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Abstract

Molecular dynamics simulations are used to study melts of asymmetric sphere-forming diblock

copolymers with two significantly different values of the invariant degree of polymerization, N =

3820 and 960. In both systems, changes in parameters that correspond to decreasing temperature

lead to the appearance of micelles at a critical micelle temperature (CMT) and crystallization at

a lower order-disorder transition temperature (ODT). The CMT is identifiable in simulations by

the appearance of large clusters with a strongly segregated core region, but has no equally clear

signature in scattering experiments on systems of modest N . The value of the product χN at the

CMT (where χ is the Flory-Huggins parameter and N is degree of polymerization) is close to that

predicted by SCFT for the ODT, while the value at the actual ODT is larger and increases with

decreasing N . Micelles exhibit significant and comparable dispersity in aggregation number in the

crystalline and liquid phases near the ODT. Both the liquid and crystal phases exhibit transient

dimers consisting of pairs of neighboring spherical micelles with cores connected by a bridge of

core-block material.
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I. INTRODUCTION

Melts of highly asymmetric AB diblock copolymers tend to self-assemble into spherical

micelles with a core containing the minority block. A variety of experiments and simulations

[1–8] suggest the existence of three temperature regimes in systems with a positive heat of

mixing (the usual case): The high temperature regime produces a molecularly disordered

state with relatively small composition fluctuations. With decreasing temperature, micelles

appear over a relatively narrow range of temperatures near a critical micelle temperature

(CMT), forming a liquid of micelles over an intermediate temperature range. Upon further

decreasing temperature, this liquid crystallizes at an order-disorder transition temperature

(ODT), creating an ordered phase. The most commonly observed crystalline arrangement

of micelles is a body-centered cubic (BCC) lattice, but a variety of more complicated Frank-

Kasper and quasi-crystalline arrangements have been observed [9–19].

Three different types of experiments have provided evidence for the existence of a liquid

of micelles over a range of temperatures above the ODT. First, several early transmission

electron microscopy (TEM) images showed a dense, disordered arrangement of spherical

micelles at temperatures above the ODT [6, 7]. Second, results of small angle X-ray and

neutron scattering (SAXS and SANS) experiments in the liquid phase near the ODT show

the presence of a secondary peak or shoulder in plots of scattering intensity I(q) vs. scattering

wavenumber q, consistent with the picture of a disordered micellar phase [1–5]. An early

analysis by Kinning and Thomas [1] showed that the existence and approximate position

of this secondary feature could be explained by a model of the melt as a strong correlated

liquid of spherical micelles, using the Percus-Yevick theory of hard spheres [20] to model

a structure function factor that describes correlations in micelle center-of-mass positions.

This analysis was repeated and refined in several subsequent scattering studies [2–5]. Finally,

measurements of linear viscoelastic properties have also shown the existence of an elastic-like

response at high frequencies that is believed to be the result of stress created by straining a

disordered micro-phase separated state [21].

Establishing the theoretical basis for the disordered micelle regime has been a longstand-

ing challenge. To establish notation, consider an incompressible melt of AB diblock polymers

with degree of polymerization N , volume fraction f for the minority block, Flory-Huggins

parameter χ, statistical segment lengths bA and bB for A and B monomers, respectively,
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and a total monomer concentration c = 1/v, where v is a monomer reference volume. Let g

denote the free energy per polymer divided by kT , where k is Boltzmann’s constant and T

is absolute temperature. Self-consistent field theory (SCFT), the most widely used theory

for describing block polymer phase behavior, yields a prediction for g in a given phase that

depends only on the dimensionless parameters χN , f , and bA/bB, which we refer to as the

SCFT state parameters. We focus hereafter on conformationally symmetric systems with

bA = bB = b, for which the remaining state parameters are χN and f . SCFT predictions for

structural lengths such as the micelle core radius and equilibrium unit cell dimensions in a

crystalline phase of such a system are given by R times a dimensionless function of the same

state parameters, where R = b
√
N is the end-to-end distance of the polymer. SCFT pre-

dicts the simultaneous appearance and crystallization of micelles at a first-order transition

from a micelle-free disordered phase to a crystal of micelles. This predicted order-disorder

transition occurs at a critical value of χN , denoted here by (χN)scf
odt, that depends only on

f . The systems simulated here all have f = 0.125 for which (χN)scf
odt = 36.6 [22].

The magnitude and nature of deviations from SCFT predictions for block copolymer

melts are controlled by the invariant degree of polymerization N = N(cb3)2. The parameter

N
1/2

is proportional to the ratio R3/Nv of the volume R3 pervaded by a random walk

polymer to the occupied volume per chain Nv. Theoretical analyses [23–25] and simulations

of simple models [26–32] both suggest that SCFT becomes exact in the limit N → ∞,

and that deviations from SCFT exhibit a universal dependence on N , independent of many

details of a particular simulation model or experimental system. Specifically, simulations of

symmetric and modestly asymmetric diblock copolymers have provided strong evidence for

the hypothesis that g is a nearly universal function of N and the SCFT state parameters

[29, 30, 32]. However, SCFT is based on a qualitatively incorrect picture of the disordered

phase near the ODT because it assumes random mixing at a monomer level within the

disordered phase. In systems with experimentally relevant values of N , the disordered phase

of a diblock copolymer melt near the ODT is instead found to contain disordered but rather

strongly segregated A and B domains [29, 30, 33]. Highly asymmetric copolymers with

f < 0.2 such as those simulated here, form disordered arrangements of spherical micelles

[1–7]. The appearance of local segregation without crystalline order stabilizes the disordered

phase, and pushes the value of χN at the actual order-disorder transition (χN)odt to values

significantly greater than (χN)scf
odt.
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There are two key prior theoretical studies of the disordered micelle regime that are rele-

vant to the present work. In the first, Dormidontova and Lodge presented a relatively simple

and qualitatively correct theory of thermodynamics in sphere-forming diblock copolymers

that predicts the existence of a micellar liquid regime at intermediate temperatures [34].

This theory extended earlier work by Semenov [35, 36] on a strong-stretching theory for

asymmetric copolymers, which provided analytic expressions for both the free energy of an

isolated micelle and for an effective interaction between pairs of micelles. Dormidontova

and Lodge [34] combined this with a simple treatment of the effects of micelle and unimer

translational entropy, and allowed for the possible formation of a disordered micellar fluid.

The resulting theory yields predictions for both an apparent CMT and the ODT. In the sec-

ond relevant study, Wang et al. presented an analysis of the appearance of micelles within

the disordered phase that is based upon a numerical SCFT calculation of the free energy of

formation of an isolated micelle within an otherwise disordered melt [33]. This formation

free energy, denoted here by Wm, becomes negative at values of χN greater than a critical

value, denoted here by (χN)scf
m , thus favoring the proliferation of micelles for χN > (χN)scf

m .

The value of (χN)scf
m was found to be very similar but slightly greater than the value (χN)scf

odt

at which SCFT predicts formation of a crystal to become favorable. The slight difference

reflects the fact that the crystal phase is stabilized by the existence of weak attractions be-

tween neighboring micelles in a crystal. For example, for the case f = 0.1 that they studied

in greatest detail, Wang et al. found (χN)scf
m = 48.14, while we obtain (χN)scf

odt = 47.95 for

a BCC crystal candidate phase. The difference (χN)scf
m − (χN)scf

odt is, however, much smaller

than other differences of interest here, such as the difference (χN)odt − (χN)scf
odt, and so is

negligible for our current purposes.

In the present contribution, we report data for coarse-grained bead-spring diblock copoly-

mer melt simulations performed for two models with significantly different values of N . We

recently provided a preliminary report [8] for a system with N = 3820, focusing on the devel-

opment of methods to identify the CMT. Here, we present a more thorough analysis of those

data [8] and new data for a system with N = 960, with the latter system bringing to the fore

the impact of fluctuation effects that should be prominent for experimentally-relevant de-

grees of polymerization. Where appropriate, we reproduce some results reported in Ref. [8]

alongside new data for N = 960 so that the impact of lowering N is readily discernible.

The analysis presented here involves a detailed structural characterization, comparisons to
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SCFT predictions, and analyses of both ordered and disordered phases. In addition to the

additional data at low N̄ and the accompanying discussion that did not appear in Ref. [8],

this contribution provides an interpretation of the structure factor in the context of Percus-

Yevick theory [20], calculation of the number of free chains, comparison of the most probable

aggregation number to an estimate from SCFT, computation of the latent heat at the ODT

[37], and a thorough analysis of dimer formation in both the ordered and disordered state,

including an analysis of their dynamics [37].

II. SIMULATION DETAILS

In this work we have used constant pressure, constant temperature molecular dynamics

(MD) simulations of coarse-grained bead-spring models of asymmetric AB diblock copoly-

mers. Each chain contains N beads, of which NB = fN are of monomer type B (the minority

species), and the remainder of type A. For all systems studied in this work, N = 64 and

NB = 8, giving f = 1/8.

We use a potential energy with a harmonic bond potential and a soft nonbonded pair

interaction similar to that introduced in dissipative particle dynamics simulations, employing

choices of parameters used in several previous simulation studies by our group [29–32]. A

repulsive non-bonded potential acts between all bead pairs that are separated by a distance

r less than a cutoff distance σ, with a potential of the form εij[1−(r/σ)]2/2 between beads of

types i and j for r < σ, with εAA = εBB. We define a parameter α ≡ (εAB − εAA)/kBT that

is adjusted to control the driving force for microphase separation. Adjacent beads within

each chain interact via a harmonic bond potential of the form κr2/2, where κ is a spring

constant. Additional details on the simulation method are provided in the Supplementary

Material [37].

We simulate two systems, each of which is defined by a fixed set of choices for all model

parameters except α, and simulate each system over a range of values of α. The two systems

studied here correspond to models S1-64 and S2-64 as defined in Ref. [30]. These models

have previously [29, 30] been shown to yield invariant degrees of polymerization N = 960

(S1-64) and N = 3820 (S2-64). For clarity in what follows, we will refer to the different

simulation systems by their invariant degrees of polymerization since this is the physically

relevant descriptor. Previous work [29, 30] further established a relationship between α and
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TABLE I. Model parameters and properties for models S1 and S2, in units with kBT = σ = 1.

The self-interaction parameter εAA, spring stiffness κ, and pressure P have fixed values for each

model. The monomer concentration c and statistical segment length b are extrapolated values for

infinite homopolymers (α = 0 and N →∞). The quantities z, a and d are coefficients that appear

in Eq. (1) for χ(α).

Model εAA κ c P b z a d

S1 25.0 3.406 3.0 20.249 1.088 0.237 0.138 0.438

S2 25.0 1.135 1.5 4.111 1.727 0.0916 -0.00087 0.00420

the Flory-Huggins interaction parameter χ for each of these models, which was approximated

by the function

χ(α) =
zα + aα2

1 + dα
. (1)

Table I lists values for the fixed input parameters for the two models studied in this work,

along with values of the coefficients z, a and d and other properties that were obtained in

previous work [29, 30] by analyzing simulations of these models; the reader is referred to

Ref. [30] for a detailed explanation of the model parameters.

We have also performed simulations to identify conditions under which an initially dis-

ordered melt will spontaneously crystallize or an initially ordered crystal will spontaneously

melt in systems that are designed so that the periodic simulation unit cell is, as nearly as

possible, commensurate with the preferred crystallographic unit cell. The latter results and

a discussion on the latent heat of the transition are provided as Supplementary Material

[37]. The number of polymer molecules, denoted by M , was chosen in most simulations so

as to approximately accommodate a 3× 3× 3 array of BCC unit cells if the system were to

crystallize [37].

Much of our analysis relies on the identification of physical clusters of molecules that are

candidates for identification as micelles. Two molecules are taken to belong to the same

cluster if their minority blocks are in close contact, i.e., if the distance between any inter-

molecular pair of minority block beads from these molecules is less than 0.8σ. This value was

selected based on prior simulations of micelles using these models [38], where aggregation

numbers using this cutoff were consistent with those obtained by counting the number of
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FIG. 1. Visualization of the core of a micellar cluster composed of 83 chains. Minority block

beads belonging to all molecules in the cluster are shown as as overlapping translucent red spheres.

The conformation of one representative molecule is shown as sequence of points representing beads

connected by line segments, with blue points for majority/corona block beads and red points for

minority/core block beads.

chains in a micelle. Using this criterion, we may assign every molecule in the system to a

unique cluster. Fig. 1 shows a visualization of a micellar cluster identified by this method,

in a format that shows the micelle core and the conformation of one molecule.

III. STRUCTURE FACTOR

The structure factor S(q) is defined here as

S(q) =
〈

1

V
|ψ̃(q)|2

〉
, (2)

where ψ̃(q) =
∫
dr ψ(r)eiq·r is a Fourier amplitude of the composition field ψ(r) = [cA(r)−

cB(r)]/2, ci(r) is the concentration of i monomers, V is total system volume, and q = |q|.

Fig. 2 compares S(q) data for different values of χN for both N = 960 and the previous data

[8] for N = 3820. The most obvious feature in this figure is the existence of a maximum in

S(q) at a wavenumber denoted by q∗.

To identify any secondary features, we fit the data in Fig. 2 to a functional form S(q) =

KSRPA(q), where SRPA(q), the solid lines in Fig. 2, are the prediction of the random-phase
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FIG. 2. Structure factor S(q) vs. non-dimensionalized wavenumber qRg0, for (a) N = 960 and (b)

N = 3820 at several values of χN . Rg0 = b
√
N/6 is the unperturbed polymer radius of gyration.

Solid lines are fits of behavior near the peak to the functional form predicted by the random-phase

approximation (RPA). Panel (b) reproduced with permission from Ref. [8].

approximation (RPA) [39]. In this fit, the prefactor K and the parameters Rg and χ that

are required as inputs to the RPA prediction have all been treated as adjustable parameters

that are chosen to fit the data in the vicinity of the peak. The RPA functional fits the

data for both models at the lowest value of χN , which in both cases is near (χN)scf
odt =

36.6, but the RPA does not fit the results for higher values of χN for neither value of N .

Comparison of the data to this fit helps emphasize the appearance at higher values of χN

of a weak shoulder centered around qRg0 ∼ 3-4, where Rg0 = b
√
N/6 is the unperturbed

radius of gyration, which becomes more prominent with increasing χN . The existence of

this secondary feature in S(q) was first noted in experimental scattering data by Kinning

and Thomas [1], who attributed it to the presence of strong correlations in the positions of

micelles within a dense micellar liquid. This secondary shoulder develops at significantly

lower values of χN in the system with larger value of N ; note that the strength of the

shoulder in the system with N = 3820 and χN = 46.5 (Fig. 2b) is greater than that seen

in the system N = 960 (Fig. 2a) at a higher value of χN = 54, and comparable to that

observed for N = 960 at the much higher value of χN = 68.5.
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FIG. 3. Non-dimensionalized inverse peak intensity cNS−1(q∗)/2 vs. χN for N = 960 (solid red

circles) and N = 3820 (solid blue diamonds). The diagonal dashed line is the RPA prediction. The

vertical dotted line marks location of (χN)scf
odt. Error bars are smaller than the data points and

provided in the Supplementary Material [37].

To discern the deviations between the RPA model and the simulation data across the

full range of χN , Fig. 3 shows how the normalized inverse peak intensity cNS−1(q∗)/2

within the disordered phase changes with χN for both invariant degrees of polymerization.

The results for N = 3820 have been reported previously [8]. A strongly first-order ODT

of the type predicted by SCFT would be accompanied by a dramatic increase in S(q∗),

and a corresponding decrease in S−1(q∗), due to the appearance of Bragg peaks in S(q).

Appearance and proliferation of disordered micelles within a sufficiently narrow range of

values of χN near (χN)scf
odt also would be expected to produce a sudden increase in S(q∗),

or, equivalently, a sudden decrease in S−1(q∗), with increasing χN , due to the appearance

of additional scattering from micelles. A hint of this type of behavior is visible in Fig. 3 for

N = 3820, which exhibits an inflection at a value of χN near (χN)scf
odt at which the magnitude

of the slope dS−1(q∗)/d(χN) appears to show a weak maximum. There is, however, no sign

of such an inflection in corresponding results for N = 960. Rather, S−1(q∗) vs. χN exhibits

a uniformly positive curvature and flattening out near an apparent spinodal value analogous

to that seen in corresponding plots of results for more symmetric copolymers [26, 28, 40].

This difference in the behavior of the peak intensity in systems with different values of N

suggests that micelles proliferate over a smaller range of values of χN in systems with larger
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FIG. 4. Normalized peak wavenumber q∗Rg0 vs. χN for N = 960 (solid circles) and N = 3820

(solid blue diamonds), where Rg0 = b
√
N/6. The dotted vertical line and the solid vertical gray

line marks the disordered-FCC phase transition at (χN)scf
odt = 36.6 and the order-order transition

from FCC to BCC at χN = 38.5, respectively. The solid horizontal black line shows the RPA

prediction for q∗Rg0 in the disordered phase, which is shown only for χN < (χN)scf
odt. The dot-

dashed and dashed curves plotted for χN > (χN)scf
odt show SCFT predictions for the value of q∗Rg0

corresponding to the primary Bragg peaks in the BCC and FCC phases, respectively.

values of N .

The location of the structure factor peak at q∗ provides further information on the inter-

micellar distance. Figure 4 thus compares simulation results for both invariant degrees of

polymerization to (i) RPA predictions for q∗ for χN < (χN)scf
odt and (ii) SCFT predictions

for the wavenumber of the primary family of Bragg peaks for χN > (χN)scf
odt, where q∗ is

made dimensionless with Rg0. The results for N = 3820 have been reported previously [8].

Data for both values of N exhibit a monotonic decrease of q∗ with increasing χN . Values

of q∗ at χN = 0 are slightly greater than those predicted by the RPA for both models,

with closer agreement between the RPA prediction for χN < (χN)scf
odt and the larger N .

For χN > (χN)scf
odt, simulation results for q∗ in the disordered phase seem to approach the

SCFT predictions for the BCC phase that SCFT predicts to be stable over most of this

range. This behavior of q∗ is broadly analogous to that seen in previous simulations of the

disordered phase of less asymmetric copolymers [28, 31].
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The structure factor S(q) measured here is analogous to the scattering intensity I(q)

measured in small-angle x-ray and neutron scattering studies. In an analysis that was

introduced by Kinning and Thomas [1] and refined in subsequent work [2, 3, 5, 7], I(q) in

the disordered phase of asymmetric copolymers was modeled as scattering from a liquid of

spherical micelles. In those analyses, experimental data for I(q) are compared to a model

in which S(q) is expressed as a product of a form factor for a spherical micelle core times

a structure factor for the centers of the micelle cores, denoted here by Z(q). The Percus-

Yevick (PY) theory for hard spheres [20] is used to model the micelle structure factor Z(q),

while treating the sphere radius and effective volume fraction as adjustable parameters.

The resulting model was shown [1–5] to account naturally for the appearance of a primary

peak and secondary shoulder in S(q) with approximately the observed ratio of characteristic

wavenumbers, in a model in which both features are assumed to be consequences of inter-

micellar correlations in a dense fluid.

Using our simulation data, we can directly measure the relevant micelle structure function

Z(q), and thereby test the assumptions underlying this analysis. Our calculation of Z(q)

is based on an analysis of “micellar” clusters, defined as clusters for which the aggregation

number lies within a specific range of values using the algorithm described in Section II.

Let xn denote the fraction of chains that belong to clusters of aggregation number n. In

systems that contain well defined micelles, the distribution xn exhibits a local minimum and

a local maximum, as discussed in detail in Section IV. To compute Z(q), micellar clusters

are taken to be those for which the aggregation number n lies between the value at which

xn exhibits a local minimum and 1.6 times the value at the local maximum. For each such

micellar cluster, we define a central position defined as the center-of-mass of the minority

block beads of molecules that belong to the cluster (i.e., the center of mass of the core). The

micelle structure function Z(q) is then defined by the sum

Z(q) =
∑
j,k

〈
1

V
eiq·(Rj−Rk)

〉
, (3)

where Rj represents the central position of micellar cluster number j. The sums over j and

k are taken over all micellar clusters.

Figure 5 provides simulation results for Z(q) for two values of χN for each of the two

values of N . For each value of N , the higher value of χN shown corresponds to a state in

which S(q) exhibits both a primary peak and a clear secondary shoulder. The corresponding
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FIG. 5. Symbols show the calculated intermicellar correlations Z(q) at two values of χN for (a)

N = 960 and (b) N = 3820. The solid lines in the plot are fits to the Percus-Yevick theory,

in which the sphere radius, Rhs, an the effective volume fraction, η, and an overall constant of

proportionality are adjusted to fit the data. The resulting fit parameters are in Table II. Note that

a different ordinate scale is used for each N .

results for Z(q) exhibit both a primary peak at a value of qRg0 ' 2 close to the value at

which S(q) in Fig. 2 exhibits a primary maximum, and a secondary peak at a value of qRg0 ∼

3.6 to 3.8 similar to that at which S(q) shows a secondary shoulder. This confirms that the

secondary shoulder in S(q) is indeed caused by the existence of a corresponding peak in

Z(q), reflecting strong correlations in micelle positions, as suggested by previous analyses of

scattering data [1–5]. The lower value of χN corresponds to a state relatively close to the

CMT in which S(q) exhibits a primary peak but no secondary shoulder. The corresponding

results for Z(q) are now nearly structureless, though S(q) still shows the single pronounced

peak seen in Fig. 2 for lower values of χN . This indicates that at these lower values of

χN ∼ (χN)scf
odt, S(q) probably cannot be correctly described by a model that attributes all

scattering as originating from a liquid of spherical micelles.
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TABLE II. Values of Rhs/Rg0, and η extracted from the fits of the intermicellar correlation Z(q) to

the Percus-Yevick theory [20]. The data were fit to a prediction of the form Z(q) = KZPY (qRhs, η),

where ZPY (qRhs, η) denotes the Percus-Yevick prediction the structure factor of hard spheres of

diameter Rhs and volume fraction η. The parameters K, Rhs and η are adjusted to fit the data.

N α χN Rhs/Rg0 η

960 2.5 44.5 1.228 0.1132

960 3.75 68.5 1.8098 0.4648

3820 7 37.2 1.1917 0.12414

3820 9 46.5 1.6503 0.44237

IV. CLUSTER POPULATION ANALYSIS

In this section, we characterize micelles in the disordered phase by analyzing results

of the cluster analysis described in Section II. To begin this analysis, Fig. 6 depicts the

fraction xn of chains with aggregation number n for both models over a range of values

of χN . At the higher invariant degree of polymerization (data reported previously [8])

xn is a monotonically decreasing function of n for all values less than (χN)scf
odt = 36.6

(measured values χN ≤ 34.8) and develops a local maximum for all values greater than

(χN)scf
odt (measured values χN ≥ 37.2). This indicates emergence of proper micelles over a

narrow range of values of χN near (χN)scf
odt [8]. Corresponding results for N = 960 in Fig. 6

are qualitatively similar to those at N = 3820. Here, xn is still a monotonically decreasing

function of n for χN = 39.7 and exhibits a weak maximum for χN ≥ 44.5. The value of χN

at the apparent CMT thus does appear to increase somewhat with decreasing N , though

the results for N = 3820 suggest that the CMT rapidly approaches (χN)scf
odt with increasing

N for N > 103.

Under conditions for which proper micelles exist, results of the cluster analysis can be

used to quantify the fraction of free chains that remain outside of micelles. We apply this

analysis only at values of χN for which xn exhibits a local minimum and local maximum,

and classify chains that belong to clusters of aggregation numbers less than the value of n
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FIG. 6. Mole fraction xn of chains that belong to clusters of aggregation number n for (a) N = 960

and (b) N = 3820. Note that the axis limits differ between panels. Panel (b) reproduced with

permission from Ref. [8].

at the local minimum as “free” chains. Let xfree denote the total fraction of such chains,

given by the sum of values of xn from 1 to the value at which xn is minimum.

Figure 7 shows simulation results for the fraction xfree where results from simulations of

ordered BCC phases are used throughout the range of values of χN in which the ordered

phase is found to remain stable (solid symbols), while results from disordered melts are used

at lower values of χN (open symbols). For both values of N , results from disordered and

ordered phases form an apparently continuous line, indicating that crystallization has little

if any effect on xfree. Moreover, xfree is substantial at the lowest value studied (xfree ' 0.2

to 0.4) and decreases with increasing χN . Figure 7 also compares simulation results to an

SCFT prediction of xfree that we obtained by measuring the volume fraction of the minority

monomer type at the midpoint between two neighboring micelles, and equating this to fxfree,

with f = 1/8. Agreement with this SCFT prediction is reasonably good at larger values

of χN , particularly in light of differences between the definitions of xfree used in the cluster

analysis and the SCFT analysis.

It is also illuminating to examine how the micelle aggregation numbers are influenced by

χN andN . To do so, we define n∗ to be the value of n at which xn is maximum. This quantity

is estimated by fitting a region near the peak in xn to a Gaussian function (using a region

within ±20% of the maximum) and approximating n∗ by the value of n at the maximum
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FIG. 7. Fraction of free chains xfree as a function of χN from simulations (symbols) and as

predicted by SCFT. Diamonds and circles represent simulation results for N = 3820 and N = 960,

respectively. Open and closed symbols represent results of simulations of disordered and ordered

phases, respectively.

of that Gaussian. Figure 8 shows that n∗ increases substantially with increasing χN in

both ordered and disordered phases. Results for N = 980 show a statistically measurable

difference in values of n∗ from ordered and disordered phases at χN = 68.5, the lowest value

for which the ordered phase was found to remain stable. For N = 3820, the corresponding

difference between values of n∗ in the ordered and disordered phases is significantly smaller,

and difficult to reliably measure because the difference (if any) is comparable to the scatter

in our results for n∗. Results for n∗ in the ordered phase are very sensitive to our choice of

the number of molecules in the simulation [37].

SCFT predictions for n∗ in crystalline structures, shown as lines in Fig. 8, were estimated

as n∗ = m(1− xfree), where m is an SCFT prediction for the total number of molecules per

micelle, and xfree is the SCFT prediction for the fraction of free chains, computed as described

above. The SCFT prediction for m is computed by combining SCFT predictions for the

optimal unit cell size with values of statistical segment length b and monomer concentration

c appropriate to the simulation model (Table I). These predictions agree rather well with

measurements of n∗ in both the disordered and ordered micellar state.

While we have focused on the disordered liquid phase thus far, the cluster analysis may

be applied in simulations of ordered micelle crystals as well. By way of example, Fig. 9
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FIG. 8. Most probable micelle aggregation number n∗ vs. χN for (a) N = 960 and (b) N = 3820.

Results are shown only for values of χN for which xn exhibits a local maximum. Open and closed

symbols represent results obtained from simulations of disordered and ordered states, respectively.

Results obtained from ordered states are shown for all values of χN for which the ordered state

remained stable. Lines represent SCFT predictions for BCC and FCC crystals, which are visually

indistinguishable on the scale of this plot. Note that the axis limits differ between panels.

provides the aggregation number fraction for a BCC crystal phase and the disordered liquid

for N = 960 at χN = 68.5. Interestingly, the cluster analysis clearly shows that micelles

exhibit a polydispersity in the ordered phase as well as in the disordered phase: Note that the

width of the primary peak in xn in Fig. 9 is rather similar for both the ordered and disordered

systems. Relative frequencies of micelles of different aggregation numbers can be related to

corresponding differences in free energies of a hypothetical system containing one test micelle

of constrained aggregation number in a fluctuating environment. The observation of similar

polydispersities in crystal and liquid phases thus can be rationalized if we assume that

the free energy differences associated with changes in aggregation number are controlled

primarily by changes in intra-micellar free energy contributions rather than free energies

arising from changes in the surrounding liquid or crystal of neighboring micelles that must

be made to accommodate a change in the aggregation number of a test micelle. We expect

these intra-micellar contributions, which arise primarily from changes in chain stretching

and changes in the area of AB interface surrounding the core block of the test micelle, to be

very similar in liquid and crystal phases.
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FIG. 9. Average mole fraction of chains xn present in clusters of aggregation number n for N = 960

at χN = 68.5 for the BCC phase (solid line) and the disordered phase (dashed line).

Returning our attention to the distributions for xn in the disordered system in Fig. 6,

we note that the data for N = 3820 and χN = 46.5 exhibits a small second maximum at a

value of n approximately twice that at which xn exhibits a primary maximum. An analogous

secondary feature is even more clearly visible in the cluster distribution for a BCC crystal

shown in Fig. 9. We discuss the physical origin of this feature in the penultimate section of

this paper, where we show that it arises from the formation of a small population of dimers

consisting of two spherical micelles with connected cores regions.

V. MICELLE STRUCTURE

We focus in this section on analyzing the spatial structure of clusters with aggregation

numbers within a range that corresponds to the main peak in the distribution for xn, which

we refer to here as micellar clusters. In well-segregated systems, for which the probability

density for xn exhibits a local minimum and a local maximum, we consider clusters for

which n lies between the value at the local minimum and 1.6 times the value at the local

maximum, as in our calculations of Z(q) and xfree. At lower values of χN , for which xn

decreases monotonically with n, we consider clusters with n in a range 20-140 for N = 960

and 30-160 for N = 3820. We then characterize the concentration profile of a micelle by

considering how the average composition of the resulting population of clusters varies with
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FIG. 10. Local volume fraction of the minority B-block as a function of the distance from the

micelle center for different values of χN for (a) N = 960 and (b) N = 3820. The dotted vertical

lines indicate the distances rc used to compute the core volume fractions φ
(c)
B . Note that the

abscissa scales are different in the two panels. Panel (b) reproduced with permission from Ref. [8].

distance from the center of mass (COM) of the the B (minority block) beads in each such

cluster. We define the effective volume fraction φB of B beads within a region of volume

∆V as the ratio φB ≡ mB/c∆V , where mB is the actual number of B beads in the region,

and c is the monomer concentration (see Table I).

Let φB(r) denote the average volume fraction of B beads at a distance r from the COM

of a cluster. We compute this quantity from the average of φB over a thin spherical annular

region of inner radius r around the COM of each cluster, averaged over time and over all

micellar clusters that satisfy the above constraints on n [8]. Figure 10 shows the results of

the calculation of φB(r) in the disordered phase. In the analysis for N = 3820, which we

reported previously [8], the observed value of φB(r = 0) at the micelle COM is found to

be nonzero for all values of χN , but to increase particularly rapidly over a narrow range of

values of χN centered around (χN)scf
odt = 36.6, and to saturate to values that approach unity

at higher values of χN . Analogous behavior is seen here for N = 960, but the increase in

φB(r = 0) is somewhat more gradual and occurs at somewhat higher values of χN .

At sufficiently low values of χN , for which xn is a monotonically decreasing function,

the clusters that are identified by our algorithm are not true micelles, but more diffuse
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FIG. 11. Probability density for the minority block volume fraction in the micelle core at different

values of χN for (a) N = 960 and (b) N = 3820. Note that the axis limits differ between the two

panels. Panel (b) reproduced with permission from Ref. [8].

geometrical clusters that arise from random contacts between minority block beads. Our

measurement of φB(r) at values of χN comparable to (χN)scf
odt presumably includes contri-

butions both from such diffuse clusters and from micelles with a more dense core region.

To distinguish these two sub-populations, we have considered the probability distribution

for the effective volume fraction φB within a small spherical region at the center of each

cluster. We define φ
(c)
B to be the value of φB within a sphere of radius rc of the cluster COM

of mass, and use cutoff radii rc = 1.5σ for N = 3820 and rc = 1.2σ for N = 960; the values

are indicated in Fig. 10 as vertical dotted lines. These values of rc were chosen so as to be

small enough to remain within the B-rich core region of a well segregated micelle, but large

enough to contain many beads. Denoting ∆V as the volume of the core region, these choices

for rc furnish c∆V = 21.7 for N = 960 and c∆V = 21.2 for N = 3820 using the monomer

concentrations c in Table I.

Figure 11 shows the calculated probability distributions of φ
(c)
B . For N = 960, the most

probable volume fraction is φ
(c)
B = 0 for χN = 0 and 35, characteristic of diffuse clusters.

At χN = 39.7, we obtain a broad distribution of values of φ
(c)
B , suggesting the co-existence

of both diffuse and dense clusters at this value. At χN ≥ 44.5, we see clear evidence of a
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FIG. 12. Statistical characteristics of the minority component core volume fraction φ
(c)
B . (a) Most

probable value of φ
(c)
B for both models (N = 960 and N = 3820). (b) Mean value of φ

(c)
B for

both models. In both plots, the vertical dotted line shows the SCFT ODT value (χN)scf
odt, and the

dashed purple line shows the SCFT prediction for the the average B volume fraction at the center

of a micelle within a BCC crystal for χN > (χN)scf
odt.

peak with a maximum at φ
(c)
B ' 1, indicating the emergence of a new population of proper

micelles with a core region that is nearly pure B. As shown in Fig. 11b, results for N = 3820,

which we reported previously [8], show the emergence of proper micelles at somewhat lower

values of χN closer to (χN)scf
odt.

To identify the emergence of micelles, Fig. 12 shows results for the most probable value

of φ
(c)
B and its mean value as a function of χN . The results for N = 3820 have been reported

previously [8]. The most probable value shows a discontinuous jump with increasing χN

from a most probable value of φ
(c)
B = 0 at lower values of χN to a nonzero value comparable

to unity at higher values. The value of χN at which the most probable value of φ
(c)
B becomes

nonzero provides a simple estimate of the value of χN at the CMT [8]. The jump in the

most probable value occurs very near (χN)scf
odt = 36.6 for N = 3820, but occurs at a slightly

higher value of χN ' 40 − 45 for N = 960. The mean value of φ
(c)
B , shown in Fig. 12b,

shows a somewhat more smeared sigmoidal behavior centered around a higher value of χN

for N = 960 than for N = 3820.
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VI. MICELLE DIMERS

We now consider the interpretation of the secondary feature visible in Figs. 6 and 9, in

which some plots of xn show a secondary maximum at an aggregation number approximately

twice that of value at which xn is maximum. Figure 13 replots the data for xn on a semi-

logarithmic scale, so as to emphasize this secondary feature. In each plot results for both

ordered and disordered phases are shown at the lowest value of χN for which an initially

ordered structure was found to remain stable (χN = 68.5 for N = 960 and χN = 46.5 for

N = 3820). Results for ordered phases for both values of N (dashed red lines) show the

existence of multiple local maxima at values of n that are approximately equal to integer

multiples of the value of n at first local maximum. Results obtained in the disordered phase

(solid blue lines) differ with N . Data for the higher N = 3820 show a clear second local

maximum at n ' 2n∗, whereas there is a shoulder for N = 960. We show in what follows that

clusters with n ' 2n∗ correspond primarily to pairs of spherical micelles with core blocks

connected by threads or bridges of minority block material, each of which our cluster analysis

algorithm identifies as a single larger cluster. Similarly, the higher order bumps in plots of

xn in the ordered phase correspond to groups of three or more micelles with core regions

that are connected in a way that causes our algorithm to identify each as a single cluster.

The more frequent formation of dimers in the BCC state can also serve as a mechanism

for chain exchange, which could be connected to the more facile exchange kinetics in BCC

packings of block polymer micelle solutions when compared to the disordered solution state

[41].

Further information about micelle structure can be obtained by characterizing each mi-

celle by a measure of shape anisotropy [42] as well as aggregation number. Let S denote a

cluster gyration tensor, defined as a matrix with elements

Sαβ =
1

N

N∑
i=1

riαriβ , (4)

where riα denotes Cartesian component α of the position of the ith minority block (B) bead

within a cluster, measured relative to the center-of-mass of the B beads in the cluster, and

N is the number of such beads in the cluster. Let ∆ denote the shape anisotropy defined as

∆ =
3

2

λ2
1 + λ2

2 + λ2
3

(λ1 + λ2 + λ3)2
− 1

2
, (5)

21



0 200 400 600

10
-4

10
-2

10
0

10
2

10
4

0 100 200 300 400
10

-6

10
-4

10
-2

10
0

10
2

10
4

FIG. 13. Semilogarithmic plot of the mole fraction xn of aggregation number n for the disordered

phase (solid blue line) and ordered BCC phase (dashed red line). Results for the BCC phase are

vertically shifted for clarity by multiplying xn by 106. Data for (a) N = 960 are for χN = 68.5

and (b) data for N = 3820 are at χN = 46.5. Note that the axis limits differ between panels.

where λ1, λ2, and λ3 are the eigenvalues of the gyration tensor S. Note that ∆ = 0 for a

spherically symmetric cluster, for which all three eignevalues are equal, and ∆ ' 1 for a

rod-like cluster, for which one eigenvalue is much larger than the other two.

Figure 14 furnishes a heat map of the two-dimensional (2D) joint probability of finding a

cluster with a specified pair of values of n and ∆ in the ordered BCC phase at (i) χN = 68.5

for N = 960 and (ii) χN = 46.5 for N = 3820. Note that the primary maximum in each

plot, corresponding to the main peak in a corresponding plot of xn vs. n, is located at a

small value of ∆ < 0.1, indicating that the peak around this maximum corresponds to a set

of nearly spherical micelles. The secondary maximum in each plot appears at a value of n

approximately twice that of the primary peak but now with a rather large shape anisotropy

of ∆ ' 0.7. This secondary maximum, which corresponds to the second peak in xn vs. n,

thus arises from a population of much more anisotropic objects.

We now show that the secondary peak in these 2D plots arise from micelle dimers. The

red star markers in both plots of Fig. 14 show the predicted values of ∆ for an idealized

model of a dimer consisting of two nearest neighbor micelles within a BCC lattice. The

model used to compute this value consists of two spherical micelle cores with φB = 1 within

a region of radius R, separated by a distance X between the sphere centers. This model can
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FIG. 14. Heat map for the joint probability density of specified aggregation number n and shape

anisotropy ∆ in simulations of the BCC ordered phase for (a) N = 960 at χN = 68.5 and (b)

N = 3820 at χN = 46.5. The red star marker in each plot is the theoretically calculated shape

anisotropy for a dimer of two micelles on nearest-neighbor lattice positions. Straight lines in (b)

are boundaries of the regions used to divide clusters into individual micelle and micelle multiplets

of different multiplicity. Note that the abscissa scales differ between panels.

be shown to yield

∆ =
3

2

[0.4 + 2(X/2R)2]2 + 0.32

[1.2 + 2(X/2R)2]2
− 1

2
. (6)

To obtain the values shown in Fig. 14, the intermicelle distance X has been set equal to

the distance between nearest neighbors in a perfect BCC lattice in the simulated unit cell,

while the core radius R has been chosen so that the number (4πR3/3)c of monomers in

each micelle core in the model corresponds to the number of B monomers in a micelle of

aggregation number equal to the most probable aggregation number. The prediction of this

idealized model is seen to be very close to the observed value of ∆ at the secondary local

maximum in the 2D histogram, confirming that this maximum corresponds to a population

of nearest neighbor micelle dimers within a micelle crystal.

Red lines in Fig. 14b show boundaries that we have constructed to divide the population

of all clusters within a simulation of an ordered BCC crystal into regions corresponding

to nearly spherical micelle “unimers” (corresponding to the main peak in xn vs. n), micelle

dimers, trimers, and (rare) quadrimers. Dimers are aligned along {111} directions, producing

a single peak in the heat map. There are three types of trimers in which the two end unimers
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are at the corners of a cube and aligned along a {100}, {110}, or {111} direction relative to

each other, producing the lobes in the trimer distribution.

To test the consistency of this classification scheme, we count the total number of micelles

in the system, denoted by K, by counting each cluster in the unimer region of the 2D

histogram as a single micelle, each cluster in the dimer region as two micelle, and so on for

trimers and quadrimers. In a simulated system designed to accommodate a BCC lattice

of 54 micelles, for N = 960 and χN = 78.3, this scheme yields an average value K = 54

with a very small standard deviation of 0.003 micelles, thereby confirming that the scheme

correctly categorizes almost all clusters within such a crystal as either individual micelles

or micelle multiplets. A similar classification was developed for all simulations of ordered

phases for both models, and verified using the same methodology.

Using this classification scheme, we can unambiguously count the number of bridges

between nearest-neighbor micelles within a BCC crystal, and the fraction of all possible

nearest-neighbor “bonds” within a BCC crystal along which there are such bridges between

micelles. This fraction was less than 0.02 (i.e., less than 2%) for all the cases considered

here, and decreases with increasing χN .

We have performed a similar analysis for the disordered state in Fig. 15, using the same

values of χN as in Fig. 14. The structure in the disordered phase is qualitatively similar

to that in the ordered phase. In the disordered phase, however, the main and secondary

peaks are less well separated, suggesting a somewhat greater tendency for micelles to form

elongated objects of intermediate aggregation number in addition to simple micelle “dimers”.

We next consider the geometrical structure of a population of clusters formed from micelle

dimers. For this purpose, it is useful to use the eigenvectors of the gyration tensor S to

define a coordinate system for each cluster. In an idealized model of the minority beads of

a dimer as a dumbbell consisting of two connected spheres, the eigenvector of S associated

with its largest eigenvector would lie along the axis connecting the centers of the spheres.

To characterize real clusters, we thus define a coordinate z for each B bead given by the

distance projection of its position relative to the cluster center-of-mass onto the eigenvector

of S associated with the largest eigenvalue. Given a population of clusters generated by a

simulation, we then can compute a histogram of values of z for all B monomers belonging

to molecules in each cluster, and use this histogram to create a one dimensional density

ρ(z) at each value of z, defined such that
∫
dzρ(z) is the average number of B monomers
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FIG. 15. Heat map for the frequency of observing shape anisotropy ∆ and aggregation number

n, similar to Fig. 14, but now for the disordered phase for (a) N = 960 at χN = 68.5 and (b)

N = 3820 at χN = 46.5. Note that the abscissa scales differ between panels.

per cluster. We then define an effective radius reff(z) at each value of z to be the radius

of a hypothetical cylindrically symmetric object of monomer concentration c that would

give the same one-dimensional density ρ(z) as that measured in the simulation, such that

ρ(z) = cπr2
eff , where c is the average total monomer concentration in the simulation model

(Table I).

In our analysis of reff(z), it proves important to take into account that micelle dimers

and other multiplets are transient structures that are constantly formed when new bridges

are formed between nearby micelles and destroyed when bridges break. An analysis of the

dynamics of these processes is given in the Supplemental Material [37]. We find that a

significant fraction of dimers are very short-lived structures that break apart in less than

1000 molecular dynamics time steps. There is, however, also smaller fraction that is stable

for thousands of time steps. In our analysis of structure, we present separate results for short

lived and long-lived dimers within a BCC crystal. For this purpose, we classify a dimer as

long-lived if it survived for at least 1000 timesteps, and short-lived if it survived for less than

1000 steps.

The values of the effective radius reff as a function of position z along the main axis of

the dimers within a BCC crystal appears in Fig. 16. Results are plotted as functions of

a normalized coordinate 2z/r0 in which r0 is the distance between nearest-neighbor lattice
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FIG. 16. Short lived (top row) and long lived (bottom row) micelle dimer profiles showing the

variation in an effective radius reff vs. the distance z from the center of the micelle dimer. z is

normalized by r0/2 where r0 is the distance between the nearest neighboring micelles in a BCC

crystal with a unit cell length of L/3 where L is the simulation box length. reff is given in simulation

units, in which the range σ of the pair interaction is set to unity. Note that the axis limits differ

between panels.

points in a perfect 3 × 3 × 3 BCC crystal constructed within the simulation unit cell. In a

simplified model of a dimer as two connected spheres, this would yield 2z/r0 = ±1 at the

centers of the spheres. The value of reff at the local maxima that occur at approximately

these values thus correspond approximately to the radii of the micelle cores. The fact that

reff(z) exhibits local maxima very close to 2z/r0 = ±1 indicates that connected micelles

within a BCC crystal remain very close to their ideal lattice positions. Each plot of reff(z)
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vs. z also shows a local minimum at z = 0. The value at this local minimum is a measure of

the radius of the bridge of B monomers that connects the two micelle cores. The fact that

all of these plots show a distinct minimum confirms that these are clusters do indeed all

have a dimer or “dumbbell” shape with mass concentrated near the two ends, rather than a

more uniform rodlike distribution. The ratio of the the bridge radius to micelle core radius

ranges from 0.2 to 0.3 for short-lived dimers and and 0.4 to 0.55 for the long-lived dimers.

The bridges between micelles appear to be thick enough to be visualized as bridges formed

by the core blocks of multiple molecules, rather than more tenuous single-molecule bridges,

particularly for the long-lived dimers.

VII. SUMMARY

The present contribution builds substantially on our preliminary communication on sim-

ulations of disordered asymmetric diblock copolymer melts [8], which focused solely on a

limited analysis of the results obtained at the higher invariant degree of polymerization

N = 3820 available from Model S2-64. Here, we have investigated for those same properties

at an even more experimentally-relevant value of N = 960 using Model S1-64, and we have

provided additional information on the structure, dynamics and thermodynamics for both

values of N . In this final section, we summarize the key outcomes of our analysis of the

simulation data and their implications for experiments and theory.

Overall, the results presented here support the picture of the disordered micelle state

described in our prior work [8]. Explicitly, we found previously [8] for N = 3820 that there

exists (i) a shoulder in S(q) as χN increases in the disordered state that is not predicted

by the RPA (Fig. 2); (ii) a systematic deviation from the linear dependence of S−1(q) that

is roughly coincident with the ODT predicted by SCFT but without the sudden decrease

of S−1(q) that would accompany an order-disorder transition (Fig. 3); and (iii) a clear

emergence of a population of a peak in the average mole fraction of chains with aggregation

number n above the SCFT ODT (Fig. 6) where the nearly spherical micelles have cores that

are almost pure (Figs. 11 and 12). Taken together, these data support a model where the

CMT is roughly coincident with the ODT predicted by SCFT [8], with the true ODT taking

place at a higher value of χN .

Inspection of Figs. 2, 3, 6, 11 and 12 shows that the picture we developed previously [8] at
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N = 3820 holds for the substantially lower value of N = 960 investigated here, albeit with

smaller aggregation numbers and larger values of χN at N = 960 required to produce the

phenomena seen at N = 3820. The most notable effects of N are qualitative differences in

the structure factor near the SCFT ODT. Namely, results for the system with a larger value

of N = 3820 exhibit a weak inflection at χN ' (χN)scf
odt in a plot of S−1(q∗) vs. χN . The

analogous plot for the system with a smaller value of N = 960 does not, however, exhibit

such an inflection, and instead exhibits behavior qualitatively similar to that observed in

studies of more nearly symmetric copolymers [26, 28, 40]. We assume that the inflection in

this plot would become sharper for systems of even greater N , approaching a discontinuous

jump in the limit N → ∞, but that it is washed out in systems of modest N for which

both the appearance of micelles and the build-up of correlations in micelle position is found

to occur over a wider range of values of χN . The appearance of an inflection in a plot

of S−1(q∗) vs. χN (or, equivalently, inverse temperature 1/T ) thus seems to provide a

reliable signature of the CMT only in systems with very large values of N . Overall, our

results confirm the existence of a crossover from molecularly disordered regime to a liquid

of micelles with increasing χN , and suggest that, with increasing N , the crossover occurs

over an increasingly narrow range of values of χN centered around a value that rapidly

approaches (χN)scf
odt, in qualitative agreement with earlier theoretical predictions [33, 34].

In addition to the approaches used in our prior work [8] to identify the onset of the

disordered micellar liquid, we have developed new evidence here by analyzing the structure

factor in the context of the Percus-Yevick theory [20] in Fig. 5, which has impact on analyses

of scattering data in experiments. The peaks in the intermicellar correlations Z(q) occur at

the same wavenumbers q of the corresponding features in the structure factor S(q). This

correspondence between features in Z(q) and S(q) is largely independent of N . Our analysis

of Z(q) shows, however, that micelles are present at significantly lower values of χN than

those at which this feature becomes visible, because correlations in micelle positions remain

rather weak near the CMT. Analysis of both S(q) and Z(q) also clearly shows that the

strength of correlations among micelle positions increases more rapidly with increasing χN

in systems of greater N . Observation of this secondary feature in S(q) thus indicates the

existence of a correlated liquid of micelles, but is not a sufficiently sensitive indicator to be

used to identify the CMT.

Our analysis of the primary peak in the structure factor (Fig. 4), the derivative of the
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free energy with χN [37], the fraction of free chains (Fig. 7), and the most probable micelle

aggregation numer (Fig. 8) show that predictions from SCFT for ordered BCC structures

provides remarkably good estimates for these properties in the disordered micellar liquid.

These results support prior work [29, 30, 32] comparing SCFT predictions to simulations of

disordered diblock copolymer melts. Unfortunately, we were unable to determine definitively

how much the true ODT in our simulations deviates from the SCFT prediction; initially

ordered systems spontaneously melt at sufficiently low χN , but initially ordered systems

fail to crystallize in our simulations. The lower bounds on (χN)odt obtained here [37] are,

however, enough to show that the difference (χN)odt − (χN)scf
odt between values of χN at

the actual and SCFT predictions for the order-disorder transition is substantially greater

than the difference between the value at the CMT and the predicted SCFT transition.

If we tentatively treat these lower bounds as the best available estimates of (χN)odt, the

results suggest that (χN)odt increases rather rapidly with decreasing N in the experimentally

relevant range of values.

The cluster analysis presented here shows the existence of a small but easily measurable

population of micelle dimers at conditions near the order-disorder transition. Evidence of

dimers was found in both ordered and disordered phases, but the analysis and evidence

are particularly clear in the ordered phase. Analysis of dynamics in the ordered phase,

discussed in the Supplemental Material [37], showed frequent formation and rapid destruc-

tion of bridges between the core blocks of nearest-neighbor micelles. The presence of these

short-lived dimers is not expected to affect most experimentally accessible properties, but

drew our attention in part because we found that it complicates attempts to use our clus-

ter analysis to characterize dynamics in these systems by identifying elementary dynamical

processes such as unimer insertion and expulsion and micelle fission or fusion. We anticipate

that the dynamics of the disordered micelle liquid will be a fruitful avenue for future work.
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I. OVERVIEW

This supplemental material discusses technical details of the design and analysis of the

molecular dynamics (MD) simulations presented in the associated article. All simulations

were constant temperature, constant pressure (NPT) simulations of simple bead-spring mod-

els that were used in previous work [1–4] on symmetric and modestly asymmetric diblock

copolymers. These simulations were performed with the Hoomd-blue simulation package

[5, 6], using Martyna-Tuckerman-Tobias-Klein barostat-thermostat to control temperature

and pressure [7, 8]. We use a timestep of 0.005 in natural simulation units, σ/
√
kBT/m,

where σ is the range of the non-bonded pair interaction and m is bead mass. Simulations

reported here were performed using models S1-64 (N = 960) and S2-64 (N = 3820), for

chains containing a minority block of 8 beads and a majority block of 56 beads. Each model
∗ dorfman@umn.edu
† morse012@umn.edu
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was simulated over a range of value of a control parameter α = (εAB− εAA)/kBT , with fixed

values for all other parameters, as discussed in the main text. The calibration of the rela-

tionship between α and χ determined for each model in previous work was used to estimate

values of χN for each simulation.

II. SIMULATION SYSTEM SIZES

The number of molecules used for each simulation, denoted by M , was generally chosen

so as to yield a simulation cell with average dimensions that are at least approximately

commensurate with the preferred unit cell of a hypothetical body-centered-cubic unit (BCC)

crystal phase. All simulations were performed using an L×L×L cubic simulation unit cell

in which L fluctuates slightly under control of a barostat. Most simulations were designed to

accomodate a 3×3×3 array of cubic unit unit cells (54 micelles), though a smaller number of

simulations were designed to accomodate a 2×2×2 array (16 micelles). For each simulation

a value for M was computed by taking M = cL3/N , where L is the intended simulation cell

size, N = 64 is the number of monomers per chain, and c is nominal monomer density for

infinite homopolymers in the model of interest (i.e., c = 3σ−3 for model S1 and c = 1.5σ−3

for model S2), and rounding M to the nearest integer.

In most cases, values of L were chosen such that the wavenumber associated with the

primary Bragg scattering peak of the intended BCC crystal arrangement would be equal

to an estimate or measurement of the wavenumber q∗ at which S(q) is maximum in the

disordered phase. Somewhat different procedures for estimating q∗ were used for simulations

that were designed primarily to study properties of the disordered phase than for simulations

that were designed to study spontaneous melting and crystallization, with greater care taken

for simulations that were designed to study spontaneous melting and crystallization.

A. Disordered phase

All simulations that were used primarily to study properties of the disordered phase were

designed to accomodate a 3× 3× 3 array of BCC unit cells, giving a crystal of 54 micelles.

In all simulations of either model for which χN < (χN)scfodt, a value of L was chosen such

that the primary peak of the ordered phase would be commensurate with a peak wavenumber
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q∗ predicted from the Random Phase Approximation (RPA).

For simulations of model S1-64 for which χN > (χN)scfodt, simulations of systems with

increasing values of χN were performed sequentially, using the results of previous simulations

to estimate an extrapolated value of q∗ for each new, higher value. For (χN)scfodt < χN ≤ 68.5,

measured values of q∗ from each simulation were used to predict the next higher value, which

was used to choose a value of M for the simulation. The measured values of q∗ for the

disordered phase at χN ≤ 68.5 were then extrapolated to predict values of q∗ and choose

corresponding values of M for the three highest values of χN = 73.4, 78.3, and 83.2.

Two different strategies were used to choose value of M for simulations of model S2-

64 in systems with (χN) > (χN)scfodt. For simulations with χN = 37.2, 39.6, and 41.9

the simulation box length L was chosen to be three times the SCFT prediction of the

corresponding BCC unit cell. For χN = 46.5, 50.9, and χN = 55.2, M was chosen using

estimated values of q∗ obtained by extrapolating from values of q∗ measured at lower values

of χN .

Table S1 lists values of α, χN , M and other parameters for simulations of the disordered

phases of models S1-64 and model S2-64, respectively.

A variety of strategies were used to choose values of M in simulations of the disordered

phase, in part, because we were simultaneously gathering initial data and refining our pro-

cedures for choosing M over the course of this research. Comparisons of a few pairs of

simulations of model S2-64 that were performed with equal values of α but different values

of M showed that results for S(q) and other properties of the disordered phase in a 3×3×3

system were quite insensitive to changes in the choice of value for M , particularly at values

of χN less than or slightly greater than (χN)scfodt. This observation motivated our decision

use the simple RPA prediction for q∗ in systems with χN < (χN)scfodt for both models and

to not rerun early simulations of model S2-64 that were designed using SCFT predictions

to estimate q∗, which we considered less accurate than methods based on extrapolation of

measured values of q∗. Any dependence of results for properties of the disordered phase on

slight changes in M would in any case indicate the presence of a finite size artifact. The

free energy of the ordered phase is, however, quite sensitive to the choice of a value for M ,

since M controls the unit cell size in a nearly incompressible liquid.
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TABLE S1: Simulation parameters for disordered phase simulations where M is the

number of chains having a length N = 64, Nstep is the length of the simulation (in

timesteps) after initial equilibration. The table shows parameters used for both a) model

S1-64 and b) model S2-64. Horizontal lines separate the simulations according to the

strategy used to choose a value for M . The first group in model S1-64 is designed to be

commensurate with the RPA prediction of q∗. The second group are simulations that were

performed sequentially in order of increasing α, using results from each simulation to

extrapolate a value of q∗ for the next value of α. The third group are simulations that were

designed using extrapolations of q∗ from measurements at α ≤ 3.75. For model S2-64, the

first group corresponds to the simulations designed to be commensurate with the RPA

prediction of q∗. The second group utilizes SCFT for designing the simulation box. The

third group utilizes extrapolated values of q∗ from lower χN .

(a) Model S1-64

α χN M NM Nstep × 10−6

0 0 3403 217792 66

0.5 8.0 3403 217792 66

1 16.7 3403 217792 66

1.5 25.7 3403 217792 66

1.75 30.3 3403 217792 66

2.0 35.0 3403 217792 66

2.25 39.7 4091 261824 51

2.5 44.5 4624 295936 51

2.75 49.2 4805 307520 51

3 54.0 5086 325504 215

3.25 58.8 5373 343872 220

3.5 63.7 5673 363072 175

3.75 68.5 6037 386368 115

4.0 73.4 6372 407808 95

4.25 78.3 6672 427008 95

4.5 83.2 6966 445824 125

5 93 7529 481856 90

(b) Model S2-64

α χN M NM Nstep × 10−6

0 0 6803 435392 30

1.5 8.6 6803 435392 27

3.5 19.5 6803 435392 27

4.5 24.8 6803 435392 27

5.5 29.6 6803 435392 27

6 32.4 6803 435392 57

6.5 34.8 6803 435392 57

7 37.2 10149 649536 87

7.5 39.6 9194 588416 87

8 41.9 9081 581184 87

9 46.5 8879 568256 313

10 50.9 9384 600576 117

11 55.2 10306 659584 120
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B. Spontaneous melting and crystallization

For all simulations that were designed to study spontaneous crystallization and melting,

the box size was designed to yield a primary Bragg scattering peak commensurate with a

value of q∗ in the disordered phase at the same value of α. Simulations of both models were

carried using values of M that were chosen to accomodate either a 3× 3× 3 or a 2× 2× 2

array of BCC cubic unit cells. For most such simulations, the estimate of q∗ required to

compute M was obtained from a previous simulation performed at the same value of α

that was used to measure properties of the disordered phase, for which the value of M had

been chosen using one of the more approximate strategies described above. The resulting

measurement of q∗ at each value of α was then used to compute a refined estimate of M for

a commensurate system, which was then used to design separate simulations that were used

only to study crystallization and melting. The only exception to this are the simulations at

α = 8.5 for Model S2-64, for which the box size was calculated by interpolating the value

of q∗ from the value at α = 8 and 9. Table S2 lists the parameters used in these studies of

crystallization and melting.

6



TABLE S2: Parameters for simulations used to study spontaneous melting and

crystallization, where M is the number of chains of N = 64 beads. Subtables show data for

models (a) S1-64 and (b) S2-64. Horizontal lines separate 2× 2× 2 and 3× 3× 3 systems.

In the last column, I n−→ F indicates a simulation of n million MD steps with initial state I

and final state F , with state values to C for crystal and D for disordered.

(a) Model S1-64

α χN BCC cells M simulation

2.75 49.2 2× 2× 2 1434 C 80−→ D, D 80−→ D

3 54 2× 2× 2 1521 C 120−−→ D, D 120−−→ D

3.25 58.8 2× 2× 2 1624 C 120−−→ C, D 120−−→ C

3.25 58.8 3× 3× 3 5373 C 60−→ D

3.5 63.7 3× 3× 3 5542 C 55−→ D

3.75 68.5 3× 3× 3 6025 C 90−→ C, D 110−−→ D

4 73.4 3× 3× 3 6372 C 90−→ C

(b) Model S2-64

α χN BCC cells M simulation

7.5 39.6 2× 2× 2 2513 C 100−−→ D, D 100−−→ D

8 41.9 2× 2× 2 2553 C 100−−→ D, D 100−−→ D

8.5 44.2 2× 2× 2 2609 C 200−−→ C, D 100−−→ C

9 46.5 2× 2× 2 2665 C 100−−→ C, D 350−−→ C

10 50.9 2× 2× 2 2781 C 100−−→ C, D 100−−→ C

7.5 39.6 3× 3× 3 8481 C 40−→ D, D 40−→ D

8 41.9 3× 3× 3 8615 C 40−→ D, D 80−→ D

8.5 44.2 3× 3× 3 8805 C 80−→ D, D 80−→ D

9 46.5 3× 3× 3 8995 C 80−→ C, D 80−→ D

10 50.9 3× 3× 3 9384 C 120−−→ C

11 55.2 3× 3× 3 10306 C 120−−→ C
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III. STRUCTURE FACTOR

The structure factor S(q) evaluated at a wavevector q is defined as

S(q) =

〈
1

V
|ψ̃(q)|2

〉
, (S1)

in our simulation, where V is total system volume, ψ̃(q) =
∫
dr ψ(r)eiq·r is a Fourier am-

plitude of a composition field ψ(r) = [cA(r) − cB(r)]/2, and ci(r) is the concentration of i

monomers. The Fourier amplitude ψ̃ may also be written more concretely in terms of bead

positions as a sum

ψ̃(q) =
1

2

∑
j

εje
iq·Rj (S2)

where j is a bead index, Rj is the position of bead j, the sum is taken over all beads of

all chains in the system, and εj is a coefficient that is equal to +1 for beads of type A and

equal to −1 for beads of type B. The values of S(q) shown in the main text are averages

over time and over all members of a family of wavevectors of equal magnitude q = |q| that

are related by cubic symmetries.

A hierarchial block averaging analysis [9] is used to find the average S(q) for different

values of q. An instantenous S(q) averaged over the wavevectors within the same family

(wavevectors related by cubic symmetry) is first calculated every 1000 timesteps. The whole

sequence is then divided into blocks consisting of 2n contiguous measurements for blocking

level n, for n = 0, 1, 2, . . .. A block average value of S(q) is then calculated for each block.

Using these block average values, a standard error is calculated by treating the block averages

as if they were statistically uncorrelated. For small n, neighboring values within the sequence

of block averages may be strongly correlated. However, given a long enough sequence,

consistent error estimates will be obtained for sufficiently large n as block averages for larger

blocks become uncorrelated. The existence of a “plateau” in error estimates obtained from

different block lengths, in which different values of n yield consistent values, indicates that

the sequence is long enough to yield ergodic sampling, and yields an estimated statistical

error on S(q) that is given by the plateau value.

Simulations lengths used here were chosen so as to obtain ergodic sampling of the primary

peak since the Fourier amplitude associated with this peak has been found to relax most

slowly. Lack of ergodic sampling can also be diagnosed by the existence of time averages
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of S(q) for different wavevectors within the family of symmetry-related wavevectors that

correspond to the peak in S(q) that differ by more than apparent statistical errors.

Estimated values of the peak intensity S(q∗) and peak wavenumber q∗ have been extracted

from a fit of an RPA function form to the peak in the averaged S(q), as described in the

main text. Table S3 shows the resulting values S(q∗) and q∗ obtained at different χN for

simulations using model S1-64. The corresponding table for model S2-64 can be found in the

supplementary material of Ref. [10]. An estimate of the error on S(q∗) is calculated using

the root mean squared deviation of S(q) from the fit for values of q within 10% of q∗.

α χN S(q∗)/cN q∗Rg0

0 0 0.010 ± 0.000005 2.355

0.5 8.0 0.013 ± 0.00001 2.329

1 16.7 0.016 ± 0.00002 2.293

1.5 25.7 0.023 ± 0.000001 2.257

1.75 30.3 0.029 ± 0.00003 2.226

2 35.0 0.040 ± 0.00007 2.196

2.25 39.7 0.065 ± 0.0003 2.128

2.5 44.4 0.125 ± 0.001 2.075

2.75 49.2 0.255 ± 0.0003 2.019

3 54.0 0.460 ± 0.0002 1.980

3.25 58.8 0.733 ± 0.007 1.937

3.5 63.7 1.071 ± 0.008 1.930

3.75 68.5 1.349 ± 0.042 1.877

TABLE S3: Nondimensionalized peak intensity S(q∗)/cN and peak wavenumber qRg0 at

different values of α or χN for model S1-64 (N = 960).
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IV. PHASE TRANSITIONS AND THERMODYNAMICS

A. Order-Disorder Transition Temperature

We have also performed simulations to identify conditions under which an initially dis-

ordered melt will spontaneously crystallize or an initially ordered crystal will spontaneously

melt in systems that are designed so that the periodic simulation unit cell is, as nearly as

possible, commensurate with the preferred crystallographic unit cell. Such simulations were

performed for both values of N using systems in which the number of molecules was chosen

so as to accomodate either 27 cubic BCC unit cells and 54 micelles in a 3×3×3 arrangement

or 8 cubic unit cells and 16 micelles in a 2× 2× 2 arrangement.

For each such simulation, the number of molecules was chosen so that a crystal with

the desired configuration yields a primary BCC Bragg scattering peak with a wavevnumber

equal to the peak wavenumber q∗ found in a simulation of the disordered phase at the same

value of α. At each selected value of α or χN , we performed either a simulation that was

initialized in a disordered phase or a simulation initialized in an ordered BCC lattice, or

both. Crystalline initial states were generated by performing short preliminary simulations

using a modified potential energy that includes an external field that attracts minority block

monomer to regions near the expected positions of the micelle cores [10]. The final state

of each such preliminary simulation is then used as the initial state of longer simulation

performed without any external field.

We first discuss simulations for N = 960. Simulations of systems designed to accommo-

date a 2× 2× 2 array of unit cells exhibited spontaneous melting of an artificially ordered

BCC initial state at χN ≤ 54.0 (α ≤ 3.0) and spontaneous crystallization of a BCC phase

from a disordered initial state at χN ≥ 58.8 (α ≥ 3.25). The equilibrium crystallization

temperature for this very small system presumably lies between these bounds. Simulations

of initially ordered states with a 3× 3× 3 arrangement of unit cells exhibited spontaneous

melting at χN ≤ 63.7 (α ≤ 3.5). Simulations of initially disordered 3 × 3 × 3 systems did

not crystallize at any value of χN studied here. Moreover, we were able to obtain appar-

ently ergodic sampling of the disordered phase of 3× 3× 3 systems for this model only for

χN ≤ 68.5 (α ≤ 3.75).

Results of simulations of systems with N = 3820 have been reported previously [10] and
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are reviewed here. Simulations of 2×2×2 crystals were found to exhibit spontaneous melting

of a crystal initial state for χN ≤ 41.9 (α ≤ 8) and exhibited spontaneous crystallization of

an initially disordered state for χN ≥ 44.2 (α ≥ 8.5). Simulations of 3×3×3 systems exhibit

spontaneous melting for χN ≤ 44.2 (α ≤ 8.5) but did not exhibit spontaneous crystallization

for any conditions that we studied. Note that we have now run simulations at χN = 44.2

(α = 8.5) that allows us to report better lower bounds on the ODT as reported in our

previous work [10]. For this model, we were able to obtain apparently ergodic sampling of

the disordered phase only for χN ≤ 46.5 (α ≤ 9) [10].

Comparison of results for the 2 × 2 × 2 and 3 × 3 × 3 systems for N = 960 indicates

the existence of a substantial effect of finite system size on the location of the equilibrium

transition, in which finite size effects appear to favor the formation of an ordered phase. Note

that the lower bound of (χN)odt > 63.7 found for the 3× 3× 3 system is outside the range

54.0 < (χN)odt < 58.8 obtained from simulations of 2 × 2 × 2 systems. This suggests that

2× 2× 2 systems are simply too small to be used for quantitative studies of crystallization.

We assume (but cannot prove) that the importance of finite size effects decreases rapidly

with further increases in system size, and the value of χN at the equilibrium transition for

a 3× 3× 3 system lies much closer to that of an infinite system.

In light of the fact that we observe spontaneous melting but not spontaneous crystal-

lization in 3 × 3 × 3 systems for both models, we believe that the lower bound provided

by spontaneous melting of initially ordered 3 × 3 × 3 systems provides the best estimate

of the equilibrium value of (χN)odt available from these simulations. This estimate yields

(χN)odt ' 63.7 for N = 960 and (χN)odt ' 44.2 for N = 3820, which may be compared

to the SCFT prediction (χN)scfodt = 36.6. If we assume that the CMT lies proximate to the

(χN)scfodt [10, 11], then these results clearly demonstrate the existence of a disordered micellar

state over a wide range of values of χN for the lower value of N = 960, and suggest that

(χN)odt increases rather rapidly with decreasing N for sphere-forming systems.

B. Free Energy

Earlier simulation studies [1, 2, 4] of more symmetric diblock copolymers have character-

ized thermodynamics by considering the dimensionless free energy per chain g = G/(MkBT )

and its derivative g′ ≡ ∂g/∂(χN), in which G is total Gibbs free energy of a system of M
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polymers. Both g′ and g can be computed from simulation data using a theorem that relates

the derivative ∂g/∂α to the A-B pair energy in an NPT simulation [1, 2]. The derivative g′

is a universal function of χN and N that is also proportional to the AB pair energy, and thus

provides a dimensionless measure of the amount of contact between A and B monomers. For

reference, SCFT predicts that g′ = f(1 − f) in a disordered phase of a diblock copolymer

with minority block fraction f .

Figure S1 shows the variation in g′ with χN as well as SCFT predictions of g′ both for

the FCC phase and BCC phases for χN > (χN)scfodt. A striking feature in this plot is the

close agreement between (i) measured values of g′ in both the disordered phase near the

ODT and the ordered phase and (ii) SCFT predictions for the ordered phase at the same

value of χN . These observations are consistent with conclusions of previous simulation

studies [1, 2, 4] of symmetric and more modestly asymmetric diblock copolymers, which

have generally shown that predictions of SCFT for an ordered phase at χN > (χN)scfodt

provides reasonable predictions for thermodynamic properties of both ordered phases and

disordered but strongly-segregated phases.

C. Latent Heat

The difference between the values of g′ in coexisting disordered and ordered phases can be

related to the heat of transition. Let ∆h = ∆H/(MkT ) denote the non-dimensional heat of

transition per molecule, where ∆H is the difference between the enthalpies of the disordered

and ordered phases of a system ofM molecules. Let ∆g′ denote the corresponding difference

between values of g′ in the ordered and disordered phases. It has been shown [12] that these

quantities are related by a simple proportionality

∆h = A∆g′ , (S3)

in which A = ∂χ/∂(1/T ).

One useful way to characterize latent heat is to report either ∆h or ∆g′ as a percentage of

the value of h or g′ in the disordered phase at a transition. Prior work [1, 2] on simulations

of the lamellar-disorder transition of symmetric diblock copolymers, for which (χN)odt was

determined very accurately, showed that these systems exhibit a 6-7 % change in h or g′ at

the transition, over a relatively wide range of values of N . For sphere-forming systems of
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FIG. S1: Free energy derivative g′ = ∂g/∂(χN) vs χN . Open symbols show results

obtained in the disordered phase and closed symbols are results obtained in an ordered

phase that remains stable (i.e., does not spontaneously melt). The horizontal solid line

plotted for χ < (χN)scfodt gives the SCFT prediction of g′ = f(1− f) = 7/64 for the

randomly mixed disordered phase. The dashed line and the dotted lines are SCFT

predictions of the FCC and the BCC phase respectively. The difference between the latter

two curves is so small that the curves are essentially indistinguishable. On increasing χN

from the disordered phase, g′ jumps from 7/64 to the SCFT prediction of the crystal phase

at the (χN)scfodt.

interest here, we do not know the exact value of (χN)odt. We can, however, compute the

difference between value of g′ in the ordered and disordered phases at a value of χN at or

near the lowest value for which the BCC ordered remained stable in simulations designed

to study spontaneous melting. For N = 960 we find a fractional difference of 1.14% at

χN = 68.5 and a difference of 0.58% at χN = 73.4. For N = 3820 we obtain a fractional

difference of 0.93% at χN = 46.5 and 0.91% at χN = 50.9.

There are significant uncertainties in our estimates of ∆h in sphere-forming systems, both

because of the sensitivity of the results to small changes in the unit cell parameters (which

may not be exactly optimal in our simulations) and because of uncertainty in the value of

(χN)odt for these systems. The available results suggest, however, that the order-disorder

transition of sphere-forming diblock copolymers is associated with a much smaller fractional

change in enthalpy than that found for symmetric diblock copolymers. This qualitative
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observation is consistent with experimental observations of much smaller latent heats for

sphere-forming diblock copolymers than for nearly symmetric copolymers [13]. The change

in enthalpy upon crystallization of a a system of spherical micelles is very closely related to a

corresponding change in the area of contact A and B monomers along interfaces surrounding

the micelle cores. The observation of a small latent heat is consistent with a picture of the

order-disorder transition as a crystallization transition that is accompanied by very little

change in the distribution of sphere aggregation numbers, and thus very little change in the

amount of AB contact area per unit volume.
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V. DYNAMICS OF INTER-MICELLE BRIDGES

This section discusses the analysis of the dynamics of the creation and destruction of

transient bridges that form between nearest neighbor micelles within the ordered phase.

The first subsection discusses a mathematical model that relates rate constants for bridge

creation and destruction to the autocorrelation function for the number of bridges between

nearest-neighbor micelles in a simulation of a micelle crystal. The second subsection presents

results in which this model has been used to analyze our data.

A. Mathematical model

Consider a BCC crystal consisting of Nm micelles andNb possible bridges forming between

nearest neighbors. Because each micelle in a BCC crystal has 8 nearest neighobrs, and each

nearest neighbor bond is shared by two micelles, Nb = 4Nm, where Nm = 54 for a simulation

cell holding 3× 3× 3 BCC cubic unit cells.

Suppose that we label each of the Nb nearest neighbor bonds in the system by a unique

integer index index i = 1, . . . , Nb. We also assign each such bond a stochastic Boolean

variable mi(t) such that mi(t) = 1 if a bridge exists along bond i at time t and mi(t) = 0 if

no such bridge exists. Let M(t) denote the total number of active bridges at time t, which

is given by a sum

M(t) =

Nb∑
i=1

mi(t) . (S4)

We assume in what follows that values of mi(t) for different bonds are statistically indepen-

dent, and therefore

〈δM(t)δM(0)〉 = Nb〈δm(t)δm(0)〉 , (S5)

where δM(t) ≡ M(t) − 〈M〉, δm(t) = m(t) − 〈m〉, and 〈δm(t)δm(0)〉 is an autocorrelation

function for the Boolean variable associated with any one of the Nb identical bonds. Our

goal is to relate the behavior of 〈M(t)M(0)〉 to the characteristic rates for creation and

destruction of bridges.

The quantity m(t)m(0) is 1 for systems in which m(0) = m(t) = 1 and zero otherwise.

The average of this quantity may thus be expressed as a product

〈m(t)m(0)〉 = G1(t)〈m〉 (S6)
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in which 〈m〉 is the equilibrium probability of finding m = 1 at time t = 0, which is also

equal to the fraction of active bridges, and G1(t) is the conditional probability that a bridge

for which m = 1 at t = 0 also has m = 1 at a later time t. The corresponding value of

〈δm(t)δm(0)〉 = 〈m(t)m(0)〉 − 〈m〉2 (S7)

is thus

〈δm(t)δm(0)〉 = 〈m〉[G1(t)− 〈m〉] . (S8)

Note that we expect G1(t)→ 〈m〉 as t→∞, giving 〈δm(t)δm(0)〉 → 0 in this limit.

Consider an ensemble of bridges in which the probability of a randomly chosen bridge

being in state n at time t is given by Pn(t), for n = 0 and n = 1. These probabilities obey

the system of differential equations

dP0(t)

dt
= −cP0 + dP1

dP1(t)

dt
= +cP0 − dP1 ,

in which c and d are rate constants for bridge creation and destruction, respectively. Let

values P (eq)
n with n = 0 and n = 1 denote corresponding equilibrium probabilities, toward

which the above time dependent probabilities evolve as t → ∞. Combining the detailed

balance condition cP (eq)
0 = dP

(eq)
1 with the normalization condition P (eq)

0 + P
(eq)
1 = 1 yields

an equilibrium bridge probability

〈m〉 = P
(eq)
1 =

c

d+ c
. (S9)

and P (eq)
0 = 1− P (eq)

1 = d/(d+ c).

The above system of ODEs for Pn(t) can be formulated as a matrix problem

P(t) = RP(t) (S10)

in which P(t) is a column vector P(t) = [P0(t) P1(t)]
T and where R is a matrix

R =

 −c d

c −d

 . (S11)

The eigenvalues of R are λ = 0,−c − d and the general solution to the system of ODE’s

with a normalized initial condition is P0(t)

P1(t)

 =
1

c+ d

 d
c

+
B

c+ d

 1

−1

 e−(c+d)t , (S12)
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where the two column vectors on the right-hand side are eigenvectors of R, and where B is

an arbitrary parameter that must be chosen to satisfy initial conditions.

Let Gn(t) denote the conditional probabilities of finding a bond that was in a known state

m = 1 at t = 0 having a value m(t) = n at time t, for n = 0 and n = 1. This conditional

probability is the solution to the above system of ODEs with initial conditions G0 = 0 and

G1(0) = 1 This initial condition is satisfied by setting B = −d, giving

G1(t) =
1

c+ d

[
c+ de−(c+d)t

]
. (S13)

Note that G1 = 1 at t = 0 as required by the initial condition, and G1 → c/(c + d) = 〈m〉

as t→∞.

Combining results for G1(t) and 〈m〉 then gives

〈δm(t)δm(0)〉 =
cd

(c+ d)2
e−(c+d)t (S14)

or, equivalently,

〈M(t)M(0)〉 = Nb
cd

(c+ d)2
e−(c+d)t . (S15)

Let F (t) denote a reduced autocorrelation function

F (t) ≡ 〈δM(t)δM(0)〉
〈δM(0)δM(0)〉

. (S16)

This model predicts

F (t) = e−(c+d)t = e−t/τ , (S17)

where τ = 1/(c+ d) is the bridge lifetime.

The autocorrelation function δM(t)δM(0)〉 can be computed by first finding the number

of bridges at time t by identifying the cluster multiplets using the 2D histogram analysis.

In the total number of bridges forming in the simulation, every micelle dimer contributes 1

bridge and a trimer contributes 2 bridges. Similarly, we can find the contribution of higher

order cluster multiplets. Using the resulting values of M(t) at different t, we can compute

〈M(t)M(0)〉 and F (t). The above model predicts that F (t) should decay exponentially with

a decay time equal to the bridge lifetime τ .

B. Results

The first step in our analysis of bridge lifetime is to compute the number M(t) of bridges

at the system for a sequence of trajectory snapshots that are evenly spaced in time. We

17



40 50 60 70 80 90
0

0.5

1

1.5

2

FIG. S2: Percentage of active bridges (i.e., percent of nearest-neighbor bonds along which

there exists a bridge) vs. χN for crystal phases of both models.

sample the trajectory every 1000 steps, apply a cluster analysis to each such snapshot to

identify the number of micelle, unimers, dimers, trimers, etc. To compute M(t), we assume

that the number of bridges in each multimer is one less than the number of micelles, giving

one bridge per dimer, two per trimer, etc. Because we assume that bridges can only be

formed between the nearest neighbors, and we know the number of nearest neighbor bonds,

we can compute the percentage of nearest-neighbor bonds along which bridges exist. This

fraction is shown in Figure S2 for crystalline states of models with N = 960 and 3820.

Given a sequence of values of M sampled at regular intervals, it is straightforward to

compute values of F (t) at values of t corresponding to integer multiples of the sampling

interval. Figures S3 and S4 show the behavior of F (t) on time t for N = 960 and 3820 at

several values of χN . Figure S3 shows the behavior of F (t) at early times that differ by our

sampling interval of 1000 time steps. Note that the value F (t) at the first nonzero sampled

time, corresponding to 1000 time steps, is substantially less than 1. This implies that a

substantial fraction of the bridges that are present in a given snapshot have been destroyed

before the next sampled snapshot. The fraction of very short-lived bridges that survive less

than 1000 time steps is signficantly greater for N = 3280 than for N = 960. Figure S4

shows the behavior F (t) for both models for much longer times. Results for F (t) at t > 0,

excluding the initial value F (0) = 1, have been fit to a double exponential function

F (t) = K1e
−t/τ1 +K2e

−t/τ2 , (S18)
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FIG. S3: Time dependence of F (t) at early times in micelle crystals at several values of

χN . Values of F (t) are shown at integer multiples of the sampling interval of 1,000 time

steps. Dashed lines show fits of data for t > 0 to Eq. (S18).

where K1 and K2 are dimensionless coefficients and τ1 and τ2 are decay times, with τ1 < τ2.

Results of this fit are shown as dashed lines in Figure S4. The shorter decay time τ1 in these

fits is of order 104 time steps while the longer time τ2 is several times 105 time steps. Thus,

while many bridges are very short-lived, it appears that there exists a subset of bridges with

much longer lifetimes.

To construct Fig. 18 of the main manuscript, we have arbitrarily classified each micelle

dimer as “long-lived” if it is found to exist along a given bond for two or more consecutive

samples, which are separated by a sampling interval of 1000 time steps, and as “short-lived”

if a dimer was found along a specific bond only in one sample, and not in preceding or

subsequent samples. Figure 18 shows effective cross-sectional radii as functions of distance

z along the long axis for the resulting sets of short-lived and long-lived dimers.
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