PM-RTREE: A Highly-Efficient Crash-Consistent R-tree for
Persistent Memory

Brandon Lavinsky
School of Engineering and Computer Science
Washington State University
Vancouver, WA, USA
brandon.lavinsky@wsu.edu

ABSTRACT

Persistent R-trees are important data structures for indexing large-
scale spatial datasets using persistent memory (e.g., Intel Optane
DIMMs). Existing persistent R-trees (e.g., FBR-tree) suffer from four
major issues. (1) Node updates cause unnecessary writes to per-
sistent memory, leading to high latency. (2) The locking overhead
is high under high thread concurrency. (3) They support a limited
number of maximum bounding rectangles on each node. (4) The
persistent overhead of managing its bitmaps in persistent memory
is high for repeatedly cache line reflushing.

In this paper, we propose a novel data structure Persistent Merged
R-tree (PM-RTREE) for high-efficient insert, delete, and search oper-
ations for high-dimensional datasets using persistent memory. It
is a partitioned data structure where its non-leaf nodes are stored
in DRAM and leaf nodes are stored in persistent memory. In ad-
dition, we use an interleaved mapping approach. This approach
maps contiguous data blocks in persistent memory to interleaved
bits in bitmap groups in different cache lines to reduce cache line
reflushes. Finally, PM-RTREE supports lock-free insertion using
persistent multi-word compare and swap operations to eliminate
locking overhead. Our experimental results show that PM-RTREE
reduces the latency of insertion by up to 77.6% and 80% for the
uniform and zipfian datasets respectively compared to the state-of-
the-art persistent R-trees while maintaining crash consistency. It
reduces the search time by 19.2% compared to FBR-tree. It achieves
better scalability for both insertion and search up to 32 threads.

CCS CONCEPTS

« Computer systems organization — Processors and mem-
ory architectures; - Information systems — Data structures.

KEYWORDS

R-tree, Persistent Memory, Lock-free

ACM Reference Format:

Brandon Lavinsky and Xuechen Zhang. 2022. PM-RTREE: A Highly-Efficient
Crash-Consistent R-tree for Persistent Memory. In 34th International Con-
ference on Scientific and Statistical Database Management (SSDBM 2022),

This work is licensed under a Creative Commons Attribution International
4.0 License.

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9667-7/22/07.
https://doi.org/10.1145/3538712.3538713

Xuechen Zhang
School of Engineering and Computer Science
Washington State University
Vancouver, WA, USA
xuechen.zhang@wsu.edu

July 6-8, 2022, Copenhagen, Denmark. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3538712.3538713

1 INTRODUCTION

Spatial database systems have received considerable attention over
the years because of their many applications in geographical in-
formation systems [7], computer-aided design [27], and computer
vision [29]. A rectangle tree (R-Tree) is a popular data structure
used for indexing spatial data in spatial database systems. The ex-
isting volatile R-trees [2, 12] designed for indexing spatial data,
were proposed based on the assumption that computer memory is
DRAM. Because it has become increasingly difficult to scale DRAM
to higher density, we must seek more cost-effective solutions to
extend memory capacity. Emerging byte-addressable persistent
memory (PM) is widely adopted to build persistent in-memory
databases for its low latency, large capacity, and data persistence.
For example, the recently released Optane DC Persistent Memory
(abbreviated as “Optane PM” in the rest of the paper) is capable of
achieving comparable performance to DRAM [5].

Most of the existing R-tree data structures did not explore non-
volatility of PM. Recently, FBR-tree was proposed to store and
manage the spatial data in PM [6]. It can enforce crash consistency
upon failures by setting a limit on the size of its metadata structure
(e.g., bitmaps), so that failure-atomic instructions can be used in
its insert and delete operations. However, our research shows that
FBR-tree only achieves suboptimal performance for the following
reasons.

First, FBR-tree insert and delete operations may incur high la-
tency. PM write latency is 2.5X higher than that of DRAM [17,
28, 31]. The insert and delete operations of R-trees may need to
recursively update R-tree nodes. FBR-tree places the whole data
structures in PM, which may expose the long write latency to R-tree
operations and result in a significant loss of performance.

Second, FBR-tree uses mutex locks to support concurrent insert
and delete operations. However, our study shows that locking over-
head accounts for up to 54% and 33.4% of the execution time of
insert and delete operations, respectively, when thread concurrency
is high.

Third, managing FBR-tree is expensive because of its large height.
The size of the metadata structure in a node of FBR-tree is limited
to 8 B. Thus, it only supports 55 maximum bounding rectangles
(MBRs) per node. For large-scale datasets (e.g., PostalPoints [24]),
the height of the FBR-tree is 5. Therefore, managing the FBR-tree
requires updating 78.1% more nodes than R-trees supporting a large
number of MBRs (e.g., 247+) per node.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3538712.3538713
https://doi.org/10.1145/3538712.3538713

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

Last but not least, managing the bitmaps in FBR-tree may cause
cache line reflushes. A typical size of CPU cache line is 64 B [25].
The size of a bitmap is 8 B for the nodes of FBR-trees. When the
bitmap is updated repeatedly during insertion, the same cache line
should be flushed for persistence. The latency of cache line reflush
is 7.5X higher than the latency of writes [5]. As a result, updating
bitmaps of FBR-tree nodes causes degraded performance.

In the paper, we propose a new persistent R-Tree variant, named
PM-RTREE. Its design emphasizes on efficiently reducing the num-
ber of writes to PM, alleviating locking overhead, and eliminating
cache line reflushes. Specifically, first, PM-RTREE is a partitioned
data structure. Its non-leaf nodes are stored in DRAM while its
leaf nodes are stored in PM. Thus, PM-induced additional mem-
ory latencies can be effectively shielded. Second, PM-RTREE is a
lock-free data structure. We design a new insert operation using
the PMwCAS library [32] to support atomic updating of bitmaps
in the nodes of PM-RTREE. Third, we replace a single bitmap with
a bitmap group (named G-bitmap) on each node. Each bitmap in
G-bitmap is stored in a CPU cache line and its maximum size is 8
B. Thus, they can be updated using atomic CPU instructions for
data persistence. At any particular time point, only one bitmap
in G-bitmap can be updated by using the PMwCAS-based concur-
rency control mechanism. Using this design, PM-RTREE supports a
variable number of MBRs in each node for optimal performance.
Finally, PM-RTREE uses an interleaved memory mapping from data
blocks to their corresponding bits in bitmaps to avoid accessing the
same CPU cache line repeatedly.

We analyze the space and time cost of PM-RTREE. We compare
it with other state-of-the-art persistent R-trees on a real machine
equipped with Intel Optane 3D-XPoint persistent memory. Our
experimental results show that PM-RTREE outperforms FBR-tree
by 84.1% and 19.2% for insertion and search. It achieves 77.8% bet-
ter scalability than FBR-tree. In summary, we made the following
contributions.

e We conduct empirical study on the performance of persistent
R-tree indexes using Intel Optane PM. The results show
that they may cause a large number of writes and repeated
cache line reflushes in PM. Furthermore, mutex locking is a
performance bottleneck under high thread concurrency.

e We design a new persistent R-tree index PM-RTREE. (1) It
stores non-leaf nodes in DRAM to reduce PM writes. (2) It is
a lock-free data structure, which uses PMwCAS to support
atomic updating of bitmaps for insertion and deletion. (3)
It uses an interleaved memory mapping for node metadata
management to alleviate cache line reflushes.

e We implement a software prototype of PM-RTREE and eval-
uate it using real-world spatial datasets (e.g., FireStat and
Postal). Our experimental results show that PM-RTREE sig-
nificantly improves the insertion/deletion and search perfor-
mance compared to the state-of-the-art FBR-tree.

The rest of the paper is organized as follows. Section 2 explains
the performance issues of the existing persistent R-tree index. In
Section 3 we introduce related work. Section 4 describes how to
build PM-RTREE to minimize the number of writes to PM, provide

Brandon Lavinsky and Xuechen Zhang

lock-free thread management, and reduce cache line reflushes. Sec-
tion 5 describes and analyzes experimental results. And Section 6
concludes the paper.

2 BACKGROUND AND MOTIVATION
2.1 Persistent R-Tree Index

R-trees are designed to index multi-dimensional data sets [12]. Or-
dinarily, R-trees are ephemeral data structures in DRAM indexing
data stored on slow hard disks or flash disks. They have many
variants (e.g., R*-tree [2], PR-tree [1], and NIR-tree [16]). Each of
them uses its own approach to achieve node division/merging and
rebalance when a point is inserted or deleted. Each R-tree node can
contain at most M entries and with the exception of the root node,
which contains at least m entries (m > M). The entry of leaf nodes
contains a Minimum Bounding Rectangle (MBR) and a data object
(or its reference). The entry of non-leaf nodes contains an MBR
which fully contains all downward data objects and a pointer to
its child node. R-trees are height-balanced because all of their leaf
nodes have the same height O(log,,, n), where n is the total number
of objects.

Persistent R-tree index [6] supports the same basic functionality
as R-tree, which divides a 2D/3D space into a set of possibly over-
lapped rectangles. In FBR-tree, each node consists of both metadata
and data spaces. The data space consists of a set of MBRs and point-
ers to child nodes. In the metadata space, it uses bits to indicates
whether its corresponding MBR and its pointer in the node are
valid. We typically use a bitmap to manage these bits. When a bit
is 0, its corresponding MBR and pointer in the node is free and can
be allocated for serving insert operations.

A persistent R-tree needs to enforce crash-consistency so that
both data and metadata in PM can be used to rebuild a consistent
R-tree upon failure recovery. For example, FBR-tree implemented
failure-atomic insert and delete operations based on the observation
that a partially updated MBR does not affect the correctness of FBR-
tree after failure recovery. FBR-tree also atomically updates data
(e.g., node entries) and metadata (e.g., version numbers and bitmaps)
for in-place split without triggering the overhead of copy-on-write
or logging. In this paper, we have the same assumption as FBR-tree.
We address many performance issues discovered in our empirical
study without compromising invariants of the FBR-tree index.

2.2 Empirical Study on Optane PM

We conducted an in-depth performance review of existing persis-
tent R-trees (i.e., FBR-tree) and observed some interesting findings.
In our evaluation, each write operation is followed by clwb and
mfence instructions, ensuring that the written data has reached
Optane PM. We use a synthetic dataset which is comprised of 3 di-
mensional rectangles. The position value of rectangles are randomly
generated within a pre-defined space (details of the experimental
configuration are given in Section 5).

(1) The insert operations cause a large number of writes in PM. In
Figure 1, we measure the total number of PM writes as we increase
the number of insert operations from 50K to 1000K. We observe
that the number of PM writes is increased from 2122219 to 5074735.
Each insert operation causes 4.7 PM writes on average. This is

PM-RTREE: A Highly-Efficient Crash-Consistent R-tree for Persistent Memory

le6

of PM writes
N w
X

.
e

[d
EREW
LOL

1{"1"9

o | mmmm ..
50K 100K 500K 1000K
of insertions

Figure 1: The number of PM writes as we increase the num-
ber of insertions from 50K to 1000K.

120

mmm Reflush Flush
100

80

60

40

Percentage (%)

20

5K 50K 100K iM i0M 100M
of insertions

Figure 2: The ratio of the number of cache line reflush.

because FBR-tree limits the number of MBR-pointer entries to 55,
which triggers a large number of node-splitting writes to PM.

(2) The insert operations incur repeated cache line reflushes in
PM. Given a sequence of cache lines (1, 2, 3, 4, 1) that are flushed
consecutively, the reflush distance of cache line 1 is 3. In this paper,
we assume a cache line reflush occurs when its reflush distance is
no larger than 1. Otherwise, a regular flush occurs. To study the
number of cache line reflushes during insertion, we run FBR-tree
and increase the number of insert operations from 5K to 100M. The
ratio of reflush and flush operations are shown in Figure 2. When
the number of insertion is 5K, the ratio of reflush is 53.6%. It is
decreased to 16.2% as we have more insertions. This is because the
positions of MBRs are randomly generated. Having a larger number
of insertions reduces the possibility of repeatedly inserting KVs
to the same nodes. The results show that flush operations used in
implementing persistent R-trees may lead to poor performance of
insert and delete because the latency of cache line reflush can be
7.5X higher than the latency of writes [5].

(3) Mutex locking/unlocking is a performance bottleneck under
high thread concurrency. The existing persistent R-trees use mu-
tex locks for thread synchronization. We study the scalability of
FBR-tree in Figure 3(a). We execute 5M insertions with different
number of threads in the experiments. The execution time speedup
is decreased to 0.46 when the number of threads is 32. We observe
that performance bottleneck is caused by mutex locks. As shown in
Figure 3(b), the ratio of execution time spent on locking is increased
from 0.1% to 54% as the number of threads is increased from 2 to
32.

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

e B B B
® o N b
.
/
/
/
¥
/

Execution time speedup

o
o
y

of threads
(a)

120

Time of others

mmm Time of locking
100

80
60

40

Percentage (%)

20

2 4 6 8 16 32
of threads

(b)

Figure 3: (a) Execution time speedup of FBR-tree and (b) time
breakdown with mutex locks.

1.00 { «
i\
) \'\
£ N
= 0.95 “
S m
= N
o S
124 \\\
% 0.90 s
[NN
= S
= SS
© S
2 o0.85 el
i
50 250 500 750 1000 1250 1500 1750 2000

Node size

Figure 4: The Impact of the number of MBR-pointer pairs
per node on execution time.

(4) Performance of persistent R-trees is affected by its node size.
Persistent R-trees support a limited number of MBR-pointer entries
per node (called node size in the paper), affecting its height. For
failure atomicity, the node size of FBR-tree is 55. Here, we study the
impact of node size on its execution time using a regular persistent
R-tree. The relative execution time of 1M insertions is shown in
Figure 4. The execution time is decreased by 18.2% while the node
size is increased from 50 to 2000. The results show that the FBR-
tree achieves failure atomicity at the price of insertion performance
because of its increased tree height and the number of node splitting
and merging for insertion and deletion respectively.

In summary, although the existing persistent R-trees can en-
force crash consistency, they only achieve suboptimal performance
because they did not fully consider the unique characteristics of
PM.

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

Name Falll.tr'e Lock—free Lock-free Reduczlng Partitioned
atomicity insertion search reflushing
Flash
R-tree [33] No No No No No
Hybrid
Retree [11] No No No No Yes
FBR-tree [6] Yes No Yes No No
PM-RTREE Yes Yes Yes Yes Yes

Table 1: Comparison of PM-RTREE with existing persistent
R-trees.

3 RELATED WORK

To extend memory space using PM for in-memory database applica-
tions, a wide range of persistent data structures (e.g., R-tree, B-tree,
Octree, and graph) have been developed to address performance
and consistency issues caused by PM. The work closely related to
PM-RTREE is discussed below.

3.1 Persistent R-trees

Flash R-tree was designed to reduce write amplification in flash
storage [33] with Rtree-aware FTL mapping algorithm. Hybrid R-
tree was proposed to store R-trees in both flash and PM [11]. It
is a partitioned data structure in which high-frequently accessed
MBRs are stored in PM and the rest is stored in flash storage. FBR-
tree was the first R-tree solution that provides failure atomicity
and lock-free search for performance optimization. It limits the
number of MBR entries per node to 55 so that atomic instructions
can be used when flushing data to PM. Furthermore, it uses version
numbers for thread synchronization. Compared to FBR-tree, we
implement lock-free insertion using the PMwCAS library to further
reduce locking overhead. We use a partitioned data layout with
which non-leaf nodes are stored in DRAM so that the number of PM
writes is significantly reduced. We also use interleaved mapping
of bitmaps to reduce the number of cache line reflushes. Table 1
summarizes the unique characteristics of PM-RTREE compared to
the existing persistent R-trees.

3.2 Other Works in Context

Reducing locking overhead: Lock-free data structures have been
studied for PM. FBR-tree [6] uses version numbers to implement
lock-free search. It optimistically accesses each node of R-trees and
rolls back when a data inconsistency is detected later. Wang et al.
implemented doubly-linked skip list [26] and Bw-tree [18] using
PMwCAS for lock-free indexing in PM [32]. Although PMwCAS
has been used elsewhere, PM-RTREE is the first to apply it in the
implementation of persistent R-trees synergistically combing with
other optimizations.

Partitioned persistent data structures: Partitioned data struc-
tures have been well studied to optimize data layout of B-trees,
Octrees, and graphs. BPTree stores non-leaf nodes in DRAM and
leaf nodes in PM [14]. It has buffer nodes on top of leaf nodes for
batch insertion. DPTree consists of a buffer tree in DRAM and a
base tree in PM [34]. Writes are first served by the buffer tree and
then merged with the base tree to reduce write amplification in
PM. FlatStore can be used to implement partitioned B+-tree [5]. It
consists of volatile indexes in DRAM and compacted logs in PM.

Brandon Lavinsky and Xuechen Zhang

Volatile non-leaf
nodes

Persistent leaf
nodes

Figure 5: An illustration of PM-RTREE.

The latter is designed to serve small writes in batches. PM-Octree
and DPM-Octree were designed as persistent octrees to support
large-scale meshing [22, 23]. They are partitioned data structures
because their hot octants are stored in DRAM to reduce the number
of writes to PM. NVGraph also partitions a graph data structure
so that popular vertices and edges are stored in DRAM for better
scalability [19, 20]. Similar to these data structures, PM-RTREE has
a partitioned data layout to hide write latency of PM.

Reducing cache line reflushes: wB*-Tree uses a small bitmap
to reduce the number of PM writes for updating index entries,
thus reducing the number of cache line reflushes. FAST&FAIR uses
failure-atomic shift and failure-atomic in-place rebalance to reduce
the number of flushes [15]. The buffer tree of DPTree serves small
writes sequentially in write-ahead logs and merges them with the
base tree in batches to reduce flush operations [34]. LB* is designed
to pack metadata and data in one CPU cache line so that they can
be updated in one flush rather than two separated flushes [21].
FlatStore [5] uses a compacted log structure to reduce the number
of writes in PM. Most recently, NValloc [10] uses an interleaved
tcache layout to map contiguous memory blocks to interleaved
sub-tcaches in different cache lines. Thus, the issue of repeated
cache line reflushes can be alleviated. PM-RTREE uses an interleaved
mapping scheme in bitmaps to reduce the number of cache line
reflushes.

4 DESIGN OF PM-RTREE

This paper proposes PM-RTREE, a persistent R-tree with three key
design principles: minimizing the number of writes to PM, lock-free
thread management, and reducing cache line reflushes.

4.1 Overview

As shown in Figure 5, PM-RTREE is a hybrid data structure. Its non-
leaf nodes are stored in DRAM to hide PM-induced latency. Its leaf
nodes are stored in PM. We can rebuild all of the volatile non-leaf
nodes using persistent leaf nodes upon failure recovery. All leaf
nodes are connected by pointers for efficient failure recovery.

Node structure. The existing persistent R-trees limit the num-
ber of MBR entries in a node. For example, FBR-tree uses m fence
and clflush CPU instructions to atomically update metadata of
nodes. It can only support 55 entries for failure atomicity because
it needs to limit the size of metadata to 8 B. Our study shows that
for large-scale datasets this limitation can result in 11.9% and 32.1%
performance loss for insert and search operations respectively.

In this paper, we design a node structure to support a various
number of entries in a node. Figure 6 shows the node structure of
PM-RTREE. Its node consists of metadata and data areas. The data

PM-RTREE: A Highly-Efficient Crash-Consistent R-tree for Persistent Memory

Metadata Data (MBR-Pointer[N])

Map, | V| [Map, | V,||Map, | V,|
Map, | V,] [Map, | V5] [Maps | Vs

431

Y
G-Bitmap

Figure 6: Node structure with G-bitmap.

area stores an array of MBR-and-pointer pairs. The MBRs contain
all downward nodes and pointers pointing to its respective child
nodes in DRAM or PM. In the metadata area, T uses the last 1 bit
to indicate the node type (i.e., non-leaf or leaf nodes). F uses the
second to the last bit to indicate the fullness of the node. Besides, it
stores a bitmap group (named G-bitmap). The G-bitmap is a set of
map-and-version (MV) pairs. Map of an MV pair is a bitmap which
has 56 bits and indicates whether an entry (MBR-and-pointer pair)
is allocated (1: allocated; 0: free). Version(V) is a version number (8
bits) used to implement lock-free search. The size of each MV pair
is 8 B so that it can be atomically updated in persistent memory
using mfence and cflush. Each map can manage 56 entries.

The MV pairs are mapped to different cache lines. We use 2 cache
lines as an example for illustration in Figure 6. Because a typical
size of CPU cache line is 64 B [25], the size of its metadata area
is 128 B. In the example, the metadata area includes 6 MV pairs.
And its last two bits are used for type and fullness of the node. For
the 6 MV pairs, they are mapped to two cache lines. Specifically,
< Mapy,Vy >, < Mapy, Vs >, and < Mapy, Vs > are stored in the
first 64 B and mapped to cache line 0. < Map;, Vi >, < Maps, V3 >,
and < Maps, V5 > are stored in the second 64 B and mapped to
cache line 1. Entries in the data area are contiguously allocated
but mapped to interleaved MV pairs using the algorithm described
in Section 4.2 to reduce repeated cache line reflushes. The node
structure in Figure 6 can support up to 336 entries in the data area.

After updating an entry (MBR-and-pointer pair), we will change
its bit and write the incremented version number in its correspond-
ing MV pair together followed by mfence and c flush. We use its
sequence number to index each MV pair. During insertion, the bits
in an MV pair are contiguously allocated.

Proof of correctness: For correctness, all the search operations
for non-empty entries should scan the bitmaps from the left-most
MV pairs. To obtain the latest version number, if there are empty
entries in the node, the MV pair having least number of 0s and
largest sequence number has the latest version number. If a node
is full, its latest version number is stored in the MV pair who has
the largest sequence number. Neither delete or search operations
update version number (explained in FBR-tree).

For each insertion, we only atomically update a single MV pair
using mfence and cflush, and no two MV pairs on a persistent
leaf node can be updated simultaneously because we use PMwCAS
to provide thread-level concurrency control. Therefore, PM-RTREE
can enforce the same level of crash consistency as FBR-tree on
persistent leaf nodes.

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

4.2 Interleaved Mapping of Bitmaps

The existing persistent R-trees use bitmaps to manage the data area.
They sequentially map bits to entries of MBR-pointer arrays. As
shown in Figure 7(a), MBR-pointer[0], MBR-pointer[1], and MBR-
pointer[2] are sequentially mapped to B0, B1, and B2 in the bitmaps
as those used in FBR-tree. After writing each bit in the bitmap, the
metadata area needs to be flushed for failure atomicity, leading to
repeatedly reflushing cache line 0 in persistent memory.

Cache line #0 Dcache line #1

iman VBRI RO

Regular bitmap Qﬁ@ﬁ’h’éhﬁ}yﬁ@zh’%é// 88 | 89 [p10Bu1]eazeas] ..] .. | . |
equentia
mapping

MBR-pointer[N]‘O‘1|2‘3‘4‘5‘6‘7‘ ‘
(@)
Map 0 Map 1 Map 2 Map 3
B | o[|w| BIBIEH [oo]o] -] -]

Interleaved
mapping

MBR-pointer[N]‘0‘1|z‘3‘4‘5‘6‘7‘ ‘

(b)

Figure 7: Sequential and interleaved mapping from bitmap
to MBR-pointer entries.

In this paper, we use an interleaved mapping approach to re-
duce cache line reflushing. Specifically, we partition G-bitmap into
groups, each of which occupies a single CPU cache line. The size of
each group is capped by the cache line size (64 B). Then, consecutive
MBR-pointer entries are mapped to different groups in different
cache lines. Algorithm 1 describes the algorithm for interleaved
mapping of bitmaps. PM-RTREE selects a bitmap and a bit in G-
bitmap (line #9-10). Then it sets the data area, updates the bitmap
and version number (line #11-13). It writes the data area to PM (line
#15). Then it atomically writes the bitmap and version number in
the metadata area to PM (line #16). If the current selected bitmap
group is full, it identifies a new bitmap group to set (line #23-25).

We use Figure 7(b) to illustrate this algorithm. Group 1 includes
Mapy and Map,, which are stored in cache line 0 and Group 2
includes Map; and Maps, which are stored in cache line 1. MBR-
pointer[0] and MBR-pointer[2] are mapped to B0 and B1 in Mapy
respectively. MBR-pointer[1] and MBR-pointer[3] are mapped to
B0 and B1 in Map; respectively. There will be no cache line reflush
when MBR-pointer[0] and MBR-pointer[1] are consecutively al-
located because their corresponding bits are located in different
cache lines. If both Mapy and Map; are full, Mapy and Maps are
allocated in an interleaved manner for insertions.

4.3 Basic Operations of PM-RTREE

Lock-free updates using PMwCAS. The existing persistent R-
trees use mutex locks for thread synchronization. The code snippet
for updating node metadata of R-trees using mutex locks is shown
in Figure 8(a). In PM-RTREE, we replace the mutex locks using the
persistent_cas() function provided in the PMwCAS library [32]. The
code snippet using PMwCAS is shown in Figure 8(b). We apply
this lock-free code in all the operations of PM-RTREE requiring
modification of node metadata.

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

Brandon Lavinsky and Xuechen Zhang

Algorithm 1 Interleaved Mapping of Bitmaps

Algorithm 2 PM-Rtree Insertion

1: Function SetInterleavedBitmap(targetNode, newEntry) :
2: Node n = targetNode;

3: Entry data = newEntry;

4: startMap = 0;

5. checkBit = 0;

6: foundSlot = false;

7: if (n not full) then

8 while (foundSlot == false) do

9 for (i = startMap; i <= startMap + 1;i + +) do

10: if n— > Meta.map|i].Bit(checkBit) not set then
11 n— > Meta.mapli].branch[checkBit] = data;
12: n— > Meta.mapl|i].SetBit(checkBit);
13: n— > Meta.mapli].UpdateVersion();
14: if n is leaf Node then
15: persist(n, data);
16: persist(n, meta);
17: end if
18: foundSlot = true;
19: break;
20: end if
21: end for
22: checkBit + +;
23: if (checkBit == 56) then
24: checkBit = 0;
25: startMap = startMap + 2;
26: end if
27: end while
28: end if
1. lock(n);
2. persistent (n->metadata);
3. CLWB(n->metadata);
4. SFENCE;
5. unlock(n);

(a) With mutex lock

1. old_meta = new(n->metadata);

2. new_meta = update(old_meta);

3. persistent_cas (n->metadata,
old_meta,
new_meta);

(b) Lock-free

Figure 8: Lock-free using PMwCAS.

Lock-free insertion. For inserting a new object, we need to
recursively traverse PM-RTREE from root node to leaf node to find
a candidate child node. We use least enlargement algorithm [12]
if the MBR of the chosen child node is not completely overlapped
with the new object to insert. Similar to the insertion of FBR-tree,
we do not use logging in the node enlargement process because

1: Function Insert(node, parent, data) :
2. if (node — Meta.nodeType() == leaf) then
3 if (node — Meta.isFull() == false) then

4 Node prev = null;

5: prev = node;

6: SetInterleavedBitmap(node, data);

7 persistent_cas(&(node — Meta), prev — Meta,
node — Meta);

8: splitNode = null;

9: return splitNode;

10: else

11: splitNode = SplitNode(node, parent, data);

12: return splitNode;

13: end if

14: else

15: idx = chooseChildPosition(node, data);

16: Node child = node — child[idx];

17: child.mbr = calculateNewMbr(child.mbr, data);
18: splitNode = Insert(child, node, data);

19: if (splitNode # null) then

20: siblingNode.mbr = splitNode.mbr;

21: if (node — Meta.isFull() == true) then

22: splitNode = SplitNode(n, splitNode, parent);
23: else

24: Data indexData;

25: indexData.mbr = siblingNode.mbr;

26: indexData.ptr = &siblingNode;

27: Node prev = null;

28: prev = node;

29: SetInterleavedBitmap(node, indexData);
30: regular_cas(&(node — Meta),

prev — Meta,
node — Meta);

31: splitNode = null;
32: end if

33: return splitNode;

34: else

35: splitNode = null;

36: return splitNode;

37: end if

38: end if

subsequent queries will still find and visit the desired child node if
the node is only partially updated [6] upon failures.

Algorithm 2 describes the insertion algorithm of PM-RTREE. The
algorithm handles insertion in leaf nodes (line #2-13) and non-leaf
nodes (#15-37) separately. Persistent_cas() is implemented using
PMwCAS [32] and regular_cas() is implemented using MwCAS [13].
For leaf nodes, if they are not full, we will insert the MBR and set
the metadata directly (line #4-8). If the insertion causes an overflow,
we will use the in-place split algorithm [6] to add a new entry to
the split nodes (line #11). Assume that we need to in-place split
node x to add a new node y and their parent node is node p. (1) We
need to allocate node y, set the version number of x to 0, and copy
half of the entries in x to y. (2) We add the address and MBR of y

PM-RTREE: A Highly-Efficient Crash-Consistent R-tree for Persistent Memory

to p. (3) We atomically update the version number and G-bitmap
of p. (4) We update MBR of x in p to reflect the new space size
for the remaining MBRs in x. (5) We update the version number
and G-bitmap of x atomically. For non-leaf nodes, we recursively
update their MBR entries until reaching leaf nodes.

Lock-free deletion. For deleting an existing object, we need to
merge two nodes when underflows happen. Specifically, assume
that we need to in-place merge node x and y, where x is the un-
derflow node, y is the sibling node of x, and p is the parent node
of node x and y. We copy the MBR entries of y to x. Then, we
need to atomically update the G-bitmap and version number of x.
Next, we need to update MBR of p to include all the MBRs merged
from y. In the end, we need to atomically update the G-bitmap and
version number of p to invalidate the entry of y in p. We do not
show the deletion algorithm in the paper because of its similarity
to the insertion algorithm and space limit.

Search. We revised the search algorithm used in FBR-tree so
that it works with the interleaved mapping of bitmaps as discussed
in Algorithm 1.

Failure recovery. We can rebuild PM-RTREE by rebuilding non-
leaf nodes in DRAM while traversing the linked list of leaf nodes in
PM. To address the issue of memory leakage, we adopt the chunk-
based allocation strategy [4] to service the allocation/deallocation
requests in PM. Any leaf nodes that are not reachable during the
recovery process are reclaimed and used for future memory alloca-
tions in the memory pool.

5 EVALUATION

We conduct an extensive performance study for PM-RTREE to ex-
perimentally answer the following questions.

o Is PM-RTREE effective and scalable for synthetic and real
datasets with diverse query patterns?

e What is the impact of each optimization used in PM-RTREE
on the reduction of query execution time?

o Is it effective on the future eADR platform?

5.1 Experimental Setup

Experimental platform. We run the experiments on a Linux
server with a 16-core Intel Xeon Silver 4215 CPU, 32 GB DRAM
and 2 Intel Optane DCPMMs (128 GB per DIMM). The Optane PM
is mounted with the Ext4-DAX file system and configured in App
Direct mode. To avoid the NUMA effects, we use the numactl utility
to bind every thread to one core in the first socket. All source codes
are compiled with g++7.5 with -O3 optimization. All presented
measurements represent arithmetic means of three runs.

Data Sets. We use three datasets in the evaluation. (1) Random:
This is a synthetic 3D dataset. It consists of 20 M randomly gener-
ated rectangles defined by its minimum points (min-x, min-y, and
min-z) and maximum points (max-x, max-y, and max-z). Min-x/min-
y/min-z are random numbers between 0 and 1. Max-x/max-y/max-z
are random numbers between 1 and 2. (2) FireStat: This is a dataset
consisting of 329,448 latitude & longitude coordinates of wildfire
ignitions points in the United States. It is published by USDA Forest
Service [30]. (3) Postal: This is a 2D dataset of postal code bound-
aries. It consists of over 19 M boundary coordinate locations for
postal code areas. It is published by SpatialHadoop [24].

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

Target comparisons. (1) R-tree: This is an R-tree designed for
DRAM [2]. It does not enforce crash consistency. Therefore, it is
not recoverable upon failures. (2) PMDK R-tree: This is an R-tree
designed using the transactional model to enforce crash consis-
tency. We implement the insert and delete operations using the
transactional model provided by Intel PMDK [8]. Failure recov-
ery is supported by rollback using logs. (3) FBR-tree: This is the
state-of-the-art persistent R-tree [6]. It provides failure atomicity
by limiting the metadata size to 8 B and updating the node metadata
using mfence and cl fush. The node size is 55, which is the default
setting of FBR-tree as described in its paper. (4) PM-RTREE: This is
a persistent R-tree optimized for PM using techniques discussed
in Section 4 while still enforcing crash consistency. By default, G-
bitmap is stored in two CPU cache lines with a support of up to 784
MBR-pointer pairs per node.

5.2 Overall Performance

Random | FireStat | Postal
Insert 5M 330 K 10 M
Search 100 1K 10 M
Delete 1K 200 K 100 K
Table 2: Experimental setting.

In this section, we study the overall performance of PM-RTREE
compared to other persistent R-tree solutions. We measure the
execution of the insert, search, and delete operations with three
datasets including Random, FireStat, and Postal. The number of
insert, search, and delete operations are listed in Table 2 for each
dataset. We use 16 threads in the experiments. The results are shown
in Figure 9. We have three observations.

First, PM-RTREE improves the performance of insert by up to
13.3X, 64.8X, and 9.8X compared to R-tree, PMDK R-tree, and FBR-
tree, respectively. Using R-tree designed for DRAM directly in PM
results in 88.4% more execution time than PM-RTREE because of its
locking overhead. PMDK R-tree has the worst performance because
it uses log-based transactional model for failure atomicity. The
logging overhead dominates the execution time during insertions.
The performance of FBR-tree is degraded compared to PM-RTREE
because it incurs 63.4% more writes in PM, locking overhead, and ex-
tra latency caused by cache line reflushes when allocating bitmaps.
Similar to insert, PM-RTREE improves the performance of delete by
up to 67X, 195X, and 3.2X compared to R-tree, PMDK R-tree, and
FBR-tree, respectively.

Second, the search performance of PM-RTREE is comparable to
other persistent R-trees. The write latency of PM is 2.5X longer
than DRAM, while its read latency is comparable to that of DRAM.
Therefore, PM-RTREE is heavily optimized for the insert and delete
operations. The new design also benefits the search operations. This
is because we use a partitioned data layout. The search operations
will reduce the number of random reads in PM, thus leading to
less read amplification [3, 21] and improved performance for the
Random and FireStat datasets.

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

Brandon Lavinsky and Xuechen Zhang

A
- 60
250 EEE R-tree B R-tree
B PMDK R-tree 50 | EEE PMDK R-tree
200 BN FBR-tree 5 EEN FBR-tree
b PM-Riree 040 PM-Riree
£ £
s =
S 530
9] 220
& &
10
0
Insert Search Delete Insert

(a) Random

(b) FireStat

2 ©
o3 >
700 EEE R-tree
B PMDK R-tree
600 Il FBR-tree

%

PM-Rtree

%)
o
1S3

Execution Time (s)
B
o
o

Search Delete Insert Search Delete

(c) Postal

Figure 9: Overall performance with insert, search, and delete operations.

Third, the performance improvement of PM-RTREE is varied for
different datasets. This is because the sequentiality of data directly
impacts the time in which it takes to select a location for a new entry
in the list of MBRs within non-leaf nodes. For example, the Postal
dataset is highly squential and when compared to the Random
dataset on time spent selecting the location of new entries, the
Postal dataset spent on average 76.2% more time per selection.
Similarly, the FireStat dataset, which is less squential than the Postal
dataset, spent 66.5% more time per selection compared to Random
dataset but 43.6% less time compared to the Postal dataset. This
discrepancy in slection time is due to the fact that, new random
data entries usually fit into existing MBRs without the need to be
enlarged, whereas sequential data triggers more MBR enlargements
adding more computation time.

Because we have shown that PM-RTREE and FBR-tree generally
perform better than R-tree and PMDK R-tree, we will only compare
PM-RTREE to FBR-tree in the following experiments.

5.3 Concurrent Insert and Search

BN FBR-tree
HE PM-Rtree

17.5 A

15.0 A

12.5 A

10.0 -

7.5 1

Execution time (s)

5.0 1

2.5 4

0.0 -

Search-heavy Insert-heavy

Figure 10: Performance with concurrent insert and search
operations.

In this section, we evaluate the performance of PM-RTREE with
concurrent insert and search operations. We set up two types of
mixed workloads. The first one is search-heavy. For this workload,

we first perform 5 M insert operations. Then, we perform 10 K
insert and 300 K search operations concurrently using 4 threads.
The second workload is insert-heavy. For this workload, we first
perform 1 M insert operations. Then, we perform 4 M insert and 1 K
search operations concurrently using 4 threads. In the experiments,
we use the Random dataset and measure the execution time of the
two workloads. The results are shown in Figure 10.

We have three observations from the figure. First, PM-RTREE
works effectively for both search-heavy and insert-heavy workloads.
It reduces the execution time by 3.5% and 20.7% for the search-
heavy and insert-heavy workloads respectively compared to FBR-
tree. Second, the optimizations of PM-RTREE benefits more for the
insert-heavy workload because it reduces the number of writes in
PM and the number of cache line reflushes, which are caused by the
insert and delete operations. Third, it improves the performance of
the search-heavy workload because the lock-free insert operations
reduce locking overhead.

5.4 Scalability

~
=}

W FBR-tree
I PM-Rtree

mm FBR-tree
2 I PM-Rtree

s v o
38 & 3

w
s

Execution time (s)
Execution time (s)

~
S

1=

o

1 2 4

8 16 32 1 2 4

6 8 16 32
of threads

6
of threads

(a) Insert (b) Search
Figure 11: Performance when scaling up the number of
threads at a fixed dataset size.

In this section, we study the scalability of PM-RTREE. In the ex-
periment, we increase the number of threads from 1 to 32 at a fixed
dataset size of 5 M. We execute 5 M insert and 100 search operations
on the Random dataset. The results are shown in Figure 11.

PM-RTREE: A Highly-Efficient Crash-Consistent R-tree for Persistent Memory

We have the following observations. First, as shown in Fig-
ure 11(a), when the number of insertion threads is smaller than 4,
FBR-tree performs slightly better than PM-RTREE. This is because
the locking overhead is not the bottleneck in this scenario and
PMwCAS incurs 13% overhead. Second, as the number of threads
is increased from 6 to 32, PM-RTREE reduces the execution time by
38.1%, 63.1%, 77.7%, and 77.8%, respectively. It shows that PM-RTREE
achieves significantly improved scalability when the thread concur-
rency is high and mutex locking overhead dominates the execution
time during insertions. The results suggest we need to selectively
apply PMwCAS to reduce overhead. We plan to implement it in the
future work. Third, as shown in Figure 11(b), both PM-RTREE and
FBR-tree achieve a good scalability for search because they do not
use locks in the search operations.

5.5 Impact of Dataset Size

B FBR-tree
H PM-Rtree

B FBR-tree
HEl PM-Rtree

[
s B G
> v o

Execution time (s)
Execution time (s)
-
o

o
o

~
o

o
=3

m 5M 10M 15M 20M m 5M 10M 15M 20M
of insertions Dataset size

(a) Insert (b) Search
Figure 12: Performance when scaling up the data set size
with 16 threads.

Here, we study the impact of dataset size. In the experiments, we
use 16 threads. We first increase the number of insert operations
from 1 M to 20 M using the Random dataset. We can observe that
PM-RTREE outperforms FBR-tree by up to 5.9X from Figure 12(a).
The improvement ratio of PM-RTREE is consistent as we increase the
number of insert operations, leading to a larger dataset size. Second,
we study the search performance of PM-RTREE by executing 100
search operations. As shown in Figure 12(b), PM-Rtree improves
search performance by 1.5X. The improvement ratio for search does
not change as we increase the size of dataset.

5.6 Impact of Each Optimization

In this section, we study the impact of each optimization discussed
in Section 4 using the Random dataset with 6 threads. We enable
each optimization incrementally and show the results in Figure 13.
+Lock-free denotes PM-RTREE using only PMwCAS for thread syn-
chronization. All the non-leaf and leaf nodes are stored in PM.
+Partitioned denotes PM-RTREE using a partitioned data layout
and PMwCAS. Its non-leaf and leaf nodes are stored in DRAM
and PM respectively. +All denotes PM-RTREE with all the three
optimizations enabled including partitioned data layout, lock-free
thread synchronization using PMwCAS, and interleaved mapping
of bitmaps.

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

40
mmm FBR-tree
35 mmm +lLock-free
.30 HE +Partitioned
< +All
[J
£ 25
§ 20 A
S 15 A
()
>
10 4
N N
51 29 2]
O 4
Insert Search

Figure 13: Impact of each optimization used in PM-RTREE.

We have the following observations from the figure. First, lock-
free thread synchronization reduces the execution time of insert by
25% compared to FBR-tree. It is the most beneficial optimization
because locking overhead is the major issue for FBR-tree. Second,
+Partitioned further reduces the execution time by 5% because it
reduces the number of PM writes by 63%. Third, the execution with
+All is 9.2% smaller than that with +Partitioned. This is because
the number of cache line reflushes is reduced by 8.2%. Finally, the
performance of search is not affected by lock-free optimization
since no mutex locks are used in search. +Partitioned and +All
reduce the search time by 33% and 35% respectively. This is because
both the increased node size and partitioned data layout reduce the
number of reads in PM.

1000 A
BN \W/o interleaved

HEl \V/ interleaved
800 -

600 +

400 ~

Execution time (s)

200 -

5M 100M
of insertions

Figure 14: Impact of interleaved mapping of bitmaps.

Next, we study the impact of interleaved mapping with different
dataset size. We run PM-RTREE without the interleaved mapping
and with interleaved mapping in the experiments. We increase the
number of insertions from 5 M to 100 M to increase the dataset size.
From Figure 14, we observe that the execution time of the insert
operations is reduced by 17% on average and it is not sensitive to
the dataset size.

5.7 Performance on Emulated eADR Platform

eADR (extended ADR) is a new feature supported in the 3rd genera-
tion Intel Xeon Scalable Processors, which ensures CPU caches are

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

B FBR-tree
N PM-Rtree

fun
o
o

80
662

60

Execution time (s)

40

20

5M i0M
of insertions

Figure 15: Performance on the emulated eADR platform us-
ing 16 threads.

in the power fail protected domain [9]. Explicit cache line refulshes
are not necessary on the eADR platform. Since the eADR platform
is still not available to us, we use the ADR platform to emulate it
by removing the flush instructions in the programs. We only test
the insert operation because the search operation does not need to
write to PMs.

In the experiments, we use the Random dataset with 16 threads.
The results are shown in Figure 15. Without the flush instructions,
the performance of PM-RTREE is further improved by 8.2% because
the cache line reflushes are eliminated since no flushes are needed.
Furthermore, we observe that PM-RTREE outperforms FBR-tree by
6.6X on the eADR platform. This is because on the eADR platform
locking overhead still accounts for up to 82% of the execution time
of the insert operations. Finally, for both small and large datasets
with 5 M and 10 M insertions, PM-RTREE achieves consistently
better performance than FBR-tree.

5.8 Failure Recovery

ADD
B
1750 { EEEN PMDK R-tree
1500 - EEN FBR-tree
g PM-Rtree
j.E; 1250 A
£ 1000 | 322
el Z
9 750 | 1
§ 500 20
o 1'&-1
250 1
0% kY
0 Q. [\}
5M 10M

Tree Size

Figure 16: Failure recovery time.

In this section, we measure the time of failure recovery with
PMDK R-tree, FBR-tree, and PM-Rtree. In the experiments, we kill
the database server process after inserting 5 M and 10 M MBRs
and then restart the simulation. We measure the restart time and
show it in Figure 16. PMDK R-tree has a small failure recovery time

Brandon Lavinsky and Xuechen Zhang

because upon failure recovery the PMDK library simply adjusts
PM pool addresses in the process address space and reassigns the
root pointer of R-tree in PM. For both FBR-tree and PM-Rtree, they
need to retrieve the root node and check the retrievability of PM
area allocated before the failure by traversing the tree. PM-RTREE
spends 2.4X more time on rebuilding the non-leaf nodes for failure
recovery. Even though it takes more time for PM-RTREE to recover
from failures, its performance is still acceptable because we assume
failures are rare events compared to other events (i.e., insert, search,
and delete).

5.9 Skew Test

100 B FBR-tree
Il PM-Rtree

80

60

40

Execution time (s)

20

Insert Search

Figure 17: Performance with skew workloads.

We produce a skew workload with a Zipfian key distribution.
We set a = 1.5 and n = 1000 as its shape parameters. We execute 10
M insert operations and 1000 search operations respectively with
16 threads and measure their execution time. The results are shown
in Figure 17. We have two observations. First, PM-RTREE works
effectively for the skew workload. It reduces the execution time of
insert and search operations by 80% and 33% respectively. Second,
compared to the random distribution used in the Random dataset,
the execution time of PM-RTREE is reduced by 19% and 38% for
insert and search respectively with the Zipfian distribution. This is
because the Zipfian distribution improves data locality and reduces
the number of PM writes and reads for serving the insert and search
requests.

6 CONCLUSION

In this paper, we design and implement a crash-consistent PM-
aware R-tree, PM-RTREE, which reduces lock contention for con-
current insert operations while achieving high efficiency of PM
accesses. Specifically, (1) PM-RTREE uses PMwCAS to implement
lock-free insertion/deletion. (2) It reduces PM writes by placing
non-leaf nodes in DRAM. (3) It alleviates cache line reflushes by us-
ing interleaved mapping of bitmaps in its metadata area. Compared
to other persistent R-trees, PM-RTREE improves the execution time
by 96.6% for insertions while maintaining crash consistency. It re-
duces the search time by 19.2% compared to FBR-tree. We hope the
proposed techniques in PM-RTREE will facilitate the future design
of persistent indexes.

PM-RTREE: A Highly-Efficient Crash-Consistent R-tree for Persistent Memory

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their helpful
comments and feedback. We also thank Jia Yu for providing spatial
datasets used in the evaluation and Carl Zimmerman for the dis-
cussion on this work. This research was supported by US National
Science Foundation under CNS 1906541. This work was also funded
in part by WSU Vancouver Research Mini Grant.

REFERENCES

(1]

[11]

[12]

[13]

[14]

Lars Arge, Mark De Berg, Herman Haverkort, and Ke Yi. 2008. The Priority R-Tree:
A Practically Efficient and Worst-Case Optimal R-Tree. ACM Trans. Algorithms
4, 1, Article 9 (mar 2008), 30 pages. https://doi.org/10.1145/1328911.1328920
Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-Tree: An Efficient and Robust Access Method for Points and Rect-
angles. In Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’90). Association for Computing Machinery, New
York, NY, USA, 322-331. https://doi.org/10.1145/93597.98741

Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile Main Mem-
ory. Proc. VLDB Endow. 8, 7 (feb 2015), 786-797. https://doi.org/10.14778/
2752939.2752947

Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. UTree:
A Persistent B+-Tree with Low Tail Latency. Proceedings of the VLDB Endowment
(VLDB) 13, 12 (2020), 2634-2648.

Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020.
FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).
1077-1091.

S. Cho, W. Kim, S. Oh, C. Kim, K. Koh, and B. Nam. 2021. Failure-Atomic
Byte-Addressable R-tree for Persistent Memory. IEEE Transactions on Paral-
lel & Distributed Systems 32, 03 (mar 2021), 601-614. https://doi.org/10.1109/
TPDS.2020.3028699

Richard L Church. 2002. Geographical information systems and location science.
Computers & Operations Research 29, 6 (2002), 541-562.

Intel Corporation. 2020. Persistent Memory Development Kit. http://pmem.io/.
Intel Corporation. 2021. eADR: New Opportunities for Persistent Memory Ap-
plications. https://www.intel.com/content/www/us/en/developer/articles/
technical/eadr-new-opportunities-for-persistent-memory-applications. html
Zheng Dang, Shuibing He, Peiyi Hong, Zhenxin Li, Xuechen Zhang, Xian-He
Sun, and Gang Chen. 2022. NVAlloc: Rethinking Heap Metadata Management in
Persistent Memory Allocators. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 115-127.

Athanasios Fevgas, Leonidas Akritidis, Miltiadis Alamaniotis, Panagiota Tsom-
panopoulou, and Panayiotis Bozanis. 2019. A Study of R-tree Performance in
Hybrid Flash/3DXPoint Storage. In 2019 10th International Conference on Informa-
tion, Intelligence, Systems and Applications (IISA). 1-6. https://doi.org/10.1109/
1ISA.2019.8900716

Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In Proceedings of the 1984 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’84). Association for Computing Machinery, New York,
NY, USA, 47-57. https://doi.org/10.1145/602259.602266

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical Multi-Word
Compare-and-Swap Operation. In Proceedings of the 16th International Confer-
ence on Distributed Computing (DISC °02). Springer-Verlag, Berlin, Heidelberg,
265-279.

Chenchen Huang, Huiqi Hu, and Aoying Zhou. 2021. BPTree: An Optimized Index
with Batch Persistence on Optane DC PM. 478-486. https://doi.org/10.1007/978-
3-030-73200-432

[15

[16

[17]

[21]

[22]

(23]

[24]

[25

[26

[27]

(28]

™
0,

[30

[31

[32

(33]

[34

SSDBM 2022, July 6-8, 2022, Copenhagen, Denmark

Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018. En-
durable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In 16th
USENIX Conference on File and Storage Technologies (FAST). 187-200.

Kyle Langendoen, Brad Glasbergen, and Khuzaima Daudjee. 2021. NIR-Tree: A
Non-Intersecting R-Tree. Association for Computing Machinery, New York, NY,
USA, 157-168. https://doi.org/10.1145/3468791.3468818

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
Phase Change Memory As a Scalable Dram Alternative. In Proceedings of the 36th
Annual International Symposium on Computer Architecture (ISCA "09).

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree: A
B-tree for new hardware platforms. In 2013 IEEE 29th International Conference on
Data Engineering (ICDE). 302-313. https://doi.org/10.1109/ICDE.2013.6544834
Soklong Lim, Tyler Coy, Zaixin Lu, Bin Ren, and Xuechen Zhang. 2020. NVGraph:
Enforcing Crash Consistency of Evolving Network Analytics in NVMM Systems.

IEEE Transactions on Parallel and Distributed Systems 31, 6 (2020), 1255-1269.
https://doi.org/10.1109/TPDS.2020.2965452

Soklong Lim, Zaixin Lu, Bin Ren, and Xuechen Zhang. 2019. Enforcing Crash Con-
sistency of Evolving Network Analytics in Non-Volatile Main Memory Systems.
In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT). 124-137. https://doi.org/10.1109/PACT.2019.00018

Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+Trees: Optimizing Persis-
tent Index Performance on 3DXPoint Memory. Proc. VLDB Endow. 13, 7 (2020),
1078-1090.

Bao Nguyen, Hua Tan, Kei Davis, and Xuechen Zhang. 2019. Persistent Octrees
for Parallel Mesh Refinement through Non-Volatile Byte-Addressable Memory.
IEEE Transactions on Parallel and Distributed Systems 30, 3 (2019), 677-691. https:
//doi.org/10.1109/TPDS.2018.2867867

Bao Nguyen, Hua Tan, and Xuechen Zhang. 2017. Large-scale Adaptive Mesh
Simulations Through Non-volatile Byte-addressable Memory. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC’17).

Boundaries of postal code areas. 2022.
datasets.html.

Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Will-
halm, and Grégoire Gomes. 2017. Memory Management Techniques for Large-
Scale Persistent-Main-Memory Systems. Proceedings of the VLDB Endowment 10,
11 (2017), 1166-1177.

William Pugh. 1990. Skip Lists: A Probabilistic Alternative to Balanced Trees.
Commun. ACM 33, 6 (jun 1990), 668-676. https://doi.org/10.1145/78973.78977
MMM Sarcar, K Mallikarjuna Rao, and K Lalit Narayan. 2008. Computer aided
design and manufacturing. PHI Learning Pvt. Ltd.

Suman Nath Shimin Chen, Phillip B. Gibbons. 2011. Rethinking Database Al-
gorithms for Phase Change Memory. In CIDR’11: 5th Biennial Conference on
Innovative Data Systems Research.

Richard Szeliski. 2010. Computer vision: algorithms and applications. Springer
Science & Business Media.

FIRESTAT Fire Occurrence Yearly Update. 2022.
geodata/edw/datasets.php.

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-volatile Byte-
addressable Memory. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST’11).

Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy Lock-Free
Indexing in Non-Volatile Memory. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). 461-472. https://doi.org/10.1109/ICDE.2018.00049
Chin-Hsien Wu, Li-Pin Chang, and Tei-Wei Kuo. 2003. An Efficient R-Tree
Implementation over Flash-Memory Storage Systems. In Proceedings of the 11th
ACM International Symposium on Advances in Geographic Information Systems
(GIS ’03). Association for Computing Machinery, New York, NY, USA, 17-24.
https://doi.org/10.1145/956676.956679

Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
Differential Indexing for Persistent Memory. Proc. VLDB Endow. 13, 4 (dec 2019),
421-434. https://doi.org/10.14778/3372716.3372717

http://spatialhadoop.cs.umn.edu/

https://data.fs.usda.gov/

https://doi.org/10.1145/1328911.1328920
https://doi.org/10.1145/93597.98741
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1109/TPDS.2020.3028699
https://doi.org/10.1109/TPDS.2020.3028699
http://pmem.io/
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://doi.org/10.1109/IISA.2019.8900716
https://doi.org/10.1109/IISA.2019.8900716
https://doi.org/10.1145/602259.602266
https://doi.org/10.1007/978-3-030-73200-4_32
https://doi.org/10.1007/978-3-030-73200-4_32
https://doi.org/10.1145/3468791.3468818
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/TPDS.2020.2965452
https://doi.org/10.1109/PACT.2019.00018
https://doi.org/10.1109/TPDS.2018.2867867
https://doi.org/10.1109/TPDS.2018.2867867
 http://spatialhadoop.cs.umn.edu/datasets.html
 http://spatialhadoop.cs.umn.edu/datasets.html
https://doi.org/10.1145/78973.78977
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://doi.org/10.1109/ICDE.2018.00049
https://doi.org/10.1145/956676.956679
https://doi.org/10.14778/3372716.3372717

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Persistent R-Tree Index
	2.2 Empirical Study on Optane PM

	3 Related Work
	3.1 Persistent R-trees
	3.2 Other Works in Context

	4 Design of PM-Rtree
	4.1 Overview
	4.2 Interleaved Mapping of Bitmaps
	4.3 Basic Operations of PM-Rtree

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Concurrent Insert and Search
	5.4 Scalability
	5.5 Impact of Dataset Size
	5.6 Impact of Each Optimization
	5.7 Performance on Emulated eADR Platform
	5.8 Failure Recovery
	5.9 Skew Test

	6 Conclusion
	Acknowledgments
	References

