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DATA SCIENCE COVERS the full spectrum of deriving 
insight from data, from initial data gathering and 
interpretation, via processing and engineering of data, 
and exploration and modeling, to eventually producing 
novel insights and decision support systems.

Data science can be viewed as overlapping or broader 
in scope than other data-analytic methodological 
disciplines, such as statistics, machine learning, 
databases, or visualization.10

To illustrate the breadth of data science, consider, 
for example, the problem of recommending items 
(movies, books, or other products) to customers. 
While the core of these applications can consist of 
algorithmic techniques such as matrix factorization,  
a deployed system will involve a much wider range  
of technological and human considerations.  
These range from scalable back-end transaction 
systems that retrieve customer and product data in 
real time, experimental design for evaluating system 
changes, causal analysis for understanding the effect 

of interventions, to the human factors 
and psychology that underlie how cus-
tomers react to visual information dis-
plays and make decisions.

As another example, in areas such 
as astronomy, particle physics, and 
climate science, there is a rich tradi-
tion of building computational pipe-
lines to support data-driven discovery 
and hypothesis testing. For instance, 
geoscientists use monthly global 
landcover maps based on satellite 
imagery at sub-kilometer resolutions 
to better understand how the Earth’s 
surface is changing over time.50 These 
maps are interactive and browsable, 
and they are the result of a complex 
data-processing pipeline, in which 
terabytes to petabytes of raw sensor 
and image data are transformed into 
databases of automatically detected 
and annotated objects and informa-
tion. This type of pipeline involves 
many steps, in which human deci-
sions and insight are critical, such as 
instrument calibration, removal of 
outliers, and classification of pixels.

The breadth and complexity of 
these and many other data science sce-
narios means the modern data scien-
tist requires broad knowledge and ex-
perience across a multitude of topics. 
Together with an increasing demand 
for data analysis skills, this has led to a 
shortage of trained data scientists with 
appropriate background and experi-
ence, and significant market competi-
tion for limited expertise. Consider-
ing this bottleneck, it is not surprising 
there is increasing interest in automat-

Automating 
Data Science

DOI:10.1145/3495256

Given the complexity of data science projects 
and related demand for human expertise, 
automation has the potential to transform  
the data science process.

BY TIJL DE BIE, LUC DE RAEDT, JOSÉ HERNÁNDEZ-ORALLO, 
HOLGER H. HOOS, PADHRAIC SMYTH,  
AND CHRISTOPHER K.I. WILLIAMS

 key insights
	˽ Automation in data science aims to 

facilitate and transform the work of data 
scientists, not to replace them.

	˽ Important parts of data science are 
already being automated, especially in 
the modeling stages, where techniques 
such as automated machine learning 
(AutoML) are gaining traction.

	˽ Other aspects are more difficult 
to automate, not only because of 
technological challenges, but because 
open-ended and context-dependent  
tasks require human interaction.

http://dx.doi.org/10.1145/3495256


MARCH 2022  |   VOL.  65  |   NO.  3  |   COMMUNICATIONS OF THE ACM     77



78    COMMUNICATIONS OF THE ACM   |   MARCH 2022  |   VOL.  65  |   NO.  3

review articles

Figure 1. The four data science quadrants used in this article to illustrate different areas 
where automation can take place. 

The vertical dimension determines the degree of dependence on domain 
context, usually introduced through human interaction. The horizontal 
dimension determines the degree to which a process is open-ended. 
Some activities, such as data augmentation and feature engineering, are 
situated in data engineering near the boundary with data exploration.
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tomated machine learning (AutoML). 
However, much of this impact has oc-
curred for modeling approaches based 
on supervised learning, and automa-
tion is still far less developed for other 
kinds of learning or modeling tasks.

Continuing our discussion of Figure 1, 
Data Engineering tasks are estimated 
to often take 80% of the human effort 
in a typical data analysis project.7 Con-
sequently, it is natural to expect that 
automation could play a major role in 
reducing this human effort. However, 
efforts to automate Data Engineering 
tasks have had less success to date 
compared to efforts in automating 
Model Building.

Data Exploration involves identify-
ing relevant questions given a dataset, 
interpreting the structure of the data, 
understanding the constraints provid-
ed by the domain as well as the data an-
alyst’s background and intentions, and 
identifying issues related to data eth-
ics, privacy, and fairness. Background 
knowledge and human judgement are 
key to success. Consequently, it is not 
surprising that Data Exploration poses 
the greatest challenges for automation.

Finally, Exploitation turns action-
able insights and predictions into deci-
sions. As these may have a significant 
impact, some level of oversight and hu-
man involvement is often essential, for 
example, new AI techniques can bring 
new opportunities in automating the 
reporting and explanation of results.29

Broadly speaking, automation in 
the context of data science is challeng-
ing depending on the form it takes, 
ranging in complexity depending on 
whether it involves a single task or an 
entire iterative process, or whether par-
tial or complete automation is the goal.

1.	 A first form of automation—
mechanization—occurs when a task is 
so well specified that there is no need 
for human involvement. Examples of 
such tasks include running a cluster-
ing algorithm or standardizing the val-
ues in a table of data. This can be done 
by functions or modules in low-level 
languages, or as part of statistical and 
algorithmic packages that have tradi-
tionally been used in data science.

2.	 A second form of automation—
composition—deals with strategic se-
quencing of tasks or integration of 
different parts of a task. Support for 
code or workflow reuse is available 

ing parts, if not all, of the data science 
process. This desire and potential for 
automation is the focus of this article.

As illustrated in these examples, 
data science is a complex process, driv-
en by the character of the data being 
analyzed and by the questions being 
asked and is often highly exploratory 
and iterative in nature. Domain context 
can play a key role in these exploratory 
steps, even in relatively well-defined 
processes such as predictive model-
ing (for example, as characterized by 
CRISP-DM5) where human expertise in 
defining relevant predictor variables 
can be critical.

Figure 1 provides a conceptual 
framework to guide our discussion of 
automation in data science, including 
aspects that are already being auto-
mated as well as aspects that are poten-
tially ready for automation. The verti-
cal dimension of the figure reflects the 
degree to which domain context plays 
a role in the process. Domain context 
not only includes domain knowledge 
but also human factors, such as the 
interaction of humans with the tech-
nology,1 the side effects on users and 
non-users, and all the safety and ethi-
cal issues, including algorithmic bias. 
These factors have various effects on 
data understanding and the impact 
of the extracted knowledge, once de-
ployed, and are often addressed or su-

pervised with humans in the loop.
The lower quadrants of Data Explo-

ration and Exploitation are typically 
closely coupled to the application do-
main, while the upper quadrants of 
Data Engineering and Model Building 
are often more domain agnostic. The 
horizontal axis characterizes the de-
gree to which different activities in the 
overall process range from being more 
open-ended to more precisely speci-
fied, such as having well-defined goals, 
clear modeling tasks and measurable 
performance indicators. Data Engi-
neering and Data Exploration are often 
not precisely specified and are quite 
iterative in nature, while Model Build-
ing and Exploitation are often defined 
more narrowly and precisely. In classi-
cal goal-oriented projects, the process 
often consists of activities in the fol-
lowing order: Data exploration, data 
engineering, model building, and ex-
ploitation. In practice, however, these 
trajectories can be much more diverse 
and exploratory, with practitioners 
navigating through activities in these 
quadrants in different orders and in 
an iterative fashion (for example, Mar-
tínez-Plumed et al.31).

From the layout of Figure 1 we see, 
for example, that Model Building is 
where we might expect automation to 
have the most direct impact—which is 
indeed the case with the success of au-
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in more sophisticated tools that have 
emerged in recent years, from interac-
tive workflow-oriented suites (such as 
KNIME, RapidMiner, IBM Modeler, 
SAS Enterprise Miner, Weka Knowl-
edge Flows and Clowdflows) to high-
level programming languages and en-
vironments commonly used for data 
analysis and model building (such as 
R, Python, Stan, BUGS, TensorFlow, 
and PyTorch).

3.	 Finally, a third form of automa-
tion—assistance—derives from the 
production of elements such as vi-
sualizations, patterns, explanations, 
among others, that are specifically tar-
geted at supporting human efficiency. 
This includes a constant monitoring 
of what humans are doing during the 
data science process, so that an auto-
mated assistant can identify inappro-
priate choices, make recommenda-
tions, and so on. While some limited 
form of assistance is already provided 
in interactive suites such as KNIME 
and RapidMiner, the challenge is to ex-
tend this assistance to the entire data 
science process.

Here, we organize our discussion 
into sections corresponding to the four 
quadrants from Figure 1, highlighting 
the three forms of automation where 
relevant. Because the activities are ar-
ranged into quadrants rather than 
stages following a particular order, we 
begin with Model Building, which ap-
pears most amenable to automation, 
and then discuss the other quadrants.

Model Building:  
The Success Story of AutoML
In the context of building models (Fig-
ure 1), machine learning methods fea-
ture prominently in the toolbox of the 
data scientist, particularly because 
they tend to be formalized in terms of 
objective functions that directly relate 
to well-defined task categories.

Machine learning methods have be-
come very prominent over the last two 
decades, including relatively complex 
methods, such as deep learning. Auto-
mation of these machine learning meth-
ods, which has given rise to a research 
area known as AutoML, is arguably the 
most successful and visible application 
to date of automation within the overall 
data science process (for example, Hut-
ter et al.22). It assumes, in many cases, 
that sufficient amounts of high-quality 

data are available; satisfying this as-
sumption typically poses challenges, 
which we address in later sections of 
this article (see Ratner et al.34).

While there are different categories 
of machine learning problems and 
methods, including supervised, un-
supervised, semi-supervised and rein-
forcement learning, the definition of 
the target function and its optimization 
is most straightforward for supervised 
learning (as discussed in “From Ma-
chine Learning to Automated Machine 
Learning”). Focusing on supervised 
learning, there are many methods for 
accomplishing this task, often with 
multiple hyperparameters, whose val-
ues can have substantial impact on the 
prediction accuracy of a given model.

Faced with the choice from a large set 
of machine learning algorithms and an 
even larger space of hyperparameter set-
tings, even seasoned experts often must 
resort to experimentation to determine 
what works best in each use case. Au-
tomated machine learning attempts to 
automate this process, and thereby not 
only spares experts the time and effort 

of extensive, often onerous experimen-
tation, but also enables non-experts to 
obtain substantially better performance 
than otherwise possible. AutoML sys-
tems often achieve these advantages at 
rather high computational cost.

It is worth noting that AutoML falls 
squarely into the first form of automa-
tion, mechanization, as discussed in the 
introduction. At the same time, it can be 
seen as yet another level of abstraction 
over a series of automation stages. First, 
there is the well-known use of program-
ming for automation. Second, machine 
learning automatically generates hy-
potheses and predictive models, which 
typically take the form of algorithms (for 
example, in the case of a decision tree or 
a neural network); therefore, machine 
learning methods can be seen as meta-
algorithms that automate programming 
tasks, and hence “automate automa-
tion.” And third, automated machine 
learning makes use of algorithms that 
select and configure machine learning 
algorithms—that is, of meta-meta-algo-
rithms that can be understood as auto-
mating the automation of automation.

The problem of supervised machine learning can be formalized as finding a function 
f that maps possible input instances from a given set X to possible target values from 
a set Y such that a loss function is minimized on a given set of examples, that is, as 
determining arg min f∈F L(f, E), where F, referred to as hypothesis space, is a set of 
functions from X to Y , L is the loss function, and E is the set of examples (or training 
data), comprised of input instances and target values.

When Y is a set of discrete values, this problem is called (supervised) classification; 
when it is the set of real numbers, it is known as (supervised) regression. Popular loss 
functions include cross-entropy for classification and mean squared error for regression.

In this formulation, different hypothesis spaces F can be chosen for a given 
supervised machine learning task. In addition to the parameters of a given model 
(such as the connection weights in a neural network) that determine a specific  
f ∈ F, there are typically further parameters that define the function space F (such 
as the structure of a neural network) or affect the performance of the model 
induction process (such as learning rates). Generally, these hyperparameters can be 
of different types (such as real numbers, integers or categorical) and may be subject 
to complex dependencies (such as certain hyperparameters only being active when 
others take certain values). Because the performance of modern machine learning 
techniques critically depends on hyperparameter settings, there is a growing need for 
hyperparameter optimization techniques.

At the same time, because of the complex dependencies between hyperparameters, 
sophisticated methods are needed for this optimization task. Human experts not only 
face the problem of determining performance-optimizing hyperparameter settings, but 
the choice of the class of machine learning models to be used in the first place, and the 
algorithm used to train these. In automated machine learning (AutoML) all these tasks, 
often along with feature selection, ensembling and other operations closely related to 
model induction, are fully automated, such that performance is optimized for a given 
use case, for example, in terms of the prediction accuracy achieved based on given 
training data.

From Machine Learning 
to Automated  
Machine Learning
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Figure 2. FlashExtract.27 

After separating attributes by colors, FlashExtract can recognize 
examples (such as Be, 9 and 0.070073; and Ti, 48 and 10.653153) and 
counter examples (such as the part struck through in red), in order to 
induce a program that is able to identify other occurrences of these 
fields and put them in a spreadsheet or table for further processing.

reached by AutoML systems are evident 
in the results from recent competitions.17 
Notably, Auto-sklearn significantly out-
performed human experts in the human 
track of the 2015/2016 ChaLearn AutoML 
Challenge. Yet, results from the same 
competition suggest that human experts 
can achieve significant performance im-
provements by manually tweaking the 
classification and regression algorithms 
obtained from the best AutoML systems. 
Therefore, there appears to be consider-
able room for improvement in present 
AutoML systems for standard supervised 
learning settings.

Other systems, such as the Auto-
matic Statistician,29 handle different 
kinds of learning problems, such as 
time series, finding not only the best 
form of the model, but also its param-
eters. We will revisit this work in the 
section on Exploitation.

The automation of model building 
tasks in data science has been remark-
ably successful, especially in supervised 
learning. We believe the main reason 
for this lies in the fact that these tasks 
are usually very precisely specified and 
have relatively little dependence on the 
given domain (see also Figure 1), which 
renders them particularly suitable for 
mechanization. Conversely, tasks be-
yond standard supervised learning, 
such as unsupervised learning, have 
proven to be considerably harder to au-
tomate effectively, because the optimi-
zation goals are more subjective and do-
main-dependent, involving trade-offs 
between accuracy, efficiency, robust-
ness, explainability, fairness, and more. 
Such machine learning methods, which 
are often used for feature engineering, 
domain understanding, data transfor-
mation, and so on, thus extend into 
the remaining three quadrants, where 
we believe that more progress can be 
obtained using the other two kinds of 
automation seen in the introduction: 
composition and assistance.

Data Engineering:  
Big Gains, Big Challenges
A large portion of the life of a data sci-
entist is spent acquiring, organizing, 
and preparing data for analysis, tasks 
we collectively term data engineering.a 

a	 Data wrangling and data cleansing are 
terms that are also associated with many of 
these stages.

AutoML systems have been gradu-
ally automating more of these tasks: 
model selection, hyperparameter 
optimization and feature selection. 
Many of these systems also deal with 
automatically selecting learning algo-
rithms based on properties (so-called 
metafeatures) of given datasets, build-
ing on the related area of meta-learn-
ing.4 In general, AutoML systems are 
based on sophisticated algorithm 
configuration methods, such as SMAC 
(sequential model-based algorithm 
configuration),21 learning to rank and 
Monte-Carlo Tree Search.33

So far, most work on AutoML has 
been focused on supervised learning. 
Auto-WEKA,41 one of the first AutoML 
systems, builds on the well-known 
Weka machine learning environment. 
It encompasses all the classification ap-
proaches implemented in Weka’s stan-
dard distribution, including many base 
classifiers, feature selection techniques, 
meta-methods that can build on any of 
the base classifiers, and methods for 
constructing ensembles. Auto-WEKA 
225 additionally deals with regression 
procedures and permits the optimiza-
tion of any of the performance metrics 
supported by Weka through deep in-

tegration with the Weka environment. 
The complex optimization process at 
the heart of Auto WEKA is carried out 
by SMAC. Auto-sklearn12 makes use of 
the Python-based machine learning 
toolkit scikit-learn and is also powered 
by SMAC. Unlike Auto-WEKA, Auto-
sklearn first determines multiple base 
learning procedures, which are then 
greedily combined into an ensemble.

These AutoML methods are now 
making their way into large-scale 
commercial applications enabling, 
for example, non-experts to build rela-
tively complex supervised learning 
models more easily. Recent work on 
AutoML includes neural architecture 
search (NAS), which automates key as-
pects of the design of neural network 
architectures, particularly (but not ex-
clusively) in deep learning (for example, 
Liu et al.28). Google Cloud’s proprietary 
AutoML tool, launched in early 2018, 
falls into this important, but restricted 
class of AutoML approaches. Similarly, 
Amazon SageMaker, a commercial 
service launched in late 2017, provides 
some AutoML functionality and covers 
a broad range of machine learning 
models and algorithms.

The impressive performance levels 
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The goal of data engineering is to cre-
ate consolidated data that can be used 
for further analysis or exploration. This 
work can be time-consuming and la-
borious, making it a natural target for 
automation. However, it faces the chal-
lenge of being more open-ended, as 
per its location in Figure 1.

To illustrate the variety of tasks in-
volved in data engineering, consider 
the study2 of how shrub growth in the 
tundra has been affected by global 
warming. Growth is measured across a 
number of traits, such as plant height 
and leaf area. To carry out this analysis, 
the authors had to: integrate tempera-
ture data from another dataset (using 
latitude, longitude and date informa-
tion as keys); standardize the plant 
names, which were recorded with 
some variations (including typos); han-
dle problems arising from being un-
able to integrate the temperature and 
biological data if key data was missing; 
and handle anomalies by removing 
observations of a given taxon that lay 
more than eight standard deviations 
from the mean.

In general, there are many stages in 
the data engineering process, with po-
tential feedback loops between them. 
These can be divided into three high-
level themes, around data organiza-
tion, data quality and data transforma-
tion,32 as we will discuss in turn. For a 
somewhat different structuring of the 
relevant issues, see Heer et al.19

Beginning with the first stage, data 
organization, one of the first steps is 
typically data parsing, determining 
the structure of the data so that it can 
be imported into a data analysis soft-
ware environment or package. Another 
common step is data integration, which 
aims to acquire, consolidate and re-
structure the data, which may exist in 
heterogeneous sources (for example, 
flat files, XML, JSON, relational data-
bases), and in different locations. It 
may also require the alignment of data 
at different spatial resolutions or on 
different timescales. Sometimes the 
raw data may be available in unstruc-
tured or semi-structured form. In this 
case it is necessary to carry out informa-
tion extraction to put the relevant pieces 
of information into tabular form. For 
example, natural language processing 
can be used for information extraction 
tasks from text (for example, identify-

ing names of people or places). Ide-
ally, a dataset should be described by a 
data dictionary or metadata repository, 
which specifies information such as 
the meaning and type of each attribute 
in a table. However, this is often miss-
ing or out-of-date, and it is necessary to 
infer such information from the data 
itself. For the data type of an attribute, 
this may be at the syntactic level (for 
example, the attribute is an integer or 
a calendar date), or at a semantic level 
(for example, the strings are all coun-
tries and can be linked to a knowledge 
base, such as DBPedia).6

FlashExtract27 is an example of a 
tool that provides assistance to the 
analyst for the information extraction 
task. It can learn how to extract records 
from a semi-structured dataset using a 
few examples; see Figure 2 for an illus-
tration. A second assistive tool is Data-
Diff,39 which integrates data that is re-
ceived in installments, for example, by 
means of monthly or annual updates. 
It is not uncommon that the structure 
of the data may change between in-
stallments, for example, an attribute is 
added if new information is available. 
The challenge is then to integrate the 
new data by matching attributes be-
tween the different updates. DataDiff 
uses the idea that the statistical distri-
bution of an attribute should remain 
similar between installments to auto-
mate the process of matching.

In the second stage of data engi-
neering, data quality, a common task 
is standardization, involving process-
es that convert entities that have more 
than one possible representation 
into a standard format. These might 
be phone numbers with formats like 
“(425)-706-7709” or “416 123 4567,” or 
text, for example, “U.K.” and “United 
Kingdom.” In the latter case, stan-
dardization would need to make use 
of ontologies that contain informa-
tion about abbreviations. Missing data 
entries may be denoted as “NULL” or 
“N/A,” but could also be indicated by 
other strings, such as “?” or “-99.” This 
gives rise to two problems: the identifi-
cation of missing values and handling 
them downstream in the analysis. 
Similar issues of identification and 
repair arise if the data is corrupted by 
anomalies or outliers. Because much 
can be done by looking at the distribu-
tion of the data only, many data sci-

The automation 
of model building 
tasks in data 
science has 
been remarkably 
successful, 
especially in 
supervised learning. 



82    COMMUNICATIONS OF THE ACM   |   MARCH 2022  |   VOL.  65  |   NO.  3

review articles

storage, aggregation and data clean-
ing have been significantly automated 
by recent database technology, signifi-
cant challenges remain, since data en-
gineering is often an iterative process 
over representation and integration 
steps, involving data from very differ-
ent sources and in different formats, 
with feedback loops between the steps 
that trigger new questions (for exam-
ple, Heer et al.19). For instance, in the 
Tundra example, one must know that 
it is important to integrate the biologi-
cal and temperature data, that the data 
must already be in a close-enough for-
mat for the transformations to apply, 
and that domain knowledge is needed 
to fuse variant plant names.

As all these data engineering chal-
lenges occupy large amounts of analyst 
time, there is an incentive to automate 
them as much as possible, as the gains 
could be high. However, doing this 
poorly can have a serious negative im-
pact on the outcome of a data science 
project. We believe that many aspects 
of data engineering are unlikely to be 
fully automated soon, except for a few 
specific tasks, but that further develop-
ments in the direction of both assistive 
and compositional semi-automation 
will nonetheless be fruitful.

Data Exploration:  
More Assistance Than Automation
Continuing our discussion of the 
quadrants in Figure 1, we next focus 
on data exploration. The purpose of 
data exploration is to derive insight 
or make discoveries from given data 
(for example, in a genetics domain, 
understanding the relation between 
particular genes, biological processes, 
and phenotypes), often to determine 
a more precise goal for a subsequent 
analysis (for example, in a retailing do-
main, discovering that a few variables 
explain why customers behave differ-
ently, suggesting a segmentation over 
these variables). This key role of hu-
man insight in data exploration sug-
gests that the form of automation that 
prevails in this quadrant is assistance, 
by generating elements that can help 
humans reach this insight. We will 
collectively refer to all these elements 
that ease human insight as patterns, 
capturing particular aspects or parts of 
the data that are potentially striking, 
interesting, valuable, or remarkable 

ence tools include (semi-)automated 
algorithms for data imputation and 
outlier detection, which would fall 
under the mechanization or assistance 
forms of automation.

Finally, under the data transforma-
tion heading, we consider processes at 
the interface between data engineering 
and model building or data explora-
tion. Feature engineering involves the 
construction of features based on the 
analyst’s knowledge or beliefs. When 
the data involves sensor readings, im-
ages or other low-level information, 
signal processing and computer vision 
techniques may be required to deter-
mine or create meaningful features 
that can be used downstream. Data 
transformation also includes instance 
selection, for example, for handling 
imbalanced data or addressing unfair-
ness due to bias.

As well as the individual tasks 
in data engineering, where we have 
seen that assistive automation can be 
helpful, there is also the need for the 
composition of tasks. Such a focus on 
composition is found, for example, in 
Extraction, Transformation and Load 
(ETL) systems, which are usually sup-
ported by a collection of scripts that 
combine data scraping, source integra-
tion, cleansing and a variety of other 
transformations on the data.

An example of a more integrated 

approach to data engineering, which 
shows aspects of both compositional 
and assistive automation, is the pre-
dictive interaction framework.18 This 
approach provides interactive recom-
mendations to the analyst about which 
data engineering operations to apply 
at a particular stage, in terms of an ap-
propriate domain specific language, 
ideas that form the basis of the com-
mercial data wrangling software from 
Trifacta. Another interesting direction 
is based on a concept known as data 
programming, which exploits domain 
knowledge by means of programmatic 
creation and modeling of datasets for 
supervised machine learning tasks.34

Methods from AutoML could poten-
tially also help with data engineering. 
For instance, Auto-sklearn12 includes 
several pre-processing steps in its 
search space, such as simple missing 
data imputation and one-hot encod-
ing of categorical features. However, 
these steps can be seen as small parts 
of the data quality theme, which can 
only be addressed once the many is-
sues around data organization and 
other data quality steps (for example, 
the identification of missing data) have 
been carried out. These earlier steps 
are more open ended and thus much 
less amenable to inclusion in the Au-
toML search process.

While many activities related to 

Computational social scientists may wish to explore a social network to gain an 
understanding of the social interactions it describes. For example, an analyst may 
decide to look for community patterns, formalized as subsets of the nodes and the 
edges connecting them. In the broad context of data exploration, five subtasks that can 
potentially be automated are outlined as follows:

1. Form of the pattern. Options include the network’s high-level topology, degree 
distribution, clustering coefficient, or the existence of dense subnetworks (communities)  
as considered here by way of example.

2. Measuring pattern ‘interestingness.’ Interestingness can be quantified as the 
number of edges or the average node degree within the community, the local modularity, 
or subjective measures that depend on the analyst’s prior knowledge, or measures 
developed from scratch.

3. Algorithmic strategy. Optimizing the chosen measure can require numerical 
linear algebra, graph theory, heuristic search (for example, beam search), or bespoke 
approaches.

4. Pattern presentation. The most interesting communities can be presented to the 
analyst as lists of nodes, by marking them on a suitably permuted adjacency matrix, or 
using other visualizations of the network.

5. Interaction. Almost invariably, the analyst will want to iterate on some of the 
subtasks, for example, to retrieve more communities, or to explore other pattern forms.

Five Data Exploration 
Subtasks in  
Social Network Analysis
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Figure 3. A fragment of the Automatic Statistician report for the “airline” dataset, which 
considers airline passenger volume over the period from 1949 to 1961.29
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for the data analyst or domain expert, 
and thus worthy of further investiga-
tion or exploitation. Patterns can take 
many forms, from the very simple (for 
example, merely reporting summary 
statistics for the data or subsets there-
of), to more sophisticated ones (com-
munities in networks or low-dimen-
sional representations).

The origins of contemporary data 
exploration techniques can be traced 
back to Tukey and Wilk,43 who stressed 
the importance of human involvement 
in data analysis generally speaking, 
and particularly in data analysis tasks 
aiming at ‘exposing the unanticipat-
ed’—later coined Exploratory Data 
Analysis (EDA) by Tukey42 and others.

The goal of EDA was described as 
hypothesis generation, and was con-
trasted with confirmatory analysis 
methods, such as hypothesis testing, 
which would follow in a second step. 
Since the early days of EDA in the 
1970s, the array of methods for data 
exploration, the size and complexity 
of data, and the available memory and 
computing power have all vastly in-
creased. While this has created unprec-
edented new potential, it comes at the 
price of greater complexity, thus creat-
ing a need for automation to assist the 
human analyst in this process.

As an example, the ‘Queriosity’ sys-
tem48 provides a vision of automated 
data exploration as a dynamic and in-
teractive process, allowing the system 
to learn to understand the analyst’s 
evolving background and intent, to en-
able it to proactively show ‘interesting’ 
patterns. The FORSIED framework8 
has a similar goal, formalizing the 
data exploration process as an interac-
tive exchange of information between 
data and data analyst, accounting for 
the analyst’s prior belief state. These 
approaches stand in contrast to the 
more traditional approach to data ex-
ploration, where the analyst repeatedly 
queries the data for specific patterns 
in a time- and labor-intensive process, 
in the hope that some of the patterns 
turn out to be interesting. This vision 
means that the automation of data ex-
ploration requires the identification 
of what the analyst knows (and does 
not know) about the domain, so that 
knowledge and goals, and not only pat-
terns, can be articulated by the system.

To investigate the extent to which 

automation is possible and desirable, 
without being exhaustive, it is helpful 
to identify five important and com-
mon subtasks in data exploration, as 
illustrated for a specific use case (so-
cial network analysis) in the associated 
box. These five problems are discussed 
in “Five Data Exploration Subtasks in 
Social Network Analysis.”

The form of the patterns (subtask 1) 
is often dictated by the data analyst, 
that is, user involvement is inevitable 
in choosing this form. Indeed, certain 
types of patterns may be more intel-
ligible to the data analyst or may cor-
respond to a model of physical reality. 
As illustrated in the box, a computa-
tional social scientist may be inter-
ested in finding dense subnetworks in 
a social network as evidence of a tight 
social structure.

There are often too many possible 
patterns. Thus, a measure to quantify 
how interesting any given set of pat-
terns of this type is to the data analyst 
is required (subtask 2). Here, ‘interest-
ingness’ could be defined in terms of 
coverage, novelty, reliability, peculiar-
ity, diversity, surprisingness, utility, or 
actionability; moreover, each of these 
criteria can be quantified either ob-
jectively (dependent on the data only), 
subjectively (dependent also on the 
data analyst), or based on the seman-
tics of the data (thus also dependent 
on the data domain).14 Designing this 
measure well is crucial but also highly 
non-trivial, making this a prime tar-
get for automation. Automating this 

subtask may require understanding 
the data analyst’s intentions or pref-
erences,35 the perceived complexity 
of the patterns, and the data analyst’s 
background knowledge about the data 
domain—all of which require interac-
tion with the data analyst. The latter is 
particularly relevant for the formaliza-
tion of novelty and surprisingness in 
a subjective manner, and recent years 
have seen significant progress along 
this direction using information-theo-
retic approaches.8

The next stage (subtask 3) is to 
identify the algorithms needed to opti-
mize the chosen measure. In principle, 
it would be attractive to facilitate this 
task using higher-level automation, as 
done in AutoML. However, consider-
ing the diversity of data across applica-
tions, the diversity of pattern types, and 
the large number of different ways of 
quantifying how interesting any given 
pattern is, there is a risk that differ-
ent data exploration tasks may require 
different algorithmic approaches for 
finding the most interesting patterns. 
Given the challenges in designing 
such algorithms, we believe that more 
generic techniques or declarative ap-
proaches (such as inductive databases 
and probabilistic programming, cov-
ered in the final section of the paper) 
may be required to make progress in 
the composition and assistance forms of 
automation for this subtask.

The user interface of a data explora-
tion system often presents the data, and 
identifies patterns within it, in a visual 

The structure search algorithm has identified four additive components in the data. The first 2 additive 
components explain 98.5% of the variation in the data as shown by the coefficient of determination (R2) 
values in accompanying table. Short summaries of the additive components are as follows: 

• A linearly increasing function.

• �An approximately periodic function with a period of 1.0 years  
and with approximately linearly increasing amplitude.

• A smooth function.

• Uncorrelated noise with linearly increasing standard deviation.
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Exploitation: Automation 
within the Real World
The bottom right quadrant in Figure 1 is 
usually reached when the insights from 
other tasks must be translated back to 
the application domain, often—but not 
always—in the form of predictions or, 
more generally, decisions. This quad-
rant deals with extracted knowledge 
and less with data, involving the under-
standing of the patterns and models, 
publishing them as building blocks for 
new discoveries (for example, in scien-
tific papers or reports), putting them 
into operation, validating and moni-
toring their operation, and ultimately 
revising them. This quadrant is usu-
ally less open-ended, so it is no surprise 
that some specific activities here, such 
as reporting and maintenance, can be 
automated to a high degree.

The interpretation of the extracted 
knowledge is closely related to the 
area of explainable or interpretable 
machine learning. Recent surveys 
cover different ways in which explana-
tions can be made, but do not analyze 
the degree and form of automation 
(for example, Guidotti et al.16). Clearly, 
the potential for automation depends 
strongly on whether a generic expla-
nation of a model (global explana-
tion) or a single prediction (local ex-
planation) is required, and whether 
the explanation has to be customized 
for or interact with a given user, by 
adaptation to their background, ex-
pectations, interests and personality. 
Explanations must go beyond the in-
spection or transformation of models 
and predictions, and should include 
the relevant variables for these predic-
tions, the distribution of errors and 
the kind of data for which it is reliable, 
the vulnerabilities of a model, how 
unfair it is, and so on. A prominent 
example following the mechanization 
form of automation is the Automatic 
Statistician,b,29 which can produce a 
textual report on the model produced 
(for a limited set of problem classes). 
Figure 3 shows a fragment of such a 
report, including graphical represen-
tations and textual explanations of the 
most relevant features of the obtained 
model and its behavior.

We believe that fully understanding 
the behavior and effect of the models 

b	 https://www.automaticstatistician.com/

manner to the analyst (subtask 4). This 
makes it possible to leverage the strong 
perceptual abilities of the human vi-
sual system, as has been exploited and 
enhanced by decades of research in the 
visual analytics community.23 At the 
same time, the multiple comparisons 
problem inherent in visual analysis 
may necessitate steps to avoid false 
discoveries.51 Automating subtask 4 
beyond some predefined visualizations 
(as in the Automatic Statistician, see 
Figure 3) requires a good understand-
ing of the particular perception and 
cognition capacities and preferences 
of each user, a question that also fea-
tures prominently in the related area 
of explainable artificial intelligence, 
which we will discuss.

Such visualizations and other kinds 
of tools for navigating the data must al-
low for rich and intuitive forms of inter-
action (subtask 5), to mitigate the open-
endedness of typical data exploration 
tasks. They must allow the analyst to 
follow leads, verify or refine hypotheses 
by drilling deeper, and provide feed-
back to the data exploration system 
about what is interesting and what is 
not. A huge challenge for automation 
is how a novice data analyst could be 
given hints and recommendations of 
the type of an expert might use, assist-
ing in the process of data navigation, 
from the combinatorial explosion of 
ways of looking into the data and pos-
sible kinds of patterns. For instance, 
the SeeDB45 and Voyager49 systems in-
teractively recommend visualizations 
that may be particularly effective, and 
Interactive intent modeling35 has been 
proposed to improve information seek-
ing efficiency in information retrieval 
applications.

Each of the five subtasks is chal-
lenging on its own and contains many 
design choices that may require ex-
pert knowledge. We argue that the 
limitations of current AI techniques 
in acquiring and dealing with human 
knowledge in real-world domains are 
the main reason why automation in 
this quadrant is typically in the form of 
assistance. Meanwhile, we should rec-
ognize that the above subtasks are not 
independent, as they must combine, 
through the composition form of auto-
mation, to effectively assist the data 
analyst, and non-expert users, in their 
search for new insights and discoveries.

It is important to 
raise awareness of 
the potential pitfalls 
and side effects 
of higher levels of 
automation in data 
science. 
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Selected research challenges in automating data science, with their associated quadrants and likely forms of automation (mechanization, 
composition, and assistance).

Quadrant Challenge Mechanization Composition Assistance

Generic Enhancing human-AI collaboration, by incorporating domain context for 
interactively defining and refining the goal of data science activities. × ×

Generic Addressing ethical, privacy, and legal issues in the automation  
of data science. × × ×

Model Building Extending AutoML to tasks beyond supervised learning. ×
Model Building/Data Engineering Generating meaningful features, considering domain context and task. × ×
Data Engineering Streamlining the ETL (Extract, Transform, Load) process by using 

pipeline schemas and reusing preprocessing subcomponents. ×

Data Engineering Expediting the data cleaning, outlier detection and  
data imputation processes. × × ×

Data Exploration Supporting the design of interactive data and pattern visualizations. ×
Data Exploration Developing human-AI collaborative systems for  

data and pattern exploration. × ×

Exploitation Generating collaborative reports and presentations, facilitating  
the interrogation, validation and explanation of models and results. × ×

Exploitation Dealing with concept drift, monitoring the interaction of several data 
science models, and assessing their effects more globally. × ×

and insight produced in earlier stages 
of the data science pipeline is an inte-
gral part of the validation of the entire 
process, and key to a successful deploy-
ment. However, ‘internal’ evaluation, 
which is usually coupled with model 
building or carried out immediately 
after, is done in the lab, trying to maxi-
mize some metric on held-out data. In 
contrast, validation in the real world re-
fers to meeting some goals, with which 
the data, objective functions and other 
elements of the process may not be 
perfectly aligned. Consequently, this 
broad perspective of the ‘external’ vali-
dation poses additional challenges for 
automation, as domain context plays 
a more important role (Figure 1). This 
is especially the case in areas, where 
optimizing for trade-offs between ac-
curacy and fairness metrics may still 
end up producing undesirable global 
effects in the long term, or areas such 
as safety-critical domains, where ex-
perimenting with the actual systems is 
expensive and potentially dangerous, 
for example, in medical applications or 
autonomous driving. A very promising 
approach to overcome some of these 
challenges is the use of simulation, 
where an important part of the appli-
cation domain is modeled, be it a hos-
pital11 or a city. The concept of ‘digital 
twins’40 allows data scientists to deploy 
their models and insights in a digital 
copy of the real world, to understand 
and exploit causal relations, and to an-

ticipate effects and risks, as well as to 
optimize for the best solutions. Opti-
mization tools that have proven so use-
ful in the AutoML scenario can be used 
to derive globally optimal decisions 
that translate from the digital twin to 
the real world, provided the simulator 
is an accurate model at the required 
level of abstraction. The digital twin 
can also be a source of simulated data 
for further iterations of the entire data 
science process.

Deployment becomes more com-
plex as more decisions are made, 
models are produced and combined, 
and many users are involved. Accord-
ingly, we contend that automating 
model maintenance and monitoring is 
becoming increasingly relevant. This 
includes tracing all the dependencies 
between models, insights and deci-
sions that were generated during train-
ing and operation, especially if re-train-
ing is needed,36 resembling software 
maintenance in several ways. Some 
aspects of monitoring trained models 
seem relatively straightforward and 
automatable, by re-evaluating indica-
tors (metrics of error, fairness, among 
others) periodically and flagging im-
portant deviations, as a clear example 
of the assistive form of automation, 
which allows for extensive reuse. Once 
models are considered unfit or de-
graded, retraining to some new data 
that has shifted from the original data 
seems easily mechanizable (repeat-

ing the experiment), but it depends 
on whether the operating conditions 
that were used initially still hold after 
the data shift. Reliable and well under-
stood models can often be reused even 
in new or changing circumstances, 
through domain adaptation, transfer 
learning, lifelong learning, or refram-
ing;20 this represents a more composi-
tional form of automation.

Data science creates many patterns, 
models, decisions, and meta-knowl-
edge. The organization and reuse of 
models and patterns can be automated 
to some degree via inductive databas-
es, via specialized databases of models 
(for example, machine learning model 
management46), or by means of large-
scale experimentation platforms, such 
as OpenML.c In the end, we believe the 
automation of knowledge management 
and analysis for and from data science 
activities will be a natural evolution of 
the automation of data management 
and analysis.

Perspectives and Outlook
The quest for automation, in the broad 
context of data analysis and scientific 
discovery, is not new, spanning decades 
of work in statistics, artificial intelli-
gence (AI), databases, and program-
ming languages. We now visit each of 
these perspectives in turn, before draw-
ing some final conclusions.

c	 www.openml.org44
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work, and how data science projects 
evolve from conception to deployment 
and maintenance, will be key for more 
ambitious tools. Progress in areas of AI 
such as reinforcement learning can ac-
celerate this.

It is important to raise awareness of 
the potential pitfalls and side effects of 
higher levels of automation in data sci-
ence. These include over-reliance on 
the results obtained from systems and 
tools; the introduction of errors that are 
subtle and difficult to detect; and cogni-
tive bias towards certain types of obser-
vations, models and insights facilitated 
by existing tools. Also, data science 
tools in the context of human-AI collab-
oration are seen as displacing the work 
practice of data scientists, leading to 
new roles.47 Similarly, this collaborative 
view suggests new forms of interaction 
between data scientists and machines, 
as these become proactive assistants 
rather than tools.1

With all of this in mind, we cau-
tiously make the following predic-
tions. First, it seems likely that there 
will continue to be useful and signifi-
cant advances in the automation of 
data science in the three most acces-
sible quadrants in Figure 1: data en-
gineering (for example, automation 
of inference about missing data and 
of feature construction), model build-
ing (for example, automated selection, 
configuration and tuning beyond the 
current scope of AutoML), and ex-
ploitation (for example, automated 
techniques for model diagnosis and 
summarization). Second, for the most 
challenging quadrant of data explora-
tion, and for tasks in the other quad-
rants where representation of domain 
knowledge and goals is needed, we an-
ticipate that progress will require more 
effort. And third, across the full spec-
trum of data science activities, we see 
great potential for the assistance form 
of automation, through systems that 
complement human experts, tracking 
and analyzing workflows, spotting er-
rors, detecting and exposing bias, and 
providing high-level advice. Overall, 
we expect an increasing demand for 
methods and tools that are better in-
tegrated with human experience and 
domain expertise, with an emphasis 
on complementing and enhancing the 
work of human experts rather than on 
full mechanization.	

First, there is a long tradition in AI 
of attempts to automate the scientific 
discovery process. Many researchers 
have tried to understand, model, and 
support a wide range of scientific pro-
cesses with AI, including approaches to 
leverage cognitive models for scientific 
discovery (such as Kepler’s laws).26 More 
recent and operational models of scien-
tific discovery include robot scientists,24 
which are robotic systems that design 
and carry out experiments in order to 
find models or theories, for example, in 
the life sciences. While these attempts 
included experimental design and not 
only observational data, they were also 
specialized to particular domains, re-
ducing the challenges of the domain 
context (the vertical dimension in Figure 
1). Many important challenges remain 
in this area, including the induction or 
revision of theories or models from very 
sparse data; the transfer of knowledge 
between domains (which is known to 
play an important role in the scientific 
process); the interplay between the de-
sign of methodology, including experi-
ments, and the induction of knowledge 
from data; and the interaction between 
scientists and advanced computational 
methods designed to support them in 
the scientific discovery process.

Second, there were efforts in the 
1980s and 1990s at the interface of 
statistics and AI to develop software 
systems that would build models or 
explore data, often in an interactive 
manner, using heuristic search or plan-
ning based on expert knowledge (for 
example, Gale13 and St. Amant et al.38). 
This line of research ran up against the 
limits of knowledge representation, 
which proved inadequate to capture the 
subtleties of the statistical strategies 
used by expert data analysts. Today, the 
idea of a ‘mechanized’ statistical data 
analyst is still being pursued (see the 
Automatic Statistician29), but with the 
realization that statistical modeling of-
ten relies heavily on human judgement 
in a manner that is not easy to capture 
formally, beyond the top right quad-
rant in Figure 1. It is then the composi-
tion and assistance forms of automation 
that are still targeted when modular 
data analytic operations are combined 
into plans or workflows in current data 
science platforms, such as KNIME and 
Weka, or in the form of intelligent data 
science assistants.37

Third, in a database context, the con-
cept of inductive query languages al-
lows a user to query the models and pat-
terns that are held in the data. Patterns 
and models become “first-class citi-
zens” with the hope of reducing many 
activities in data science to a querying 
process, in which the insights obtained 
from one query led to the next query, 
until the desired patterns and models 
have been found. These systems are typ-
ically based on extensions of SQL and 
other relational database languages (for 
example, Blockeel et al.3). Doing data 
science as querying or programming 
may help bridge the composition and 
mechanization forms of automation.

Fourth, in recent years, there has 
been an increasing attention on proba-
bilistic programming languages, which 
allow the expression and learning of 
complex probabilistic models, extend-
ed or combined with first-order logic.9 
Probabilistic programming languages 
have been used inside tools for democ-
ratizing data science, such as BayesDB30 
and Tabular,15 which build probabilistic 
models on top of tabular databases and 
spreadsheets. Probabilistic program-
ming can also, for example, propagate 
uncertainty from an imputation meth-
od for missing data into the predictive 
analysis and incorporate background 
knowledge into the analysis. This may 
support a more holistic view of automa-
tion by increasing the integration of the 
four quadrants in Figure 1, which may 
mutate accordingly.

All four of these approaches have 
had some success in specific domains 
or standard situations, but still lack 
the generality and flexibility needed 
for broader applications in data sci-
ence, as the discipline incorporates new 
methods and techniques at a pace that 
these systems cannot absorb. More sci-
entific and community developments 
are needed to bridge the gap between 
how data scientists conduct their work 
and the level of automated support that 
such approaches can provide. The ac-
companying table presents a series of 
indicative technical challenges for auto-
mating data science.

While AutoML will continue to be a 
flagship example for automation in data 
science, we expect most progress in the 
following years to involve stages and 
tasks other than modeling. Capturing 
information about how data scientists 
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