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Given the complexity of data science projects
and related demand for human expertise,
automation has the potential to transform
the data science process.

BY TIJL DE BIE, LUC DE RAEDT, JOSE HERNANDEZ-ORALLO,
HOLGER H. HOOS, PADHRAIC SMYTH,
AND CHRISTOPHER K.I. WILLIAMS

Automating
Data Science

DATA SCIENCE COVERS the full spectrum of deriving
insight from data, from initial data gathering and
interpretation, via processing and engineering of data,
and exploration and modeling, to eventually producing
novel insights and decision support systems.

Data science can be viewed as overlapping or broader
in scope than other data-analytic methodological
disciplines, such as statistics, machine learning,
databases, or visualization.'?

To illustrate the breadth of data science, consider,
for example, the problem of recommending items
(movies, books, or other products) to customers.
While the core of these applications can consist of
algorithmic techniques such as matrix factorization,
a deployed system will involve a much wider range
of technological and human considerations.

These range from scalable back-end transaction
systems that retrieve customer and product data in
real time, experimental design for evaluating system
changes, causal analysis for understanding the effect
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of interventions, to the human factors
and psychology that underlie how cus-
tomers react to visual information dis-
plays and make decisions.

As another example, in areas such
as astronomy, particle physics, and
climate science, there is a rich tradi-
tion of building computational pipe-
lines to support data-driven discovery
and hypothesis testing. For instance,
geoscientists use monthly global
landcover maps based on satellite
imagery at sub-kilometer resolutions
to better understand how the Earth’s
surface is changing over time.** These
maps are interactive and browsable,
and they are the result of a complex
data-processing pipeline, in which
terabytes to petabytes of raw sensor
and image data are transformed into
databases of automatically detected
and annotated objects and informa-
tion. This type of pipeline involves
many steps, in which human deci-
sions and insight are critical, such as
instrument calibration, removal of
outliers, and classification of pixels.

The breadth and complexity of
these and many other data science sce-
narios means the modern data scien-
tist requires broad knowledge and ex-
perience across a multitude of topics.
Together with an increasing demand
for data analysis skills, this has led to a
shortage of trained data scientists with
appropriate background and experi-
ence, and significant market competi-
tion for limited expertise. Consider-
ing this bottleneck, it is not surprising
there is increasing interest in automat-

key insights

B Automation in data science aims to
facilitate and transform the work of data
scientists, not to replace them.

® Important parts of data science are
already being automated, especially in
the modeling stages, where techniques
such as automated machine learning
(AutoML) are gaining traction.

m Other aspects are more difficult
to automate, not only because of
technological challenges, but because
open-ended and context-dependent
tasks require human interaction.
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ing parts, if not all, of the data science
process. This desire and potential for
automation is the focus of this article.

As illustrated in these examples,
data science is a complex process, driv-
en by the character of the data being
analyzed and by the questions being
asked and is often highly exploratory
and iterative in nature. Domain context
can play a key role in these exploratory
steps, even in relatively well-defined
processes such as predictive model-
ing (for example, as characterized by
CRISP-DM®) where human expertise in
defining relevant predictor variables
can be critical.

Figure 1 provides a conceptual
framework to guide our discussion of
automation in data science, including
aspects that are already being auto-
mated as well as aspects that are poten-
tially ready for automation. The verti-
cal dimension of the figure reflects the
degree to which domain context plays
a role in the process. Domain context
not only includes domain knowledge
but also human factors, such as the
interaction of humans with the tech-
nology,' the side effects on users and
non-users, and all the safety and ethi-
cal issues, including algorithmic bias.
These factors have various effects on
data understanding and the impact
of the extracted knowledge, once de-
ployed, and are often addressed or su-

pervised with humans in the loop.

The lower quadrants of Data Explo-
ration and Exploitation are typically
closely coupled to the application do-
main, while the upper quadrants of
Data Engineering and Model Building
are often more domain agnostic. The
horizontal axis characterizes the de-
gree to which different activities in the
overall process range from being more
open-ended to more precisely speci-
fied, such as having well-defined goals,
clear modeling tasks and measurable
performance indicators. Data Engi-
neering and Data Exploration are often
not precisely specified and are quite
iterative in nature, while Model Build-
ing and Exploitation are often defined
more narrowly and precisely. In classi-
cal goal-oriented projects, the process
often consists of activities in the fol-
lowing order: Data exploration, data
engineering, model building, and ex-
ploitation. In practice, however, these
trajectories can be much more diverse
and exploratory, with practitioners
navigating through activities in these
quadrants in different orders and in
an iterative fashion (for example, Mar-
tinez-Plumed et al.**).

From the layout of Figure 1 we see,
for example, that Model Building is
where we might expect automation to
have the most direct impact—which is
indeed the case with the success of au-

Figure 1. The four data science quadrants used in this article to illustrate different areas

where automation can take place.

The vertical dimension determines the degree of dependence on domain
context, usually introduced through human interaction. The horizontal
dimension determines the degree to which a process is open-ended.
Some activities, such as data augmentation and feature engineering, are
situated in data engineering near the boundary with data exploration.

Data Engineering:
data wrangling,
data integration,

data preparation,
data transformation,

Data Exploration:
domain understanding,

parameter optimization,
performance evaluation,

Less
dependent on
domain context

Model Building:
algorithm selection,

model selection,

Exploitation:

model interpretation and visualization,

tomated machine learning (AutoML).
However, much of this impact has oc-
curred for modeling approaches based
on supervised learning, and automa-
tion is still far less developed for other
kinds of learning or modeling tasks.

Continuing our discussion of Figure 1,
Data Engineering tasks are estimated
to often take 80% of the human effort
in a typical data analysis project.” Con-
sequently, it is natural to expect that
automation could play a major role in
reducing this human effort. However,
efforts to automate Data Engineering
tasks have had less success to date
compared to efforts in automating
Model Building.

Data Exploration involves identify-
ing relevant questions given a dataset,
interpreting the structure of the data,
understanding the constraints provid-
ed by the domain as well as the data an-
alyst’s background and intentions, and
identifying issues related to data eth-
ics, privacy, and fairness. Background
knowledge and human judgement are
key to success. Consequently, it is not
surprising that Data Exploration poses
the greatest challenges for automation.

Finally, Exploitation turns action-
able insights and predictions into deci-
sions. As these may have a significant
impact, some level of oversight and hu-
man involvement is often essential, for
example, new Al techniques can bring
new opportunities in automating the
reporting and explanation of results.*

Broadly speaking, automation in
the context of data science is challeng-
ing depending on the form it takes,
ranging in complexity depending on
whether it involves a single task or an
entire iterative process, or whether par-
tial or complete automation is the goal.

1. A first form of automation—
mechanization—occurs when a task is
so well specified that there is no need
for human involvement. Examples of
such tasks include running a cluster-
ing algorithm or standardizing the val-
ues in a table of data. This can be done

by functions or modules in low-level
languages, or as part of statistical and
algorithmic packages that have tradi-
tionally been used in data science.

2. A second form of automation—
composition—deals with strategic se-
quencing of tasks or integration of
different parts of a task. Support for
code or workflow reuse is available

goal exploration,
data aggregation,
data visualization,

reporting and narratives,
predictions and decisions,
monitoring and maintenance,

Less
open-ended
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in more sophisticated tools that have
emerged in recent years, from interac-
tive workflow-oriented suites (such as
KNIME, RapidMiner, IBM Modeler,
SAS Enterprise Miner, Weka Knowl-
edge Flows and Clowdflows) to high-
level programming languages and en-
vironments commonly used for data
analysis and model building (such as
R, Python, Stan, BUGS, TensorFlow,
and PyTorch).

3. Finally, a third form of automa-
tion—assistance—derives from the
production of elements such as vi-
sualizations, patterns, explanations,
among others, that are specifically tar-
geted at supporting human efficiency.
This includes a constant monitoring
of what humans are doing during the
data science process, so that an auto-
mated assistant can identify inappro-
priate choices, make recommenda-
tions, and so on. While some limited
form of assistance is already provided
in interactive suites such as KNIME
and RapidMiner, the challenge is to ex-
tend this assistance to the entire data
science process.

Here, we organize our discussion
into sections corresponding to the four
quadrants from Figure 1, highlighting
the three forms of automation where
relevant. Because the activities are ar-
ranged into quadrants rather than
stages following a particular order, we
begin with Model Building, which ap-
pears most amenable to automation,
and then discuss the other quadrants.

Model Building:
The Success Story of AutoML
In the context of building models (Fig-
ure 1), machine learning methods fea-
ture prominently in the toolbox of the
data scientist, particularly because
they tend to be formalized in terms of
objective functions that directly relate
to well-defined task categories.
Machine learning methods have be-
come very prominent over the last two
decades, including relatively complex
methods, such as deep learning. Auto-
mation of these machine learning meth-
ods, which has given rise to a research
area known as AutoML, is arguably the
most successful and visible application
to date of automation within the overall
data science process (for example, Hut-
ter et al.?). It assumes, in many cases,
that sufficient amounts of high-quality
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From Machine Learning
to Automated
Machine Learning

The problem of supervised machine learning can be formalized as finding a function
fthat maps possible input instances from a given set X to possible target values from
a set Y such that a loss function is minimized on a given set of examples, that is, as
determining arg min ser L(f, E), where F, referred to as hypothesis space, is a set of
functions from X to Y, L is the loss function, and E is the set of examples (or training
data), comprised of input instances and target values.

When Y is a set of discrete values, this problem is called (supervised) classification;
when it is the set of real numbers, it is known as (supervised) regression. Popular loss
functions include cross-entropy for classification and mean squared error for regression.

In this formulation, different hypothesis spaces F can be chosen for a given
supervised machine learning task. In addition to the parameters of a given model
(such as the connection weights in a neural network) that determine a specific
fEF, there are typically further parameters that define the function space F (such
as the structure of a neural network) or affect the performance of the model
induction process (such as learning rates). Generally, these hyperparameters can be
of different types (such as real numbers, integers or categorical) and may be subject
to complex dependencies (such as certain hyperparameters only being active when
others take certain values). Because the performance of modern machine learning
techniques critically depends on hyperparameter settings, there is a growing need for
hyperparameter optimization techniques.

At the same time, because of the complex dependencies between hyperparameters,
sophisticated methods are needed for this optimization task. Human experts not only
face the problem of determining performance-optimizing hyperparameter settings, but
the choice of the class of machine learning models to be used in the first place, and the
algorithm used to train these. In automated machine learning (AutoML) all these tasks,
often along with feature selection, ensembling and other operations closely related to

model induction, are fully automated, such that performance is optimized for a given
use case, for example, in terms of the prediction accuracy achieved based on given

training data.

data are available; satisfying this as-
sumption typically poses challenges,
which we address in later sections of
this article (see Ratner et al.?*).

While there are different categories
of machine learning problems and
methods, including supervised, un-
supervised, semi-supervised and rein-
forcement learning, the definition of
the target function and its optimization
is most straightforward for supervised
learning (as discussed in “From Ma-
chine Learning to Automated Machine
Learning”). Focusing on supervised
learning, there are many methods for
accomplishing this task, often with
multiple hyperparameters, whose val-
ues can have substantial impact on the
prediction accuracy of a given model.

Faced with the choice from a large set
of machine learning algorithms and an
even larger space of hyperparameter set-
tings, even seasoned experts often must
resort to experimentation to determine
what works best in each use case. Au-
tomated machine learning attempts to
automate this process, and thereby not
only spares experts the time and effort

of extensive, often onerous experimen-
tation, but also enables non-experts to
obtain substantially better performance
than otherwise possible. AutoML sys-
tems often achieve these advantages at
rather high computational cost.

It is worth noting that AutoML falls
squarely into the first form of automa-
tion, mechanization, as discussed in the
introduction. At the same time, it can be
seen as yet another level of abstraction
over a series of automation stages. First,
there is the well-known use of program-
ming for automation. Second, machine
learning automatically generates hy-
potheses and predictive models, which
typically take the form of algorithms (for
example, in the case of a decision tree or
a neural network); therefore, machine
learning methods can be seen as meta-
algorithms that automate programming
tasks, and hence “automate automa-
tion.” And third, automated machine
learning makes use of algorithms that
select and configure machine learning
algorithms—that is, of meta-meta-algo-
rithms that can be understood as auto-
mating the automation of automation.
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AutoML systems have been gradu-
ally automating more of these tasks:
model selection, hyperparameter
optimization and feature selection.
Many of these systems also deal with
automatically selecting learning algo-
rithms based on properties (so-called
metafeatures) of given datasets, build-
ing on the related area of meta-learn-
ing.* In general, AutoML systems are
based on sophisticated algorithm
configuration methods, such as SMAC
(sequential model-based algorithm
configuration),” learning to rank and
Monte-Carlo Tree Search.*

So far, most work on AutoML has
been focused on supervised learning.
Auto-WEKA,* one of the first AutoML
systems, builds on the well-known
Weka machine learning environment.
It encompasses all the classification ap-
proaches implemented in Weka’s stan-
dard distribution, including many base
classifiers, feature selection techniques,
meta-methods that can build on any of
the base classifiers, and methods for
constructing ensembles. Auto-WEKA
2% additionally deals with regression
procedures and permits the optimiza-
tion of any of the performance metrics
supported by Weka through deep in-

tegration with the Weka environment.
The complex optimization process at
the heart of Auto WEKA is carried out
by SMAC. Auto-sklearn*? makes use of
the Python-based machine learning
toolkit scikit-learn and is also powered
by SMAC. Unlike Auto-WEKA, Auto-
sklearn first determines multiple base
learning procedures, which are then
greedily combined into an ensemble.

These AutoML methods are now
making their way into large-scale
commercial applications enabling,
for example, non-experts to build rela-
tively complex supervised learning
models more easily. Recent work on
AutoML includes neural architecture
search (NAS), which automates key as-
pects of the design of neural network
architectures, particularly (but not ex-
clusively) in deep learning (for example,
Liu et al.?®). Google Cloud’s proprietary
AutoML tool, launched in early 2018,
falls into this important, but restricted
class of AutoML approaches. Similarly,
Amazon SageMaker, a commercial
service launched in late 2017, provides
some AutoML functionality and covers
a broad range of machine learning
models and algorithms.

The impressive performance levels

Figure 2. FlashExtract.”

After separating attributes by colors, FlashExtract can recognize
examples (such as Be, 9 and 0.070073; and Ti, 48 and 10.653153) and
counter examples (such as the part struck through in red), in order to
induce a program that is able to identify other occurrences of these
fields and put them in a spreadsheet or table for further processing.
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reached by AutoML systems are evident
inthe results from recent competitions."’
Notably, Auto-sklearn significantly out-
performed human experts in the human
track of the 2015/2016 ChaLearn AutoML
Challenge. Yet, results from the same
competition suggest that human experts
can achieve significant performance im-
provements by manually tweaking the
classification and regression algorithms
obtained from the best AutoML systems.
Therefore, there appears to be consider-
able room for improvement in present
AutoML systems for standard supervised
learning settings.

Other systems, such as the Auto-
matic Statistician,? handle different
kinds of learning problems, such as
time series, finding not only the best
form of the model, but also its param-
eters. We will revisit this work in the
section on Exploitation.

The automation of model building
tasks in data science has been remark-
ably successful, especially in supervised
learning. We believe the main reason
for this lies in the fact that these tasks
are usually very precisely specified and
have relatively little dependence on the
given domain (see also Figure 1), which
renders them particularly suitable for
mechanization. Conversely, tasks be-
yond standard supervised learning,
such as unsupervised learning, have
proven to be considerably harder to au-
tomate effectively, because the optimi-
zation goals are more subjective and do-
main-dependent, involving trade-offs
between accuracy, efficiency, robust-
ness, explainability, fairness, and more.
Such machine learning methods, which
are often used for feature engineering,
domain understanding, data transfor-
mation, and so on, thus extend into
the remaining three quadrants, where
we believe that more progress can be
obtained using the other two kinds of
automation seen in the introduction:
composition and assistance.

Data Engineering:

Big Gains, Big Challenges

A large portion of the life of a data sci-
entist is spent acquiring, organizing,
and preparing data for analysis, tasks
we collectively term data engineering.?

a Data wrangling and data cleansing are
terms that are also associated with many of
these stages.



The goal of data engineering is to cre-
ate consolidated data that can be used
for further analysis or exploration. This
work can be time-consuming and la-
borious, making it a natural target for
automation. However, it faces the chal-
lenge of being more open-ended, as
per its location in Figure 1.

To illustrate the variety of tasks in-
volved in data engineering, consider
the study® of how shrub growth in the
tundra has been affected by global
warming. Growth is measured across a
number of traits, such as plant height
and leaf area. To carry out this analysis,
the authors had to: integrate tempera-
ture data from another dataset (using
latitude, longitude and date informa-
tion as keys); standardize the plant
names, which were recorded with
some variations (including typos); han-
dle problems arising from being un-
able to integrate the temperature and
biological data if key data was missing;
and handle anomalies by removing
observations of a given taxon that lay
more than eight standard deviations
from the mean.

In general, there are many stages in
the data engineering process, with po-
tential feedback loops between them.
These can be divided into three high-
level themes, around data organiza-
tion, data quality and data transforma-
tion,* as we will discuss in turn. For a
somewhat different structuring of the
relevant issues, see Heer et al.*®

Beginning with the first stage, data
organization, one of the first steps is
typically data parsing, determining
the structure of the data so that it can
be imported into a data analysis soft-
ware environment or package. Another
common step is data integration, which
aims to acquire, consolidate and re-
structure the data, which may exist in
heterogeneous sources (for example,
flat files, XML, JSON, relational data-
bases), and in different locations. It
may also require the alignment of data
at different spatial resolutions or on
different timescales. Sometimes the
raw data may be available in unstruc-
tured or semi-structured form. In this
case itis necessary to carry out informa-
tion extraction to put the relevant pieces
of information into tabular form. For
example, natural language processing
can be used for information extraction
tasks from text (for example, identify-

The automation

of model building
tasks indata
science has

been remarkably
successful,
especially in
supervised learning.
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ing names of people or places). Ide-
ally, a dataset should be described by a
data dictionary or metadata repository,
which specifies information such as
the meaning and type of each attribute
in a table. However, this is often miss-
ing or out-of-date, and it is necessary to
infer such information from the data
itself. For the data type of an attribute,
this may be at the syntactic level (for
example, the attribute is an integer or
a calendar date), or at a semantic level
(for example, the strings are all coun-
tries and can be linked to a knowledge
base, such as DBPedia).®

FlashExtract” is an example of a
tool that provides assistance to the
analyst for the information extraction
task. It can learn how to extract records
from a semi-structured dataset using a
few examples; see Figure 2 for an illus-
tration. A second assistive tool is Data-
Diff,* which integrates data that is re-
ceived in installments, for example, by
means of monthly or annual updates.
It is not uncommon that the structure
of the data may change between in-
stallments, for example, an attribute is
added if new information is available.
The challenge is then to integrate the
new data by matching attributes be-
tween the different updates. DataDiff
uses the idea that the statistical distri-
bution of an attribute should remain
similar between installments to auto-
mate the process of matching.

In the second stage of data engi-
neering, data quality, a common task
is standardization, involving process-
es that convert entities that have more
than one possible representation
into a standard format. These might
be phone numbers with formats like
“(425)-706-7709” or “416 123 4567,” or
text, for example, “U.K.” and “United
Kingdom.” In the latter case, stan-
dardization would need to make use
of ontologies that contain informa-
tion about abbreviations. Missing data
entries may be denoted as “NULL” or
“N/A,” but could also be indicated by
other strings, such as “?” or “-99.” This
givesrise to two problems: the identifi-
cation of missing values and handling
them downstream in the analysis.
Similar issues of identification and
repair arise if the data is corrupted by
anomalies or outliers. Because much
can be done by looking at the distribu-
tion of the data only, many data sci-
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Five Data Exploration

Subtasks in

Social Network Analysis

Computational social scientists may wish to explore a social network to gain an
understanding of the social interactions it describes. For example, an analyst may
decide to look for community patterns, formalized as subsets of the nodes and the
edges connecting them. In the broad context of data exploration, five subtasks that can
potentially be automated are outlined as follows:

1. Form of the pattern. Options include the network’s high-level topology, degree
distribution, clustering coefficient, or the existence of dense subnetworks (communities)

as considered here by way of example.

2. Measuring pattern ‘interestingness.’ Interestingness can be quantified as the
number of edges or the average node degree within the community, the local modularity,
or subjective measures that depend on the analyst’s prior knowledge, or measures

developed from scratch.

3. Algorithmic strategy. Optimizing the chosen measure can require numerical
linear algebra, graph theory, heuristic search (for example, beam search), or bespoke

approaches.

4. Pattern presentation. The most interesting communities can be presented to the
analyst as lists of nodes, by marking them on a suitably permuted adjacency matrix, or

using other visualizations of the network.

5. Interaction. Almost invariably, the analyst will want to iterate on some of the
subtasks, for example, to retrieve more communities, or to explore other pattern forms.

ence tools include (semi-)automated
algorithms for data imputation and
outlier detection, which would fall
under the mechanization or assistance
forms of automation.

Finally, under the data transforma-
tion heading, we consider processes at
the interface between data engineering
and model building or data explora-
tion. Feature engineering involves the
construction of features based on the
analyst’s knowledge or beliefs. When
the data involves sensor readings, im-
ages or other low-level information,
signal processing and computer vision
techniques may be required to deter-
mine or create meaningful features
that can be used downstream. Data
transformation also includes instance
selection, for example, for handling
imbalanced data or addressing unfair-
ness due to bias.

As well as the individual tasks
in data engineering, where we have
seen that assistive automation can be
helpful, there is also the need for the
composition of tasks. Such a focus on
composition is found, for example, in
Extraction, Transformation and Load
(ETL) systems, which are usually sup-
ported by a collection of scripts that
combine data scraping, source integra-
tion, cleansing and a variety of other
transformations on the data.

An example of a more integrated
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approach to data engineering, which
shows aspects of both compositional
and assistive automation, is the pre-
dictive interaction framework.’® This
approach provides interactive recom-
mendations to the analyst about which
data engineering operations to apply
at a particular stage, in terms of an ap-
propriate domain specific language,
ideas that form the basis of the com-
mercial data wrangling software from
Trifacta. Another interesting direction
is based on a concept known as data
programming, which exploits domain
knowledge by means of programmatic
creation and modeling of datasets for
supervised machine learning tasks.*

Methods from AutoML could poten-
tially also help with data engineering.
For instance, Auto-sklearn'? includes
several pre-processing steps in its
search space, such as simple missing
data imputation and one-hot encod-
ing of categorical features. However,
these steps can be seen as small parts
of the data quality theme, which can
only be addressed once the many is-
sues around data organization and
other data quality steps (for example,
the identification of missing data) have
been carried out. These earlier steps
are more open ended and thus much
less amenable to inclusion in the Au-
toML search process.

While many activities related to
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storage, aggregation and data clean-
ing have been significantly automated
by recent database technology, signifi-
cant challenges remain, since data en-
gineering is often an iterative process
over representation and integration
steps, involving data from very differ-
ent sources and in different formats,
with feedback loops between the steps
that trigger new questions (for exam-
ple, Heer et al."). For instance, in the
Tundra example, one must know that
it is important to integrate the biologi-
cal and temperature data, that the data
must already be in a close-enough for-
mat for the transformations to apply,
and that domain knowledge is needed
to fuse variant plant names.

As all these data engineering chal-
lenges occupy large amounts of analyst
time, there is an incentive to automate
them as much as possible, as the gains
could be high. However, doing this
poorly can have a serious negative im-
pact on the outcome of a data science
project. We believe that many aspects
of data engineering are unlikely to be
fully automated soon, except for a few
specific tasks, but that further develop-
ments in the direction of both assistive
and compositional semi-automation
will nonetheless be fruitful.

Data Exploration:

More Assistance Than Automation
Continuing our discussion of the
quadrants in Figure 1, we next focus
on data exploration. The purpose of
data exploration is to derive insight
or make discoveries from given data
(for example, in a genetics domain,
understanding the relation between
particular genes, biological processes,
and phenotypes), often to determine
a more precise goal for a subsequent
analysis (for example, in a retailing do-
main, discovering that a few variables
explain why customers behave differ-
ently, suggesting a segmentation over
these variables). This key role of hu-
man insight in data exploration sug-
gests that the form of automation that
prevails in this quadrant is assistance,
by generating elements that can help
humans reach this insight. We will
collectively refer to all these elements
that ease human insight as patterns,
capturing particular aspects or parts of
the data that are potentially striking,
interesting, valuable, or remarkable



for the data analyst or domain expert,
and thus worthy of further investiga-
tion or exploitation. Patterns can take
many forms, from the very simple (for
example, merely reporting summary
statistics for the data or subsets there-
of), to more sophisticated ones (com-
munities in networks or low-dimen-
sional representations).

The origins of contemporary data
exploration techniques can be traced
back to Tukey and Wilk,* who stressed
the importance of human involvement
in data analysis generally speaking,
and particularly in data analysis tasks
aiming at ‘exposing the unanticipat-
ed’—later coined Exploratory Data
Analysis (EDA) by Tukey*> and others.

The goal of EDA was described as
hypothesis generation, and was con-
trasted with confirmatory analysis
methods, such as hypothesis testing,
which would follow in a second step.
Since the early days of EDA in the
1970s, the array of methods for data
exploration, the size and complexity
of data, and the available memory and
computing power have all vastly in-
creased. While this has created unprec-
edented new potential, it comes at the
price of greater complexity, thus creat-
ing a need for automation to assist the
human analyst in this process.

As an example, the ‘Queriosity’ sys-
tem*® provides a vision of automated
data exploration as a dynamic and in-
teractive process, allowing the system
to learn to understand the analyst’s
evolving background and intent, to en-
able it to proactively show ‘interesting’
patterns. The FORSIED framework®
has a similar goal, formalizing the
data exploration process as an interac-
tive exchange of information between
data and data analyst, accounting for
the analyst’s prior belief state. These
approaches stand in contrast to the
more traditional approach to data ex-
ploration, where the analyst repeatedly
queries the data for specific patterns
in a time- and labor-intensive process,
in the hope that some of the patterns
turn out to be interesting. This vision
means that the automation of data ex-
ploration requires the identification
of what the analyst knows (and does
not know) about the domain, so that
knowledge and goals, and not only pat-
terns, can be articulated by the system.

To investigate the extent to which

automation is possible and desirable,
without being exhaustive, it is helpful
to identify five important and com-
mon subtasks in data exploration, as
illustrated for a specific use case (so-
cial network analysis) in the associated
box. These five problems are discussed
in “Five Data Exploration Subtasks in
Social Network Analysis.”

The form of the patterns (subtask 1)
is often dictated by the data analyst,
that is, user involvement is inevitable
in choosing this form. Indeed, certain
types of patterns may be more intel-
ligible to the data analyst or may cor-
respond to a model of physical reality.
As illustrated in the box, a computa-
tional social scientist may be inter-
ested in finding dense subnetworks in
a social network as evidence of a tight
social structure.

There are often too many possible
patterns. Thus, a measure to quantify
how interesting any given set of pat-
terns of this type is to the data analyst
isrequired (subtask 2). Here, ‘interest-
ingness’ could be defined in terms of
coverage, novelty, reliability, peculiar-
ity, diversity, surprisingness, utility, or
actionability; moreover, each of these
criteria can be quantified either ob-
jectively (dependent on the data only),
subjectively (dependent also on the
data analyst), or based on the seman-
tics of the data (thus also dependent
on the data domain)." Designing this
measure well is crucial but also highly
non-trivial, making this a prime tar-
get for automation. Automating this
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subtask may require understanding
the data analyst’s intentions or pref-
erences,” the perceived complexity
of the patterns, and the data analyst’s
background knowledge about the data
domain—all of which require interac-
tion with the data analyst. The latter is
particularly relevant for the formaliza-
tion of novelty and surprisingness in
a subjective manner, and recent years
have seen significant progress along
this direction using information-theo-
retic approaches.®

The next stage (subtask 3) is to
identify the algorithms needed to opti-
mize the chosen measure. In principle,
it would be attractive to facilitate this
task using higher-level automation, as
done in AutoML. However, consider-
ing the diversity of data across applica-
tions, the diversity of pattern types, and
the large number of different ways of
quantifying how interesting any given
pattern is, there is a risk that differ-
ent data exploration tasks may require
different algorithmic approaches for
finding the most interesting patterns.
Given the challenges in designing
such algorithms, we believe that more
generic techniques or declarative ap-
proaches (such as inductive databases
and probabilistic programming, cov-
ered in the final section of the paper)
may be required to make progress in
the composition and assistance forms of
automation for this subtask.

The user interface of a data explora-
tion system often presents the data, and
identifies patterns within it, in a visual

Figure 3. A fragment of the Automatic Statistician report for the “airline” dataset, which

considers airline passenger volume over the period from 1949 to 1961.°

Raw Data
700
600
500 L
400 R
300 ;
200

100 B — — ;
1950 1952 1954 1956 1956 1960 1962

Full Model Posterior with Extrapolations

Lo T T T T T T
1950 1952 1854 1956 1956 1860 1962

The structure search algorithm has identified four additive components in the data. The first 2 additive
components explain 98.5% of the variation in the data as shown by the coefficient of determination (R2)
values in accompanying table. Short summaries of the additive components are as follows:

+ A linearly increasing function.

+ An approximately periodic function with a period of 1.0 years
and with approximately linearly increasing amplitude.

+ A smooth function.

* Uncorrelated noise with linearly increasing standard deviation.
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manner to the analyst (subtask 4). This
makes it possible to leverage the strong
perceptual abilities of the human vi-
sual system, as has been exploited and
enhanced by decades of research in the
visual analytics community.*® At the
same time, the multiple comparisons
problem inherent in visual analysis
may necessitate steps to avoid false
discoveries.”’ Automating subtask 4
beyond some predefined visualizations
(as in the Automatic Statistician, see
Figure 3) requires a good understand-
ing of the particular perception and
cognition capacities and preferences
of each user, a question that also fea-
tures prominently in the related area
of explainable artificial intelligence,
which we will discuss.

Such visualizations and other kinds
of tools for navigating the data must al-
low for rich and intuitive forms of inter-
action (subtask 5), to mitigate the open-
endedness of typical data exploration
tasks. They must allow the analyst to
follow leads, verify or refine hypotheses
by drilling deeper, and provide feed-
back to the data exploration system
about what is interesting and what is
not. A huge challenge for automation
is how a novice data analyst could be
given hints and recommendations of
the type of an expert might use, assist-
ing in the process of data navigation,
from the combinatorial explosion of
ways of looking into the data and pos-
sible kinds of patterns. For instance,
the SeeDB* and Voyager*® systems in-
teractively recommend visualizations
that may be particularly effective, and
Interactive intent modeling®> has been
proposed to improve information seek-
ing efficiency in information retrieval
applications.

Each of the five subtasks is chal-
lenging on its own and contains many
design choices that may require ex-
pert knowledge. We argue that the
limitations of current AI techniques
in acquiring and dealing with human
knowledge in real-world domains are
the main reason why automation in
this quadrant is typically in the form of
assistance. Meanwhile, we should rec-
ognize that the above subtasks are not
independent, as they must combine,
through the composition form of auto-
mation, to effectively assist the data
analyst, and non-expert users, in their
search for new insights and discoveries.

84 COMMUNICATIONS OF THE ACM | MARCH 2022

It is important to
raise awareness of
the potential pitfalls
and side effects

of higher levels of
automation in data
science.
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Exploitation: Automation

within the Real World

The bottomright quadrantin Figure 1is
usually reached when the insights from
other tasks must be translated back to
the application domain, often—but not
always—in the form of predictions or,
more generally, decisions. This quad-
rant deals with extracted knowledge
and less with data, involving the under-
standing of the patterns and models,
publishing them as building blocks for
new discoveries (for example, in scien-
tific papers or reports), putting them
into operation, validating and moni-
toring their operation, and ultimately
revising them. This quadrant is usu-
ally less open-ended, so it is no surprise
that some specific activities here, such
as reporting and maintenance, can be
automated to a high degree.

The interpretation of the extracted
knowledge is closely related to the
area of explainable or interpretable
machine learning. Recent surveys
cover different ways in which explana-
tions can be made, but do not analyze
the degree and form of automation
(for example, Guidotti et al.'®). Clearly,
the potential for automation depends
strongly on whether a generic expla-
nation of a model (global explana-
tion) or a single prediction (local ex-
planation) is required, and whether
the explanation has to be customized
for or interact with a given user, by
adaptation to their background, ex-
pectations, interests and personality.
Explanations must go beyond the in-
spection or transformation of models
and predictions, and should include
the relevant variables for these predic-
tions, the distribution of errors and
the kind of data for which it is reliable,
the vulnerabilities of a model, how
unfair it is, and so on. A prominent
example following the mechanization
form of automation is the Automatic
Statistician,”” which can produce a
textual report on the model produced
(for a limited set of problem classes).
Figure 3 shows a fragment of such a
report, including graphical represen-
tations and textual explanations of the
most relevant features of the obtained
model and its behavior.

We believe that fully understanding
the behavior and effect of the models

b https://www.automaticstatistician.com/



and insight produced in earlier stages
of the data science pipeline is an inte-
gral part of the validation of the entire
process, and key to a successful deploy-
ment. However, ‘internal’ evaluation,
which is usually coupled with model
building or carried out immediately
after, is done in the lab, trying to maxi-
mize some metric on held-out data. In
contrast, validation in the real world re-
fers to meeting some goals, with which
the data, objective functions and other
elements of the process may not be
perfectly aligned. Consequently, this
broad perspective of the ‘external’ vali-
dation poses additional challenges for
automation, as domain context plays
a more important role (Figure 1). This
is especially the case in areas, where
optimizing for trade-offs between ac-
curacy and fairness metrics may still
end up producing undesirable global
effects in the long term, or areas such
as safety-critical domains, where ex-
perimenting with the actual systems is
expensive and potentially dangerous,
for example, in medical applications or
autonomous driving. A very promising
approach to overcome some of these
challenges is the use of simulation,
where an important part of the appli-
cation domain is modeled, be it a hos-
pital" or a city. The concept of ‘digital
twins’*® allows data scientists to deploy
their models and insights in a digital
copy of the real world, to understand
and exploit causal relations, and to an-

ticipate effects and risks, as well as to
optimize for the best solutions. Opti-
mization tools that have proven so use-
ful in the AutoML scenario can be used
to derive globally optimal decisions
that translate from the digital twin to
the real world, provided the simulator
is an accurate model at the required
level of abstraction. The digital twin
can also be a source of simulated data
for further iterations of the entire data
science process.

Deployment becomes more com-
plex as more decisions are made,
models are produced and combined,
and many users are involved. Accord-
ingly, we contend that automating
model maintenance and monitoring is
becoming increasingly relevant. This
includes tracing all the dependencies
between models, insights and deci-
sions that were generated during train-
ing and operation, especiallyif re-train-
ing is needed,* resembling software
maintenance in several ways. Some
aspects of monitoring trained models
seem relatively straightforward and
automatable, by re-evaluating indica-
tors (metrics of error, fairness, among
others) periodically and flagging im-
portant deviations, as a clear example
of the assistive form of automation,
which allows for extensive reuse. Once
models are considered unfit or de-
graded, retraining to some new data
that has shifted from the original data
seems easily mechanizable (repeat-
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ing the experiment), but it depends
on whether the operating conditions
that were used initially still hold after
the data shift. Reliable and well under-
stood models can often be reused even
in new or changing circumstances,
through domain adaptation, transfer
learning, lifelong learning, or refram-
ing;* this represents a more composi-
tional form of automation.

Data science creates many patterns,
models, decisions, and meta-knowl-
edge. The organization and reuse of
models and patterns can be automated
to some degree via inductive databas-
es, via specialized databases of models
(for example, machine learning model
management*®), or by means of large-
scale experimentation platforms, such
as OpenML.¢ In the end, we believe the
automation of knowledge management
and analysis for and from data science
activities will be a natural evolution of
the automation of data management
and analysis.

Perspectives and Outlook

The quest for automation, in the broad
context of data analysis and scientific
discovery, is not new, spanning decades
of work in statistics, artificial intelli-
gence (Al), databases, and program-
ming languages. We now visit each of
these perspectives in turn, before draw-
ing some final conclusions.

¢ www.openml.org™

Selected research challenges in automating data science, with their associated quadrants and likely forms of automation (mechanization,

composition, and assistance).

Quadrant Challenge Mechanization Composition Assistance
Generic Enhancing human-AI collaboration, by incorporating domain context for
q a 1 e 8 g X X
interactively defining and refining the goal of data science activities.
Generic Addressing ethical, privacy, and legal issues in the automation x 52 =
of data science.
Model Building Extending AutoML to tasks beyond supervised learning.
Model Building/Data Engineering ~ Generating meaningful features, considering domain context and task. X
Data Engineering Streamlining the ETL (Extract, Transform, Load) process by using 7
pipeline schemas and reusing preprocessing subcomponents.
Data Engineering Expediting the data cleaning, outlier detection and 7 ” %
data imputation processes.
Data Exploration Supporting the design of interactive data and pattern visualizations. X
Data Exploration Developing human-AI collaborative systems for
q X X
data and pattern exploration.
Exploitation Generating collaborative reports and presentations, facilitating = 52
the interrogation, validation and explanation of models and results.
Exploitation Dealing with concept drift, monitoring the interaction of several data ” .

science models, and assessing their effects more globally.
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First, there is a long tradition in AI
of attempts to automate the scientific
discovery process. Many researchers
have tried to understand, model, and
support a wide range of scientific pro-
cesses with Al including approaches to
leverage cognitive models for scientific
discovery (such as Kepler’s laws).? More
recent and operational models of scien-
tific discovery include robot scientists,*
which are robotic systems that design
and carry out experiments in order to
find models or theories, for example, in
the life sciences. While these attempts
included experimental design and not
only observational data, they were also
specialized to particular domains, re-
ducing the challenges of the domain
context (thevertical dimensionin Figure
1). Many important challenges remain
in this area, including the induction or
revision of theories or models from very
sparse data; the transfer of knowledge
between domains (which is known to
play an important role in the scientific
process); the interplay between the de-
sign of methodology, including experi-
ments, and the induction of knowledge
from data; and the interaction between
scientists and advanced computational
methods designed to support them in
the scientific discovery process.

Second, there were efforts in the
1980s and 1990s at the interface of
statistics and Al to develop software
systems that would build models or
explore data, often in an interactive
manner, using heuristic search or plan-
ning based on expert knowledge (for
example, Gale®® and St. Amant et al.*®).
This line of research ran up against the
limits of knowledge representation,
which proved inadequate to capture the
subtleties of the statistical strategies
used by expert data analysts. Today, the
idea of a ‘mechanized’ statistical data
analyst is still being pursued (see the
Automatic Statistician?®®), but with the
realization that statistical modeling of-
ten relies heavily on human judgement
in a manner that is not easy to capture
formally, beyond the top right quad-
rant in Figure 1. It is then the composi-
tion and assistance forms of automation
that are still targeted when modular
data analytic operations are combined
into plans or workflows in current data
science platforms, such as KNIME and
Weka, or in the form of intelligent data
science assistants.”’
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Third, in a database context, the con-
cept of inductive query languages al-
lows a user to query the models and pat-
terns that are held in the data. Patterns
and models become “first-class citi-
zens” with the hope of reducing many
activities in data science to a querying
process, in which the insights obtained
from one query led to the next query,
until the desired patterns and models
have been found. These systems are typ-
ically based on extensions of SQL and
other relational database languages (for
example, Blockeel et al.’). Doing data
science as querying or programming
may help bridge the composition and
mechanization forms of automation.

Fourth, in recent years, there has
been an increasing attention on proba-
bilistic programming languages, which
allow the expression and learning of
complex probabilistic models, extend-
ed or combined with first-order logic.?
Probabilistic programming languages
have been used inside tools for democ-
ratizing data science, such as BayesDB*
and Tabular," which build probabilistic
models on top of tabular databases and
spreadsheets. Probabilistic program-
ming can also, for example, propagate
uncertainty from an imputation meth-
od for missing data into the predictive
analysis and incorporate background
knowledge into the analysis. This may
support a more holistic view of automa-
tion by increasing the integration of the
four quadrants in Figure 1, which may
mutate accordingly.

All four of these approaches have
had some success in specific domains
or standard situations, but still lack
the generality and flexibility needed
for broader applications in data sci-
ence, as the discipline incorporates new
methods and techniques at a pace that
these systems cannot absorb. More sci-
entific and community developments
are needed to bridge the gap between
how data scientists conduct their work
and the level of automated support that
such approaches can provide. The ac-
companying table presents a series of
indicative technical challenges for auto-
mating data science.

While AutoML will continue to be a
flagship example for automation in data
science, we expect most progress in the
following years to involve stages and
tasks other than modeling. Capturing
information about how data scientists
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work, and how data science projects
evolve from conception to deployment
and maintenance, will be key for more
ambitious tools. Progress in areas of Al
such as reinforcement learning can ac-
celerate this.

It is important to raise awareness of
the potential pitfalls and side effects of
higher levels of automation in data sci-
ence. These include over-reliance on
the results obtained from systems and
tools; the introduction of errors that are
subtle and difficult to detect; and cogni-
tive bias towards certain types of obser-
vations, models and insights facilitated
by existing tools. Also, data science
tools in the context of human-AI collab-
oration are seen as displacing the work
practice of data scientists, leading to
new roles.*” Similarly, this collaborative
view suggests new forms of interaction
between data scientists and machines,
as these become proactive assistants
rather than tools.!

With all of this in mind, we cau-
tiously make the following predic-
tions. First, it seems likely that there
will continue to be useful and signifi-
cant advances in the automation of
data science in the three most acces-
sible quadrants in Figure 1: data en-
gineering (for example, automation
of inference about missing data and
of feature construction), model build-
ing (for example, automated selection,
configuration and tuning beyond the
current scope of AutoML), and ex-
ploitation (for example, automated
techniques for model diagnosis and
summarization). Second, for the most
challenging quadrant of data explora-
tion, and for tasks in the other quad-
rants where representation of domain
knowledge and goals is needed, we an-
ticipate that progress will require more
effort. And third, across the full spec-
trum of data science activities, we see
great potential for the assistance form
of automation, through systems that
complement human experts, tracking
and analyzing workflows, spotting er-
rors, detecting and exposing bias, and
providing high-level advice. Overall,
we expect an increasing demand for
methods and tools that are better in-
tegrated with human experience and
domain expertise, with an emphasis
on complementing and enhancing the
work of human experts rather than on
full mechanization.
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