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Accelerating Tensor Swapping in GPUs with
Self-Tuning Compression

Ping Chen, Shuibing He, Xuechen Zhang, Shuaiben Chen, Peiyi Hong, Yanlong Yin, and Xian-He Sun

Abstract—Data swapping between CPUs and GPUs is widely used to address the GPU memory shortage issue when training deep
neural networks (DNNs) requiring a larger amount of memory than that a GPU may have. Data swapping may become a bottleneck
when its latency is longer than the latency of DNN computations. Tensor compression in GPUs can reduce the data swapping time.
However, existing works on compressing tensors in the virtual memory of GPUs have three major issues: lack of portability because its
implementation requires additional (de)compression units in memory controllers, sub-optimal compression performance for varying
tensor compression ratio and sizes, and poor adaptation to dense tensors because they only focus on sparse tensors.

We propose a self-tuning tensor compression framework, named CSWAP+, for improving the virtual memory management of GPUs. It
uses GPUs for (de)compression directly and thus has high portability and is minimally dependent on GPU architecture features.
Furthermore, it only applies compression on tensors that are deemed to be cost-effective considering their compression ratio, size, and
the characteristics of compression algorithms at runtime. Finally, to adapt to DNN models with dense tensors, it also supports
cost-effective lossy compression for dense tensors with nearly no model training accuracy degradation. We conduct the experiments
through six representative memory-intensive DNN models. Compared to vDNN, CSWAP+ reduces tensor swapping latency by up to
50.9% and 46.1% with NVIDIA V100 GPU, for DNN models with sparse and dense tensors, respectively.

Index Terms—DNN, GPU, tensor, swapping, compression

1 INTRODUCTION

Deep Neural Networks (DNNs) have been successfully
used in various domains, such as computer vision [1],
recommendation systems [2], speech recognition [3], etc.
DNN models become larger and deeper to achieve higher
prediction accuracy [4], [5]. Training such DNN models
often requires a larger amount of memory. For example,
the latest BERT model training needs more than 70 GB of
memory with batch size 64 [4]. The newest language model
presented by Google has 137 billion parameters and requires
more than 100 GB of memory for training [6]. Additionally,
prior study [7] shows that the number of neural network
parameters has nearly doubled every 2.4 years since the 80s.
These trends lead to a higher memory demand for training
future DNN models.

To accelerate the training of DNN models, hardware
accelerators such as Graphics Processing Units (GPUs) are
widely used to compute tensors [8]. However, GPUs have
limited memory capacity compared to what is demanded
in the training of many popular DNNs. For instance, the
powerful NVIDIA V100 GPU is configured with up to 32
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GB on-board memory, which is inadequate for training the
BERT model which consumes up to 73 GB of memory [9].
The lack of global GPU memory greatly constrains the
development of more advanced DNN architectures.

Because GPU memory could be under-provisioned for
training large models, both scale-out and scale-up ap-
proaches may be used to overcome this limitation. The scale-
out approaches exploit distributed memory of multiple
GPUs in a cluster. Its downside is that their performance
may be constrained by networking latency [10]. The scaling
up approaches swap intermediate tensors between GPUs
and CPUs in training [11]-[16]. They can be further im-
proved by overlapping tensor swapping with computations
of the next layer to hide application-perceived swapping
latency. Nevertheless, Rhu et al. observed that the swapping
latency of large tensors cannot be effectively hidden for
the increasingly larger gap between drastically improved
TFLOPS performance of GPUs and limited data transfer
bandwidth of PCle links for tensor swapping between GPUs
and CPUs [17]. They implement a sparse tensor compression
engine located in memory controllers of GPUs and reduce
the DNN training time through swapping smaller tensors.

Compressing tensors using additional (de)compression
units seems a straightforward approach because no changes
are required for DNN applications. However, current com-
pression schemes have three major issues.

First, they require hardware changes [17], thus having no
portability to mainstream GPUs. Existing GPUs cannot benefit
from these tensor compression schemes because they do
not have dedicated compression units in their memory
controllers. A practical solution should be independent of
additional hardware features. Second, they always use a static
compression method to compress all tensors [17], [18], and
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are not optimal because they ignore the compression and
decompression time, the changing of tensor sparsity, and
the potential of hiding swapping overhead. For example,
our study shows that tensors’ compression ratio changes
constantly during training. Tensors with a low compression
ratio and high additional overhead, are not worth being
compressed (Section 3.2). Third, they do not adapt to dense
tensors. The tensors in DNN models can be classified into
sparse tensors and dense tensors depending on the types
of activation functions used in the models. For example,
the ReLU [19] activation will generate sparse tensors and
the Leaky ReLU [20] activation will produce dense tensors.
However, current schemes only focus on sparse tensors [17],
[18], [21]. This may lose the opportunity of compressing
dense tensors for further performance optimization.

In this paper, we propose a high-performance, self-
tuning, and fully automated GPU memory compression
framework, named CSWAP+, for software-level tensor com-
pression management. It has three novel features. First,
CSwaAP+ uses GPUs for (de)compression directly without
relying on fixed compression units in the memory con-
trollers of GPUs. Currently, it supports four GPU-optimized
lossless compression algorithms (i.e., zero-value compres-
sion (ZVC) [17], run-length encoding (RLE) [22], com-
pressed sparse row (CSR) [23], and LZ4 [24]). CSwWAP+
caters for tensor characteristics of a DNN workload and
selects one of these four algorithms to achieve the best trade-
off between compression ratio and compression time.

Second, CSwWAP+ dynamically decides whether to
compress sparse output tensors of DNN layers in for-
ward propagation based on the cost-effectiveness of
(de)compression. Specifically, it compares the swapping
cost with (de)compression to that without (de)compression
at runtime. It only executes (de)compression when it is
deemed to reduce tensor swapping cost.

Third, to adapt to DNN models with dense tensors,
CSWAP+ also supports dynamic cost-effective lossy com-
pression for dense tensors. One challenge is that the lossy
compression may significantly degrade the training accu-
racy. To tackle this issue, CSWAP+ proposes a sliding down
scheme to carefully set the compression parameter of the
lossy algorithm, so that the compression yields nearly no
training accuracy loss. Compared to CSWAP [18] (the con-
ference version), CSWAP+ can further optimize the swap-
ping performance for DNNs with dense tensors.

In summary, we make the following contributions in this

paper:

e We propose CSWAP+, a self-tuning compression
framework to reduce tensor swapping cost in
DNNs without relying on compression units in
the memory controllers of GPUs. It uses GPUs for
(de)compression directly.

e We propose a selective cost-effective compression
scheme, which adaptively executes lossless compres-
sion for sparse tensors and lossy compression for
dense tensors, according to the cost-effectiveness of
tensor compression at runtime.

e We design a sliding down scheme to carefully set
the compression parameter for the lossy compression
algorithm during the entire training process, so that

the cost-effective lossy compression yields negligible
model training accuracy degradation.

e Our study shows the performance of tensor compres-
sion is sensitive to the tensor size, compression ratio,
and the characteristics of compression algorithms.
Therefore, we design the machine-learning algo-
rithms to predict the tensor (de)compression time for
both lossless and lossy compression algorithms.

e We implement a software prototype of CSWAP+
using Torch [25] and apply it to six popular DNN
models (e.g., AlexNet [1], VGG16 [26], ResNet [27],
etc.). Our experimental results show that CSWAP+
reduces tensor swapping latency by up to 50.9%
and 46.1% on sparse and dense DNN models, re-
spectively. Furthermore, CSWAP+ reduces the DNN
training time by 18.4% and 16.7% on average for
sparse and dense DNNs with NVIDIA V100 GPU,
compared to vDNN [14].

2 BACKGROUND
2.1 DNN Training Architecture

The main goal of DNN training is to find the correct
mathematical manipulation to provide high classification
accuracy. DNNs consist of multiple layers between input
and output. In the training of a DNN, we first perform
forward propagation from the first to the last layer in a
sequential manner, then we perform backward propagation
from the last layer to the first layer to update the parameters
of DNNs.

In DNN models, there are many activation-convolution
layers which make DNNs non-linear for better accuracy.
Users can choose one of the activation functions in their
models for different scenarios, such as ELU [28], ReLU [19],
Tanh [29], PReLU, and Leaky ReLU [20]. It is very common
to use ReLU to build the DNN models because of its
simplicity and improved performance. Specifically, ReLU
allows positive input values to pass through but resets all
negative input values to zeros for fast model convergence.
As many values are reset to zeros, ReLU generates sparse
tensors. Besides, in some training scenarios with a larger
learning rate to speed up convergence, users may choose
activation functions, such as Tanh, PReLU, or Leaky ReLU
to avoid the dead neurons problems [30] in DNN training.
For example, these activation functions are frequently used
in popular DNN models, such as the improved ResNet with
ELU [31] and the famous YOLO [32]. As their outputs are
non-zeros, these functions produce dense tensors.

2.2 DNN Memory Management Frameworks

Virtualized deep neural networks. vDNN uses virtual
memory to support training a DNN whose memory demand
might be larger than the size of GPU memory [21]. It swaps
out tensors that are not in use in the forward propagation
from GPUs to CPUs and then swaps them back in when
they are referenced in the backward propagation of DNN
training, as shown in Figure 1(a). In the figure, F,,/B,
denotes the time of forward/backward computation at the
layer n. Offload,, denotes the time of swapping a tensor from
GPUs to CPUs and Prefetch,, denotes the time of swapping a
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Fig. 1. (a) DNN execution flow with tensor swapping but without tensor
compression; (b) The execution flow with both tensor compression and
swapping in cDMA [17].

tensor from CPUs to GPUs. If Offload,, < F,,, Offload,, can be
overlapped with Fj,, thus resulting in no additional swap-
ping overhead. Similarly, if Prefetch,, < By1, there will be
no swapping latency because Prefetch,, can be overlapped
with Bn+1.

Compressing DMA engine. Recently, researchers show
that tensor swapping latency can no longer be overlapped
with DNN forward/backward computation [17]. This is
because data transfer bandwidth offered by the powerful
PCle and NVLINK has remained unchanged while the
performance of datacenter GPUs is almost tripled since
2014 [17]. To reduce swapping overhead, cDMA compresses
all tensors before offloading and decompresses them af-
ter prefetching through exploiting the tensor sparsity in
GPUs [17].

Figure 1(b) illustrates the execution flow of memory
swapping with tensor compression in cDMA. Oy and Oy
denote the portion of the data transfer time that cannot
be effectively hidden from the DNN propagation time,
respectively. Only one tensor is swapped per layer in the
training process. For cDOMA, the compression operations are
executed by dedicated (de)compression units in memory
controllers of GPUs. It introduces compression latency C,,
and decompression latency DC),. To make cDMA truly
effective, (1) C,, and DC;, should be insignificant compared
to F, and B,y and (2) Offload,, and Prefetch,, after compres-
sion needs to be smaller than its corresponding computation
time.

3 MOTIVATION
3.1 Changing Sparsity and Size of Sparse Tensors

Tensor sparsity is observed in many popular sparse DNN
models (using the ReLU activation), e.g., VGG16 and
AlexNet. One major cause of tensor sparsity is the nature of
ReLU operations, which make the output tensors of ReLU
and POOL tend to contain zeros mostly. We use VGG16
training as an example. We studied its tensor sparsity as the
percentage of zeros among all the elements in the output
tensors in the first 50 epochs. In the experiments, we use the
ImageNet dataset [33], NVIDIA Tesla V100, and the Torch
framework [34]. The model is trained with the batch size of
128 until converged with 78.6% top-5 accuracy. (More details
of the experimental platforms are described in Section 6).
Figure 2 shows the tensor sparsity (left y-axis) and the
sizes (right y-axis) of each ReLU and MAX layer during the
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Fig. 2. Changing sparsity of tensors during the training of VGG16 in the
first 50 epochs (left axis), while the solid line (right axis) denotes the
changing size of tensors of VGG16 .

training of VGG16. We can observe that the sparsity of tensors
(bars) varies between 20% and 80% across layers. To show the
trend of changing sparsity of tensors, for a particular layer,
we also show the average sparsity of every five epochs as
indicated by a bar in each group in the figure. We observe
that for the same layer the sparsity is also dynamically changed.
For example, for ReLU4, its sparsity is increased from 50%
to 80% over the time of training. In contrast, the tensor
sparsity of ReLU7 is increased in the first 10 epochs and
then decreased by 20% afterward.

We also measure the tensor sizes during the training of
VGG16 on the ImageNet dataset. We find that the tensor
size changes across layers (the solid line in Figure 2). For
example, the tensor size is reduced from 1568 MB to 49 MB
from the first to the last layer during the training of the
model. Furthermore, we find that the tensor size does not
change across epochs for the same tensor. We also evaluate
the tensor sparsity and tensor size with other models and
datasets (Section 6). The results show similar observations.
CSwAP+ opportunistically applies tensor compression con-
sidering the changing tensor size and sparsity.

3.2 Ineffectiveness of Static Lossless Compression for
Sparse Tensors

We then study the effectiveness of sparse tensor compres-
sion in GPU virtual memory in existing works. Instead of
relying on the (de)compression units which are not available
in markets, we implement a new static compression (SC)
lossless scheme which replicates the zero-value compres-
sion algorithm in cDMA by using GPUs to emulate the
(de)compression units in memory controllers. Because GPUs
have more cores and higher capacity than those of the
(de)compression units in memory controllers, we expect that
the (de)compression performance using GPUs directly will
be superior to or comparable to that of cDMA. For cDMA,
tensor (de)compression is applied to all the layers consisting
of ReLU and MAX operations with the SC scheme.

Figure 3(a) shows the execution time per layer during
the training of VGG16 without the lossless compression
compared to the time with SC using NVIDIA Tesla V100
GPUs and the same experimental setup as described in
the previous sections. It also shows the execution time
breakdown when SC' is used. We can observe that the
swapping latency with static compression is longer than
that without compression for MAX[1-4] and ReLU[7-8]. As
the compression ratio and size of tensors are varied, blindly
applying lossless compression to all the sparse tensors does
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(b) Static compression for dense tensors (L-ReLU denotes Leaky
ReLU activation).

Fig. 3. Swapping time of VGG16 with static compression compared to
that without compression. The swapping time using the static compres-
sion consists of data transfer time (the lower part of the right bar) and
data compression and decompression time (the upper part of the right
bar).

not reduce the overall swapping latency when the tensor
size is small and its compression ratio is low.

3.3 Motivation and Challenges for Dense Tensor Com-
pression

As mentioned in Section 2.1, tensors in DNN models include
sparse tensors and dense tensors, depending on the acti-
vation functions used in DNN models. Although existing
compression approaches are promising to accelerate tensor
swapping performance, they all use lossless compression and
can only work well for sparse tensors. For dense tensors,
such schemes are inefficient because lossless compression
algorithms keep the size of the compressed tensors un-
changed, which can not reduce the data swapping time.

Because dense tensors are widely generated in DNN
models, such as ResNet with ELU [31] and YOLO [32], we
need new approach to reduce the data amount in the tensor
swapping process. Considering the fact that approximate
computing may require less computing while having neg-
ligible impact on training accuracy [35], we propose to use
lossy compression to accelerate the dense tensor swapping
performance. Lossy compression can be used in many ap-
plications, such as graphics applications. In this study, we
only focus on DNN models.

There are two unique challenges when applying lossy
compression to dense tensor compression. First, the com-
pression algorithm may cause sub-optimal trade-off be-
tween swapping performance and DNN training accuracy.
A lossy compression algorithm usually uses a parameter
to control the compression ratio. If the parameter is not
carefully selected, the lossy compression may bring decent

TABLE 1
Comparison of CSWAP+ with existing tensor swapping frameworks for
GPU-based deep-learning systems.

. Compression| Targeted Tensor .
Technique unit/location|  Tensor selection Portability
vDNN [14] N/A | Rase & N/ Yes
Other swap-
ping [11],[13], | N/A nggrslge& N/A Yes
[15], [38], [39].
Memory
cDMA [17] Controller Sparse No No
vDNN++ [21] CPU Sparse No Yes
CSWAP [18] GPU Sparse Yes Yes
CSwAP+ Gru | SParsef |y Yes
ense

swapping performance improvement but with unacceptable
accuracy degradation. For example, with the lossy compres-
sion algorithm (i.e., ZFP [36]) the VGG16 model training
may lose more than 2% accuracy when the compression
ratio is set casually (See Section 6.4). Meanwhile, DNN
training often has multiple epochs and in each epoch a given
compression ratio has a various impact on model accu-
racy, making the trade-off hard to achieve. Hence, CSWAP+
leverages a well-designed scheme to carefully choose the
compression ratio to achieve a better trade-off between
compression performance and training accuracy.

Second, the static compression may still be inefficient for
dense tensor compression. To illustrate this, we use Leaky
ReLU (L-ReLU) instead of ReLU in VGG16 to generate
dense tensors and evaluate the execution time per layer
using lossy compression during the training. Because a
higher compression ratio will cause a higher accuracy loss,
we set the ZFP compression ratio as 30% to avoid explicit
DNN accuracy loss [37]. In Figure 3(b), we observe that
the swapping latency with dense tensor compression is
longer than that without compression for MAX[3-4] and
L-ReLU[7-8]. The reason is that there isn’t enough data to
compress for these tensors and therefore the compression
does not lead to large enough data and time savings to be
cost effective. Compressing such tensors will slow down the
DNN training.

In summary, while tensor compression has been widely
adopted to reduce tensor swapping latency, it may not
achieve optimal performance and model accuracy with-
out meticulous designs. A novel compression framework
is required to dynamically determine when and how to
compress tensors at runtime considering the characteristics
of DNN networks and GPU architectures.

4 RELATED WORK

Model compression. DNN training streams need to manage
feature maps and model weights. There are two kinds of
compression approaches to reduce the size of feature maps:
lossless compression and lossy compression.

Lossless compression algorithms (e.g., RLE [22],
CSR [23], LZ4 [40], ZVC [17]) usually works effectively for
sparse tensors containing a large number of zero floats.
However, they cannot reduce the size of dense float num-
bers because of the randomness of the ending mantissa
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bits. Other popular lossless algorithms, such
FPZIP [42], and BlosC [43], can achieve a goor
ratio for sparse floats on CPUs. But they only ¢
timal performance on GPUs because it is har
these algorithms using many cores of GPUs.

In contrast, lossy compression has a highe
ratio on dense floats than does lossless con
cently, some GPU-based lossy compression te
been developed, such as ZFP [36] and SZ [44].
whole dataset into many small blocks and ¢
data in each block separately. SZ predicts eac
with its neighboring points and utilizes tt
Huffman coding to shrink the data size.

Because  DNN  model  weights
parameterized [45], many approaches .. voigane
quantization and pruning have been proposed [46].
Besides, DeepSZ [47] designs an error-bounded lossy
compression for better DNN inference accuracy for edge
devices. However, these approaches are generally used in
model inference and are not effective for DNN training
tasks because the memory footprint of feature maps is
significantly larger than that of weight matrices. For
example, the size of feature maps used in training VGG16 is
50x larger than the size of its weight matrices when batch
size is 256. Therefore, we focus on feature map compression
in the process of DNN training in this paper.

Tensor swapping frameworks. We compare CSWAP+ to
the existing tensor swapping frameworks of GPU virtual
memory in Table 1. vDNN studies the characteristics of
different DNN layers and chooses to swap convolution
input tensors to reduce memory footprint in GPUs [14].
moDNN [38], SuperNeurons [13], SwapAdvisor [11], and
HOME [48] introduce different heuristics and profiling tech-
nology to swap data between heterogeneous memories.
Besides, Capuchin [39] uses the greedy policy and Au-
toTM [15] chooses Integer Linear Programming to make
tensor swapping decisions. However, none of them uses
tensor compression in swapping which loses the oppor-
tunity for further performance optimization. cDMA [17]
was the first swapping framework that compresses sparse
tensors using compression hardware in memory controllers
of GPUs. vDNN++ [21] supports sparse tensor compression
using host CPUs to reduce the pinned memory requirement
in the host. Nevertheless, it does not address the tensor
transfer bottleneck caused by the limited data transfer band-
width of PCle links. CSWAP [18] is the first tensor swapping
framework using GPUs for tensor (de)compression in the
swapping of GPU memory. It is adaptable to all GPUs, and
automates tensor compression management using machine
learning algorithms. However, CSWAP can only work well
for sparse tensors. In contrast, CSWAP+ is efficient for DNN
models with both sparse and dense tensors.

5 DESIGN OF CSWAP+

The design objective of CSWAP+ is to opportunistically
apply tensor compression for swapping in the training of
DNNs when their memory demand is larger than GPU
memory capacity. In this section, we describe the architec-
ture of CSWAP+ and explain how it improves the DNN
training throughput with comparable model accuracy as the

Execution
Advisor

Swapping

Execution plan
_—
Executor

Fig. 4. Architecture overview of CSWAP+. The execution plan includes
compression decision and GPU settings for (de)compression opera-
tions. The network profile consists of DNN type, tensor sparsity (P for
dense DNNBs), size, and execution time of layers. The control command
manages tensor profiles.

TABLE 2
Parameters in the swapping cost model.

Notation Parameter froﬁhng
requence
Sizet Size of tensor ¢ Once
Effective PCle bandwidth from
BWhaa CPU to GPU Once
Effective PCle bandwidth from
BWazn GPU to CPU Once
Hiddent Overlapped swapping latency in Once
f forward propagation of tensor t
Hiddent Overlapped swapping latency in Once
b backward propagation of tensor t
p Lossy compressor parameter for | Once per
dense DNNs epoch
. Sparsity of tensor t for sparse | Once per
t
Sparsity DNNs epoch
Timel Compression time of tensor ¢ Offline
Time?,, Decompression time of tensor ¢ Offline

default DNNs. Then, we explain how it determines the cost-
effectiveness of tensor compression. To make our framework
portable and compatible with different GPU architectures,
we implement all components of CSWAP+ in an existing
machine learning software framework.

5.1

CSWAP+ consists of three components including tensor pro-
filer, execution advisor, and swapping executor as shown in
Figure 4. The tensor profiler is executed when a new DNN
training task is submitted for the first time. DNN train-
ing process usually consists of multiple iterations. During
the first iteration, it scans the DNN architecture to judge
whether the tensors are sparse or not (i.e., using ReLU
activation or other activations) and then collects their profile
information for different kinds of tensors.

For sparse tensors, the tensor profiler collects the profile
including tensor size, tensor sparsity, execution time of
each DNN layer without compression, and effective data
transfer bandwidth of PCle links. For dense tensors, the
tensor profiler collects the same information except tensor
sparsity. Additionally, to determine the proper parameter
in the final lossy compression, it records the compression
ratios with different compression parameters. The detailed
profile information is listed in Table 2.

It is notable that we profile the system real-time PCle
bandwidth instead of the manufacturer-claimed bandwidth
because the effective bandwidth is usually affected by other

Overview of Software Architecture
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factors (e.g., the available PCle links on the motherboard
and the number of GPUs in the system). Most values in a
DNN profile are unique and fixed under the same GPU and
system configurations. To minimize the profiling overhead,
we execute the tensor profiler to collect the sparsity only once
in each epoch. Then the profiling data are stored in an in-
memory database for retrieval with low latency.

The execution advisor is executed to fetch DNN profiles to
decide which compression algorithms to use and whether to
compress a tensor for swapping. Finally, the swapping execu-
tor selects proper tensors, exploits multiple GPU threads to
execute compression in parallel before swapping from GPUs
to CPUs, and executes decompression after swapping back
from CPUs to GPUs.

5.2 Efficient Tensor Compression Algorithms

To compress tensors, CSWAP+ needs efficient compression
algorithms that are easy to be implemented on GPUs.
CSWAP+ executes tensor (de)compression using multipro-
cessing units in the GPU in parallel to further reduce the
(de)compression time. CSWAP+ integrates both lossless and
lossy compression into the framework. In this section, we
will discuss the corresponding algorithms for lossless and
lossy compression, respectively.

5.2.1 Lossless Compression for Sparse Tensors

CSWAP+ applies a lossless compression algorithm to sparse
tensors that are not in use and to be swapped out from
GPUs. This compression is relatively straightforward and
the DNN training accuracy keeps unchanged as the default
training without compression because no float accuracy loss
occurs in the compression.

CSWAP+ currently supports four lossless algorithms:
run-length encoding (RLE) [22], compressed sparse row
(CSR) [23], LZ4 [24], and zero-value compression (ZVC) [17].
RLE stores data sequences where the same value occurs in
many consecutive positions as a single value and count to
reduce data size. For example, it can compress an origi-
nal sequence (A0000000) to (A70), decreasing the sequence
length from 8 to 3. However, it will increase the original
sequence size when the length of consecutive zeros cannot
be efficiently reduced. CSR compresses an original sequence
as a non-zero value sequence and an additional index
representing the locations of non-zero values. For example,
a sequence (AOOB0OC000) can be compressed as (ABC) and
(035). LZ4 uses a dictionary-matching stage to reduce data
size. For example, a string (abcde_bcde) can be compressed
as (abcde_(5,4)), where 5 denotes the position how far back
the redundant string (bcde) can be found and 4 denotes the
length of the matched string. Similar to CSR, ZVC stores a
float sequence as non-zero values and additional indexes.
Instead of using a float as an index for each non-zero value,
it utilizes a 32-bit bitmap as the index for 32 consecutive
floats. It improves computation speed because of fewer
index operations and higher compressibility for less index
space overhead.

There is a tradeoff between computation and compress-
ibility for these compression algorithms. The efficiency of
an algorithm also depends on the sequence patterns. These
algorithms are widely used since they have a relatively high

compression ratio. Because PCle bandwidth is limited, we
observe that CSWAP+ favors the most efficient algorithm
(i.e.,, ZVC). This is because ZVC uses a compact bitmap
data structure to index compressed data. For example, its
memory overhead is only 3% compared to 50% for CSR (i.e.,
compressing data of 50% sparsity). As a result, swapping
using ZVC for sparse tensors achieves lower latency. Cur-
rently we implemented these four compressors for GPUs
and study their performance. We wish to support more
compression algorithms in future work.

5.2.2 Lossy Compression for Dense Tensors

Different from the lossless compression, the lossy compres-
sion may significantly degrade the model training accuracy
due to the nature of the compression algorithm, therefore
the lossy compression scheme needs to be designed care-
fully.

In CSWAP+, we choose ZFP [36] as the lossy compressor
because of its higher throughput than SZ compressor [44],
[47] and its configurable interface. ZFP provides a param-
eter, i.e., P in Table 2, for users to control the desired
compression ratio for the tensor, making our design flexible
to achieve a trade-off between swapping performance and
model accuracy. A large P means a small compression ratio,
and vice versa. ZFP provides a maximum value of P, ie.,
MAX, as the upper bound of P. For a given P, the tensor
size after compression is 5,5 of its original size.

However, there are two challenges to set the proper P for
the tensor compression during the entire training process.
First, a small P may bring a large compression ratio, i.e.,
high swapping performance owing to the small compressed
tensor size, but it may be at the cost of low DNN training
accuracy, and vice versa. Second, a fixed P for all epochs
may lead to sub-optimal performance or accuracy. The DNN
training consists of multiple epochs. We experimentally
observe that the model training accuracy is more sensitive to
the float accuracy at the beginning epochs but less sensitive
at the latter epochs (Section 6.4). Therefore, a fixed P cannot
achieve the best trade-off between training performance and
accuracy.

To overcome these issues, we first propose a scheme to
shrink the wide parameter range for improving swapping
performance. The main idea is to drop parameters that can-
not yield any performance benefits. It divides the parameter
range into three parts: 0-Bottom, Bottom-Top, and Top-
MAX. We assume that a parameter larger than Top will
not bring performance benefits since the compression ratio
is too low to reduce swapping latency. We also assume a
parameter smaller than Bottom should be excluded since
the swapping time has been fully hidden by the computing
time and thus further reducing the tensor size is useless. The
practical parameter should fall into Bottom-T op.

Algorithm 1 shows the detailed process to calculate the
parameter range. After the initialization (Line #1), CSWAP+
finds Bottom and Top for each tensor using a bisection
method. Specifically, to get the T'op, CSWAP+ updates the
Mid constantly until the time benefit (Benefit(t, Mid)) is
just larger than the compression and decompression over-
head (i.e., cost) (Line #3-14). The time benefit is calculated
as the swapping overhead reduction when the tensor is
compressed. To get Bottom, CSWAP+ updates the Mid



SUBMISSION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

Algorithm 1 Determine the parameter range through Bisec-

tion Search.

Require: Time_model(t, P): the time cost model to predict
compression and decompression time; Benefit(t, P):
get the time benefit when swapping tensor ¢t compressed
under the compressor parameter P; Hidden(t, P): judge
whether tensor swapping is fully overlapped with DNN
computing;

1: Top =0, Bottom = MAX
2: fort=0,1,...,N —1do > N tensors
3: left =1, right = MAX > initialization.
4: while e ft < right do > search for the upper bound.
5: Mid = (left + right +1)/2
6: Timet, Timel,, < Time_model(t, Mid)
7: cost = Time!, + Time!,,
8: if Benefit(t, Mid) < cost then
9: right = Mid — 1
10: else
11: left = Mid
12: end if
13: end while
14: top = M AX (top,left) > get the T'op
15: left =1, right = MAX > initialization.
16: while le ft < right do > search for the lower bound.
17: Mid = (left + right +1)/2
18: Timet, Timel,, < Time_model(t, Mid)
19: cost = Time’, + Time!,,
20: if Hidden(t, Mid) == False then
21: right = Mid — 1
22: else
23: left = Mid
24: end if
25: end while
26: bottom = MIN (bottom,le ft) > get the Bottom
27: end for
28: if T'op >Bottom then
29: return T'op, Bottom, True
30: end if

w
—_

: return Top, Bottom, False

until this tensor swapping is just fully hidden in the DNN
computing through Hidden(t, Mid) function (Line #15-26).
Finally, if T'op is larger than Bottom, CSWAP+ uses the lossy
compressor for DNN tensors and returns True (Line #28-
30). Otherwise, CSWAP+ will not execute the lossy compres-
sion because compression does not yield any benefits for the
DNN training (Line #31).

Once the parameter range is determined, we then design
a sliding down scheme to choose the parameter within the
range for optimized model training accuracy. The idea is
to gradually decrease the parameter as the number of epoch
increases. Specifically, we set P to T'op in the first epoch, and
then decrease it by AP each interval until it reaches Bottom.
The P of each epoch can be calculated by Equation 1, where
Epoch,, denotes the current epoch’s number (ie., 0, 1, ..,
n-1). AP is calculated by Equation 2, where Epoch denotes
the number of user-customized epochs (i.e., n). For example,
supposing T'op is 100, Bottom is 20, and the model needs
to train 90 epochs, then AP is set to 1. Therefore, we will
initialize P as 100 at the beginning, and decrease it to 99

in the next epoch, until it reaches 20 in the 81st epoch.
Then, the parameter stays at 20 until the end of the training.
Compared to the schemes with a fixed parameter, such a dy-
namic method can improve tensor swapping performance
with nearly no accuracy loss, as shown in Section 6.4.

P = max(Top — Epochcur X AP, Bottom) 1)
Top — Bott

AP = [u + 0.5], AP € integer (2)
Epoch

5.3 Determining Cost-Effectiveness of Tensor Com-
pression

For both sparse and dense tensors, with the changing tensor
compression ratio and size, the cost-effectiveness of tensor
compression for swapping should be dynamically deter-
mined. To achieve this goal, we build a model of swapping
cost to evaluate the cost-effectiveness of tensor compression
at runtime. The related parameters are listed in Table 2.
Given a tensor ¢t with Size! and Sparsity® or P, we de-
termine its cost-effectiveness of compression by comparing
the swapping cost with compression 7' to the swapping cost
without compression T”. If T/ > T, a compression plan
for the tensor t will be generated and forwarded to the
swapping executor; otherwise, no compression is needed.
As shown in Figure 1(a), 7" is the data transfer time
that cannot be hidden from DNN propagation time (i.e.,
the portion with shade and slash in the timeline). Conse-
quently, we use the Equation 3 to compute 7”. Hidden; and
Hidden}, are the DNN forward and backward propagation
times, respectively. They are collected by the tensor profiler.
If the swapping latency can be hidden behind the DNN
propagation time, the value of 7" can be effectively 0.

Size
BWhaq

Size!
BWaan

— Hiddeny, 0)
©)
Equation 4 computes the tensor swapping cost when
compression is used. Time! and Time!,, are determined
by the tensor characteristics and compression algorithms.
They are computed by the tensor profiler using a machine
learning model as described in Section 5.4. Oy and Oy are
the portion of the compressed data transfer time that cannot
be effectively hidden from the DNN propagation time (as
Equation 5 — 7). If the compressed tensor is adequately
small, Time!. and T'imel;, will dominate in T'.

T’ = max( — Hidden, 0) 4+ max(

T = Time’. + Time’, + Of + Oy (4)
0; — max(SECom _ priddent;, o) 5)
7 = max( =g iddeny,
1o (5ZComp _ priadent o) ©)
b = max(—gres iddeny,,
Size! _ Sizet x ﬁ, DNN € Density
comp Size' x (1 — Sparsity'), DNN € Sparsity

@)
CSWAP+ uses the swapping cost model in DNN training.
At beginning of the DNN training, the tensor profiler collects
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the effective data transfer bandwidth of the PCle link of
the current system, judges the tensor type (i.e., sparse or
dense), and records the tensor size (Size!). Then it detects
the tensor compression ratio and records the hidden latency
(Hidden?). Based on these data, the execution advisor makes a
preliminary decision for all tensors. During the training, the
tensor may change. To calculate the exact compression ratio,
for sparse tensors, CSWAP+ will collect the tensor sparsity
in each epoch, while recording P in each epoch for dense
tensors. The execution advisor then asks the tensor profiler for
the latest results generated by the cost model, including
Time! and Time!,. T’ and T are then re-computed for
updating tensor compression decisions.

5.4 Prediction of (De)compression Time

To dynamically determine the tensor compression plan, the
execution advisor of CSWAP+ needs to predict the compres-
sion time T'ime’. and decompression time Time’,, given ten-
sor size, sparsity for sparse tensors (or P for dense tensors),
and compression algorithms. We experimentally observe
that the tensor size and compression ratio have a linear
relationship with Time! and Time!, . This is because the
compression (decompression) time is dominated by the data
searching time, which is greatly related to the compression
ratio. Therefore, CSWAP+ models the relationship offline
using linear regression algorithms [49]. The (de)compression
time model is then used to predict Time! and Time!,
online. To have comprehensive coverage of tensor charac-
teristics, we develop a synthetic tensor generator which can
output tensors of different sizes and compression ratios.

Specifically, we use the following steps to build and
deploy a (de)compression time model. We first collect data
samples for training the time model. Each training sample
includes the following measures: tensor size, tensor com-
pression ratio, compression algorithm, Timel, and Time,.
For lossless compressors, we calculate the compression ratio
with tensor sparsity (i.e., Sparsity'). In the experiments, we
find that randomly sampling the tensor size and compres-
sion ratio will likely over-fit the models. To solve the prob-
lem, we only train models using samples whose sparsity
falls between 20% and 80% because we observe that tensor
sparsity is mostly located in this range as shown in Figure 2.
For lossy compressors, we use 1 — P/M AX to calculate the
compression ratio. We scan all the possible values of P to
make the performance model cover all compression ratios
because each of them may appear.

Second, to improve the model accuracy, CSWAP+ trains
n sub-models. Sub-model i is trained using samples whose
compression ratio is in [Ratiopese + R * i/n, Ratiopgse +
R (i 4+ 1)/n), where 0 < i <n, and R is a percentage to
represent the compression ratio range. For example, for the
sparse tensors with range [20%, 80%] sparsity, we will set
Ratiopgse as 20% and R as 60%. For dense tensors, we will
set Ratiopgse as 0 and R as 100%. After training, the sub-
models are combined to form a holistic model which is then
deployed for inference. In training, we vary the tensor size
from 20 MB to 2000 MB in addition to the changes of tensor
sparsity or parameter P. Third, the (de)compression time
model is stored in the in-memory database for retrieval.

TABLE 3
Batch size configurations for different models, GPUs(V100 or 2080Ti),
and datasets (CIFAR10 or ImageNet).

CIFAR10- | ImageNet-| CIFAR10- | ImageNet-

DNN Model | 45, Vlog 2080Ti ZOSOgTi

AlexNet 2560 512 2560 256

VGG16 7560 128 2560 32
MobileNet | 2560 128 1280 32

Plain20 2560 32 1024 -

ResNet 2560 [ 1280 16
SqueezeNet | 2560 512 1280 128

6 EVALUATION

To demonstrate the performance of CSWAP+, we implement
its prototype in Torch 1.5.1. To achieve parallel swapping,
we create an asynchronized cuda stream using cudaStream-
CreateWithFlags() and use cudaMemcpyAsync() to transfer
data. Furthermore, we add GPUcompression() as the kernel
compression function into CSWAP+, then set GPUdecompres-
sion() for decompressing. However, the frequent GPU/CPU
memory allocation/free decreases the performance severely.
To solve this problem, we use memory pool functions in
Torch, getCUDADeviceAllocator() and getPinnedMemoryAllo-
cator() to avoid using the expensive cudaMalloc() and cud-
aMallocHost() functions.

Experimental platforms. Our experiments are con-
ducted on two CPU-GPU hybrid servers. The first is
equipped with a 2.60 GHz Intel(R) Xeon(R) Gold 6126 CPU
and 32 GB main memory. Besides that, it has an NVIDIA
Tesla V100 GPU with 32 GB GPU memory. The second
server has two 2.10 GHz Intel(R) Xeon(R) Gold 5218R CPUs,
128 GB main memory, an RTX 2080Ti GPU, and 11 GB GPU
memory. The CPU and GPU on a server are connected via
the PCle 3.0x16 bus. The first server (V100) has a higher
peak compute capability than the second one (2080Ti). In
both servers, we run Ubuntu-18.04, CUDA 10.0.13, CuDNN
7, and Torch 1.5.1.

Workloads and datasets. To show the effectiveness
of our approach for extensive workloads, we eval-
uate CSWAP+ with four [linear sparse DNN models
(i.e., AlexNet [1], Plain20 [50], VGG16 [26], and Mo-
bileNet [51]), and two non-linear models (i.e., ResNet [27]
and SqueezeNet [52]). We use ReLU and Leaky ReLU Ac-
tivations in the DNN models to generate sparse and dense
tensors, respectively. In the evaluation section, we name the
models with ReLU as sparse DNNs and the models with
Leaky ReLU as dense DNNs. We tune the parameters of these
DNN models (e.g., learning rate and optimizer) based on the
specifications in the related papers and documents [1], [26],
[27], [50]-[52] and configured training batch sizes are shown
in Table 3.

We use two representative datasets to cover different
data sizes. The CIFAR10 [53] dataset is a collection of 60,
000 (50, 000 for training and 10, 000 for testing) labeled color
images (32 x 32 pixels each). The ImageNet [54] is a large
dataset. It has 1.4 million 224 x 224 pixel images across
21841 non-empty synsets.

DNN frameworks for comparison. We compare
CSwAP+ with the state-of-the-art GPU memory swap
frameworks, vDNN [14], vDNN++ [21], and ¢cDMA [17].
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The vDNN scheme offloads all convolution input tensors
from GPUs to CPUs and prefetches them back through
overlapping data transfer with computation. However, there
is no data (de)compression in the tensor swapping be-
tween GPUs and CPUs. The vDNN++ scheme only com-
presses sparse tensors on host CPUs to reduce the size of
pinned memory. Although there are two other techniques
in vDNN++, we omit them in our implementation since
they are orthogonal to our design of CSwAP+. To make
(de)compression more efficient, we use 64 threads in CPUs
to compress and decompress the tensors when the spar-
sity is more than 60%. Because cDMA [17] relies on the
specific (de)compression units which are not available in
markets, we implement an emulated cDMA scheme, ie.,
static compression (SC), which uses GPUs to emulate the
(de)compression units in memory controllers and applies
the lossless and lossy compression algorithms without effec-
tiveness analysis. In the evaluation, we compare CSWAP+ to
SC instead of cDMA.

6.1 General Results

Figure 5 and Figure 6 show the system throughputs of
different frameworks on different GPUs and datasets across
sparse DNNs and dense DNNSs, respectively. For compari-
son, the throughput (samples/ms) is normalized to that of
vDNN.

6.1.1 Results for Sparse DNNs

Figure 5(a) shows the system throughput when training the
sparse DNNs on V100 with the CIFAR10 dataset. Over-
all, CSwAP+ outperforms vDNN and vDNN++ by 25%
and 190% on average with sparse DNNs. We also have
the following observations. First, compared to vDNN,
CSWAP+ improves the model training time by up to 31%
for sparse models. CSWAP+ is better than vDNN because it
uses dynamic compression to reduce tensor transfer time
while vDNN transfers the original tensors regardless of
their compression ratio, leading to high data transfer cost
in swapping. Second, compared to vVDNN++ on sparse
models, CSWAP+ increases system throughput by up to
470% on AlexNet and reduces the model training time by
up to 445ms on ResNet. This is because VDNN++ only
compresses and decompresses tensors on the host side after
tensor swapping. It does not reduce data transfer time by
compressing tensors in GPUs.

Figure 5(b) shows the system throughput when training
the models with the same dataset CIFAR10 but on a different
GPU 2080Ti, which has lower peak compute capability
than V100. The system throughput is decreased by 9% on
average for all the sparse models compared to the results on
V100. The decreased throughput stems from two reasons.
First, effective data transfer bandwidths are not the same
for the two GPU platforms because they have different GPU
and CPU memory configurations. We have examined such
bandwidths using the NVIDIA bandwidthTest tool [55]. The
effective host to device and device to host bandwidths are
10.6 GB/s and 11.7 GB/s respectively on V100 and 11.8
GB/s and 12.9 GB/s respectively on 2080Ti. The higher ef-
fective data transfer bandwidth in 2080Ti alleviates the data
transfer bottleneck in the DNN training process. Second,

2080Ti has a lower performance than V100. The computation
time of DNN models on 2080Ti is relatively longer. As
a result, CSWAP+ has a better chance to hide the data
transfer time behind the computation time, decreasing the
data transfer overhead.

To show the effectiveness of CSWAP+ on different
datasets, we train the models on the large dataset ImageNet.
Figure 5(c) and Figure 5(d) show the system throughput of
CSwAP+ for all the models on V100 and 2080Ti, respectively.
Overall, compared to the CIFAR10 dataset, ImageNet leads
to similar performance trends on the two GPU platforms.
The experiments show that the model training time is
reduced by 20.3% and 16.9% on average on V100 and
2080Ti respectively. These results show that our approach is
effective for the ImageNet dataset. In Figure 5(d), we do not
display the performance results for the Plain20 model. This
is because Plain20 is a large model and 2080Ti only has 11GB
GPU memory, which cannot meet the memory requirement
of Plain20 even when the batch size is set to one.

6.1.2 Results for Dense DNNs

Figure 6 shows the throughput results on dense DNNs
under CSWAP+ and VDNN frameworks. In the figure, we do
not show the results of vDNN++ because VDNN++ cannot
work for dense tensors.

Figure 6(a) shows the results on V100 with the CI-
FAR10 dataset. We have two observations. First, compared
to vDNN, CSWAP+ achieves an average 22.5% throughput
improvement with lossy compression. The improvement oc-
curs because CSWAP+ reduces tensor transfer cost in swap-
ping through dynamic lossy compression. Second, CSWAP+
brings different improvements for different models. For
example, CSWAP+ improves the training throughput by
29% and 31% for AlexNet and Plain20, respectively, while
it only achieves the improvement by up to 21% on other
dense models. The main reason is that the data swapping
time dominates in the training time for AlexNet and Plain20
(71% and 73% of the total model training time). For other
models, the data transfer time accounts for less than 50% of
the training time.

Figure 6(b) shows the throughputs of different swapping
frameworks on 2080Ti under the same dataset CIFARI0.
Similar to the previous results in Figure 6(a), CSWAP+ still
outperforms VDNN: CSWAP+ improves the DNN train-
ing throughput by 13% on average. However, CSWAP+
achieves relatively less throughput improvement on 2080Ti
compared to the improvements on V100 (13% vs. 22.5%).
The improvement decreases mainly because the lower GPU
performance on 2080Ti increases the computing time and
thus brings more chances to hide the data transfer time,
making the benefits of data compression in data swapping
less significant.

Figure 6(c) and Figure 6(d) show the experimental re-
sults on ImageNet. CSWAP+ yields similar trends on the
two GPU platforms with ImageNet compared to CIFAR10.
Overall, The dense model training time is reduced by 19.7%
and 16.5% on average under V100 and 2080Ti, respectively.
These results indicate that CSWAP+ is effective for the Im-
ageNet dataset with lossy compression. Moreover, we also
observe that CSWAP+ obtains more performance benefits
on the DNNs whose swapping times dominate their overall
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Fig. 5. The performance comparison of four different GPU virtual memory management frameworks. We conduct the experiments with six sparse
DNN models on two datasets (CIFAR10 and ImageNet) and two GPUs (V100 and 2080Ti). The caption of each subfigure denotes its dataset and

GPU configuration.
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Fig. 6. The performance comparison of CSWAP+ and vDNN on dense DNNs. We conduct the experiments with six models using Leaky RelLU
activations on two datasets (CIFAR10 and ImageNet) and two GPUs (V100 and 2080Ti).

training times than other models. For example, CSWAP+
performs the best on AlexNet and improves its training
throughput by 43% and 37% on V100 and 2080Ti, respec-

tively.

6.2 Effectiveness of Dynamic Tensor Compression

To further evaluate the effectiveness of CSWAP+, we com-
pare its training time to that with SC, which is a replica
of cDMA using GPUs. Note that cDMA cannot work for
dense tensors, so we empower cDMA with the capability
of compressing dense tensors by replacing the lossless algo-
rithm with a lossy compressor to analyze the effectiveness
of the dynamic compression in CSWAP+. While CSWAP+
performs (de)compression in tensor swapping based on
the cost-effectiveness analysis of tensor compression, SC
blindly compresses all tensors in DNNs by switching off
effectiveness analysis. We train the models on V100 and
2080Ti with CIFAR10 and ImageNet.

We show the experimental results in Figure 7. We can
observe that for the models containing sparse tensors,
CSWAP+ improves the performance by 5.5% and 5.1% on

average compared to SC for all the models except Plain20
on V100 and 2080Ti, respectively. The maximal performance
improvement brought by CSWAP+ can be 12.5% and 10.7%
on the two GPUs respectively. Because tensors in all ReLU
layers of Plain20 are sparse and have a larger size on average
than other models, CSWAP+ determines that tensors in all
the layers of Plain20 need to be compressed. As a result,
CSWAP+ has the same performance as SC. For the models
with dense tensors, CSWAP+ improves the performance
by 9% and 8.4% on average on the two GPU platforms.
Similarly, since the 11GB memory on 2080Ti GPU cannot
support the Plain20 training, we do not show the result with
ImageNet on 2080Ti GPU.

Figure 8 shows the number of layers whose tensors are
compressed with CSWAP+ during the training of AlexNet,
VGG16, MobileNet, and SqueezeNet. For lossless compres-
sion, we have two observations from Figure 8(a). First,
the number of such layers tends to increase while epochs
are increased. Let’s use VGG16 as an example, as shown
in Figure 9(a), the number of its layers executing tensor
(de)compression is increased from 5 at epoch 0 to 9 at
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Fig. 7. Performance improvement of CSWAP+ over the static compres-
sion (SC) scheme.
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Fig. 8. The number of layers executing tensor compression for four DNN
models for every epoch in their training processes.

epoch 48. This is because as epochs are increased, the
tensors in more layers become sparse enough to trigger the
(de)compression operations in CSWAP+ for reducing data
transfer overhead in swapping. However, some layers may
never be compressed during the model training. Taking the
VGG16 as an example, since the tensor in MAX4 always
has low sparsity (i.e., lower than 45%) and the tensors
in ReLU7 and ReLUS8 are relatively small, which make
the compression cost-ineffective, these layers are never be
compressed, as shown in Figure 9(a). Second, models have
distinct characteristics that lead to varied tensor compres-
sion decisions. For instance, the number of layers executing
tensor (de)compression for MobileNet does not change too
much as the epochs are increased because its tensor sparsity
changes slightly as shown in Figure 8(a). For SqueezeNet,
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Fig. 9. VGG16 layer-wise compression detail. The x-axis denotes the
training epoch and y-axis represents all the layers in the model. The
black dot denotes that the tensor of this layer needs to be compressed
while the white dot means that the tensor is only transferred without
compression.

there exist two tensors whose sparsity is decreased between
epoch 5 and epoch 17 and is increased after epoch 17. The
reason for the fluctuation is that their model convergence
may change during training.

Figure 8(b) shows the experimental results for lossy com-
pression. We observe that as the epoch number increases,
more tensors are compressed for lossy compression. This
is because CSWAP+ adapts a gradually increasing com-
pression ratio (by decreasing the parameter P) during the
training, which will reduce the swapping time and increase
the swapping benefit, thus more tensors are worth being
compressed as the number of epoch increases. Figure 9(b)
shows the details of layer-wise compression on VGG16. It
is also notable that some tensors are not compressed from
beginning to end (i.e., one tensor for MobileNet and two
for SqueezeNet). This is because the swapping of these
tensors can be fully hidden into the normal DNN training
without compression. Besides the four models, the other
three models show their own characteristics concerning the
number of layers having compressed tensors. Because of the
space limitation, we do not show their curves in Figure 8.

6.3 (De)compression Time Model Verification

An  important component of CSWAP+ is the
(de)compression time model, which influences the
effectiveness of its execution advisor (Section 5). We
compare the linear regression (LR) model in CSwWAP+ for
(de)compression time modeling to three other regression
models including bayesian regression (BR) [56], support
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Fig. 11. The compression decision accuracy based on the LR model.

vector machine (SVM) [57], and decision tree (DT) [58]
from scikit-learn [59]. To evaluate prediction accuracy,
we use relative absolute error (RAE) which is defined as
%, where N is the size of test samples, y; and y;
aré:f)redicted and measured values respectively, and y; is
the mean value of y;.

CSWAP+ currently supports four lossless compression
algorithms, i.e.,, RLE, CSR, LZ4, and ZVC, and a lossy
compression algorithm, i.e., ZFP. For each lossless algo-
rithm, we generate a total of 3000 sparse tensors, whose
compression ratio ranges between 20% to 90%. For the lossy
algorithm, we generate the same number of samples with
all compression ratios (i.e., 0 to 100%). The sample sizes are
varied from 20 MB to 2000 MB as real DNN training tensors.
We train all the models with the same collected 3000 test
samples for fairness. As shown in Figure 10, LR achieves
the best prediction accuracy. Its mean relative absolute error
for compression and decompression time prediction is only
2.7% on average, which is 61% and 64% smaller than those
of BR and SVM respectively.

We also evaluate the compression decision accuracy
based on the swapping cost model for both sparse and
dense tensors, which relies on the LR model. CSWAP+ uses
the swapping cost model to make a tensor compression
decision. If the decision based on the swapping cost model
matches the decision based on the measured time at runtime
for a tensor compression, we regard the decision as correct.
We define decision accuracy as the ratio of the number of
correct decisions to the number of all decisions. We train
the six DNN models and show the decision accuracy in
Figure 11. We observe that the decision accuracy using the
swapping cost model is 93.5% on average.

6.4 DNN Training Accuracy under Lossy Compression

In CSWAP+, we use a sliding down scheme to set the com-
pressor parameter from Top to Bottom for dense tensors
during the training (Section 5.2.2). To verify the effectiveness
of such dynamic lossy compression, we compare its accu-
racy with four counterparts: the default framework without

1004 -- Default — CSWAP+ -- ZFP-64
-- ZFP-32 ~ Inverse Scheme T
S
- 75
9
o
3 501
< /
j/// 8640 45 50
25 = T T T T T
0 10 20 30 40 50
# epoch

Fig. 12. The VGG16 accuracy with different compression schemes on
CIFAR10. ZFP-32 and ZFP-64 denote that the compressor parameter is
fixed at 32 and 64.

any accuracy loss, ZFP parameter fixed schemes (i.e., ZFP-
64 and ZFP-32), and the Inverse Scheme which increases the
value of lossy compressor parameter P as the epoch number
is increased.

We train the VGG16 model using the Leaky ReLU acti-
vation and record the training accuracy at the end of each
epoch. As Figure 12 shows, CSWAP+ achieves the compara-
ble DNN accuracy as the default framework. Furthermore,
CSWAP+ brings better DNN accuracy than the schemes
with a fixed parameter: it has 89.3% accuracy while ZFP-
64 and ZFP-32 achieve 88.2% and 87.5% in the end, respec-
tively. CSWAP+ outperforms the two counterparts because
CSwAP+ adopts the gradually decreasing parameter, which
may always lead to negligible accuracy loss during the
entire training process, while the two baselines use a fixed
parameter, which may lead to more accuracy loss in the
beginning training epochs.

To explain why we design CSWAP+ as a sliding down
scheme, we also compare CSWAP+ with the Inverse Scheme.
It is notable that CSWAP+ always achieves better accuracy
than the Inverse Scheme in all the training periods (i.e.,
1.7% more accuracy). CSWAP+ achieves higher accuracy
than Inverse Scheme because the DNN training accuracy is
more sensitive to the float accuracy in the beginning epochs
and becomes less sensitive to it in the latter epochs. The
sliding down scheme used in CSWAP+ gradually decreases
the value of P and increases the compression ratio. In this
way, it will take less float accuracy loss at the beginning
of the training, leading to less training accuracy loss. In
contrast, the Inverse Scheme gradually increases the value
of P, which will cause more float accuracy losses in the
beginning of the training process and thus lead to more
training accuracy degradation. We only show the result of
VGG16 because other DNNs show a similar trend.

6.5 DNN Training Accuracy for Different Activations

There are several popular activation functions used in deep
learning, such as ReLU, ELU, Tanh, and PReLU. The first
activation generates sparse tensors and the latter three
generate dense tensors. To verify the effectiveness of the
lossy compression in CSWAP+, we evaluate the training
accuracy of DNNs with the lossy compression in CSWAP+
for different activation functions.

We train VGG16 with ReLU, ELU, Tanh, and PReLU
activations for 50 epochs. We compare CSWAP+ to Default,
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Fig. 13. The accuracy of VGG16 using different activations on Cl-
FAR10. The Default baseline means the DNN training without enabling
CSWAP+.

which does not use compression in swapping. As shown in
Figure 13, for all activations, CSWAP+ achieves comparable
accuracy as Default. Specifically, it achieves the average
accuracy of 87.01% across the four DNNs while Default
yields 87.05% accuracy. This result shows that CSWAP+
works effectively for all the activations and thus can ben-
efit different DNNs. Moreover, we observe that the lossy
compression in CSWAP+ also works well for sparse tensors.
For example, applying the lossy compression to the sparse
tensors generated by ReLU causes nearly no accuracy loss,
as shown in Figure 13(a). In this paper, we use the lossless
compression for sparse tensors because the performance
improvement of the lossless compressor is larger than that
of the lossy compressor, as shown in Figure 5 and Figure 6.

6.6 Overhead Discussion

CSWAP+ introduces the following overheads. However, the
overheads are either negligible compared to the overall
training time or can be amortized over the training.

Runtime overhead. The profiling of tensor characteris-
tics in CSWAP+ introduces overhead to the model training
process. To make an effective decision with minimum run-
time overhead, CSWAP+ is set with a fine-grained detecting
cycle (i.e., each epoch). Because the hidden time and tensor
size do not change across epochs, CSWAP+ only needs
to update Sparsity'/P, Time!, and Time!,, periodically
to make dynamic decisions. For sparse DNNs, CSWAP+
utilizes GPU multi-cores to profile tensor sparsity (e.g., only
8 ms overhead every 10 sec for training VGG16). Besides,
one prediction of Time’, or Time!,, is only 1 ms which is
negligible compared to the overall training time.

Offline overhead. CSWAP+ needs to determine the com-
pression ratios of each epochs for dense DNN models. It
calculates the parameter range once by running Algorithm 1
within average 280ms. Further, CSWAP+ needs to train a
(de)compression time model of tensor compression offline
as discussed in Section 5.4. It only takes on average 6
minutes to generate all training samples and 25ms to build
the time model because of the lower complexity of the linear
regression method used in the paper.

7 CONCLUSION

In this paper, we present CSWAP+, a self-tuning com-
pression framework to reduce data transfer overhead in
tensor swapping. First, it does not require additional
(de)compression units in memory controllers of GPUs or

expertise in setting GPU parameters for effectively execut-
ing (de)compression. Second, it integrates both lossless
and lossy compressions into the framework and accelerates
DNN training with negligible model accuracy loss. Third,
it uses the cost model of tensor swapping to selectively
apply (de)compression to tensors according to the cost-
effectiveness of tensor compression at runtime. We exper-
imentally demonstrate that CSWAP+ offers lower swapping
latency and higher training throughput for both sparse
and dense DNN models than the existing tensor swapping
frameworks.
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