
Resonant Cavity Modification of Ground State Chemical Kinetics

Lachlan P. Lindoy,1 Arkajit Mandal,1 and David R. Reichman1, ∗

1Department of Chemistry, Columbia University,

3000 Broadway, New York, New York, 10027, U.S.A

Recent experiments have suggested that ground state chemical kinetics can be suppressed or
enhanced by coupling the vibrational degrees of freedom of a molecular system with a radiation
mode inside an optical cavity. Experiments show that the chemical rate is strongly modified when
the photon frequency is close to characteristic vibrational frequencies. The origin of this remarkable
effect remains unknown. In this work, we develop an analytical rate theory for cavity-modified
ground state chemical kinetics based on the Pollak-Grabert-Hänggi rate theory. Unlike previous
work, our theory covers the complete range of solvent friction values, from the energy-diffusion
limited to the spatial-diffusion limited regimes. We show that the chemical reaction rate can either be
enhanced or suppressed depending on the bath friction; when bath friction is weak chemical kinetics
is enhanced as opposed to the case of strong bath friction, where chemical kinetics is suppressed.
Further, we show that the photon frequency at which maximum modification of chemical rate is
achieved is close to the reactant well, and hence resonant rate modification occurs. In the strong
friction limit the resonant photon frequency is instead close to the barrier frequency, as obtained
using the Grote-Hynes rate theory. Finally, we observe that the rate changes (as a function of
photon frequency) are much sharper and more sizable in the weak friction limit than in the strong
friction limit, and become increasingly sharp with decreasing well frequency.

I. INTRODUCTION

Vibrational polaritons [1–3], quasi-particles formed by
coupling molecular vibrations and radiation modes in an
optical cavity, exhibit a wide range of exotic phenomena.
A series of recent experiments [1–8] have demonstrated
that chemical kinetics can be enhanced [4, 6, 8] or sup-
pressed [1, 5], molecular bonds can be selectively bro-
ken [2], and selective crystallization can be achieved [9]
via the formation of vibrational polaritons. On the other
hand, several studies [10, 11] have also reported possi-
ble discrepancies or inconsistencies in the interpretation
of experiment purporting sizable kinetic effects. Thus, a
rigorous theoretical understanding of the range of possi-
ble cavity-induced modifications to chemical kinetics is
actively sought.

Despite recent theoretical progress [12–23], the fun-
damental theoretical understanding of cavity-modified
ground state chemical reactivity remains inadequate. In
short, the primary theoretical challenges regarding vi-
brational polaritonic chemistry include: (i) explaining
the resonance effect, namely the observation that chem-
ical kinetics is strongly modified when photon frequency
is close to some vibrational frequency of the reactant
molecule and (ii) explaining collective effects, namely the
observation that cavity-modified chemical reactivity de-
pends on the number of molecules coupled to the radia-
tion mode.

Initial theoretical calculations employing simple tran-
sition state theory [24] (TST) concluded that coupling
to the cavity does not modify the energy barrier and
thus provides no change of chemical kinetics. Theoret-
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ical work that has employed multi-dimensional transi-
tion state theory, or equivalently the Grote-Hynes (GH)
theory [25], has revealed a photon frequency dependent
suppression of chemical kinetics at the single molecule
level [12, 13, 21]. Further, the GH theory predicts
that the maximum suppression of chemical kinetics is
achieved when the photon frequency is close to the bar-
rier frequency, and is independent of the reactant well
frequency. This is in contrast to the experimental ob-
servations where the chemical kinetics is most strongly
modified when the photon frequency is close to the reac-
tant well frequency [1, 5].

Quantum transition state theory (QTST) predicts that
the maximum suppression of chemical kinetics occurs
when the photon frequency is between the barrier and
the well frequency [17]. When nuclear quantum effects
are negligible, QTST provides the same result as the GH
theory. Further, both GH theory and QTST only pre-
dict a mild suppression of chemical kinetics and a broad
rate profile [12, 17] as a function of photon frequency,
in contrast to much larger and sharper rate profile typ-
ically observed in experiments [1, 5, 8]. On the other
hand, computational studies [20, 26] at the single molec-
ular level have revealed enhancement of chemical kinet-
ics [26], especially when the molecule-bath coupling is
weak [27].

Note that all such reaction theories are either classical
or semi-classical in nature, and do not address collective
effects in a direct manner. Thus a theoretical explanation
for such collective effects remains elusive. It has been ar-
gued using GH theory that chemical kinetics can be sup-
pressed when cavity radiation modes collectively couple
to solvent vibrations that, in turn, are strongly coupled
to the reaction coordinate [19]. In particular, theoretical
work [17] has suggested a “coherent mechanism” where

the cavity-molecule coupling is scaled by
√
N (where N
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is number of molecules inside the cavity). However such
an argument is heuristic and lacks rigorous theoretical
justification.

In this work, we develop a rigorous classical rate the-
ory that provides the cavity-modified chemical rate for
the full range of molecule-bath coupling strengths in the
single molecule limit. Our work is based on the Pollak-
Grabert-Hänggi rate theory (PGH) [28] where the rate
constant contains a depopulation factor that accounts for
thermal activation in the energy-diffusion limited regime.
In the weak molecule-bath coupling regime (i.e. the
energy-diffusion limited regime), we show that coupling
molecular systems to a radiation mode leads to an en-
hancement of chemical kinetics. This enhancement is
greatest when the photon frequency is close to the reac-
tant well frequency. Our results reveal that the rate pro-
file as a function of photon frequency becomes sharper
with decreasing reactant well frequency. We find that
this resonance effect entirely originates from the depop-
ulation factor, a term that is absent in GH theory.

In the strong molecule-bath coupling limit the depopu-
lation factor tends to unity and the PGH theory produces
results identical to the GH theory. In this regime, we ob-
serve suppression of the chemical rate when coupling to
a cavity, which corroborates previous theoretical calcula-
tions [12, 13]. In this regime the maximum modification
of the chemical rate occurs when the photon frequency is
close to the barrier frequency as opposed to the reactant
well frequency. The effect in the strong coupling limit is
smaller than in the low friction limit.

This letter is organized as follows: In sec. II A we out-
line the model. In sec. II B we detail the theory of cavity-
altered reaction rates. We present results in sec. III. In
sec. IV we conclude.

II. THEORY

A. Model Hamiltonian

In this work we consider the Pauli-Fierz non-
relativistic QED Hamiltonian in the dipole gauge and in
the long-wavelength limit [29, 30] with ~ = 1 in atomic
units (a.u.),

Ĥ = Ĥm + Ĥc + Ĥb

=
P̂ 2

2
+ V (Q̂)

+
p̂2c
2

+
1

2
ω2
c

(

q̂c +

√

2

ω3
c

χ · µ̂(Q̂)

)2

+
∑

i

[

p̂2i
2

+
1

2
ω2
i

(

q̂i −
ci
ω2
i

Q̂

)2
]

, (1)

where the last three lines describe the molecular Hamil-
tonian Ĥm = P̂ 2/2 + V (Q̂), cavity Hamiltonian Ĥc =
p̂2

c

2 + 1
2ω

2
c (q̂c +

√

2/ω3
cχ · µ̂(Q̂))2 and the molecular bath

𝜔

𝜔

(a)

(b)

FIG. 1. (a) Model potential energy surface V (Q) as a func-
tion of the reaction coordinate Q. (b) Grote-Hynes (GH) (red
solid line) and Pollak-Grabert-Hänggi (PGH) (black dashed
line) transmission coefficients as a function of the bath reor-
ganization energy Λ when no cavity is present.

Hamiltonian Ĥb =
∑

i[p̂
2
i /2 + 1

2ω
2
i (q̂i − ci

ω2

i

Q̂)2], respec-

tively. Here, Q̂, q̂c and {q̂i} are position operators for the
molecular reaction coordinate, the cavity radiation mode,
and the bath vibrational modes, respectively. Note that
in linear response theory, a harmonic bath may rigorously
model an anharmonic solvent [31, 32]. Here, ωc is the

photon frequency, µ(Q̂) is the molecular dipole moment

operator, and χ =
√

ωc/2εV characterizes light-matter
coupling strength, where ε and V is the permittivity of
the medium placed between two cavity mirrors and the
quantization volume, respectively. Lastly, ωi is the ith
bath mode frequency for a vibration that couples to the
reaction coordinate with a coupling constant ci.
We consider an adiabatic ground state chemical reac-

tion described by a symmetric double well potential V (Q̂)
(shown in Fig. 1a). Modification of our approach to the
asymmetric case is trivial. The ground adiabatic poten-
tial energy surface V (Q̂) is characterized by a reactant
well frequency ω0 and a barrier frequency ωb such that,

V (Q ≈ Qr) ≈
1

2
ω2
0(Q−Qr)

2,

V (Q ≈ Qb) ≈ −1

2
ω2
b (Q−Qb)

2 + Eb, (2)

where Qr and Qb are the position of reactant and the
barrier, respectively, and Eb is the barrier height. De-
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tails of the model molecular system are provided in the
Supporting Information (SI).

The cavity Hamiltonian Ĥc used in this work describes
the interaction between a single cavity mode and the
molecular system through the ground state molecular
permanent dipole moment µ̂(Q). For simplicity, we as-
sume a linear dipole µ̂(Q) = µ0 ·Q. Noting that χ ∝ ωc,

we write Ĥc as

Ĥc =
p̂2c
2

+
1

2
ω2
c

(

q̂c +
ηc√
ωc

· Q̂
)2

, (3)

where ηc =
√
2µ0

χ
ωc

is independent of the photon fre-
quency ωc.

The vibrational frequencies ωi and couplings ci in the
molecular bath Hamiltonian Ĥb are sampled from a spec-
tral density defined as

Jb(ω) =
π

2

∑

i

c2i
ωi

δ(ω − ωi), (4)

which here is taken to be a standard Debye spectral den-
sity often used to model chemical solvents [33]

Jb(ω) =
2ΛΩcω

ω2 +Ω2
c

, (5)

with cutoff frequency Ωc = 0.3 eV, and reorganization
energy Λ. All calculations have been run at T = 300 K.

B. Rate Theory

Following the Pollak-Grabert-Hänggi theory
(PGH) [34], the chemical rate constant for the light-
matter Hamiltonian in Eq. 1 in the classical limit
(Ĥ → H(Q, qc, {qi})) can be expressed as,

k = Ycl · κGH · kTST = κPGH · ω0

2π
e−βEb , (6)

where kTST = ω0

2π e
−βEb is the simple transition state

theory rate constant, and κGH is the transmission co-
efficient within the GH theory [25, 35–37]. Most impor-
tantly for this work, Ycl is the classical depopulation fac-
tor which determines the total transmission coefficient
κPGH = Ycl · κGH [34].

The GH transmission coefficient κGH is given by

κGH =
λb

ωb

, (7)

where λb is the frequency of the unstable normal mode
of the molecule-cavity-bath hybrid system which can be
obtained from the GH relation [25]

λb =
ω2
b

λb + γ(λb)
. (8)

Here γ(z) is the Laplace transform of the time-dependent
friction, which can be obtained from the total spectral
density [28],

γ(z) =
2

π

∫ ∞

0

J(ω)

ω

z

ω2 + z2
. (9)

Note that the total spectral density is J(ω) = Jb(ω) +
π
2 η

2
cω

2
cδ(ω − ωc) such that the cavity mode is effectively

treated as an additional vibrational mode.
For a double-well potential, the depopulation factor,

Ycl, can be expressed as [38, 39]

Ycl =
Ym(δL)Ym(δR)

Ym(δL + δR)
, (10)

where Ym is the classical depopulation factor for the es-
cape from a metastable state and is given by [28, 38, 40]

Ym(δ) = exp

[

1

π

∫ ∞

−∞

dy

1 + y2
ln
(

1− e−
δ

4
(1+y2)

)

]

. (11)

In Eq. 10, δL and δR are the average (dimensionless)
energy loss from the unstable mode when the system re-
turns to the barrier, associated with the left and right
wells, respectively, and can be obtained from [39]

δ =
β

2π

∫ ∞

−∞

Re [K(iz)] f(z)dz. (12)

Here

K(z) =
1

u2
00

z

z2 + zγ(z)− ω2
b

− z

z2 − λ2
0

(13)

is the Laplace transform of the classical dissipation ker-
nel, where u00 is the coefficient of the unstable mode in
the normal mode expansion of the mass-weighted reac-
tion coordinate, which can be obtained from the spectral
density as [28, 39]

u2
00 =

[

1 +
2

π

∫ ∞

0

J(ω)ω

(ω2 + λ2
0)

2

]−1

. (14)

In Eq. 12, f(z) =
∣

∣

∣

∫∞

−∞
eiztF (t)dt

∣

∣

∣

2

is obtained from the

time-dependent force

F (t) = −u00
dVNL

dQ

∣

∣

∣

∣

∣

Q=u00Q(t)

(15)

which arises from the classical trajectory of the unsta-
ble mode at the barrier energy, Q(t), where VNL(Q) =
V (Q) + 1

2ω
2
bQ

2 accounts for the non-linear contributions
to the force at the top of the barrier [28, 39, 40]. The
unstable mode trajectory is obtained as the solution of
the equation of motion,

Q̈(t)− λ2
0Q(t) = F (t), (16)
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𝜅 (No Coupling)
(a)

(b)

𝜅 (No Coupling)

𝜅

𝜅

𝑌

FIG. 2. Dependence of the (a) Grote-Hynes and (b) Pollak-
Grabert-Hänggi transmission coefficients on the cavity fre-
quency in the energy-diffusion limited regime (Λ = 2 × 10−7

a.u.) with η = 0.0025 a.u. and a reaction coordinate fre-
quency ω0 = 0.2 eV). Note the dramatically different scales
for the transmission coefficients.

starting at the top of the barrier and returning to the
barrier with period τ → ∞.

When the system-bath coupling is strong Ycl → 1, and
the chemical rate constant becomes k ≈ κGH ·kTST, such
that the PGH theory reduces to the GH theory. In this
regime, the strong system-bath coupling leads to rapid
thermalization of the energy in the unstable mode, a cen-
tral assumption in GH theory [34]. In the weak system-
bath coupling regime, this no longer holds and it becomes
necessary to explicitly account for the exchange of energy
between the unstable and stable modes. Within the PGH
theory, the effect of this energy transfer on the transmis-
sion coefficient is accounted for by the depopulation fac-
tor, Ycl. In the weak coupling regime Ycl � 1, and the
overall rate becomes incredibly sensitive to the average
energy loss, δ, that characterizes the transfer of energy
between the unstable and stable modes. PGH theory ex-
tends the GH theory to capture the Kramers turnover be-
tween the energy-diffusion limited regime and the spatial-
diffusion limited (high-friction) regimes. We note that
the PGH theory is generally in semi-quantitative agree-
ment with direct numerical simulation across all values
of friction [34].

The general behavior of our system when decoupled
from the cavity (Ĥ → Ĥ − Ĥc) is shown in Fig. 1b.
In Fig. 1b we compute the transmission coefficient κ =
k/kTST from GH theory (κGH) and PGH theory (κPGH =
Ycl · κGH). The red solid line represents the GH trans-

mission coefficient κGH as a function of the bath reor-
ganization energy Λ compared to the PGH transmis-
sion coefficient κPGH, represented by the black dashed
line. The PGH theory shows the characteristic Kramers
turnover [35], in contrast to the red solid line that mono-
tonically decreases with increasing Λ and deviates from
the complete theory below Λ ∼ 5× 10−6 a.u. Note that
for our chosen form of the potential and parameters, the
GH theory is accurate just past the turnover point. For
other parameters it may be the case that the GH theory
is only asymptotically accurate for large friction. The
PGH theory can indeed capture this range of friction as
well.

III. RESULTS AND DISCUSSION

Fig. 2 presents the transmission coefficient for a
molecule-cavity-bath hybrid system described in Eq. 1
computed from the GH and PGH theories. In Fig. 2
we vary the photon frequency while keeping ηc = 0.0025
a.u. a constant and employ a small bath reorganization
energy Λ = 2× 10−7 a.u.
In Fig. 2a the photon frequency, ωc, dependence of the

GH transmission coefficient, κGH, is presented. Note that
the GH theory does not depend on ω0 and only depends
on ωb [12], as evident from Eqs. 7-9. Overall, κGH shows
suppression of the chemical rate, in comparison to the
no coupling (ηc = 0) scenario represented by the black
solid line. However, for the coupling values chosen here
the suppression is very weak. Additionally, κGH exhibits
a minimum when the photon frequency is close to ωb, as
has been shown in recent work [12, 13, 17]. Note that
κGH exhibits very broad suppression and very slowly ap-
proaches the zero coupling results over a frequency range
of ∼ 2 eV on the scale of κGH presented here.
Fig. 2b presents the PGH transmission coefficient

κPGH for the cavity-modified rate as a function of ωc

with the same ηc as in Fig. 2a. Importantly, κPGH dis-
plays quantitatively as well as qualitatively different rate
behavior. First, in Fig. 2b we observe cavity-mediated
enhancement in contrast to the suppression predicted
within GH theory. Second, the maximum cavity mod-
ification occurs when photon frequency is close to the
reactant well frequency, that is ωc ≈ ω0. This quali-
tative feature of the PGH theory matches experimental
observations, where maximum cavity modification is also
achieved when ωc ≈ ω0 [4, 6, 8]. However, we empha-
size that in this work we have considered only a single
molecule coupled to a cavity mode. Thus caution must
be exercised when comparing to the experiments where
a large ensemble of molecular vibrations are collectively
coupled to the cavity. Third, the extent of cavity modi-
fication predicted within the PGH theory is much larger
than that predicted in the GH theory. In Fig. 2a the mod-
ification of chemical rate is at most 0.07%, whereas the
chemical rate is modified by ≈ 21% in Fig. 2b when using
the PGH theory. Lastly, the width of the enhancement
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Λ = 2x10-6 Λ = 4x10-6

Λ = 6 x 10-6 Λ = 8 x 10-6

ω ω

ω ω

ω

no coupling

no coupling

no couplingno coupling

FIG. 3. Cavity-modified chemical rate computed using
Pollak-Grabert-Hänggi (PGH) theory at various solvent fric-
tion values, (a) Λ = 2 × 10−6 a.u., (b) Λ = 4 × 10−6 a.u.,
(c) Λ = 6 × 10−6 a.u. and (d) Λ = 8 × 10−6 a.u. and with
a constant light-matter coupling ηc = 0.005 a.u., with green
and red shading representing enhancement or suppression, re-
spectively. κ0

PGH is the total transmission coefficient when no
cavity is present.

of the rate as a function of frequency is much narrower
than that of suppression in the high friction limit. The
PGH transmission coefficient in this low molecular bath
friction regime is dominated by the depopulation factor
Ycl (blue solid line in Fig. 2b) such that κPGH primarily
inherits its shape from Ycl.

The light-matter coupling modulates the depopulation
factor Ycl and the behavior of κGH (note that κPGH =
Ycl · κGH) in two different ways. The light-matter cou-
pling significantly increases the energy loss, δ, accounting
for transfer of energy between the stable and unstable
modes, increasing Ycl, which leads to an enhancement
of the chemical reaction rate. At the same time, the
light-matter coupling decreases κGH, which leads to sup-
pression of the reaction rate. The overall modification of
the reaction rate is a result of an interplay of these two
effects. The relative extent to which both of these terms
(Ycl and κGH) are modified depends on the bath friction.
Consequently, the deviation of the PGH theory from the
GH theory also depends on the bath friction. We illus-
trate this in Fig. 3, where we consider four different bath
reorganization energy values Λ at a fixed light-matter
coupling strength ηc = 0.005 a.u.

Figs. 3a-d present normalized transmission coefficient
κPGH/κ

0
PGH, where κ0

PGH is transmission coefficient in
the no coupling scenario (ηc = 0) computed using the
PGH rate theory. In Figs. 3a-b, we set Λ = 2× 10−6 a.u.
and 4×10−6 a.u. respectively, such that the bath friction
lies in the energy-diffusion limited regime. In this limit,

Maximum κ0

ηc = 0.0025

ηc = 0.005

ηc = 0.01

no coupling

(a)

(b)

κ
P
G
H

κ
P
G
H
/κ
0
P
G
H

FIG. 4. Dependence of the Pollak-Grabert-Hänggi (PGH)
transmission coefficients on the cavity frequency in the
energy-diffusion limited regime (Λ = 2 × 10−7 a.u.) (a)
for different values of the light-matter coupling ηc as func-
tion of photon frequency ωc and (b) as a function of ηc with
ωc = ω0 = 0.2 eV.

just as in Fig. 2b, light-matter interactions lead mostly
to enhancement of chemical rate (indicated by the green
shaded region) which is maximized when the photon fre-
quency is resonant with ω0. We note that there is a small
deviation between ω0 and the ωc at which the Ycl is max-
imum. This is due to the non-linearity of V (Q), such
that it is only approximately a harmonic potential of fre-
quency ω0 near the reactant well. Meanwhile we also
observe a small amount of suppression in the transmis-
sion coefficient in Fig. 3b (indicated by the red shaded
region) when ωc is far from ω0 due to the contribution of
the cavity-modified kGH.

In Fig. 3c, we consider a relatively high bath friction
value Λ = 6× 10−6 a.u., which lies near the maximum of
κPGH in Fig.1b. Interestingly, in this case, the interplay
between Ycl and κGH becomes prominent, and we observe
both suppression as well as enhancement of the chemical
reaction rate. Enhancement occurs when ωc ≈ ω0 and
suppression when ωc is far from ω0.

In Fig. 3d we consider stronger bath friction Λ = 8 ×
10−6 a.u.. In this regime, Ycl ≈ 1 in the absence of the
cavity (ηc = 0). Thus turning on the cavity coupling,
which effectively increases overall friction in Eq. 9, does
not lead to a noticeable increase in Ycl since it is bounded
by 1 (0 ≤ Ycl ≤ 1). As a result, κPGH ≈ κGH, and
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one observes the characteristic chemical suppression as
predicted by the GH theory [12].

Overall, the cavity mode can be regarded as an addi-
tion bath degree of freedom which effectively increases
the bath friction in Eq. 9. Thus, the light-matter cou-

pling strength can be regarded as a control knob that can

tune the effective environmental friction of the molecular

system. We illustrate this in Fig. 4.

In Fig. 4, we analyze the effect of light-matter coupling
on cavity-modified chemical kinetics. Fig. 4a present
the normalized transmission coefficient κPGH as a func-
tion of ωc at three different values of ηc. Here we use
Λ = 2 × 10−7 a.u. which lies in the energy-diffusion
limited regime. As expected, we observe that increas-
ing the light-matter coupling ηc leads to an increase
in the chemical reaction rate. Similar to the original
Kramers turnover behavior, increasing ηc further leads
to a turnover of the chemical rate, where increasing ηc
leads to a decrease in the chemical reaction rate. This is
shown in Fig. 4b.

In Fig. 4b we present the cavity-modified transmission
coefficient κPGH as a function ηc and at a constant cavity
photon frequency ωc = ω0. For small light-matter cou-
pling strengths (ηc < 0.02 a.u.), the cavity enhances the
chemical rate. In this regime, κPGH ≈ Ycl as κGH ≈ 1 (see
red solid line in Fig. 4b). With increasing ηc, the chemical
rate is enhanced by up to ≈ 5 times when ηc ≈ 0.025 a.u.
Further increase in ηc leads to a suppression of chemi-
cal kinetics (for ηc > 0.03 a.u.) and κPGH ≈ κGH as
Ycl ≈ 1 (see blue solid line in Fig. 4b). Overall, ηc plays
a similar role to Λ in modifying chemical kinetics, which
is apparent when comparing Fig. 1b and Fig. 4b. It is
worth noting, however, that ηc can be tuned to reach en-
hancement beyond the maximum chemical rate possible
by tuning Λ alone in the bare molecular system (i.e. the
peak of κPGH in Fig. 1b, also indicated by solid black line
in Fig. 4b).

Finally, in Fig. 5 we show the ω0 (reactant well fre-
quency) dependence of the cavity-modified chemical rate.
As mentioned before, the depopulation factor Ycl is
peaked when ωc is close to ω0. This results in a cav-
ity modification of the chemical rate that is peaked when
ωc ≈ ω0 (a “resonance” effect) in the energy-diffusion
limited regime. This is shown in Fig. 5a where we plot
κPGH/κ

0
PGH for three different values of ω0. Importantly,

we observe that in addition to the maximum enhance-
ment occurring at resonance, the rate profile becomes
sharper with decreasing ω0. In comparison, the GH the-
ory provides an ω0-independent rate profile as shown in
Fig. 5b (all three curves are identical, such that the other
two curves are hidden behind the green solid line).

The ω0 dependence in the energy-diffusion limited
regime can be leveraged to achieve mode selective chem-
istry in single molecule-cavity setups. This is in contrast
to the spatial-diffusion limited regime, where selectivity
can only be achieved when two chemical reactions have
different barrier frequencies [13].

ω0 = 0.2 eV

ω0 = 0.15 eV

ω0 = 0.1 eV

κ
P
G
H
/κ

0
P
G
H

κ
G
H
/κ

0
G
H

no coupling

ω0 = 0.2 eV

ω0 = 0.15 eV

ω0 = 0.1 eV

(a)

(b)

FIG. 5. Reaction coordinate frequency dependence of the
(a) Pollak-Grabert-Hänggi (PGH) and (b) Grote-Hynes (GH)
transmission coefficients (normalized by the transmission co-
efficient in the absence of a cavity) in the energy-diffusion
limited regime (Λ = 2 × 10−7 a.u. , η = 0.0025 a.u. and for
varying reaction coordinate frequencies.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have developed an analytical rate
theory to describe cavity-modified ground state chem-
ical kinetics at the single molecule level for the com-
plete range of solvent friction. Our formulation is based
on the Pollak-Grabert-Hänggi (PGH) rate theory [28]
which includes a depopulation factor that is absent in
previous works based on the Grote-Hynes (GH) the-
ory [12, 13, 17, 19]. For weak solvent friction (the energy-
diffusion limited regime), introduction of light-matter
coupling leads to a sizable increase in the chemical re-
action rate. We show that it is also possible to drive
a molecular system initially in the energy-diffusion lim-
ited regime to the spatial-diffusion limited regime by in-
creasing the light-matter coupling strength, as can be
done by increasing solvent friction. When solvent friction
places the system in the spatial-diffusion limited regime,
increase in the light-matter coupling suppresses chemi-
cal reactivity. Here, the PGH theory reduces to the GH
theory.
Importantly we find that when the system is in the

energy-diffusion limited regime, cavity coupling leads to
a resonance effect, that is the cavity modification peaks
when photon frequency is close to the reactant well fre-
quency (ω0 ≈ ωc). We show that this effect originates
from the depopulation factor. In this case, the rate pro-
file is much more dramatically altered and much sharper
in comparison to the predictions of GH theory, and the
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width of the rate profile decreases with decreasing ω0.

There are several important limitation to the theory
presented in this work as it pertains to direct compari-
son to recent experiments. First, our theory is completely
classical. Quantum effects may become important when
the cavity is in near-resonance with vibrational states
within V (Q). We are currently pursuing exact numerical
calculation of the fully quantized Hamiltonian to include
such effects. Secondly, our calculations only pertain to
the strict single molecule limit (infinite dilution), and
cannot address collective effects. A full quantummechan-
ical calculation of the case of N molecules inside a cav-
ity is prohibitively difficult. However, our fully quantum
mechanical calculations performed in the single molecule
case should enable the benchmarking of the accuracy of
approximate quantum master equation approaches such

as Redfield theory, which can open the door to the in-
clusion of both quantum and collective effects simultae-
nously. These important studies will be presented in fu-
ture publications.
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I. DETAILS OF THE MOLECULAR

HAMILTONIAN

Here we provide details for obtaining the molecular
potential energy surface V (Q) that is used in the main
text. We define V (Q) as the lowest eigenvalue of the
following 3× 3 matrix





Er(Q) ε 0
ε Eb(Q) ε
0 ε Ep(Q)



 , (1)

where ε = 5 meV, Er(Q) = 1

2
ω0(Q−Qr)

2 and Ep(Q) =
1

2
ω0(Q + Qr)

2 are harmonic potentials with frequency
ω0 = 0.2 eV. Eb(Q) is given as

Eb(Q) = Eb −
1

2
ω2

bQ
2

+ ε∞

(

1−Θ(Q−Qr) + Θ(Q+Qr)
)

, (2)

where Θ(Q ∓ Qr) = 1

2
(1 − tanh(Q∓Qr)) is a function

centered around ±Qr, ωb = 60 meV is the barrier fre-
quency and Eb = 370 meV is the barrier height. Here
we have used Qr = 40 a.u. when using ω0 = 0.2 eV. In
Fig. 5, for ω0 = 0.15 eV and ω0 = 0.1 eV we have used
Qr = 50 a.u. and 60 a.u., respectively.

II. EVALUATION OF THE UNSTABLE MODE

FORCE

Here we provide details for the numerical approach to
obtain the unstable mode force, F (t), used in the main
text. To perform this calculation, it is necessary to obtain
the unstable mode trajectory, Q(t). We introduce the

variable P(t) = Q̇(t) and consider the set of first order
ordinary-differential equations,

Q̇(t) = P(t), Ṗ(t) = λ2

0
Q(t) + F (t), (3)

where F (t) is defined in Eq. 15 of the main text. This
system of first-order ordinary differential equations are
solved numerically, using standard numerical integration
techniques, subject to the initial conditions

Q(0) = Qb, P(0) = P0. (4)

Here, Qb is the barrier position, and P0 is a convergence
parameter that may be either positive or negative de-
pending on whether we are interested in the unstable
mode trajectory associated with the right or left well, re-
spectively. These equations of motion are solved until,
after reaching a turning point, the trajectory returns to
the barrier position at some later time, τ , i.e. Q(τ) = Qb.
This trajectory is defined over times t = [0, τ ]. We ob-
tain the unstable mode trajectory, as defined in the main
text, by shifting the time domain to t = [−τ/2, τ/2]. The
unstable mode force can then be computed using Eq. 15
from the main text. This process is repeated with de-
creasing values of ‖P0‖, which results in increasing values
of τ , until the Fourier transform of F (t) is converged to
within some specified tolerance.
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