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Abstract. In this paper we prove a fractional analogue of the classical Korn’s first inequality. The
inequality makes it possible to show the equivalence of a function space of vector field characterized by
a Gagliardo-type seminorm with projected difference with that of a corresponding fractional Sobolev
space. As an application, we will use it to obtain a Caccioppoli-type inequality for a nonlinear system
of nonlocal equations, which in turn is a key ingredient in applying known results to prove a higher
fractional differentiability result for weak solutions of the nonlinear system of nonlocal equations. The
regularity result we prove will demonstrate that a well-known self-improving property of scalar nonlocal
equations will hold for strongly coupled systems of nonlocal equations as well.
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1. Introduction and statement of main results For d≥2, suppose that Ω⊂
Rd is a bounded domain with C1 boundary. For s∈ (0,1) and 1<p<∞, define the
space X s

p (Ω) to be the closure of [C1
c (Ω)]

d with respect to the norm ∥·∥Xs,p given by

∥u∥X s,p =[u]X s,p(Ω)+∥u∥Lp(Ω) ,

where the seminorm [u]X s,p(Ω) is given by

[u]pX s,p(Ω) :=

ˆ
Ω

ˆ
Ω

⃓⃓⃓(︁
u(x)−u(y)

)︁
· x−y
|x−y|

⃓⃓⃓p
|x−y|d+sp

dydx.

The space [C1
c (Ω)]

d denotes the set of continuously differentiable vector fields u :
Ω→Rd whose support is compactly contained in Ω. The seminorm [u]pX s,p(Ω),

which is based on the size of the projected difference

⃓⃓⃓⃓(︁
u(x)−u(y)

)︁
· x−y

|x−y|

⃓⃓⃓⃓
, is

smaller than the well-known Aronszajn-Slobodeckij-Gagliardo seminorm |u|pW s,p(Ω)=ˆ
Ω

ˆ
Ω

|u(x)−u(y)|p

|x−y|d+sp
dydx that uses the difference |u(x)−u(y)|. Each of these semi-

norms measure somewhat different things. Intuitively this can be seen from the simple
Taylor’s expansion that for a given smooth vector field u, while the difference |u(x)−

u(y)|= |∇u(x)(y−x)|+O(|y−x|), the projected difference

⃓⃓⃓⃓(︁
u(x)−u(y)

)︁
· x−y

|x−y|

⃓⃓⃓⃓
=⃓⃓⃓⃓

Sym(∇u(x))(y−x) · y−x

|y−x|

⃓⃓⃓⃓
+O(|y−x|), where Sym(∇u(x)) is the symmetric part of

the gradient matrix defined as
1

2
(∇u(x)+∇u(x)T ).

In this paper we establish connection between these seminorms | · |X s,p(Ω) and
| · |W s,p(Ω). In fact, motivated by the classical Korn’s inequality which establishes the
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2 A fractional Korn-type inequality

equivalence of the seminorms ∥∇u∥Lp and ∥Sym(∇u)∥Lp for compactly supported vec-
tor fields, see [3, 6] for review, it is reasonable to ask whether this equivalence is true
for [u]X s,p and |u|W s,p(Ω). In the event Ω=Rd, this question was answered in the affir-

mative by the authors in [15]. For p=2 and Ω the half-space Rd
+, an affirmative answer

was given earlier in [9]. Continuing that effort we prove in this paper that the space
X s,p(Ω) is precisely [W s,p

0 (Ω)]d with equivalent norms for sufficiently smooth domains.
The function space [W s,p

0 (Ω)]d is the closure of [C1
c (Ω)]

d with respect the the norm
∥·∥W s,p = |u|W s,p(Ω)+∥u∥Lp(Ω).The main result is the following:

Theorem 1.1 (Fractional Korn’s Inequality for Bounded C1 Domains). Let d≥2,
s∈ (0,1), p∈ (1,∞) with sp ̸=1. Let Ω⊂Rd be a bounded domain with C1 boundary ∂Ω.

Then there exists a constant C=C(d,s,p,Ω) such that for every u∈
[︁
C1

c (Ω)
]︁d

|u|W s,p(Ω)≤C
(︂
[u]X s,p(Ω)+∥u∥Lp(Ω)

)︂
. (1.1)

By density the inequality holds for all u∈ [W s,p
0 (Ω)]d.

We emphasize that this work focuses on vector fields that vanish on the boundary
of the domain. As such the fractional Korn’s inequality stated in the above theorem
can be thought of as a fractional analogue to the classical Korn’s first inequality. The
more interesting question of whether [W s,p(Ω)]d={u∈ [Lp(Ω)]d : |u|W s,p <∞} is equal
to the space {u∈ [Lp(Ω)]d : [u]X s,p <∞} is unanswered here. We believe that a properly
quantified notion of trace on boundary for vector fields in {u∈ [Lp(Ω)]d : [u]X s,p <∞},
which we lack now, is the first step in showing the equality of the spaces. We also do not
make any remark on sufficient conditions on a radial kernel ρ and the domain Ω such that

the general function space Sp
ρ (Ω)={u∈ [Lp(Ω)]d : [u]Sp

ρ
<∞} where [u]pSp

ρ
=

ˆ
Ω

ˆ
Ω

ρ(y−

x)

⃓⃓⃓⃓(︁
u(x)−u(y)

)︁
· x−y

|x−y|

⃓⃓⃓⃓p
dydx is equal to the space of vector fields W p

ρ (Ω)={u∈

[Lp(Ω)]d :

ˆ
Ω

ˆ
Ω

ρ(y−x)|u(y)−u(x)|pdydx<∞}. If ρ is locally integrable, it is known

that each of these spaces coincide with [Lp(Ω)]d [11]. However, for non-integrable kernels
the spaces are proper subsets of [Lp(Ω)]d. In fact, under extra assumptions that insure
singularity of the kernel ρ, the compact embedding of the spaces Sp

ρ (Ω) and W p
ρ (Ω)

in [Lp(Ω)]d is proved in [5] and [2, 13] respectively. We note that the spaces X s,p(Ω)
and [W s,p

0 (Ω)]d are special subspaces that correspond to the fractional kernel ρ(|z|)=
|z|−(d+ps).

The proof of the theorem follows standard procedures where we first prove the same
result for epigraphs and use a partition of unity to localize near the boundary of the
domain ∂Ω. To that end, let f :Rd−1→R be a C1 globally Lipschitz function, with
f(0)=0 and ∇f(0)=0. We say that an open subset D of Rd is an epigraph supported
by f if

D={(x′,xd)∈Rd : xd>f(x
′)}.

The boundary ∂D of the epigraph D is precisely the graph of the function xd=f(x
′).

For a given globally Lipschitz function f as above we denote its Lipschitz constant by
M:=∥∇f∥L∞(Rd−1).

Theorem 1.2 (Fractional Korn’s Inequality for epigraphs). Let d≥1, s∈ (0,1), p∈
(1,∞) with sp ̸=1. Then there exists a constant M0>0 depending only on d, s, and p
with the following property: for any epigraph determined by f with Lipschitz constant
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M<M0, there exists a constant C=C(d,s,p,M0) such that for every u∈
[︁
C1

c (D)
]︁d
,

|u|W s,p(D)≤C[u]X s,p(D) .

We will prove the fractional Korn’s inequality for an epigraph D by first extending
the vector fields in X s,p(D) to be defined in the whole space in such a way that the
extended functions belong to X s,p(Rd) and their seminorm is controlled by the norm on
the epigraph. Once we establish that we can then apply the fractional Korn’s inequality
for vector fields defined on all of Rd that is proved in [15]. Note that extending functions
with proper control of their norms is a nontrivial task as the standard reflection across
the boundary of D would not be preserving the seminorm [·]s,p. Nor would extending
by zero be appropriate, since it is not clear how to control the norm of the extended
function. We instead use an extension operator that has been used by Nitsche in [12]
in his simple proof of Korn’s second inequality along with the fractional Hardy-type
inequality proved in [9] to show the boundedness of the extension operator with respect
to the seminorm [·]X s,p . The precise statement is stated as follows.
Proposition 1.1. There exists a universal constant M0>0 such that for any epigraph
D supported by f whose Lipschitz constant M<M0, there exists a bounded extension
operator

E:
[︁
C1

c (D)
]︁d→ [︁

C1
c (Rd)

]︁d
with the property that for every u∈

[︁
C1

c (D)
]︁d
,

∥E(u)∥X s,p(Rd)≤C
(︂
∥u∥X s,p(D)+M∥u∥W s,p(D)

)︂
, (1.2)

where the constant C depends only on M0, d, s, and p. Notice that the proposition
applied to the half-space D=Rd

+ which corresponds to f =0, and so M =0 is precisely
the extension operator proved in [9]. The proposition can therefore be viewed as a
generalization of [9, Theorem 2.2] for general epigraphs. The presence of the Lipschitz
constant M in the left hand side of (1.2) as a multiplier of ∥u∥W s,p(D) is crucial in what
we do next as it will enable us to absorb this term on the right-hand side.

After the submission of this manuscript for publication, we learned of a shorter
proof of Theorem 1.1 in [14] which avoids the use of the extension but uses the fractional
Korn’s inequality proved in [15]. A simplified proof of the estimate for the half-space is
also given using the Hardy-type inequality proved [9].

As an application of Korn’s inequality, we study the higher fractional differentia-
bility and higher integrability of weak solutions of the nonlinear system of nonlocal
equations

p.v.

ˆ
Rd

A(x,y)

|x−y|d+sp
|D(u)(x,y)|p−2D(u)(x,y)dy= f(x) , x∈Rd , (1.3)

where d≥2, p≥2, 0<s<1, the quantity D(u)(x,y) denotes the projected difference

given by D(u)(x,y) :=
(︁
u(x)−u(y)

)︁
· x−y

|x−y|
. The function A :Rd×Rd→ (0,∞) serves

as a coefficient and is measurable, symmetric (A(x,y)=A(y,x)) and satisfies the ellip-
ticity condition

0<
1

Λ
≤A(x,y)≤Λ , x ,y∈Rd . (1.4)



4 A fractional Korn-type inequality

The system of equations (1.3) is strongly coupled and for p=2, the equation appears in
linearized peridyanmics, a nonlocal model of continuum mechanics [17–19], correspond-
ing to a singular fractional kernel.

Given f ∈L1
loc(Rd), by a weak solution of (1.3) we mean u∈ [W s,p(Rd)]d such that

Ep,A(u,φ)=
ˆ
Rd

f(x)φ(x)dx , ∀φ∈
[︁
C∞

c (Rd)
]︁d

(1.5)

where the integral form E is given by

Ep,A(u,φ)=
ˆ
Rd

ˆ
Rd

A(x,y)

|x−y|d+sp
|D(u)(x,y)|p−2D(u)(x,y)D(φ)(x,y)dydx.

Existence of solution satisfying (1.5) can be proved via variational methods, say under
some complementary conditions on u outside of a bounded set Ω. For example, for

f ∈Lp′
∗(Rd), where (p′)∗=

p′d

d+p′s
, and

1

p
+

1

p′
=1, we can minimize the energy

u ↦→Ep,A(u,u)−
ˆ
Rd

f(x)u(x)dx

over the subspace {u∈ [W s,p(Rd)]d :u=0 on Rd \Ω}. Notice that the energy space as-
sociated to the above variational problem is precisely X s,p(Rd), and so by the fractional
Korn’s inequality is equal to [W s,p(Rd)]d. Coercivity of this energy can be proved using
the Poincaré-Korn inequality and the fractional Korn’s inequality [15]. Indeed, for a
bounded domain Ω′ that compactly contains Ω, by [11, Proposition 2.7] there exists a
constant C>0 such that for any u∈ [Lp(Rd)]d such that u=0 on Rd \Ω we have

∥u∥p
Lp(Rd)

=∥u∥pLp(Ω′)≤C
ˆ
Ω′

ˆ
Ω′

A(x,y)

|x−y|d+sp
|D(u)(x,y)|pdydx≤CEp,A(u,u).

Now using the fractional Korn’s inequality [15] we see that Ep,A(u,u)≥C[u]pW s,p(Rd)
for

any u∈ [W s,p(Rd)]d and so for any u∈ [W s,p(Rd)]d that vanish outside of Ω we have

∥u∥p
W s,p(Rd)

≤CEp,A(u,u),

from which coercivity follows.
Our focus here is on the self-improving properties of the nonlinear system of nonlocal

equations. By “self-improving” we mean the increase in higher fractional differentiability
and integrability of solutions to nonlocal equations by virtue of being a solution to the
nonlocal system corresponding to f that has improved integrability. To be precise we
have the following:
Theorem 1.3. Suppose that p∈ [2,∞) and s∈ (0,1) with sp<n and sp ̸=1. Let δ0>0

be given, and for δ∈ (0,δ0) assume that f ∈
[︁
Lp′

∗+δ(Rd)
]︁d
. Suppose that A satisfies (1.4)

and that u∈
[︁
W s,p(Rd)

]︁d
is a weak solution to (1.3) satisfying (1.5). Then there exists

ε0∈ (0,1−s) depending on d, s, p, δ and Λ such that u∈
[︁
W s+ε0,p+ε0

loc (Rd)
]︁d
.

For scalar equations, such self-improving properties have been proved by [1,8], where
it was explained that this property is unique to solutions of nonlocal equations. The
result stated in the above theorem confirms that such properties also extend to strongly
coupled systems of nonlocal equations such as(1.3).
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The paper is organized as follows. In Section 2 we prove the fractional Korn’s
inequality for epigraphs, Theorem 1.2. This is also the section where the theorem on
the extension operator, Theorem 1.1 will also be proved. In Section 3, we prove the
main result, Theorem 1.1. In the last section, the proof of the self-improving property
of the coupled system (1.3) will be discussed.

2. Fractional Korn’s inequality for epigraphs In this section, we will prove
Theorem 1.2. As we indicated earlier, the main tool is Proposition 1.1 which states
the existence of a bounded extension operator for vector fields defined over epigraphs.
Thus, the main task is proving Proposition 1.1 which we do so as follows. As before,
we assume that D is an epigraph supported by f . We introduce D−=Rd \D which
can be expressed in terms of the defining function as D−={(x′,xd)∈Rd :xd<f(x

′)}
The following supporting lemma shows that D and D− are diffeomorphic and its proof
follows from direct calculation.
Lemma 2.1. For η>0, define Φη :D−→D by Φη(x) :=

(︁
x′,f(x′)+η(f(x′)−xd)

)︁
. Then

Φη is a C1 diffeomorphism, with inverse (Φη)
−1

(x) :=

(︃
x′,f(x′)+

1

η
(f(x′)−xd)

)︃
,

and det∇Φη =−η . We remark for the diffeomorphism Φ in the above lemma, we

can compute ∇Φη =

[︃
Id−1 (1+η)∇f
0 −η

]︃
where Id−1 is the identity matrix in Rd−1×d−1.

Similarly, ∇(Φη)
−1=

⎡⎢⎣Id−1 (1+
1

η
)∇f

0 −1

η

⎤⎥⎦. As a consequence, direct calculations

show that ∥∇Φη∥L∞(D−) and
⃦⃦
∇(Φη)

−1
⃦⃦
L∞(D)

are given by
√︁
d−1+η2+(1+η)2M

and

√︃
d−1+

1

η2
+(1+

1

η
)2M respectively. Specifically, both ∥∇Φη∥L∞(D−) and⃦⃦

∇(Φη)
−1
⃦⃦
L∞(D)

are bounded from below by a constant that depends only on d and η

uniformly in M .
The diffeomophism Φη also satisfies the following geometric inequality which says

that if the Lipschitz constant of the supporting function of D is sufficiently small then
the distances from z and (Φη)

−1(z) to any arbitrary point y in D are comparable.
Lemma 2.2. Let η>0 and let Cη be a constant such that Cη>max{1,η}. Then if

M2≤ (C2
η−η2)(C2

η−1)
(C2

η+η)2 , then for every z, y∈D.

|z−y|≤Cη

⃓⃓
(Φη)

−1(z)−y
⃓⃓

(2.1)

Proof. Let α=zd−f(z′), β=f(z′)−f(y′), γ=yd−f(y′), and δ= |z′−y′|. In order
to show (2.1) it suffices to show that

δ2+ |α+β−γ|2≤C2
ηδ

2+C2
η

⃓⃓⃓⃓
−1

η
α+β−γ

⃓⃓⃓⃓2
,

i.e.

0≤

(︄
C2

η

η2
−1

)︄
α2−2

(︄
C2

η

η
+1

)︄
αβ+2

(︄
C2

η

η
+1

)︄
αγ+(C2

η −1)(β−γ)2+(C2
η −1)δ2 .

(2.2)

The term (C2
η −1)(β−γ)2 is nonnegative by assumption on Cη. The term 2

(︂
C2

η

η +1
)︂
αγ

is also nonnegative since z and y are both in D and thus α and γ are nonnegative. Thus
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(2.2) holds provided

ξ1α
2−ξ2αβ+ξ3δ2≥0, (2.3)

where ξ1=
(︂

C2
η

η2 −1
)︂
, ξ2=2

(︂
C2

η

η +1
)︂
and ξ3=C

2
η −1. Since β≤Mδ and ξ2 is nonnega-

tive, (2.3) will in turn hold provided

Θ(α,δ) := ξ1α
2−ξ2Mαδ+ξ3δ2≥0 . (2.4)

After completing the square we may rewrite Θ(α,δ) as

Θ(α,δ)= ξ1

(︃
α− ξ2M

2ξ1
δ

)︃2

+

(︃
ξ3−

ξ22M
2

4ξ1

)︃
δ2.

Thus, to prove the lemma it is sufficient to have that ξ3−
ξ22M

2

4ξ1
≥0, which is equivalent

to the assumption M2≤ (C2
η−η2)(C2

η−1)
(C2

η+η)2 . That concludes the proof of the lemma.

Corollary 2.1. There is M0>0 such that for any η>0, M<M0, and z, y∈D, it
follows that

|z−y|≤2max{1,η}
⃓⃓
(Φη)

−1(z)−y
⃓⃓
. (2.5)

Proof. For a given η>0, choose Cη =2max{1,η} in Lemma 2.2. Then we have

the lower bound 9
25 <

(C2
η−η2)(C2

η−1)
(C2

η+η)2 for every η>0. Thus, if we take M0=
3

5
, then the

assumption M<
3

5
is sufficient to prove (2.1) with this choice of Cη.

Lemma 2.3. Let M0>0, and D is an epigraph supported by a Lipschitz function f with
Lipschitz constant M<M0. Suppose u :D→Rd, p∈ (1,∞), s∈ (0,1). Define v :Rd

+→Rd

by

v(x′,xd)=u(x′,f(x′)+xd) .

Then if u∈C0(D)∩W s,p(D), then v∈C0(Rd
+)∩X s,p(Rd

+), with

[v]X s,p(Rd
+)≤C

(︁
[u]X s,p(D)+M[u]W s,p(D)

)︁
,

where C is independent of M but depends on M0, d, s, and p.

Proof. Define Ψ :D→Rd
+ by

Ψ(x) :=(x′,xd−f(x′)).

Then

Ψ−1(x)=(x′,xd+f(x
′)), |∇(Ψ−1(x))|≤d(1+M) , det∇(Ψ−1(x))=1.
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With this,

[v]pX s,p(Rd
+)

=

ˆ
Rd

+

ˆ
Rd

+

⃓⃓(︁
u(Ψ−1(x)−u(Ψ−1(y)

)︁
·(x−y)

⃓⃓p
|x−y|d+sp+p

dydx

≤
ˆ
D

ˆ
D

⃓⃓(︁
u(x)−u(y)

)︁
·
(︁
Ψ(x)−Ψ(y)

)︁⃓⃓p
|Ψ(x)−Ψ(y)|d+sp+p

dydx

≤C
ˆ
D

ˆ
D

⃓⃓(︁
u(x)−u(y)

)︁
·
(︁
x−y

)︁⃓⃓p
|x−y|d+sp+p

dydx

+C

ˆ
D

ˆ
D

⃓⃓(︁
ud(x)−ud(y)

)︁
·
(︁
f(x′)−f(y′)

)︁⃓⃓p
|x−y|d+sp+p

dydx

≤C
(︃
[u]pX s,p(D)+Mp

ˆ
D

ˆ
D

|ud(x)−ud(y)|p

|x−y|d+sp
· |x

′−y′|p

|x−y|p
dydx

)︃
≤C

(︂
[u]pX s,p(D)+Mp[u]pW s,p(D)

)︂
.

where C is independent of M but depends on M0, d, s, and p.
Proof. [Proof of Proposition 1.1] We define our extension in the spirit of the work

of Nitsche [12] which later was used in [9] in the case of a half-space. For u=(u′,ud)∈[︁
C1

c (D)
]︁d
, and for constants λ, µ, k, ℓ, m, and n, set

[E(u)(x)]i :=

⎧⎪⎨⎪⎩
ui(x), x∈D, i=1,2,. ..d−1,d,

kuλi (x)+ℓu
µ
i (x), x∈D− , i=1,2,. ..d−1 ,

muλd(x)+nu
µ
d (x), x∈D− ,

where

uλj (x) :=uj
(︁
x′,f(x′)+λ(f(x′)−xd)

)︁
,

uµj (x) :=uj
(︁
x′,f(x′)+µ(f(x′)−xd)

)︁
.

We choose constants λ, µ, k, ℓ, m, n, such that

λ>0, µ>0 , k+ℓ=1=m+n, λk=−m, µℓ=−n. (2.6)

For λ ̸=µ these constants are uniquely defined.

Clearly by (2.6), E is bounded from
[︁
C0(D)

]︁d
to
[︁
C0(Rd)

]︁d
. We need to show (1.2).

Splitting the integrand,

[E(u)]Xs,p(Rd)=

ˆ
D

ˆ
D

⃓⃓⃓(︁
E(u)(x)−E(u)(y)

)︁
· x−y
|x−y|

⃓⃓⃓p
|x−y|d+sp

dydx+2

ˆ
D−

ˆ
D
· ·· dydx+

ˆ
D−

ˆ
D−

· ·· dydx

:= I+2II+III .

Clearly, I= [u]pX s,p(D). We bound III next. From the definition of the extension E(u)

on D−, we see that

III≤2p−1IIIA+2p−1IIIB ,

where

IIIA=

ˆ
D−

ˆ
D−

⃓⃓
k
(︁
(u′)λ(x)−(u′)λ(y)

)︁
·(x′−y′)+m

(︁
uλd(x)−uλd(y)

)︁
·(xd−yd)

⃓⃓p
|x−y|d+(s+1)p

dydx ,

IIIB =

ˆ
D−

ˆ
D−

⃓⃓
ℓ
(︁
(u′)µ(x)−(u′)µ(y)

)︁
·(x′−y′)+n

(︁
uµd (x)−u

µ
d (y)

)︁
·(xd−yd)

⃓⃓p
|x−y|d+(s+1)p

dydx .
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We proceed to bound IIIA; the bound for IIIB will follow similarly. Introduce the
coordinate change
z=Φλ(x), w=Φλ(y). Then

IIIA =
1

λ2

ˆ
D

ˆ
D

⃓⃓⃓
k
(︁
u′(z)−u′(w)

)︁
·(z′−w′)+m

(︁
ud(z)−ud(w)

)︁
·
(︂[︁

(Φλ)
−1(z)

]︁
d
−

[︁
(Φλ)

−1(w)
]︁
d

)︂⃓⃓⃓p
|(Φλ)−1(z)−(Φλ)−1(w)|d+(s+1)p

dwdz.

We next write
(︁[︁
(Φλ)

−1(z)
]︁
d
−
[︁
(Φλ)

−1(w)
]︁
d

)︁
=− 1

λ
(zd−wd)+

λ

1+λ

(︁
f(z′)−f(w′)

)︁
and split IIIA into two integrals:

IIIA≤ 2p−1

λ2

ˆ
D

ˆ
D

⃓⃓
k
(︁
u′(z)−u′(w)

)︁
·(z′−w′)−m

(︁
ud(z)−ud(w)

)︁
· 1λ (zd−wd)

⃓⃓p
|(Φλ)−1(z)−(Φλ)−1(w)|d+(s+1)p

dwdz

+
2p−1

λ2

ˆ
D

ˆ
D

⃓⃓⃓
m
(︁
ud(z)−ud(w)

)︁
· λ
1+λ

(︁
f(z′)−f(w′)

)︁⃓⃓⃓p
|(Φλ)−1(z)−(Φλ)−1(w)|d+(s+1)p

dwdz

:=
2p−1

λ2
(ı)+

2p−1

λ2
(ıı) .

With M0 yet to be determined, suppose that M<M0. Using the bound

|z−w|≤∥∇Φλ∥L∞(D−)

⃓⃓
(Φλ)

−1(z)−(Φλ)
−1(w)

⃓⃓
and using that λk=−m, it follows immediately from Lemma 2.1 that (ı) is majorized
by a constant C times kp[u]pX s,p(Ω+), where C independent of M and depends only on

M0, λ, d, s, and p. As for (ıı), the integral is bounded by the W s,p norm of the last
component of u. Precisely,

(ıı)≤
(︃
mλ

1+λ

)︃p

∥∇Φλ∥d+(s+1)p
L∞(D−)

ˆ
D

ˆ
D

|ud(z)−ud(w)|p |f(z′)−f(w′)|p

|z−w|d+(s+1)p
dwdz

≤
(︃
mλ

1+λ

)︃p

∥∇Φλ∥d+(s+1)p
L∞(D−) Mp

ˆ
D

ˆ
D

|ud(z)−ud(w)|p

|z−w|d+sp
· |z

′−w′|p

|z−w|p
dwdz

≤CMp[ud]
p
W s,p(D)≤CMp[u]pW s,p(D) ,

where C is independent of M but depends on M0, m, λ, p, s, and d. Thus, the desired
bound for IIIA is achieved. The bound for IIIB is obtained using the same argument
with the identity µℓ=−n serving the role of the identity λk=−m. That completes
bounding III.

It remains to bound II. Notice in this case that in the integrand x∈D− and y∈D.
By adding and subtracting the quantities

k
(︁
uλd(x)−ud(y)

)︁
·
(︂[︁

Φλ(x)
]︁
d
−yd

)︂
,

ℓ
(︁
uµd (x)−ud(y)

)︁
·
(︂[︁

Φµ(x)
]︁
d
−yd

)︂
,

the integrand in II can be expressed as

k
(︁
u(Φλ(x))−u(y)

)︁
·
(︁
Φλ(x)−y

)︁
+ℓ
(︁
u(Φµ(x))−u(y)

)︁
·
(︁
Φµ(x)−y

)︁
+(m−k)

(︁
ud(Φλ(x))−ud(y)

)︁
·
(︂[︁

Φλ(x)
]︁
d
−yd

)︂
+(n−ℓ)

(︁
ud(Φµ(x))−ud(y)

)︁
·
(︂[︁

Φµ(x)
]︁
d
−yd

)︂
+m

(︁
ud(Φλ(x))−ud(y)

)︁
·
(︂
xd−

[︁
Φλ(x)

]︁
d

)︂
+n
(︁
ud(Φµ(x))−ud(y)

)︁
·
(︂
xd−

[︁
Φµ(x)

]︁
d

)︂
.

(2.7)
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Using the relations (2.6) satisfied by k, ℓ, m and n, and noting also that k−m=n−ℓ,
from rudimentary algebraic calculations we see that (2.7) simplifies to

k
(︁
u(Φλ(x))−u(y)

)︁
·
(︁
Φλ(x)−y

)︁
+ℓ
(︁
u(Φµ(x))−u(y)

)︁
·
(︁
Φµ(x)−y

)︁
+(k−m)

(︁
yd−f(x′)

)︁
·
(︁
ud(Φλ(x))−ud(Φµ(x))

)︁
.

Therefore,

II≤C
ˆ
D−

ˆ
D

|k
(︁
u(Φλ(x))−u(y)

)︁
·
(︁
Φλ(x)−y

)︁
|p

|x−y|d+(s+1)p
dydx

+C

ˆ
D−

ˆ
D

|ℓ
(︁
u(Φµ(x))−u(y)

)︁
·
(︁
Φµ(x)−y

)︁
|p

|x−y|d+(s+1)p
dydx

+C

ˆ
D−

ˆ
D

|(k−m)
(︁
yd−f(x′)

)︁
·
(︁
ud(Φλ(x))−ud(Φµ(x))

)︁
|p

|x−y|d+(s+1)p
dydx

:=C
(︂
II1+II2+II3

)︂
.

Making the change of variables z=Φλ(x), we get

II1=
kp

λ

ˆ
D

ˆ
D

⃓⃓(︁
u(z)−u(y)

)︁
·
(︁
z−y

)︁⃓⃓p
|(Φλ)−1(z)−y|d+(s+1)p

dydz. (2.8)

Now we invoke Corollary 2.1 to fix M0. Then for any M<M0, we have II1≤
C[u]X s,p(D) where C is independent of M but depends on M0. II2 is bounded similarly.
Thus, it remains to bound II3.

Choosing η=1 in Lemma 2.1 and using the substitution z=Φ1(x),

II3≤C
ˆ
D

ˆ
D

|yd−f(z′)|p |ud
(︁
Φλ((Φ1)

−1(z))
)︁
−ud

(︁
Φµ((Φ1)

−1(z))
)︁
|p

|(Φ1)−1(z)−y|d+(s+1)p
dydz

=C

ˆ
D

J(z)
⃓⃓
ud
(︁
z′,f(z′)+λ(zd−f(z′))

)︁
−ud

(︁
z′,f(z′)+µ(zd−f(z′))

)︁⃓⃓p
dz ,

where

J(z) :=

ˆ
D

|yd−f(z′)|p

(|z′−y′|2+ |(yd−f(z′))+(zd−f(z′))|2)
d+(s+1)p

2

dy .

By Lemma A.1, for each z∈D, J(z) can be bounded as J(z)≤ C

|xd−f(x′)|sp
where C

is a constant independent of M but depends on d,p, and d. As a consequence we have

II3≤C
ˆ
D

⃓⃓
ud
(︁
z′,f(z′)+λ(zd−f(z′))

)︁
−ud

(︁
z′,f(z′)+µ(zd−f(z′))

)︁⃓⃓p
|zd−f(z′)|sp

dz.

Making another change of variables xd=zd−f(z′) and writing z′ as x′,

II3≤C
ˆ
Rd

+

|ud(x′,f(x′)+λxd)−ud(x′,f(x′)+µxd)|p

xspd
dx .

Now, define v :Rd
+→Rd by v(x′,xd) :=u(x′,f(x′)+xd); note that v∈C1

c (Rd
+). For any

function w=(w′,wd) :Rd
+→Rd and for any η>0, define the linear map Fη(w) by

Fη(w)(x) :=

(︃
w′(x′,xd)

η
,wd(x

′,ηxd)

)︃
, x∈Rd

+ .
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We now see that ud(x
′,f(x′)+λxd)−ud(x′,f(x′)+µxd)=vd(x

′,λxd)−vd(x′,µxd) is the
dth component of the vector field Fλ(v)−Fµ(v), and that Fλ(v)−Fµ(v)∈C1

c (Rd
+).

Therefore, by [9, Lemma 4.1] and by Lemma 2.3 we have

II3≤C
ˆ
Rd

+

|Fλ(v)−Fµ(v)|p

xspd
dx≤C[v]pX s,p(Rd

+)
≤C

(︂
[u]pX s,p(Ω+)+Mp[u]pW s,p(Ω+)

)︂
,

for a constant C independent of M. The proof is complete.

Proof. [Proof of Theorem 1.2] Take M0 as given in Proposition 1.1. By the Fractional
Korn-type Inequality on all of Rd [15],

∥u∥W s,p(D)≤∥E(u)∥W s,p(Rd)≤∥E(u)∥X s,p(Rd)≤ ˜︁C(︂∥u∥X s,p(D)+M∥u∥W s,p(D)

)︂
.

where ˜︁C is independent of M . We now choose M small so that M<1/ ˜︁C to complete
the proof.

3. Fractional Korn’s inequality for smooth domains In this section we prove
the main result of the paper Theorem 1.1. First we prove a preliminary result.

Lemma 3.1 (Truncation of a function near the boundary). Let Ω⊂Rd be a bounded

domain. Let u∈
[︁
X s,p(Ω)

]︁d
and let ψ∈W 1,∞(Ω). Then ψu∈X s,p(Ω) with

[ψu]X s,p(Ω)≤C∥ψ∥W 1,∞

(︂
[u]X s,p(Ω)+∥u∥Lp(Ω)

)︂
, (3.1)

where C=C(d,s,p,Ω).
Proof. The estimate follows by adding and subtracting ψ(y)u(x) as follows:

[ψu]pXs,p(Ω)≤
ˆ
Ω

ˆ
Ω

|u(x)|p |ψ(y)−ψ(x)|
p

|x−y|d+sp
dydx+

ˆ
Ω

ˆ
Ω

|ψ(x)|p

⃓⃓⃓(︁
u(x)−u(y)

)︁
· x−y
|x−y|

⃓⃓⃓p
|x−y|d+sp

dydx

≤∥∇ψ∥pL∞(Ω)

ˆ
Ω

|u(x)|p
ˆ
Ω

|x−y|−d−sp−pdydx+∥ψ∥pL∞ [u]pXs,p(Ω)

≤C ∥∇ψ∥pL∞(Ω)∥u∥
p
Lp(Ω)

ˆ
B2R(0)

|z|−d−sp−pdz+∥ψ∥pL∞ [u]pXs,p(Ω)

≤C∥ψ∥p
W1,∞

(︂
[u]pXs,p(Ω)+∥u∥pLp(Ω)

)︂
,

where in the next-to-last inequality R>0 is chosen so that Ω⋐BR(0).

Lemma 3.2 (An extension result). Let Ω⊂Rd be a bounded domain, and let Ω⊂ ˜︁Ω,
where ˜︁Ω⊆Rd is any domain (bounded or unbounded). Suppose that v∈X s,p(Ω), and

suppose that there exists β>0 such that for every y∈ ˜︁Ω\Ω

dist(y,suppv)≥β>0 .

Then the function ˜︁v : ˜︁Ω→Rd defined to be the extension of v by 0 on ˜︁Ω\Ω belongs to

X s,p(˜︁Ω) with
[˜︁v]X s,p(˜︁Ω)≤C

(︂
[v]X s,p(Ω)+∥v∥Lp(Ω)

)︂
, (3.2)

where C=C(d,s,p,Ω).
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Proof. Define K := suppv. Then

[˜︁v]p
X s,p(˜︁Ω)

≤ [˜︁v]pX s,p(Ω)+2

ˆ
Ω

ˆ
˜︁Ω\Ω

|v(x)|p

|x−y|d+sp
dydx

=[˜︁v]pX s,p(Ω)+2

ˆ
K

ˆ
˜︁Ω\Ω

|v(x)|p

|x−y|d+sp
dydx

≤ [˜︁v]pX s,p(Ω)+2

ˆ
K

|v(x)|pdx
ˆ
˜︁Ω\Ω

1

dist(y,∂K)d+sp
dy

Since K is compact we can replace dist(y,∂K) with dist(y,K). The resulting y-integral
is finite since β>0 and d+sp>d, and therefore (3.2) is proved.
Remark 3.1. Note that both Lemma 3.1 and Lemma 3.2 hold when the function space

X s,p(Ω) is replaced with
[︁
W s,p(Ω)

]︁d
.

Proof. [Proof of Theorem 1.1] We use a covering argument and the extension opera-
tor developed in Proposition 1.1. Choose an open set Ω0 and open spheres with centers
on ∂Ω denoted {Brj (y

j)}Nj=1 such that Ω0⋐Ω, and that Ωj :=Ω∩Brj (y
j) together with

Ω0 forms a cover of Ω. For j≥1 define Tj :Brj (yj)→Rd to be the operator consisting of
the translation yj →0 and a rotation such that Tj(∂Ω∩Brj (yj)) coincides with part of

the graph of a C1 function fj :Rd−1→R with bounded gradient. Set Qj =Tj(Brj (yj)),
and also define

Q+
j :={x∈Qj : xd>fj(x

′)} , Q−
j :={x∈Qj : xd<fj(x

′)} ,

K+
j :={x∈Rd : xd>fj(x

′)} , K−
j :={x∈Rd : xd<fj(x

′)} .

Additionally, we choose Tj so that Tj(Ωj)=Q
+
j . Note that Tj is a bi-Lipschitz function,

with Lipschitz constant depending only on d and Ω. Since Ω is a C1 domain we can
choose rj so small that the resulting fj defining the graph domain has Lipschitz constant

Mj that is as small as we wish. Let {φj}Nj=1⊂
[︁
C∞

c (Rd)
]︁d

be a C∞ partition of unity

subordinate to the collection {Ωj}Nj=0, i.e. supp(φj)⊂Brj (yj) with dist(y,supp(φj))>0

for every y∈Ω\Ωj and
∑︁N

j=0φj ≡1 on Ω. Define uj :=φju.

We consider u0 first. Define ˜︁u0 :Rd→Rd by

˜︁u0(x) :=

{︄
u0(x) , x∈Ω0 ,

0, x∈Rd \Ω0 .

Then by the fractional Korn-type inequality [15] proved for Rd, Lemma 3.2, and Lemma
3.1

[u0]W s,p(Ω)≤ [˜︁u0]W s,p(Rd)≤C[˜︁u0]X s,p(Rd)

(3.2)

≤C
(︂
[u0]X s,p(Ω0)+∥u0∥Lp(Ω0)

)︂
≤C

(︂
[u0]X s,p(Ω)+∥u0∥Lp(Ω)

)︂(3.1)
≤C

(︂
[u]X s,p(Ω)+∥u∥Lp(Ω)

)︂
,

(3.3)

for some C=C(d,s,p,Ω). Now fix j∈{1,2,. ..,N}. Since dist(y,supp(φj))>0 for every
y∈Ω\Ωj and supp(φj) is compact, we can use Lemma 3.2 and Remark 3.1 to obtain
the bound

[uj ]W s,p(Ω)≤C
(︂
[uj ]W s,p(Ωj)+∥uj∥Lp(Ωj)

)︂
. (3.4)



12 A fractional Korn-type inequality

Now since Tj consists of a rotation and a translation, ∇Tj is a constant rota-
tion, with Tj(x)−Tj(y)=(∇Tj)(x−y). Therefore, writing Rj :=∇Tj , define vj(x) :=
Rjuj(T

−1
j (x)). Then vj ∈W s,p(Q+

j ), with

[uj ]
p
W s,p(Ωj)

=C

ˆ
Q+

j

ˆ
Q+

j

⃓⃓
R⊺

jvj(x)−R⊺
jvj(y)

⃓⃓p
|T−1

j (x)−T−1
j (y)|d+sp

dydx

≤C
ˆ
Q+

j

ˆ
Q+

j

⃓⃓
vj(x)−vj(y)

⃓⃓p
|x−y|d+sp

dydx ,

(3.5)

since Tj is bi-Lipschitz. Now define ˜︁vj :K
+
j →Rd by

˜︁vj(x) :=

{︄
vj(x), x∈Q+

j ,

0 , x∈K+
j \Q+

j .

Then ˜︁vj ∈C1
c (K

+
j ) and clearly

[vj ]W s,p(Q+
j )≤ [˜︁vj ]W s,p(K+

j ) . (3.6)

Therefore by Theorem 1.2,

[˜︁vj ]W s,p(K+
j )≤C[˜︁vj ]X s,p(K+

j ) , (3.7)

where C=C(d,s,p,Ω). It is clear that dist(y,supp˜︁vj)>0 for every y∈K+
j \Q+

j . There-
fore by Lemma 3.2

[˜︁vj ]X s,p(K+
j )≤C

(︂
[vj ]X s,p(Q+

j )+∥vj∥Lp(Q+
j )

)︂
. (3.8)

Then by changing coordinates,

[vj ]
p

X s,p(Q+
j )

=C

ˆ
Ωj

ˆ
Ωj

⃓⃓(︁
Rjuj(x)−Rjuj(y)

)︁
·
(︁
Tj(x)−Tj(y)

)︁⃓⃓p
|Tj(x)−Tj(y)|d+sp+p

dydx

=C

ˆ
Ωj

ˆ
Ωj

⃓⃓(︁
Rjuj(x)−Rjuj(y)

)︁
·
(︁
Rjx−Rjy

)︁⃓⃓p
|Rjx−Rjy|d+sp+p

dydx

≤C
ˆ
Ωj

ˆ
Ωj

⃓⃓
R⊺

jRj

(︁
uj(x)−uj(y)

)︁
·
(︁
x−y

)︁⃓⃓p
|x−y|d+sp+p

dydx=C[uj ]
p
X s,p(Ωj)

,

(3.9)

where C=C(d,s,p,Ω). By Lemma 3.1 and the remark following it, we obtain

[uj ]
p
X s,p(Ωj)

≤C
(︂
[u]pX s,p(Ωj)

+∥u∥pLp(Ωj)

)︂
≤C

(︂
[u]pX s,p(Ω)+∥u∥pLp(Ω)

)︂
. (3.10)

Combining inequalities (3.4) through (3.10) brings us to the estimate

[uj ]W s,p(Ω)≤C
(︂
[u]X s,p(Ω)+∥u∥Lp(Ω)

)︂
. (3.11)

Therefore by (3.3) and (3.11)

[u]W s,p(Ω)=

⎡⎣ N∑︂
j=0

uj

⎤⎦
W s,p(Ω)

≤
N∑︂
j=0

[uj ]W s,p(Ω)≤C
(︂
[u]X s,p(Ω)+∥u∥Lp(Ω)

)︂
,
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which proves the theorem.
We characterize the dependence of the constant on the domain. In particular, we

look at an example of the simplest of bounded C1 domains: the case Ω=Br(x0), for
r>0 and x0∈Rd.
Corollary 3.1. There exists a constant C depending on d, s, p and B1(0) such that
for any ball Br(x0) of radius r>0 centered at x0,

ˆ
Br(x0)

ˆ
Br(x0)

|u(x)−u(y)|p

|x−y|d+sp
dydx≤C

ˆ
Br(x0)

ˆ
Br(x0)

⃓⃓⃓(︁
u(x)−u(y)

)︁
· x−y
|x−y|

⃓⃓⃓p
|x−y|d+sp

dydx

+
C

rsp

ˆ
Br(x0)

|u(x)|pdx

(3.12)

for every u∈
[︁
C1

c (Br(x0))
]︁d
.

Proof. We use a scaling argument. Let u∈
[︁
C1

c (Br(x0))
]︁d
. Then the function

v(x) :=
u(x0+rx)

rs
belongs to

[︁
C1

c (B1(0))
]︁d
, with rd[v]pX s,p(B1(0))

=[u]pX s,p(Br(x0))
, and

rd[v]pW s,p(B1(0))
=[u]pW s,p(Br(x0))

, by the natural change of coordinates. By Theorem 1.1

on B1(0) and multiplying the resulting inequality through by rd,

rd[v]pW s,p(B1(0))
≤Crd[v]pX s,p(B1(0))

+Crd∥v∥pLp(B1(0))
(3.13)

for C=C(d,s,p,B1(0)). By changing coordinates, (3.13) becomes the desired inequality

[u]pW s,p(Br(x0))
≤C[u]pX s,p(Br(x0))

+Cr−sp∥u∥pLp(Br(x0))
.

That concludes the proof.

4. An application of the fractional Korn’s inequality In this section we
prove the higher differentiability and higher integrability of solutions to (1.3). The
proof of the theorem follows the argument presented in [8], which is summarized and
explained in concise way in [7]. In fact, we will only present a proof of one result as
the rest is done in [8] for p=2 and [16] for general p≥2. The argument relies on a new
fractional Gehring lemma that was first proved in [8] for p=2. This same fractional
Gehring lemma is verified to hold for general p≥2 in [16] following the same line of
proof as in [8] in relation to self-improving inequalities for double-phase equations. For

a given u∈
[︁
W s,p(Rd)

]︁d
, the fractional Gehring lemma [7, Theorem 2.2] or [8, Theorem

6.1] is applied to a dual pair (U,ν) associated to u that satisfies a certain reverse Hölder-
type inequality to prove the higher integrability of the function U with respect to the
measure ν. The dual pair associated to u is defined as (U,ν), where for ϵ sufficiently
small,

U(x,y) :=
|u(x)−u(y)|
|x−y|s+ε

and ν(B) :=
ˆ
B

1

|x−y|d−εp
dxdy , (4.1)

for any Lebesgue measurable subset B⊆R2d. One notices that for any u∈
[︁
Lp(Rd)

]︁d
,

for any s∈ (0,1) and p∈ (1,∞)

u∈
[︁
W s,p(Rd)

]︁d
if and only if U∈Lp(R2d;ν) .
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As a consequence, once the fractional Gehring lemma is applied to prove U∈
Lp+δ
loc (R2d;ν), for sufficiently small δ and ϵ, then for any B⊆Rd, we have U∈Lp+δ(B×

B;ν). Rewriting the latter in terms of u we have that

ˆ
B

ˆ
B

|u(y)−u(x)|p+δ

|y−x|d+(p+δ)s+δϵ
dydx<∞

which is equivalent to saying that u∈ [W
s+ δϵ

p+δ ,p+δ

loc (Rd)]d which proves the higher inte-
grability and higher differentiability result of Theorem 1.3.

We emphasize that the fractional Gehring lemma can be applied to the dual pair
(U,ν) if the dual pair associated with u satisfies the reverse Hölder-type inequality. For
the particular choice of u which is a solution of (1.3), this reverse Hölder-type inequality
in turn is a consequence of a Cacciopoli-type inequality which directly uses the nonlocal
system of equations. For the strongly coupled nonlinear system of nonlocal equations
(1.3), this inequality is stated in the following.

Theorem 4.1. Let p≥2, 0<s<1, with sp<n and sp ̸=1. Assume u∈
[︁
W s,p(Rd)

]︁d
is

a solution to (1.3) satisfying (1.5) corresponding to f ∈ [L
p′
∗

loc(R
d)]d. For B=Br(x0)⊂Rn

be a ball, and let ψ∈C∞
c (B) such that 0≤ψ≤1, suppψ⊂ 1

2
B and |∇ψ|≤ C(d)

r
. Then

ˆ
B

ˆ
B

|ψ(x)u(x)−ψ(y)u(y)|p

|x−y|d+sp
dydx≤ C

rsp

ˆ
B

|u(x)|pdx

+C

ˆ
Rd\B

|u(y)|p−1

|x0−y|d+sp
dy

ˆ
B

|u(x)|dx

+Crd+sp′
(︃ 

B

|f(x)|p
′
∗ dx

)︃p′/p′
∗

.

(4.2)

for some C=C(d,s,p,Λ)>0. Once we prove the above theorem, then deriving the
reverse Hölder-type inequality for the dual pair (U,ν) associated to a solution u to
(1.3) can be done in exactly the same way as in [8] and [16]. The Caccioppoli-type
inequality stated in Theorem 4.1 is therefore the only missing result that one needs
to prove Theorem 1.3. Since the inequality relies on the fact that u is a solution to
the strongly coupled equation 1.3, the proof of this inequality will - unlike the proof
of the Caccioppoli inequality for scalar nonlocal equations - use the fractional Korn’s
inequality. In addition the proof needs the following standard result concerning Sobolev
spaces.

Lemma 4.1 (Fractional Poincaré-Sobolev Inequality). Let q∈ [1,∞), 0<t<1. Let
B=Br(x0) for some r>0, x0∈Rd. Then there exists C=C(d,s)>0 such that

(︄ 
B

⃓⃓⃓⃓
v(x)

rt

⃓⃓⃓⃓q∗
dx

)︄1/q∗

≤C
(︃ˆ

B

 
B

|v(x)−v(y)|q

|x−y|d+tq
dydx

)︃1/q

(4.3)

for every v∈
[︁
W t,q

0 (B)
]︁d
, where q∗=

dq

d− tq
is the Sobolev conjugate of q.

Proof. [Proof of Theorem 4.1] Since
[︁
C∞

c (Rd)
]︁d

is dense in
[︁
W s,p(Rd)

]︁d
the choice

of ψp(x)u(x) as the test function in (1.5) is valid. Testing the system by ψp(x)u(x) we
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have that Ep,A(u,ψpu)=

ˆ
B

ψp(x)f(x) ·u(x)dx. Writing Ep,A(u,ψpu)=I+II where

I=

ˆ
B

ˆ
B

A(x,y)

|x−y|d+sp
|D(u)(x,y)|p−2D(u)(x,y)D(ψpu)(x,y)dydx

II=2

ˆ
B

ˆ
Rd\B

A(x,y)

|x−y|d+sp
|D(u)(x,y)|p−2D(u)(x,y)ψp(x)

(︃
u(x) · x−y

|x−y|

)︃
dydx

we will estimate each term separately, then collect terms.
Estimate of I. We assume first that ψ(x)≥ψ(y). By adding and subtracting

ψp(x)u(y) · x−y

|x−y|
,

|D(u)(x,y)|p−2D(u)(x,y)D(ψpu)(x,y)

=ψp(x)|D(u)(x,y)|p+
(︁
ψp(x)−ψp(y)

)︁
|D(u)(x,y)|p−2D(u)(x,y)

(︃
u(y) · x−y

|x−y|

)︃
=ψp(x)|D(u)(x,y)|p+R1 .

(4.4)

We will bound R1 from below. By the assumption ψ(x)≥ψ(y) we have that for some
σ∈ [0,1]

ψp(x)−ψp(y)=p
(︁
σψ(x)+(1−σ)ψ(y)

)︁p−1
(ψ(x)−ψ(y))

≥−p
⃓⃓
σψ(x)+(1−σ)ψ(y)

⃓⃓p−1|ψ(x)−ψ(y)|≥−p|ψ(x)|p−1|ψ(x)−ψ(y)|.
(4.5)

Then using (4.5) and Young’s Inequality,

R1=p
(︁
σψ(x)+(1−σ)ψ(y)

)︁p−1
(ψ(x)−ψ(y))|D(u)(x,y)|p−2D(u)(x,y)

(︃
u(y) · x−y

|x−y|

)︃
≥−p|ψ(x)|p−1|ψ(x)−ψ(y)||D(u)(x,y)|p−1|u(y)|

≥− 1

p′
ψp(x)|D(u)(x,y)|p−pp−1|ψ(x)−ψ(y)|p|u(y)|p

(4.6)

Combining (4.4) and (4.6) gives

|D(u)(x,y)|p−2D(u)(x,y)D(ψpu)(x,y)

≥Cψp(x)|D(u)(x,y)|p−C ′|ψ(x)−ψ(y)|p|u(y)|p
(4.7)

in the case that ψ(x)≥ψ(y). Now we assume that ψ(y)≥ψ(x). By adding and sub-

tracting ψp(y)u(x) · x−y

|x−y|
and proceeding similarly to the first case,

|D(u)(x,y)|p−2D(u)(x,y)D(ψpu)(x,y)

≥Cψp(y)|D(u)(x,y)|p−C ′|ψ(x)−ψ(y)|p|u(x)|p .
(4.8)

Using the lower bound on A, symmetry, and the estimates (4.7) and (4.8),

I≥C
ˆ
B

ˆ
B

|D(u)(x,y)|p

|x−y|d+sp
max{ψp(x),ψp(y)}dydx

−C ′
ˆ
B

ˆ
B

|ψ(x)−ψ(y)|p

|x−y|d+sp
|u(x)|pdydx ,

(4.9)
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where C=C(p,Λ). Finally, since⃓⃓⃓⃓(︁
ψ(x)u(x)−ψ(y)u(y)

)︁
· x−y

|x−y|

⃓⃓⃓⃓p
≤2p−1ψp(y)

⃓⃓⃓⃓(︁
u(x)−u(y)

)︁
· x−y

|x−y|

⃓⃓⃓⃓p
+2p−1|u(x)|p|ψ(x)−ψ(y)|p

we obtain

I≥C
ˆ
B

ˆ
B

|D(ψu)(x,y)|p

|x−y|d+sp
dydx−C ′

ˆ
B

ˆ
B

|ψ(x)−ψ(y)|p

|x−y|d+sp
|u(x)|pdydx . (4.10)

Now, since |∇ψ|≤Cr−1 the second integral on the right-hand side of (4.10) can be
estimated from below by

−Cr−p

ˆ
B

|u(x)|p
ˆ
B

|x−y|−d+(1−s)pdydx≤−Cr−sp

ˆ
B

|u(x)|pdx . (4.11)

Therefore we have

I≥C
ˆ
B

ˆ
B

|D(ψu)(x,y)|p

|x−y|d+sp
dydx−Cr−sp

ˆ
B

|u(x)|pdx. (4.12)

Estimate of II. We begin by directly estimating as follows:

|D(u)(x,y)|p−2D(u)(x,y)ψp(x)

(︃
u(x) · x−y

|x−y|

)︃
≥−|D(u)(x,y)|p−1ψp(x)|u(x)|

Since p≥2, using the inequality (a+b)p−1≤2p−2(ap−1+bp−1), we have

|D(u)(x,y)|p−2D(u)(x,y)ψp(x)

(︃
u(x) · x−y

|x−y|

)︃
≥−2p−2(|ψ(x)u(x)|p+ψp(x)|u(x)||u(y)|p−1)

(4.13)

Therefore,

II≥−C
Λ

ˆ
B

ˆ
Rd\B

ψp(x)
|u(x)|p+ |u(y)|p−1|u(x)|

|x−y|d+sp
dydx . (4.14)

we have that

|x0−y|
|x−y|

≤ |x0−x|+ |x−y|
|x−y|

=1+
|x0−x|
|x−y|

≤2 .

Thus we can replace |x−y| with |x0−y| in (4.14) to obtain the inequality

II≥−C
ˆ
B

ˆ
Rd\B

ψp(x)
|u(x)|p+ |u(y)|p−1|u(x)|

|x0−y|d+sp
dydx

=− C

rps

ˆ
B

ψp(x)|u(x)|pdx−C
ˆ
B

ψp(x)|u(x)|dx
ˆ
Rd\B

|u(y)|p−1

|x0−y|d+sp
dy .

(4.15)

where we have used the fact that 0≤ψ≤1 and

ˆ
Rd\B

|x0−x|−d−psdx=Cr−ps.
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Finally we estimate the right hand side

ˆ
B

ψp(x)f(x) ·u(x)dx. To that end, by

Hölder’s inequality using the fact that p∗ and p′∗ are Hölder conjugates we have

ˆ
B

ψp(x)f(x) ·u(x)dx≤
(︃ˆ

B

|ψ(x)u(x)|p
∗
dx

)︃1/p∗(︃ˆ
B

|f(x)|p
′
∗ dx

)︃1/p′
∗

= rd
(︃ 

B

|ψ(x)u(x)|p
∗
dx

)︃1/p∗(︃ 
B

|f(x)|p
′
∗ dx

)︃1/p′
∗

.

Using the Sobolev-Poincaré inequality (Theorem 4.1) on ψu, we arrive at the estimateˆ
B

ψp(x)f(x) ·u(x)dx

≤Crd/p
′+s

(︃ˆ
B

ˆ
B

|ψ(x)u(x)−ψ(y)u(y)|p

|x−y|d+sp
dydx

)︃1/p(︃ 
B

|f(x)|p
′
∗ dx

)︃1/p′
∗

.

By Young’s inequality with σ∈ (0,1) suitably small,

ˆ
B

ψp(x)f(x) ·u(x)dx≤ C

σ
rd+sp′

(︃ 
B

|f(x)|p
′
∗ dx

)︃p′/p′
∗

+σ

ˆ
B

ˆ
B

|ψ(x)u(x)−ψ(y)u(y)|p

|x−y|d+sp
dydx .

(4.16)

Putting together (4.12), (4.15), and (4.16), there exists C=C(d,s,p,Λ) and an
arbitrarily small σ∈ (0,1) such that

ˆ
B

ˆ
B

|D(ψu)(x,y)|p

|x−y|d+sp
dydx≤Cr−ps

ˆ
B

|u(x)|pdx+Crd+sp′
(︃ 

B

|f(x)|p
′
∗ dx

)︃p′/p′
∗

+C

ˆ
B

ψp(x)|u(x)|dx
ˆ
Rd\B

|u(y)|p−1

|x0−y|d+sp
dy

+σ

ˆ
B

ˆ
B

|ψ(x)u(x)−ψ(y)u(y)|p

|x−y|d+sp
dydx .

(4.17)

We can now apply fractional Korn’s inequality for balls on ψu Corollary 3.1 to obtain

C

ˆ
B

ˆ
B

|ψ(x)u(x)−ψ(y)u(y)|p

|x−y|d+sp
dydx−r−sp

ˆ
B

|ψ(x)u(x)|pdx

≤
ˆ
B

ˆ
B

|D(ψu)(x,y)|p

|x−y|d+sp
dydx,

(4.18)

where C=C(d,s,p) does not depend on r. Using (4.11) and (4.18) in (4.17) gives

C

ˆ
B

ˆ
B

|ψ(x)u(x)−ψ(y)u(y)|p

|x−y|d+sp
dydx

≤Cr−sp

ˆ
B

|u(x)|pdx+Crd+sp′
(︃ 

B

|f(x)|p
′
∗ dx

)︃p′/p′
∗

+C

ˆ
B

ψp(x)|u(x)|dx
ˆ
Rd\B

|u(y)|p−1

|x0−y|d+sp
dy

+σ

ˆ
B

ˆ
B

|ψ(x)u(x)−ψ(y)u(y)|p

|x−y|d+sp
dydx .

(4.19)
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Since σ∈ (0,1) can be as small as we wish, we can absorb the last term on the right-hand
side of (4.19), which proves the result.

Appendix A. Technical Lemmas.
Lemma A.1.

Let M0>0, and let D be an epigraph supported by a Lipschitz function f with
Lipschitz constant M<M0. Then for every x∈D

J(x) :=

ˆ
D

|yd−f(x′)|p

(|x′−y′|2+ |(yd−f(x′))+(xd−f(x′))|2)
d+(s+1)p

2

dy≤ C

|xd−f(x′)|sp
,

where C is independent of M but depends on M0, d, s, and p.
Proof. By adding and subtracting f(y′) both in the numerator and denominator,

and then making the substitution zd=yd−f(y′), we obtain that

J(x)=

ˆ
D

|yd−f(y′)+f(y′)−f(x′)|p

(|x′−y′|2+ |(yd−f(y′))+(f(y′)−f(x′))+(xd−f(x′))|2)
d+(s+1)p

2

dy

=

ˆ ∞

0

ˆ
Rd−1

|zd+f(y′)−f(x′)|p

(|x′−y′|2+ |zd+(f(y′)−f(x′))+(xd−f(x′))|2)
d+(s+1)p

2

dy′dzd

≤2p−1(I+II) ,

(A.1)

where

I=

ˆ ∞

0

ˆ
Rd−1

|zd|p

(|x′−y′|2+ |zd+(f(y′)−f(x′))+(xd−f(x′))|2)
d+(s+1)p

2

dy′dzd ,

II=

ˆ ∞

0

ˆ
Rd−1

|f(y′)−f(x′)|p

(|x′−y′|2+ |zd+(f(y′)−f(x′))+(xd−f(x′))|2)
d+(s+1)p

2

dy′dzd .

(A.2)

We first bound I. Letting w′=
x′−y′

|zd+xd−f(x′)|
and using the MVT,

I=

ˆ ∞

0

|zd|p

|zd+xd−f(x′)|d+(s+1)p

ˆ
Rd−1

1(︃⃓⃓⃓
x′−y′

|zd+xd−f(x′)|

⃓⃓⃓2
+
(︂
1+ f(y′)−f(x′)

|zd+xd−f(x′)|

)︂2)︃ d+(s+1)p
2

dy′dzd

=

ˆ ∞

0

|zd|p

|zd+xd−f(x′)|1+(s+1)p

ˆ
Rd−1

1(︁
|w′|2+(1−∇f(θ) ·w′)2

)︁ d+(s+1)p
2

dw′dzd ,

where θ is on the line segment connecting x′ and x′−|zd+xd−f(x′)|w′. Now,

|1−∇f(θ) ·w′|≥1−|∇f(θ) ·w′|≥1−M|w′| .

Thus,

I≤
ˆ ∞

0

|zd|p

|zd+xd−f(x′)|1+(s+1)p

ˆ
Rd−1

1(︂
|w′|2+(1−M|w′|)2

)︂ d+(s+1)p
2

dw′dzd

=

ˆ ∞

0

|zd|p

|zd+xd−f(x′)|1+(s+1)p

ˆ
Rd−1

1

((1+M2)|w′|2−2M|w′|+1)
d+(s+1)p

2

dw′dzd

.

(A.3)
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We now write the second integral in polar coordinates, letting r= |w′|. Since (1+

M2)r2−2Mr+1≥max
{︂

1
1+M2 ,

1
2r

2
}︂
,

I≤ωd−2

ˆ ∞

0

|zd|p

|zd+xd−f(x′)|1+(s+1)p
dzd

⎛⎜⎜⎝ˆ 1

0

rd−2

(1+M2)−
d+(s+1)p

2

dr+

ˆ ∞

1

rd−2(︂
r2

2

)︂ d+(s+1)p
2

dr

⎞⎟⎟⎠
≤ωd−2

(︄
(1+M2)

d+(s+1)p
2

d−1
+

2
d+(s+1)p

2

1+(s+1)p

)︄ˆ ∞

0

|zd|p

|zd+xd−f(x′)|1+(s+1)p
dzd .

Therefore, making the coordinate change a= zd
xd−f(x′) in the integral on the previous

line, for any M<M0,

I≤C
(︃ˆ ∞

0

ap

|a+1|1+sp+p
da

)︃
1

|xd−f(x′)|sp
,

where C independent of M but depends on M0, d, s, and p. We have therefore obtained
the desired bound for I since the integral converges absolutely.

The bound for II follows similarly; the bound analogous to (A.3) is

II≤
ˆ ∞

0

1

|zd−xd−f(x′)|1+sp
dzd

ˆ
Rd−1

Mp|w′|p

((1+M2)|w′|2−2M|w′|+1)
d+(s+1)p

2

dw′ . (A.4)

Using the same lower bound on (1+M2)|w′|2−2M|w′|+1, we proceed just as we did
for I; the second integral in (A.4) remains finite despite the presence of |w′|p in the
numerator. Thus II≤CMp |xd−f(x′)|−sp, where the constant C is independent of M
but depends on M0, d, s, and p.
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