.2. This is also the section where the theorem on
the extension operator, Theorem 1.1 will also be proved. In Section 3, we prove the
main result, Theorem 1.1. In the last section, the proof of the self-improving property
of the coupled system (1.3) will be discussed.

2. Fractional Korn’s inequality for epigraphs In this section, we will prove
Theorem 1.2. As we indicated earlier, the main tool is Proposition 1.1 which states
the existence of a bounded extension operator for vector fields defined over epigraphs.
Thus, the main task is proving Proposition 1.1 which we do so as follows. As before,
we assume that D is an epigraph supported by f. We introduce D_ :Rd\ﬁ which
can be expressed in terms of the defining function as D_ = {(x/,z4) €R%: 24 < f(x)}
The following supporting lemma shows that D and D_ are diffeomorphic and its proof
follows from direct calculation.

LEMMA 2.1. Forn>0, define ®,: D_— D by ®,(x) = (x', f(x')+n(f(x') —z4)). Then

®, is a C' diffeomorphism, with inverse (®,)”"(x):= (X',f(x’) + 1(f(x') xd)) ,
n

and detV®,=—-n. We remark for the diffcomorphism ® in the above lemma, we

d—1
can compute V&, = [H 0 (1+_77$Vf] where 147! is the identity matrix in R*~1*4-1,
1
' (1+-)Vf
Similarly, V((I)n)—l = 771 . As a consequence, direct calculations
0 _Z
n

show that (V&  and HV(<I>,7)_1HLOO(D) are given by \/d—14+n2+(1+n)2M

1 1
and \/d I+—+(1+=)2M respectively.  Specifically, both [V, ||LOO(D , and
n n -

9@ e
uniformly in M.
The diffeomophism ®,, also satisfies the following geometric inequality which says
that if the Lipschitz constant of the supporting function of D is sufficiently small then
the distances from z and (®,)!(z) to any arbitrary point y in D are comparable.
LEMMA 2.2. Let n>0 and let C, be a constant such that C,>max{1,n}. Then if

2o\ (o2 —
M2 < %, then for every z, y € D.
7

are bounded from below by a constant that depends only on d and 7

‘Z_Y|§Cn|(¢)n)_l(z)_}" (2.1)
Proof. Let a=zq— f(2'), B=f(z")— f(¥), v=va— f(y'), and § =|z" —y'|. In order
to show (2.1) it suffices to show that
2

8 +lat+B—7*<Cl5*+C?

)

1
——a+B—y
n
i.e.
C? C? C?
0<<ng—1>a2—2<7;+1>aﬁ+2<7;+1>a7+aﬁ—1x6—wf+wcﬁ—1w?
(2.2)

2
The term (Cg —1)(8—")? is nonnegative by assumption on C,,. The term 2 (% + 1) ay

is also nonnegative since z and y are both in D and thus a and ~ are nonnegative. Thus



6 A fractional Korn-type inequality

(2.2) holds provided

&o? —&af+£36% >0, (2.3)

2
n

2
=~ 1), &r=2 (% —|—1) and &3 :CEI —1. Since <M and &5 is nonnega-
tive, (2.3) will in turn hold provided

where & = (C

O(a,8):=& 02 —EMad +£362>0. (2.4)

After completing the square we may rewrite ©(«,d) as

B &M \? 202
O(a,0)=& (a— 26 5) +<£3— 18, )(52.

G2
461

. That concludes the proof of the lemma. O

Thus, to prove the lemma it is sufficient to have that {3 —
(Ca—n*)(C5-1)
(AL
COROLLARY 2.1. There is My >0 such that for any n>0, M <My, and z, y€ D, it
follows that

>0, which is equivalent

to the assumption M? <

|z —y| <2max{1,n}|[(®,) " (2) ~y|. (2.5)

Proof. For a given >0, choose C;,=2max{1,n} in Lemma 2.2. Then we have
(ca—n*)(cy-1)

the lower bound % < CTFn)?

for every 1n>0. Thus, if we take Mg = g, then the

3
assumption M < 3 is sufficient to prove (2.1) with this choice of C,,. O
LEMMA 2.3. Let My >0, and D is an epigraph supported by a Lipschitz function f with

Lipschitz constant M < M. Supposeu: D —R?, pe (1,00), s€(0,1). Definev: R‘i —RY
by

v(x,zq)=u(x, f(X')+z4).
Then if ue C°(D)NW*P(D), then v e C®(RL)NX*P(RL), with

Vxen@a) < C ([ulxerp) +Mlulwer(p)) .

where C is independent of M but depends on My, d, s, and p.
Proof. Define \I/:D—HRi by

U(x):=(x' 24— f(X)).
Then

U (x)=(x,2q+ f(X), |V ') <d1+M), detV(T'(x))=1.
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With this,

)—u(T(y))- (x—y)|pd i
XSP(R) re JRe |X y|dtsptp Y

// o )\If((j)ldﬂmp Al dydx
<c// ey L
+C// | (wa(%) = ua(y)) - (f(x)—f(y’))|pdydx

!
|X ylf”sf”+

ua(x) —ua()” X —y'"
P
<o<[ xer(py TM // |x y|d+sp X ylP dydx

<O([ e (py T MP[u ]W”’(D)>

where C' is independent of M but depends on My, d, s, and p. O
Proof. [Proof of Proposition 1.1] We define our extension in the spirit of the work
of Nitsche [12] which later was used in [9] in the case of a half-space. For u=(u’,uq) €

[C’Cl (D)]d7 and for constants A, u, k, ¢, m, and n, set

u;i (%), xeD, i=1,2,...d—1,d,
[E(u)(x)]; = kul(x) +luf(x), xeD_, i=1,2,...d—1,
muy(x) +nuly(x), xeD_,

where
up (%) =y (X, f(x) A (%) —2a))
W (x) =, (%, f(x) + p(F(X) — )

We choose constants A, u, k, £, m, n, such that
A>0, >0, k+fl=1=m++n, Me=—-m, pl=-n. (2.6)

For A= p these constants are uniquely defined.

Clearly by (2.6), E is bounded from [C°(D)] “to [CO(RM)] ¢, We need to show (1.2).
Splitting the integrand,

[B()] e ) = //‘ W) gl yaxz [ [y [ aya
|x y|UH'Sp Jp_JD Jp_Jp_

=1+ 2I1+1II.

Clearly, I=[u]",,, #(py- We bound IIT next. From the definition of the extension E(u)
on D_, we see that

II1 < 2P~ 1T 4 4+ 2P~ 115,
where

m=/ [ [k ((0) () — () (3)) - (¢ —y) () () ~wd () - (2 — )|

|X_y|d+(s+1)p

dydx,

- [ [ (000~ (W) () - (¢ ") £ (w00 ~ () -ra—pa)|”

|x —y|d+{s+Dp
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We proceed to bound IIl4; the bound for Il will follow similarly. Introduce the
coordinate change
z=®)(x), w=P,(y). Then

HIA:%/ / |k'(u’(Z)—u/(w))-(z’—w’)+m(ud(z)—ud(w)).([(qu)*l(z)]d—[(qu)*l(w)]d)”’

[(@2)"1(z) — (@x) 1 (w)[|d+(s+Dp dwdz.
We next wiite ([(@2)7 ()]~ ()7 (W)],) =~ (za—wa) + 1i>\(f(z/)—f(wl))

and split III4 into two integrals:

21 [k(u'(z) — ' (w)) - (2 —w') —m(ug(z) —ua(W)) - + (24— wa)|” wis
st [ f) )@= ) () o dwd
et g m(uatz) —wa(w) - 25 (£~ F()]
I e B Ry P e v e T e

op-1  gp—1
= T(Z) + 7(”) .

With My yet to be determined, suppose that M < My. Using the bound
|2 =W <[Vl oo (p_y [(22) 7 (2) = (22) 7 (W)

and using that Ak =—m, it follows immediately from Lemma 2.1 that () is majorized
by a constant C' times kP [ul]%.., () where C' independent of M and depends only on

My, A, d, s, and p. As for (u), the integral is bounded by the W*? norm of the last
component of u. Precisely,

mA \” d+(s+1)p |ua(z) —ua(w) || f(2) — (W) [P
(’LZ)S(H)\) ||V(I))\||Loo(D_)// ‘Z—W|d+(9+1)p dwdz

m s | ua(2) —ua(w)P | —w']?
<[ — [ MP . dwd
(m) VA= Y M [ it fa—wpp V9

< CMP[udlyy.p

<CM [ ]WS p(D)7

where C' is independent of M but depends on My, m, A, p, s, and d. Thus, the desired
bound for IIT4 is achieved. The bound for IIIg is obtained using the same argument
with the identity puf=—n serving the role of the identity Ak=—m. That completes
bounding ITI.

It remains to bound II. Notice in this case that in the integrand x€ D_ and y € D.
By adding and subtracting the quantities

B(u) () —ua(y)) - ([@20)] ,~a)
£y () ~ua(y)) - ([@40)] ;=)
the integrand in II can be expressed as
k(u(@x(x) —u(y)) - (2x(x) —y) +£(u(®u(x)) —u(y)) - (2u(x) —y)
+(m = 8) (a(®2(9) = a(y)) - ([2269], =) + (0 =0 (va(@ () ~ wa(y) - ([2 )], ~ )

. (ua(2 () = wa(y)) - (wa = [@2(x)],) 1 (1a( @) —ualy)) - (2= [0, (0], ) -
(2.7)
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Using the relations (2.6) satisfied by k, ¢, m and n, and noting also that k—m=n—/¢,
from rudimentary algebraic calculations we see that (2.7) simplifies to

k(u(®@x(x)) —u(y)) - (2a(x) —y) +£(a(Py(x)) —u(y)) - (Pu(x) —y)
+(k—m) (ya— f(x)) - (ua(Pr(x)) —ua(Ppu(x))) -

Therefore,
[k (u(®x(x)) —u(y)) - (PA(x) —y)[”
HSC/ / |X_y|d+(s+1)p dydx
[£(u —u(y)) (2u(x)—y)
+C/ / |x Y|P dydx
|(k—m) (ya— f(x')) - (ua(Pr(x)) —ua(®p(x))) [”
-l-C/ / X —y[ -+ dydx
= C (T +10; +113) .
Making the change of variables z = ® ,\(x) we get
_ |(u(z) —u(y)-(z—y)["
/ / <I>)\ @ |d+(s+1) dydz. (2.8)

Now we invoke Corollary 2.1 to fix My. Then for any M <My, we have II; <
C[u]xs.»(py where C' is independent of M but depends on M. Il is bounded similarly.
Thus, it remains to bound II3.

Choosing n=1 in Lemma 2.1 and using the substitution z=®;(x),

[ya — f(2) [P [ua (PA((P1) " (2))) —ua(Pu((P1) ' (2))) P
H3<C// d d |(;‘)1) " )_y|d+(s-‘:-il)p

dydz

= C/D J(2) [ua (2, f(2') + Mza— [(2))) —ua(2', f(2') +p(za— [ ()| da,

where
ya— f(2")|P
J(z) ::/ | (&) ey -
Dz =y'P+(ya—f(2))+(za— f(2')?) " 2
By Lemma A.1, for each z€ D, J(z) can be bounded as J(z) < LWhelre C

|za— f(x/)|*P
is a constant independent of M but depends on d,p, and d. As a consequence we have
<o [ Ll PG HEN) e S 4= ) i
|2a— f(2')[*®
Making another change of variables xq=zq— f(2z') and writing z’ as x/,

I;<C / [ua (X', f () + Awa) —ua (' f () +paa)l” |
]Rd

Sp
Lyg

dz.

Now, define v:R% —R? by v(x',z4) :=u(x', f(x) +24); note that v e C}(R%). For any
function w= (w',wq) :RL —R? and for any >0, define the linear map F,(w) by

w (x',24)

P () ()= (1

7wd(xlanxd)> ) XGR(}}-'
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We now see that ug(x’, f(x') + Axg) —uq (X', f(x") + pzg) =va (X', A\ g) —vq(x’, py) is the
d™ component of the vector field Fy(v)—F,(v), and that Fy(v)—F,(v)eC}(RL).
Therefore, by [9, Lemma 4.1] and by Lemma 2.3 we have

[EA(v) —Fu(v)]?
) xfg’u dx < OV <c([ Wy MPU ))
:

II;<C

for a constant C' independent of M. The proof is complete. O
Proof. [Proof of Theorem 1.2] Take M as given in Proposition 1.1. By the Fractional
Korn-type Inequality on all of R? [15],

”uHWSaP(D) < ||E(u)HWs,p(1Rd) < |[[E(u)] X (R4) <C <Hu| X=.2(D) +MH“”W&P(D)) :

where C is independent of M. We now choose M small so that M < 1 / C to complete
the proof. O

3. Fractional Korn’s inequality for smooth domains In this section we prove
the main result of the paper Theorem 1.1. First we prove a preliminary result.
LEMMA 3.1 (Truncation of a function near the boundary). Let QCR? be a bounded

domain. Let ue [X*?(Q)]" and let ) € WH(Q). Then yrue X*P(Q) with

[ul ey < ClYllwros ([Wlveoge) + 10l (o)) (3.1)

where C=C(d,s,p,).
Proof. The estimate follows by adding and subtracting ¥ (y)u(x) as follows:

» (u(x) ~u(y))- 2= |
[wuxﬂ’(n) //' |x y|d+sz)1| d dx+/ﬂ/ﬂ|w(x)‘p |X,y|d+sp . dy dx

<V / AP [ x|y [l e e

—d—sp—
SCHVUJHZN(Q) ||‘1Hip(9)/3 ( |z| r de“‘”d’Hiw[U]is,p(Q)

2r(0)

<Ol e ([P 101 )

where in the next-to-last inequality R >0 is chosen so that Q€ Br(0). O

LEMMA 3.2 (An extension result). Let QCR? be a bounded domain, and let QcQ,
where QCR? is any domain (bounded or unbounded). Suppose that veX*?(Q), and
suppose that there exists >0 such that for everyy € ﬁ\ﬁ

dist(y,suppv)>5>0.

Then the function V:iQoRY defined to be the extension of v by 0 on Q\Q belongs to
X*P(Q) with

ey <C (e + 1Vl o) (3.2)

where C=C(d,s,p,).
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Proof. Define K :=suppv. Then

2 dyd
[ ]Xep(Q) X PQ)+ /A\Q |X y|d+5p ydax

V%ew Q)+2/ /Q\Q Ix— y|d+sP dydx

1
<[v]Z,.. 2 Pq — _ d
< [Vxew@)+ /KMX)' x /ﬁ\g dist(y, oK) Y

Since K is compact we can replace dist(y,0K) with dist(y,K). The resulting y-integral
is finite since >0 and d+ sp>d, and therefore (3.2) is proved. O

REMARK 3.1. Note that both Lemma 3.1 and Lemma 3.2 hold when the function space
X*P(Q) is replaced with [Ws’p(Q)}d.

Proof. [Proof of Theorem 1.1] We use a covering argument and the extension opera-
tor developed in Proposition 1.1. Choose an open set 2y and open spheres with centers
on 9 denoted {B,, (y’) ;v:1 such that Qo €2, and that Q;:=QNB,, (y’) together with
Qo forms a cover of 2. For j>1 define T} : B, (y;) — R to be the operator consisting of
the translation yj — 0 and a rotation such that T;(0Q2N B, (y;)) coincides with part of

the graph of a C' function f;:R%™! — R with bounded gradient. Set Q; = T;(Br,(y5)),
and also define
Qj::{XEQj:$d>fj(X/)}, Q;::{XEQjZ.’L‘d<fJ‘<X/)},
Fi={xeR" 24> f;(x)}, K;:={xeR":z4<f;(x)}.

Additionally, we choose T so that T;(€;) = Q+ Note that T} is a bi-Lipschitz function,

with Lipschitz constant depending only on d and €. Since Q is a C' domain we can
choose r; so small that the resulting f; defining the graph domain has Lipschitz constant

M; that is as small as we wish. Let {¢; §V:1 C [Cgo(Rd)}d be a C°° partition of unity
subordinate to the collection {; };V:O, i.e. supp(yp;) C By, (y;) with dist(y,supp(¢;)) >0
for every y € 2\ Q; and Z;.V:Ogoj =1 on Q. Define u;:=¢ju

We consider uy first. Define Ty : R? — R? by

o (x) i up(x), x€Qo,
0 o 0, XERd\Qo.

Then by the fractional Korn-type inequality [15] proved for R?, Lemma 3.2, and Lemma
3.1

[Wolws.r(0) < [o]wswray < ClUo] xor(ra)

(3.2)
<C ([uolx-r(@u) +lIoll o))

(3.1)
<O (fuolx-r (@) + ol () < C ([l + 1l oy )
(3.3)

for some C'=C(d,s,p,Q). Now fix j€{1,2,...,N}. Since dist(y,supp(p;)) >0 for every
y €Q\Q; and supp(y;) is compact, we can use Lemma 3.2 and Remark 3.1 to obtain
the bound

i o) < C ([uilwenco,) + 15l ) - (3.4)
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Now since Tj consists of a rotation and a translation, V1; is a constant rota-
tion, with T;(x)—T;(y) =(VTj)(x—y). Therefore, writing R;:=VT}, define v;(x):=
Rjuj(ijl(x)). Then v; € WS7P(Q]-+), with

"

u, / / |RTVJ —Rjv;(y) dvd
W&p(Q s y X
ot Jor IT; T (y)|d+sr

(3.5)
<c / / G =v 0 o
Q+ Q+ |X y|d+8p
since Tj is bi-Lipschitz. Now define v; K;‘ — R by
, +
vj(x):= Vi), XEQ]Jr’ +
0, x€K; \Qj .
Then v; € C! (K;r) and clearly
[Vj]Ww(Q;r) < [vj}WSm(KJT*')‘ (3.6)
Therefore by Theorem 1.2,
[vj}wsﬂp(l(_j)SC[Gj}Xs,p(K;r)a (3.7)

where C'=C(d,s,p,Q?). It is clear that dist(y,suppv;) >0 for every y € K;‘ \@j— There-
fore by Lemma 3.2

[vj]xs,p(K;f) <C ([VJ]X&P(Q;') + ||VjHLp(Q]+)> ‘ (3.8)
Then by changing coordinates,

(Rju;(x) = Rjuy(y)) - (T(x) = Ty (y))
Vilen ) _C/ / |T( )T (y)|&+erte

_C/ / R 515 (%) — Ryu;(y )) (R‘X Rjy)’ dydx (3.9)

|R Xx—R.: y|d+8p+p

<C// [RIR; (u;(x) —u;(y)) - (x—y)[" dydx— Clu,"

|X y|d+‘;p+p

’ p

dydx

Pl p(Q ) I
where C'=C(d,s,p,2). By Lemma 3.1 and the remark following it, we obtain

(5 ) < C ([0 0050 0 ) SC (Wi +Hul ) - (3:10)

Combining inequalities (3.4) through (3.10) brings us to the estimate

[ w0y < C ([l vesen + 1l ey ) - (3.11)

Therefore by (3.3) and (3.11)

N
ufyyen (o) = Zug Z ujlwen(o) <C ([U]XW(Q) + ||u||Lp(Q)) J

wer@) 70
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which proves the theorem. O

We characterize the dependence of the constant on the domain. In particular, we
look at an example of the simplest of bounded C' domains: the case Q= B,(xq), for
r>0 and xg eR.
COROLLARY 3.1. There exists a constant C depending on d, s, p and B1(0) such that
for any ball B,.(x¢) of radius r >0 centered at xo,

v |?
u(y)|? U(Y))'ﬁ

/ / T — dydx <C/ / . dydx

B (x0) J Br(x0) |X Y| P B, (xo) B (x0) |X yl|dtsp

lu(x)]” dx

sp
7“ B, (x0)

(3.12)

for every ue [C} (BT(XO))]d.
Proof. We use a scaling argument. Let u€ [C} (BT(XO))}d. Then the function

u(xo +7x) d _ood
v(x):= — belongs to [C}(B1(0))]°, with r VI er (8 (0)) = [Woe (B, (o)

7 [v]@vs,p(Bl(O)) =[u ]Wsrp(Br(xO)) , by the natural change of coordinates. By Theorem 1.1

and

on Bi(0) and multiplying the resulting inequality through by 79,

rd["]ng(Bl(o <Criv ]Xsp(Bl(O))JrCr HVHLP(Bl(O)) (3.13)

for C=C(d,s,p,B1(0)). By changing coordinates, (3.13) becomes the desired inequality

[l en (B, (x0) S ClO R (8, (x0)) O™ 0L (5, 0 -

That concludes the proof. O

4. An application of the fractional Korn’s inequality In this section we
prove the higher differentiability and higher integrability of solutions to (1.3). The
proof of the theorem follows the argument presented in [8], which is summarized and
explained in concise way in [7]. In fact, we will only present a proof of one result as
the rest is done in [8] for p=2 and [16] for general p >2. The argument relies on a new
fractional Gehring lemma that was first proved in [8] for p=2. This same fractional
Gehring lemma is verified to hold for general p>2 in [16] following the same line of
proof as in [8] in relation to self-improving inequalities for double-phase equations. For

a given u € [Ws’p(Rd)]d, the fractional Gehring lemma [7, Theorem 2.2] or [8, Theorem
6.1] is applied to a dual pair (U,v) associated to u that satisfies a certain reverse Holder-
type inequality to prove the higher integrability of the function U with respect to the
measure v. The dual pair associated to u is defined as (U,v), where for € sufficiently
small,

[u(x) —u(y)|

Uley):= |x —y|ste

1
and v(B ::/ ———dxdy, 4.1
(B) Ty XY (4.1)

for any Lebesgue measurable subset BCR2%. One notices that for any ue [Lp (Rd)]d,
for any s€(0,1) and pe (1,00)

ue [WP®RH]? ifandonlyif  UeLP(R*:w).
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As a consequence, once the fractional Gehring lemma is applied to prove Ué€

Lfot‘s(]de v), for sufficiently small § and ¢, then for any B CRd we have Ue LPT(B x
—u(x )‘p+5

d+(p+6)s+de

B;v). Rewriting the latter in terms of u we have that / / | | dydx < oo
y—x

)
loJcr pis Pt (R%)]4 which proves the higher inte-

grability and higher differentiability result of Theorem 1.3.

which is equivalent to saying that ue [W,

We emphasize that the fractional Gehring lemma can be applied to the dual pair
(U,v) if the dual pair associated with u satisfies the reverse Holder-type inequality. For
the particular choice of u which is a solution of (1.3), this reverse Holder-type inequality
in turn is a consequence of a Cacciopoli-type inequality which directly uses the nonlocal
system of equations. For the strongly coupled nonlinear system of nonlocal equations
(1.3), this inequality is stated in the following.

THEOREM 4.1. Let p>2, 0<s<1, with sp<n and sp#£1. Assume ue [Ws’p(]Rd)]d
a solution to (1.3) satisfying (1.5) corresponding to f € [Lfo/*c(Rd)]d, For B=B,(z¢) CR"
1 C(d
be a ball, and let 1 € C°(B) such that 0< <1, suppy C §B and |V| < L Then
r

[Y(x)u(x) =y (y)uly)” C .
/B/B |x —y|d+sp dydeTTp/ lu(x)[Pd

luy)l*~
+C Rd\B|XO_ |d_s_‘;pdy lu(x)ldx  (4.2)

p'/pl
+Crdtep (][ If(x) p*dx) .
B

for some C=C(d,s,p,A)>0. Once we prove the above theorem, then deriving the
reverse Holder-type inequality for the dual pair (U,v) associated to a solution u to
(1.3) can be done in exactly the same way as in [8] and [16]. The Caccioppoli-type
inequality stated in Theorem 4.1 is therefore the only missing result that one needs
to prove Theorem 1.3. Since the inequality relies on the fact that u is a solution to
the strongly coupled equation 1.3, the proof of this inequality will - unlike the proof
of the Caccioppoli inequality for scalar nonlocal equations - use the fractional Korn’s
inequality. In addition the proof needs the following standard result concerning Sobolev
spaces.

LEMMA 4.1 (Fractional Poincaré-Sobolev Inequality). Let g€[l,00), 0<t<1. Let
B=B,(xq) for some >0, xg €R?. Then there exists C=C(d,s) >0 such that

for every ve [Wy(B)] ¢ where ¢* =

v(x)

rt

is the Sobolev conjugate of q.

Proof. [Proof of Theorem 4.1] Since [C2° (Rd)} % is dense in [W”’(Rd)]d the choice
of YP(x)u(x) as the test function in (1.5) is valid. Testing the system by ¥ (x)u(x) we
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have that &, a( / PP (x x)dx. Writing &, a(u,¥Pu)=I+1II where

// x— y|d+sp u)(x,y)|P 2D (u)(x,y) D(Pu)(x,y)dy dx

neaf [ (><x,y>|P-2D<u><x,y>wp<x>(u(x)-|X_y|)dydx

we will estimate each term separately, then collect terms.
Estimate of I. We assume first that ¥(x)>(y). By adding and subtracting

P(x)u (XY
PP (x)u(y) Xyl

ID(u)(x,y)[P~*D(u) (x,y)D($"u) (x,y)
=97 (x)[D(u) (x,3) P + (V¥ (x) — " () [D(w) (x,5) [P D(u) (x,y) (u<y>- Y ) (4.4)

[x—yl

=" (x)|D(u)(x,y)[" +Ri.

We will bound R; from below. By the assumption 1 (x) >1(y) we have that for some
oel0,1]

WP (x) =" (y) =p(09(x) + (1 —0)b(y))" " (¥(x) — 2 (y))

B B (4.5)
> —plop(x)+(1—0)p(¥)|"™ (%) = p(y)| = =plp(x) " (%) =¥ (y)].

Then using (4.5) and Young’s Inequality,

Ri=p(09(x)+(1=0)¢(y))"" ((x) = (¥))[D(u) (x.y)["~*D(w)(x.¥) (u<y>- ;j;)
> —plv ()" ()~ () D(w) (e y) P fu(y)]
>~ GOIPW ey~ ) — oy ()
(4.6)
Combining (4.4) and (4.6) gives
[D(w)(x,y)["~*D(w) (x,y)D(¢"u) (x,y)
> CyP(x)|D(w) (x,3) [P = [ (%) = ¢ (y) | [u(y) [

in the case that t(x )21/}( ). Now we assume that ¥ (y) > (x). By adding and sub-

tracting ¥ (y)u(x) - I — ;

(4.7)

and proceeding similarly to the first case,

|D(w)(x,y) P> D(u) (x,y)D( u)(x,y)

4.8
> CPP(y)|D(w) (x,y)[" = C' b (x) — o (y) [ lu(x)[". 49
Using the lower bound on A, symmetry, and the estimates (4.7) and (4.8),
e [ [ RSN (00,07 ()} dy dx
(4.9)

o[ [
o [ [ i P ayax.
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where C'=C(p,A). Finally, since

P

(u(x) —u(y)) —

[x—yl
+277 Hu(x) [Pl (x) — o (y) [P

(Weout) ~vu) 12| <)

we obtain

I>C// |D(Yu)(x,y \p dx_C// M|u(x)|pdydx, (4.10)
BJB

Cx—yldtee |x —y|d+sp

Now, since |V)| <Cr~' the second integral on the right-hand side of (4.10) can be
estimated from below by

—cr-p/ |u(x)|p/ |x—y|_d+(1_5)pdydx§—Cr_Sp/ lu(x)|Pdx. (4.11)
B B B
Therefore we have
ID(yu)(x,y) _,/
I>C dydx—Cr—*" Pdx. 4.12
| [ Ry ac—cr [ jugopax (1.12)

Estimate of II. We begin by directly estimating as follows:

ID(u)(x,y) 2D (u) (x,y)¢" (x) (u<x>~ — ) > —|D(u) (x,y) [P 9P (x) [u(x)|

Ix—y|

Since p>2, using the inequality (a+b)P~* <2P72(a?~! + 0P~ 1), we have

D) (2,3) P> D(w) (x,y 17 () (u<x>- xX—y )

x—yl (4.13)
> 2" (j (x)u(x) P + 47 (x)[u(x)[u(y) )
Therefore,
P p—1
15-C [ [ grpoltC g, "
RI\B [x—y |t
we have that
%0 —y]| < %0 —x|+[x—y]| —14 %0 — x| <2,
Ix—y| Ix—y| Ix—y|
Thus we can replace |x —y| with |xo—y| in (4.14) to obtain the inequality
p p—1
11> —C'/ PP (x) lu()| |:|u(3’|?1|+sp lu(x)]| dydx
p —
B JRI\B 0oy (4.15)

c p-1
__Tps/B¢P(X)|u(x)|pdx—C/B¢P(x)u(x)|dX/Rd\B|);:(_y})’||dm]dy

where we have used the fact that 0 <y <1 and |xg — x|~ Psdx=CrP*
R\ B
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Finally we estimate the right hand side / PP (x)f(x)-u(x)dx. To that end, by

B
Holder’s inequality using the fact that p* and p’, are Holder conjugates we have
1/p” , 1/p
/ PP (x)f(x) - u(x)dx < (/ [ (x)u(x)|P dx) (/ If(x)|P~ dx)
B
1/p* 1/p,
(oo a)” ()

Using the Sobolev-Poincaré inequality (Theorem 4.1) on ¢u, we arrive at the estimate

[ #0800 ux)ax
<cpres([ [ WO bGP 40" (f o)

By Young’s inequality with o € (0,1) suitably small,

C P//P;
[ 476080l < ot (][f p*dx)

(x Y(y)uly)l (410
_ u(y)P
+U/B/B \x—y\dﬂp dydx.

Putting together (4.12), (4.15), and (4.16), there exists C'=C(d,s,p,A) and an
arbitrarily small o € (0,1) such that

P , , »' /v
/ PEwE I 4 4 < cree / u(x) [P dx+ Crd+er (][ £ () dx>
BJp [x—y|TP B B

O S 110 L
+0 [ wrigutolax Sy

o\ B X0 —

ro [ [ BRSO 4y 4
(4.17)

We can now apply fractional Korn’s inequality for balls on pu Corollary 3.1 to obtain

C// = |x y|d-(i-9]2 uy )‘pd dx—r /|1/J x)|Pdx

(4.18)
[ D(Yu)(x,y)P
</B g |x—yldtsp dy dx,

where C'=C(d,s,p) does not depend on r. Using (4.11) and (4.18) in (4.17) gives

oL

»'/p.
gCr_SP/ lu(x) [P dx 4 Crdtep (7[ |f(x)|p*dx>
B B

yd |'l())| ( . )
+ X)ax X 7‘” y

a\ g |X0 —y|dTeP

[ (x)u(x) —y(y)uly)?
—l—U/B/B X —y[T+er dydx.
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Since o € (0,1) can be as small as we wish, we can absorb the last term on the right-hand
side of (4.19), which proves the result. O

Appendix A. Technical Lemmas.
LEMMA A.1.

Let My>0, and let D be an epigraph supported by a Lipschitz function f with
Lipschitz constant M <My. Then for every x € D

J(X)Z:/ ‘yd_f(xl>|p
D =y PP+ |(ya— f(x))+ (xa— f(xX))I?)

where C is independent of M but depends on My, d, s, and p.
Proof. By adding and subtracting f(y’) both in the numerator and denominator,
and then making the substitution z4=yq4— f(y’), we obtain that

J(x)= / lya— (') + 1) = F )PP
D (I =y Pl (ya = F(5") (£ (') = f () + (za— F()2)

I / 2+ S (5") — FG)P s
B (! —y R e (F(3) = FO) + (wa— f)D) 7

EESEES)Y: dy < za— f(x)[P’

areor 4y
2

<or—1 I+H
(A1)
where
|2a”
N S—
R (¢ —y P a () FO) + (ra— FO) ) "
/ P '
w7/ )~ £6)] sy
0 IR (Ix! =y 2+ [za+ (F(Y) = f(X) +(za— f(X))?) 2
x —y'
We first bound I. Letting w’' = [P and using the MVT,
ZdqTxqd— J(X
_ > |za|” / 1 /
Ii/o eat2a— fO TP |, NEEIET dy'dzq

2
Fy ) F(x!)
+ (H |Zd+zd—f(x'>|)

x'—y'
[za+za—f(x')]

_/oo |Zd‘p / 1 dW/dZd
- _ 7|1+ (s+1) d+(s+1) )
o lzatma—f(x)] P Jra-1 (|W’|2+(l —V£(0) _W/)Q) o

where 6 is on the line segment connecting x" and x’ —|z4+ x4 — f(x')|w’. Now,

1=V f(0) w'|>1-[Vf(0) w|>1-M|w'[.

Thus,

I< / |Zd‘ ¥ ! dw’dzd
Zd+x x/)|1+(s+1)p - d+(s+l)p
0 ‘ d d f( )| Rd—1 <|W’|2+(1—I[|W/|)2) 2

_/00 |zal” / ! dw'dz
0 |zat@a—fO)HEDP Jpa (14M2)|w’|2 72M|w’|+1)L2+1>p ’
(A.3)
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We now write the second integral in polar coordinates, letting r=|w’[. Since (1+
MQ)T2_2MT+1ZH1&X{H#,%T2}’

oo |2a|” 1 rd—2 0o pd—2
Igwd,2/ dzg / . dr+/ 7Sdr
o |zatma—f(x)[IHleHDp 0 (1+M2)*L2+1)” N

2

d+(s+1) dt(s+1);
<w (M) " 2w |2a]”

> d—2< d—1 + 1+(5+1)p)/0 |za 4 za— f(x") |1+ (+Dp

dzd .

Therefore, making the coordinate change a = zd—zijfi(x/) in the integral on the previous
line, for any M < My,

I<C /Oo a? da 1
=\ T ) e

where C independent of M but depends on My, d, s, and p. We have therefore obtained
the desired bound for I since the integral converges absolutely.
The bound for IT follows similarly; the bound analogous to (A.3) is

11</°O 1 q / MP|w'|P
< —dzg —p
o lza—aa=FOOITP T Jpar (1 L M2) w2 — 2Mw!| +1) T

dw’. (A.4)

Using the same lower bound on (1+M?)|w’|> —2M|w’|+1, we proceed just as we did
for I; the second integral in (A.4) remains finite despite the presence of |w'|P in the
numerator. Thus II<COMP? |z, — f(x")|7*P, where the constant C' is independent of M
but depends on My, d, s, and p. O
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