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ON THE GROTHENDIECK-SERRE CONJECTURE ON
PRINCIPAL BUNDLES IN MIXED CHARACTERISTIC

ROMAN FEDOROV

ABSTRACT. Let R be a regular local ring. Let G be a reductive R-group
scheme. A conjecture of Grothendieck and Serre predicts that a principal
G-bundle over R is trivial if it is trivial over the quotient field of R. The
conjecture is known when R contains a field. We prove the conjecture for a
large class of regular local rings not containing fields in the case when G is
split.

1. INTRODUCTION AND MAIN RESULTS

Let R be a regular local ring; let G be a reductive group scheme over R. A con-
jecture of Grothendieck and Serre (see [36, Remarque, p.31], [12, Remarque 3,
p.26-27], and [19, Remarque 1.11.a]) predicts that a principal G-bundle over R is
trivial, if it is trivial over the fraction field of R. Recently this has been proved in
the case when R contains a field in [I0], it was extended to the case of finite fields
in [31]. In this paper we consider the case when R contains no field, that is, the
case of mized characteristic.

Note that a regular local ring R contains no field if and only if there is a prime
number p (necessarily unique) such that p is neither invertible nor zero in R. In
this case R contains the localization Z,) of Z at the prime ideal (p) = pZ.

Thus, we assume that R is a Z,)-algebra. We will also assume that R/pR is a
regular ring. In this case a theorem of Popescu [35LB7L38] reduces the question to
the case when R is a localization of a finitely generated smooth Z,)-algebra A at
a maximal ideal. Taking the closure of Spec 4 in ]P’]ZV( ,,» We may assume that R is
the local ring of a closed point x on an integral scheme X projective over Z,).

Additionally, we will assume that (I) the fiber X, is generically reduced, and that
(IT) the set of points where X is not reqular intersects X, in a subset of codimension
at least two in X,. Note that condition (I) is satisfied if the fiber X, is irreducible
because the projection is smooth at x. On the other hand, both conditions are
satisfied if the set of points where the projection X — Spec Z,) fails to be smooth,
has codimension at least 3 in X.

Below we will prove the conjecture of Grothendieck and Serre under the above
assumptions when the group scheme G is split; see Theorem[Il We work in a slightly
greater generality: we weaken condition (I) and we consider projective schemes over
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560 ROMAN FEDOROV

any excellent discrete valuation ring A, not just Z,-schemes. In particular, A can
be a localization of any number ring at a maximal ideal.

We note that previously the conjecture was known in a very few mixed char-
acteristic cases, namely, when G is a torus [7], when dimR = 1, when R is
Henselian [26]. Next, the case of G = PGL(n, R) follows from a similar state-
ment for Brauer groups [, Thm. 4.3] (more generally, one can derive the statement
for G = PGL(A), where A is an Azumaya algebra over R). Also, in [27] the
conjecture is proved when G is quasisplit and dim R = 2 but there it is assumed
that the residue field of R is infinite. Thus our results are new even in dimension
two. We also note that while the current paper was under review, the subject was
further developed, see [4].

1.1. Definitions and conventions. A group scheme G over a scheme S is called
reductive if it is affine and smooth as an S-scheme and if, moreover, all its geometric
fibers are connected reductive algebraic groups. This definition of a reductive R-
group scheme coincides with [8, Exp. XIX, Def. 2.7].

A reductive group scheme G over a local scheme S is split if it contains a maximal
torus T C G such that T ~ (G, s)" for some r (cf. [8, Exp. XXII, Prop. 2.2]).
Note that such a group scheme comes as a pullback from SpecZ (see [8, Exp. XXV,
Thm. 1.1]).

Let G be a group scheme faithfully flat and finitely presented over S. An S-
scheme G with a left action of G is a principal G-bundle over S, if G is faithfully
flat and finitely presented over S, and the morphism G xg G — G Xg G, whose
first component is the action and the second is the projection, is an isomorphism
(see [20, Sect. 6]). A principal G-bundle £ over S is trivial if there is an isomorphism
of S-schemes £ ~ G compatible with the action of G, where G acts on itself by
left multiplication. A principal G-bundle is trivial if and only if it has a section as
an S-scheme.

If T is an S-scheme, we will use the term “principal G-bundle over 7” to mean
a principal G x g T-bundle over T. We usually skip the adjective ‘principal’ as we
are only considering principal G-bundles.

Assume that G is affine over S. In this case, we denote by Hflppf(S,G) the
pointed set of isomorphism classes of G-bundles over S (as every such bundle is
locally trivial in the fppf topology). The subset corresponding to étale locally trivial
bundles is denoted by H} (S, G). We note that if G is smooth over S, then we have

Hé}t(S7 G) = Hflppf(S7 G)

If T is an S-scheme and s € S is a point, we write Ty for the fiber T'x g s. We write
Ek(s) for the residue field of s.

The symbol ‘~’ means that two objects are isomorphic; we use the equality ‘=’
to emphasize that the isomorphism is canonical. We use boldface font for group
schemes (e.g G, B, etc.) and the calligraphic font for principal bundles (e.g. G, &,
etc.).

The notation #A stands for the number of elements of the finite set A.

1.2. Main result.

Theorem 1. Let A be an excellent discrete valuation ring; let b € Spec A be the
closed point. Let X be an integral scheme and w: X — Spec A be a flat projective

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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morphism. Denote by X*™9 the set of y € X such that the local ring Ox,y is not
a regular ring. Assume that w: X — Spec A satisfies the following properties

(I) The smooth locus of X, is dense in Xp.
(I1) The intersection X*™9 N X, has codimension at least two in X.

Let x € X be a closed point such that m is smooth at x. Let Gx , be a split
reductive Ox o-group scheme. Then a principal G x z-bundle over Ox , is trivial,
if it has a rational section.

The proof of the theorem occupies Sections BH4l

Remarks.

e The set X9 is closed in X, since A is excellent; see [16, Scholie 7.8.3(iv)].

e We note that X9 N X} is in general smaller than the set of points where
Xj is not regular.

e The condition that A is excellent is not needed. Indeed, the Grothendieck—
Serre conjecture is known for regular local rings containing finite fields [28]
31182]. Thus we may assume that A does not contain a finite field. In this
case A is automatically excellent; see [16, Scholie 7.8.3(iii)]. However, we
prefer to keep this assumption in order to have our theorem independent
from Panin’s results [28][3T][32].

e Condition (I) is satisfied if X, is irreducible, because 7 is smooth at x.

o If the residue field of b is perfect, then Condition (I) is equivalent to the
condition that X} has no multiple components.

e We expect that, more generally, the theorem and its proof hold for the semi-
local rings of finitely many closed points on X. Note that the conjecture is
proved in the case of semi-local Dedekind domains in [21], which extends
the results of [26]. See also [33] in the split case.

The following result of independent interest will be used in the proof.

Theorem 2. Let R be a Noetherian local ring. Let H be a split reductive group
scheme over R. Let F be a principal H-bundle over A}{ := Spec R[t] such that F is
trivial over the complement of a closed subscheme that is finite over Spec R. Then
F is trivial.

This theorem is similar to [29, Thm. 1.3] and to [I0, Thm. 3]. It will be proved
in Section 2l Note that the ring R is not required to be regular.

1.3. Example: quadratic forms. We have the following relative result. Let R
be a regular local ring and let the R-group scheme SO,, be the split form of the
special orthogonal group scheme.

Theorem 3. Let R be a regular local ring such that the Grothendieck—Serre conjec-
ture holds for R and SOas,. Assume that 2 is invertible in R. Let Q = Z” Qi TiT;
and Q' = Ei,j ¢;;7iv; be quadratic forms in n variables with coefficients in R such
that their discriminants are invertible in R. Assume that there is a linear transfor-
mation with coefficients in the fraction field of R, taking Q to Q'. Then there is a
linear transformation with coefficients in R taking Q to Q’.

When 2 is not necessarily invertible in R we have the following result. Define
the split quadratic form over R as follows

Qn = T1Tm41 + -+ TTom if n=2m
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and
Qn = T1Tmy1 +~~~+xmx2m+x§m+1 ifn=2m+1.

Note that SO, is the special orthogonal group scheme associated to Q,, (see [22]
Ch. IV, Sect. 5] for the correct definition in the case when 2 is not invertible in R).
Recall (see e.g. [22, Ch. IV, Sect. 3]) that if n is odd and @ is a quadratic form
with coefficients in R, then one can define its half-discriminant (which is just 1/2
times the discriminant if 2 is invertible in R).

Theorem 4. Let R be a regular local Ting such that the Grothendieck—Serre conjec-
ture holds for R and SO,,. Let @ = ZM gijTix; be a quadratic form in n variables
with coefficients in R such that its discriminant is invertible in R if n is even, and
its half-discriminant is invertible in R if n is odd. Assume that there is a linear
transformation with coefficients in the fraction field of R, taking Q to Q. Then
there is a linear transformation with coefficients in R taking Q to Q.

Note that, if X and x are as in Theorem [I then the conditions of Theorems [3]
and [ are satisfied for R = Ox ,. Theorems [3 and [ are proved in Section [}

1.4. Outline of the paper. We start by proving Theorem [2] in Section [2 After
that we proceed with the proof of Theorem [Il Let us give a brief overview of the
proof. By [26] we may assume that the relative dimension of the flat morphism
X — SpecA is at least one.

The fist step in the proof is to fiber a neighborhood of = in X into curves.
Thus we choose an appropriate neighborhood X’ of z in X and a smooth fibration
X’ — S of relative dimension one, having some nice properties (see Definition
below). We extend G to a principal bundle F over X’ such that F is trivial over
the complement of a subscheme finite over S. This step, carried out in Section [l
differs crucially from the equal characteristic case. In particular, we use the fact
that a generically trivial principal bundle can be reduced to a Borel subgroup on
the complement of a codimension two subscheme, see Proposition B.10.

In Section @ we complete the proof of Theorem [ as follows. We pull F back to
an open subset of X’ xg U, where U := Spec Ox ;. Then, we descend the bundle
obtained to A};, employing the theory of nice triples of Panin (cf. 29, Def. 3.1]
and Definition below), reducing Theorem [I] to Theorem [ See Remark ETT]
regarding the rationale for using nice triples.

In Section [l we prove Theorems [3 and (]

2. BUNDLES OVER A!: PROOF OF THEOREM

2.1. Horrocks type statement. The following statement and its proof are close
to [29, Thm. 9.6].

Proposition 2.2. Let R be a Noetherian local ring, U := Spec R. Let x € U be
the closed point. Let H be a reductive group scheme over U such that there is an
embedding H — GL(n,U) for some positive integer n. Let PL be the x-fiber of the
projection Py, — U, let H, be the x-fiber of H. Let H be an H-bundle over P}
such that its restriction to PL is a trivial Hy-bundle. Then H is isomorphic to the
pullback of an H-bundle over U.

Proof. By [0, Cor. 6.12(ii)] the quotient X := GL(n,U)/H is represented by an
affine scheme.
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Consider the associated GL(n, U)-bundle H' := GL(n,U) xHH. Let, under the
equivalence between GL(n,U)-bundles and rank n locally free coherent sheaves,
H' correspond to the sheaf S on P};. By the assumption on H, S, is isomorphic to
®7_10p1. Thus

H'(PL, Hom(S,, S,)) = H' (PL, @7, 0p1) = 0.

Therefore, according to [14, Cor. 4.6.4], S is a free sheaf. Thus H’ is trivial.
Consider the morphism of exact sequences, induced by the canonical projection
pry: Py — U,

(U, x) —2— HL(U,H) —— HL(U,GL(n,U))

Mory (PY, X) —2— HL(PL H) — HL(PY, GL(n,U)).
The class of [H] € H}, (P{;,H) is in the image of 9, because H' is trivial. It remains
to show that the morphism prj; is surjective. This follows from [25, Prop. 6.1]. This

proposition is applicable because P, is projective and X, is affine, so any morphism
P! — X, must be constant. O

Moryy

2.3. Gluing principal bundles. As before, let R be a Noetherian local ring,
U := Spec R. Let H be a split reductive group scheme over U. Let Y =0 x U be
the zero section in P};. Let Dy := Spec R[[t]] be the “formal disc around Y, let
Dy := Spec R((t)) be the “punctured formal disc.” There is commutative diagram
of morphisms of U-schemes (see [d, Sect. 4.1] for details)

DY —_— DY

! |

PL-Y —— P.
Further, we explained in [9] that given an H-bundle over ]P’}] —Y, an H-bundle over
Dy, and an isomorphism between their restrictions to Dy, we can glue the bundles
to make an H-bundle over P{;; see [9, Prop. 4.4].

This construction can be used to modify H-bundles over P{; in the following
sense. Given an H-bundle H over P(, its trivialization over Dy, and a loop a €
H(R((t))), we construct a new H-bundle H(c) over P}, as follows. We view « as
an isomorphism between | p, and the trivial H-bundle over Dy, and use it to
glue H|p _y with the trivial H-bundle over Dy

2.4. End of the proof of Theorem [2l We use the notations from the statement
of Theorem 2l As before, let U := SpecR and let Y = 0 x U C P},. Since
P, — Y ~ A}, we may view F as an H-bundle over P}, — Y. Let us trivialize 7
on a complement of a subscheme Z C ]P’%] — Y finite over U. Note that Z is closed
in IP’}J. Let us extend F to an H-bundle F over P,lj by gluing F with the trivial
bundle over P}, — Z (observe that both bundles are trivial over the intersection
PL—-Y - Z).

Consider the H,-bundle F, over IP’}E obtained by restricting F. Note that F, is
generically trivial because it is trivial over PL — Z,. Thus it is trivial over P — 0
by [11], Cor. 3.10(a)]. Fix such a trivialization.
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564 ROMAN FEDOROV

On the other hand, F is trivialized over Dy, as the morphism Dy — P}, factors
through IP’}J — Z. Fix such a trivialization, it gives rise to a trivialization of Fy
over Dy, .

Thus we get two trivializations of F, over Dyw; they differ by an element

a € H(Dy,) = H(k((1))),
where k := k(x).
Lemma 2.5. The natural map H(R((t))) — H(k((t))) is surjective.

Proof. Let T be a split maximal torus in H. Let B be a Borel subgroup scheme
such that T € B C H. Let B~ be the opposite Borel subgroup scheme (see [8|
Exp. XXII, Prop. 5.9.2]). Let U~ and U be the unipotent radicals of B~ and
B respectively. Let E be the subgroup of the abstract group H(k((t))) gener-
ated by U~ (k((¢))) and U(k((t))). It follows from [8, Exp. XXVI, Cor. 5.2] that

Next, every element of E extends to H(R((t))), see [10, Lemma 5.24]. Thus,
it remains to show that every element of T (k((t))) extends to T(R((t))). Since
T is split, it is enough to show that every non-zero element of k((t)) extends to
an invertible element of R((t)), which is obvious because R is local. O

By the previous lemma, we can extend the loop a to a loop & € H(R((t))).
Since F is trivialized over Dy and a~! € H(R((t))), we obtain a new principal
bundle F(a~') over P}; (see the end of Section 2:3)).

It is easy to see from the construction, that the restriction of F(&~') to Plisa
trivial H,-bundle. Indeed, ﬁ(&71)|p}v ~ Fp(a~1) and o was chosen in such a way
that the trivialization of F, on Pl — Y, extends to a trivialization of ]}z(a’l) on
P (cf. [10, Prop. 5.22)).

By [6, Cor. 6.12(i)] there is an embedding H — GL(n,U). Then by Proposi-
tion 22 F(a~ ') is isomorphic to a pullback of an H-bundle over U. Since the
restriction of F(& 1) to Y = 0 x U is trivial, we see that F(&~!) is trivial. Finally,
we see that

F = F(@ Yley, - ox

is trivial. The proof of Theorem [2]is complete. (]

3. QUASI—ELEMENTARY FIBRATIONS

Now we start the proof of Theorem [ which will occupy this and the next
sections. In this section we introduce the notion of a quasi-elementary fibration.
The main result is Proposition 3220 which lets us construct a quasi-elementary
fibration from the data of Theorem [Il We keep the notations from Theorem [l Set
U := Spec Ox . We may identify the unique closed point of U with z; denote the
residue field of z by k(x). As we have already mentioned, there is a split reductive Z-
group scheme Gz such that Gx , ~ Gz xzSpec Ox , (see [8, Exp. XXV, Thm. 1.1]).
Set G := Gy Xz Spec A; this is a split reductive A-group scheme. Then we have
Gx,z ~ G xp Spec Ox . We use this isomorphism to identify the group schemes.
Thus, according to our convention, principal G x ,-bundles are the same as principal
G-bundles.
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3.1. Definition of quasi-elementary fibrations. The notion of an elementary
fibration was introduced in [I, Exp. XI, Def. 3.1]. The following notion is a weak
version of elementary fibration: we only assume that the projection is smooth over
the open part, we do not require the fibers to be integral, and we only require the
divisor to be finite surjective over the base (see also [29, Def. 2.1]).

Definition 3.2. A quasi-elementary fibration is an affine smooth morphism of
Noetherian schemes p: X’ — S that can be included in a commutative diagram

X/L>7<LY

N

satisfying the following conditions

(i) p is flat projective of pure relative dimension one; o
(ii) j is an open embedding, 7 is a closed embedding, and X' = X — Y;

(ili) X is a regular scheme of pure dimension;

(iv) g is finite surjective.
We note that S is automatically regular, see [I5, Prop. 17.3.3(i)].

Convention 3.3. Let S be a scheme, let T; be S-schemes, and let s € S be a
point. By shrinking (S, s) we mean replacing S by a Zariski neighborhood S’ of s
and replacing each T; by T; xg S’.

3.4. General preliminaries. The following lemma will be used many times, in
particular, for constructing quasi-elementary fibrations.

Lemma 3.5. Let T and S be Noetherian schemes. Let o: T — S be a projective
morphism with fibers of dimension one (but not necessarily of pure dimension), let
s € S be a closed point. Let T1,To C T be closed subschemes finite over S and such
that Ty NTy = (. Then

(i) If L is an S-ample line bundle over T, then for all large N we may shrink
(S, 5) so that we can find o € HO(T, L2N) such that o vanishes on T and
does not vanish at any point of Ts.

(ii) After shrinking (S,s), we can find a closed subset D C T such that D is
finite over S, Ty C D, ToND =0, and T — D 1is affine over S.

(iii) After shrinking (S, s), we can find a finite surjective S-morphism II: T —
PL such that II(Ty) C 0 x S, II(T3) C oo x S.

Proof. For part (), consider Ty := T1 U(T3)s and let Iz, be the sheaf of ideals of Tp.
Notice that R, (L®N @ Ir,) vanishes in a neighborhood of s for large N. Thus,
after shrinking (S, s), we can find a section of L&V such that this section vanishes
on T and does not vanish at any point of (73)s. It remains to shrink (5, s) again.

For part (), we may choose a very ample line bundle £ over T//S. By enlarg-
ing T, we may assume that it contains a closed point in each one-dimensional
irreducible component of Ty. Let o be a section of L&V provided by the first part,
let D be the zero locus of o. Then the fiber of D over s is finite. Since D is projective
over S, dimensions of the fibers are upper semicontinuous (see [I7, Cor. 13.1.5]).
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Thus, after shrinking (.5, s), we may assume that D is quasi-finite over S. Since D
is projective over 9, it is finite over S. Now T — D is affine over S because L®V is
very ample.

For part (), we may assume that each of T} and T3 contains at least one point
on each irreducible one-dimensional component of Ts. Let £ be a very ample line
bundle on T'/S. Thus, by part ({l), by shrinking (S, s) and replacing £ by its power,
we can find a section 7, of £ such that 7; vanishes on 7T} but not at the points of
Ty. Let T’ be the zero set of 7.

As in part (O, we may assume that 7" is finite over S. Shrinking (S, s) and
applying part () again, we see that there is a section 75 of L&V for some N > 0
such that 79 vanishes on T, but not at the points of T".

Consider the projective morphism IT: T" — ]P’é given by [1{V : 7). Its restriction
to T is finite because it is a morphism of one-dimensional projective schemes T; —
P! such that both the preimage of zero and the preimage of infinity intersect all
one-dimensional components of Ts. Thus, by shrinking (S, s), we may assume that
I is finite. Clearly, we have II(T7) C 0 x S and II(T3) C oo X S.

It remains to show that II is surjective. Since II is closed (being finite), we
only need to check that for any generic point w of S the base-changed morphism
II,: T, — ]P"ld is surjective. If not, then its image is finite, so II, cannot be
finite because T,, is one-dimensional. This contradiction completes the proof of
surjectivity. ]

3.6. Weighted blow-ups. The scheme X in Definition B2 will be constructed via
blowing up, similarly, to the Artin’s result [I, Exp. XI, Prop. 3.3]. However, since
Proposition below produces hypersurfaces rather than hyperplanes, we will
need to do a weighted version of blowing up. Denote by Pz(lg, .. ., ) the weighted
projective space, that is,

Pz(lo, .-y lm) := Proj(Zlxo, . .., Tm]), degz; = ;.
For a Noetherian scheme S, set Ps(lo, ..., lm) :=Pz(lo,...,ln) X S.
Let Z be a reduced Noetherian scheme, let £ be an invertible sheaf on Z and let
o, € HY(Z,L%%),  i=0,...,m.
Let Zy be the intersection of the zero loci of ;. The sections o; give rise to a
morphism
Z—Zo B Py(lo, ... L).
Denote by Bly, ..., (Z) the closure of the graph of y in

Pz(lo, .. ,lm) =7 X Pz(lo, .. ,lm)

We call it a weighted blow-up of Z along Zy. We view it as a scheme with reduced
scheme structure. We note that it is quite different from the usual blow-up. In
particular, it depends on sections oy, ..., o, and not just on their common zero-
locus Zj.
We have a projection
At Bloy,..0(Z) = Z;

this is a projective morphism. Note the following easy lemma.

Lemma 3.7. Notation as above, the base change of A with respect to the inclusion
Z — Zy — Z is an isomorphism.
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Proof. Results from the construction. |

We will consider weighted blow-ups only in the case, when [p = 1. For a scheme
S, denote by Ag the open subset of Ps(1,11,...,0;) given by zg # 0. If S = Spec A,
then Ag = Spec Aly1, ..., Ym], where y; = xi/xf} Thus, for any S, we have a
canonical isomorphism Ag = A%, in particular, Ag is smooth over S.

In our applications, Z and Z,; will be of pure dimensions and we will have
dim Z — dim Zy = m + 1, in particular, Zy will be a complete intersection in Z.

It is well-known that the blow-up of a regular scheme along a regular closed sub-
scheme is regular (see e.g. [23, Thm. 8.1.19]). We prove a slightly weaker statement
in the weighted case, which is still sufficient for our purposes.

Lemma 3.8. Notation as above, assume that Z and Zy are reqular schemes and
that Zy is of pure codimension m + 1 in Z. Then Bly, .. 5, (Z)N AZ is a regular
scheme. The dimension of Bly,, o, (Z)N AZ at a closed point x is equal to the
dimension of Z at \(x).

Proof. The statement is local over Z, so we may assume that Z = Spec A is affine
and that £ is a trivial line bundle. Choosing a trivialization of £, we may view o;
as elements of A. Put Z’ := Bl,, ., (Z) N Az. By [23, Cor 4.2.17] we only need
to show that Z’ is regular at each closed point z. Let x € Z’ lie over 2z := A\(z) €
Z = Spec A. Viewing z as a prime ideal of A, we may assume that z D (09,...,0m)
(otherwise we are done by Lemma [37).

Claim. Let do; be the image of o, in the cotangent space T, of Z at z. Then the
vectors doy, . .. ,do,, are linearly independent.

Proof. Consider the local rings Oz, and Oz, , = Ogz./(00,...,0m). Since Zy is
of codimension m + 1 in Z, we easily see that the height of the ideal (og,...,omn)
in Oy, is at least m + 1. Thus

(1) dim Oz, > dim Oy, . + m+ 1.
Next, the maximal ideal of Oz, . can be generated by mg := dim Oz, . elements
because Zj is regular. Let 7, ..., 7, be such generators. Then the maximal ideal
of Oz, is

(0’0,...,0’m,7~'1,...,7zm0)
for any lift of 7; to 7, € Oz .. If doy,...,do,, were linearly dependent, we would
have dim T < (m + 1) 4+ myg, which gives a contradiction with (). O

Recall that A, = Spec Aly1, - .., Ym], where y; = xl/xg Thus we have sections
dy; of the cotangent sheaf of Ay. Let T be the cotangent space of Ay at z.
Since x is closed in Z'; it is also closed in the z-fiber of Z’. Thus we can identify
Ty = (T} @z k(z)) © V, where V is the k(z)-vector space with basis dyi, ...,
AYm -

Let T* be the cotangent space of Z’ at x. We have the surjective projection
Ty — T*; denote the kernel of this projection by K. Since o; — yiaéi vanishes on
7', and do; are linearly independent, the dimension of K is at least m. Thus

(2) dim T* < dim, Z.

We need a general statement about dimensions.
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Claim. Let f: S" — S be a closed and surjective morphism of Noetherian schemes.
Let s € S” be a schematic point. Then dim, S” > dimy, S.

Proof. We will prove by induction on n the following statement: let f: S’ — S be a
closed and surjective morphism of Noetherian schemes. Let s € S’ be a schematic
point. If dimyy S > n, then dimy S” > n. If n = 0, the statement is obvious.
Assume that the statement is true for n = k& — 1, let us prove the statement for
n=k.

Assume that dimyy S > k. We easily reduce to the case, when S’ is integral.
We have a chain of prime ideals:

Of(s),5 2 Iky1 2 - 2 11

The ideal I; corresponds to the generic point of an integral closed subscheme S; C .S
such that f(s) € S1. We have dimy,) S1 > k — 1. By induction hypothesis we have
dim, f~1(S;) > k—1. But f~1(S;) is a proper closed subset of S’ containing s and
S’ is irreducible, so dim, S’ > k. O

If follows from this claim that the dimension of Z’ at x is greater than or equal to
the dimension of Z at z because the morphism A: Bly,, 5, (Z) — Z is closed and
surjective (being projective and dominant). Combining this inequality with [@2I), we
see that Z’ is regular at z. The statement about the dimensions is now also clear.
The proof of Lemma [3.8is complete. (|

3.9. Reductions of principal bundles to Borel subgroups. Let H be a re-
ductive group scheme over a Noetherian scheme T. Let B be a Borel subgroup
scheme of H (assumed to exist). Recall that a B-bundle B induces an H-bundle
H xB B. By a B-reduction of an H-bundle H we mean a pair (B, s), where B is a
B-bundle, s: H xB B — H is an isomorphism. If such a reduction exists, we say
that H can be reduced to B.

Proposition 3.10. Let H be a reductive group scheme over a Noetherian normal
scheme T'. Let B be a Borel subgroup scheme of H (assumed to exist). Assume that
H is an H-bundle. Then a B-reduction of H over a dense open subset of T' can be
extended to an open subset whose complement has codimension at least two in T .

Proof. By [8, Exp. XXVI, Cor. 3.6, Lm. 3.20] the quotient H/B is represented
by a projective scheme. It is easy to see from the étale descent that this quotient
classifies B-reductions of H. Thus, we just need to show that a section of H/B over
a dense open subset of T" can be extended to an open subset whose complement has
codimension at least two in T. However, H/B is proper over T', so the statement
follows from [I3] Cor. 7.3.5, Remarque 7.3.7]. O

3.11. Bertini type Theorems. Let us define the dimension of the empty scheme
to be —1. The following proposition follows easily from results of [34].

Proposition 3.12. Assume that Ty, ..., T, are non-empty locally closed sub-
schemes of PY, where k is a finite field. Let T' C T be smooth locally closed
subschemes of PY, and let F be a finite set of closed points of PY. Assume that
for all i such that T; is finite, we have T; N F = (. Then there is a hypersurface
HC IP’kN such that the scheme theoretic intersections HNT and HNT' are smooth,
F CH, and fori=1,...,n we have dim(H NT;) < dim T;.
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We remark that if 7; is a point, then the condition dim(H NT;) < dim 7; means
that HNT; = (.

Proof. Replacing each T; by the set of its top-dimensional irreducible components,
we may assume that each T; is irreducible. For ¢ = 1,...,n choose a closed point
p; € T; — F. We claim that there is a hypersurface H such that

e HNT and H NT"' are smooth;
e FCH;
e For all 4, we have p; ¢ H.

Then the statement follows from [34, Thm. 1.3]. In more detail, for a point p € P¥,
We apply [34, Thm. 1.3] with

the following local conditions. If p = p; for some 4, then U, C @p is the condition
that H does not pass through p. If p € F, then the conditions is that H passes
through p and the intersections H N'T and H N7’ are smooth at p (by definition,
an intersection is smooth at p, if p does not belong to this intersection). In the
remaining case, the condition is just that H N'T and H NT’ are smooth at p
(cf. the proof of [34] Thm. 3.3]). The hypersurface H satisfies conditions of the
proposition. O

1x.

let @p be the completion of the local ring Opx

The following proposition will be used to construct quasi-elementary fibrations.

Proposition 3.13. Let k be a field and let X C IP’kNl be a closed subscheme of pure
dimension n, let X*™ C X be an open subscheme smooth over k and let x € X be a
closed point. Let Th and Ty be closed subsets of X of dimensions at most n —1 and
n — 2 respectively such that x ¢ Ty. For an integer v consider the r fold Veronese
embedding IP’N1 — IP’NT and identify X with a closed subscheme of]P’ , using this
embedding. Then there are a positive integer r and sections oy € HO(IPNT,(’)(l)),
o1 € HO( " O(1)), ..., Op_1 € HO(PkNT,O(ln_l)) for some positive integers I;
such that
(i) oo(x) # 0.
(ii) Let @: PN —— Pyp(1,11,...,ln_1) be the rational morphism defined by the
sections o;. Then the subscheme o~ (p(x)) N X5™ is smooth of dimension
one over k(p(x)).
(iii) o~ Hp(x))NTy is finite.
(iv) o (p(z ))ﬂTz =0.
(v) {oo=01="-- =01 =0} N X" is finite and étale over k.
(vi) {op=01==0,_1=0}NT; =0 fori=1,2.

The proof of this proposition in the finite field case is significantly different from
the proof in the infinite case.

Proof of Proposition BI3 in the case, when k is finite. We inductively construct

00y -, 0p—1 such that og(x) # 0, and for m = 1,...,n — 1 we have o,,(x) =0,
dim{op = =0, =0}NT;) <n—m—1i,
dim{oy = =0, =0}NT;) <n—m—i,

and the intersections
{oo=""=0n,=0}NX"and {01 = =0, =0} N X"

are smooth over k of dimensions n — m — 1 and n — m respectively.
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For m = 0 we apply Proposition with Ty, Ty, T3 = z, F = T = (),
and T = X*™. We get a9 € HO(PY*,O(r)). We can view it as an element of
HO(PY",O(1)). We have og(z) # 0, {og = 0} N X*™ is smooth of dimension n — 1
over k, and dim({og =0} NT;) < n — 1.

Assume that o, ..., o1 are already constructed. To construct o,, we apply
PropositionBI2to {og = - = 01 =0T, T ={0p = -+ - = 0ppp—1 = 0}NX5™,
T={o1=-=0,-1=0NX*" and F = {z}.

By construction, o, ..., 0,1 satisfy the conditions of the proposition. (Note
that ¢~ 1(p(x)) is contained in {01 = ... = 0,1 = 0}). O

Proof of Proposition [3.13] in the case, when k is infinite. We will take r = 2 and
li = =11 = 1. Set V := HO(P)*,O(1)); we view the vector space V as a
scheme over k.

Lemma 3.14. Assume that k is algebraically closed. Let X, X°™, x, Ty, T be
as in the statement of Proposition 313l Then there is a non-empty open subset
W C V™ such that every point (og,...,0n—1) € W satisfies the conditions of the
proposition. More precisely, conditions () and (@) mean that ¢~ (¢(x)) and {og =
<o =op_1 = 0} intersect X*°™ transversally.

Proof. Recall that we have a 2-fold Veronese embedding IP’;CV ey IP’;CV 2. Let Gr,(No+
1,n) stand for the Grassmannian of codimension n — 1 subspaces containing x
in PN2. Tt follows from [I, Exp. XI, Thm. 2.1(ii)] that there is a non-empty
open subset U C Grg(No + 1,n) such that every subspace from U intersects
X*™ transversally. Let W' C V™ be the open subspace defined by the condi-
tions that for all (og,...,0n,-1) € W’ we have o¢(x) # 0, and the rational mor-
phism ¢: ]P’g2 - ]P’271 defined by oy, ...,0,_1 is such that the Zariski closure of
@ 1(p(x)) is a codimension n — 1 projective subspace of ]P’sz. We get a morphism
w: W' = Grgy(Ns + 1,n) sending (09,...,0,—1) € W’ to the Zariski closure of
o(e~Hx)). Set W := 7= 1(U). Clearly, W” is open. Since 7 is dominant, W”
is non-empty. For each (0o,...,0,_1) € W the intersection ¢~1(p(z)) N X™
is transversal. We show similarly that for every other condition of the proposi-
tion there is a non-empty open subset in V™ whose points possess the property
(use [I, Exp. XI, Thm. 2.1(i)] for (), use an inductive argument similar to the
proof in the finite field case for the other properties). The intersection of these
open subsets is non-empty, since V" is irreducible; it is the required set W. O

We return to the proof of Proposition B.I3l Let k be an algebraic closure of k.
Consider the finite scheme = xj k. Let z1,...,z,, € X; be all its closed points.
Applying the previous lemma to X, X2, z;, (T1)f, and (T2), we get a dense open
subset W; C V = HO(PQQ,O(l)). Let p: V — V be the projection. There is a
non-empty open subset W C V such that p~1(W) C ﬁ;’;lﬁ/}. Since k is infinite, we
can find a k-rational point (og,...,0,—1) € W. We claim that this point satisfies
the conditions of the proposition.

Let us check condition () first. Set s := p(z), k' := k(s), Y := ¢ (s). Then Y’
is smooth over s. We need a lemma whose meaning is that Y and X*™ intersect
transversally.
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Lemma 3.15. Let Z be the scheme theoretic intersection of X°™ and Y. Then the
canonical morphism of sheaves

o QPQJQ/MZ — QY/s|Z D QXS'HL/klZ
is injective and locally split.

Proof. Note that the sheaves Q]PN?/k|Z and Qy 4|z ®© Qxsm/p|z are locally free.
k —

Thus, it is enough to check that for every geometric point zZ € Z(k) the pullback
of this morphism to Z is injective. Let ¢: ]P’gf2 - }P’g_l be the rational morphism
defined by the sections &; := o; X k. Set Z := x X}, Speck, 5 := s xj Speck. Set
Y= ¢ (@(x;)) and X" := X*™ x;, Speck. Note that o(z) = ¢(x;) for some i.
The pullback of « to Z is the canonical morphism

a: ngz/,ﬂz = Qy x, Speck)/slz B Qxom 5z
We also have a canonical isomorphism
Q(YXkSpCCE:)/ELE @ stvn/EJE :—) QVI/E‘E @ QXS"”/EJE'

Indeed, Y; is the fiber of Y x;, Speck over ¢(2) = ¢(z;) € 5. The composition of
these two morphisms is injective because X" and Y; intersect transversally. It
follow that & is injective. |

If follows from the above lemma that the cokernel of « is a locally free sheaf of
rank one. On the other hand, we have a surjective morphism Cokera — Q.
We will use the following lemma.

Lemma 3.16. Let Z be a scheme of finite type over a field k' such that all its
components are of dimension at least one and the sheaf 1z, is locally generated
by one element. Then Z is smooth over k'.

Proof. It is enough to prove the statement after a base change to an algebraic
closure of k’. Thus, we may assume that &’ is algebraically closed. In this case, for
every closed point of Z we have (Qz/y/). = m./m2, where m, is the maximal ideal
of the local ring Oz .. Since this vector space is generated by one element, we see
that Z is regular at z. Thus Z is regular. Since k' is algebraically closed, we see
that Z is smooth over k’. O

Now condition () follows from the above lemma. Condition (@) is verified
similarly. The remaining conditions are clear. (]

3.17. Constructing quasi-elementary fibrations. In this section we prove the
following proposition.

Proposition 3.18. Let X — SpecA and x € X be as in Theorem [0l That is,
A is an excellent discrete valuation ring, b € SpecA is the closed point. Also,
X is an integral scheme, X is flat and projective over SpecA, and X satisfies
conditions (1) and (I1) of Section [L2l The projection X — Spec A is smooth at
the closed point © € X. We also assume that the relative dimension of the flat
morphism X — SpecA is at least one. Let X° be an open subscheme of X such
that x € X°. Assume also that the intersection of X° with the fiber X, is dense
in this fiber. Assume that Z is a closed subset of X° of codimension at least two.
Then there is an open subscheme X' C X containing z, a connected A-scheme S
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smooth over A, and a A-morphism p: X' — S such that p is a quasi-elementary
fibration and Z N X' is finite over S.

Proof. The proof is somewhat technical but it follows the same strategy as the
proofs of [29, Prop. 2.3] and of Artin’s result [I, Exp. XI, Prop. 3.3].

We may assume that X° is smooth over Spec A (use condition (I) and openness
of smoothness). Set Y° := X — X% Set n = dimX — 1 = dim X;. Note that
dimY;? < n — 1. Denote by Z the Zariski closure of Z in X. Then (Z), is the
intersection of Z with X3, which is in general larger than the closure of Z,. In any
case,

dim(Z), <dimZ <n — 1.

Lemma 3.19. There is a A-embedding X — PY for some N, a section o €
HO(PIIX(b),(’)(l)), and sections o; € HO(PIIX(b),(’)(Zi)) for some positive integers ;,
satisfying the following conditions

UO(J“) 7é 07.

(X5m9), N~ L(p(x)) =0, where p: PY > Pr(1,11,...,l,—1) is the ratio-
nal morphism defined by the sections o;;

o Y N~ (p(x)) is finite;

o (DN (o)) is finite;

o (Z -2y p(x) =0;

o (Z)yN{op=01=+=0p-1 =0} =0;

o X) N Y p(z)) is smooth of dimension one over b;

(] (XSing)bm{Uo =01 = ""=0p-1— 0} = @

e XyN{og=01="--=0,_1 =0} is finite and étale over b;

Proof. Note that

dim(X*9), < n — 2 by condition (II) on X;

x ¢ X*"9 by assumption;

dim(Z - Z), <dim(Z - Z) <n -2

x & Z — Z because Z is closed in X} and z € X}.

Consider any A-embedding X — IPf\V ! for an integer N;. We apply Proposi-
tion B3 with X, X2, z, T1 = YL U(Z), and Ty = (Z — Z), U (X*19),. We claim
that the composition of X — ]P’f1 with the r-fold Veronese embedding satisfies
the requirements. In fact, all conditions except the last one are immediate. Since
{oop=01=...=0,1 =0} NYY =0, we get the last condition. O

We can lift each o; to a section &; € HY(PY,O(l;)), because the reduction
map from the A-module H°(PY, O(1;)) to the k(b)-vector space HO(]P’kN(b), O(ly)) is
surjective. Similarly, we can lift og to a section 6o € H(PY,0(1)). Set L :=
Opn (1)|x, 07 := Gilx, so that o] € HO(X, L%). Set Xp) := Blys ..or  (X) (see
Section B.6]).

Denote by @ the rational morphism PY --» Py (1,1y,...,1,—1) defined by &o, ...,
0p—1- Let A: Xp) — X be the canonical morphism. Denote by E the exceptional
locus of A, that is, E = A"Y(XN{6g =+ =G,_1 = 0}). By Lemma .7 X induces
an isomorphism Xg — E = X — {69 = --- = 6,1 = 0}). Set Z := A"}(Z) and
Y= A~L(Y?). We identify = with its unique A\-preimage in Xp), see Lemma B.71

’
n—
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We have a projective morphism p: Xy — S :=Pa(1,11,...,l,—1), defined as the
composition of the closed embedding Xp; — Px (1,11,...,l,—1) and the projection
Px (1,01, s lp1) = PA(1, 11, ..., ln_1). Set s :=p(x) = g(z) and F := p—1(s).

Lemma 3.20. Denote by X3, the set of points of Xpi, where p is not smooth.
Then
i) F is the Zariski closure of \™1($71(s) N X0);
(ii) F is of pure dimension one;
(iii) Xp) is regular at the points of F';
(iv) p is flat at the points of F;
(v) X§, NF is finite;
(vi) ENF, YNF, and ZNF are finite;
(vii) ZNF =X"Y(Z)Nn F;
(vii) ZNENF=ZNYNF=ZNX{NF=0.

Proof. According to Lemma B9 {og = -+ = 0,_1 = 0} is finite over b. It follows
that p|g is a finite morphism. Using this fact and the fact that A=1(¢7!(s) N Y?)
is finite, we see that F' is a union of A=1($~1(s) N X°) and a finite set. However,
since Xp is irreducible of dimension n + 1 all the components of F’ have dimension
at least one. Now (i) follows and () follows from ().

Next, we have a regular open subscheme X — X*"9 C X. Set

EZZ{&OZ'”:&n_l:O}.

We claim that X N L is contained in X — X9 Indeed, the intersection X9 N L
is proper over A, so, if it is nonempty, it must intersect the closed fiber, which
contradicts the penultimate statement in Lemma

Further, we claim that X N L is a locally complete intersection in X — X*®"9,
Indeed, the integral scheme X — X $in9 i of dimension n+ 1 because the closed fiber
X, — X, is of dimension n, and X — X9 is flat over A. Further, XNLis locally
given by n equations. So to show that it is a locally complete intersection we just
need to show that every component of X N L has dimension at most one. Again,
the morphism X N L — Spec A is proper, so it is enough to show that the central
fiber X, N L is finite, which is a part of LemmaBI9 We see that X N L is a locally
complete intersection in the regular scheme X — X*"9. Now by [24] Thm. 23.1]
X N L is flat over Spec A. It follows from Lemma 319 and openness of étalness for
flat morphisms that X N L is étale over Spec A. Since

MF)C ¢ Ys)U(XyNL)C X — X359,

part (i) follows from Lemma [3.8]
Next, let = be a closed point of F. Then A\(x) is a closed point of X because A
is proper. Applying Lemma 3.8 we see that we have

dim, Xg) = dlm)\(m) X=n+1= dlmﬁ(x) S + dim,, F,

where we used part (). Thus p is flat at = by [24, Thm. 23.1] and part ().
Now (i) follows because the set of points, where p is flat is open, and closed points
are dense in F' because F' is a scheme of finite type over a field.

To prove (@) note that p, being flat on F, is smooth exactly where the fiber
is smooth. Now use part () and Lemma The remaining statements follow
from ([l) and the respective properties of L and Hy (see Lemma [3.19]). (]
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Lemma 3.21. After shrinking (S, 1) in the sense of Convention B3] and replacing
Xg1, E, Y, and Z by their intersections with p~*(S), we may assume that

(i) S is connected, affine, and smooth over A;
(il) Xpy is regular;

(iii) p is flat of pure relative dimension one;
(iv) X3, E, Y, and Z are finite over S;

(v) There is a closed subset Y C Xp) finite and surjective over S such that
YDOEUXHUY,YNZ=0,2¢Y, and Xp — Y is affine.

Proof. First of all, () is obvious, () follows from the fact that the set of points,
where Xp) is regular is open in Xp) (because A is excellent) and the fact that p is
closed. Next, flatness in () follows from Lemma B.20v]) together with the fact
that set of points, where a morphism of finite type is flat, is open.

Further, it follows from the construction that Xg; and S are irreducible. Since
p is flat, it is open, hence we can apply [17, Cor. 14.2.2.(i)] to conclude that p is
equidimensional. The set ' = p~1(1;) is of pure dimension one by Lemma B20({).
We see that p is of pure relative dimension one.

Next, (Iv)) follows because the dimensions of fibers of a projective morphism are
upper semicontinuous (see [I'7, Cor. 13.1.5]) and a quasi-finite projective morphism
is finite; finally, (@) follows from Lemma B[ (note that Y is automatically sur-
jective over S because the fibers of Xp) are projective, while the fibers of Xp — Y
are affine). O

Let us summarize. Just before Lemma [B.2]] we constructed a projective mor-
phism p: Xg; — S, a morphism A: X, — X and a subscheme Y C Xg1. Then
in Lemma [B:21] we replaced S, Xp,, and Y by open subschemes following Conven-
tion B3l We also constructed a closed subset Y C Xg;. The restriction of A to
X' := Xp) — Y is an open embedding, so we can identify X’ with an open subset
of X% Now it follows from the construction and Lemma B.21] that p|x.: X' — S
is a quasi-elementary fibration (with X = Xp)). Also, shrinking (S, 1;) again if
necessary, we may assume that under the identification of X’ and A(X’) we have
Z=27nX' soZNX"is finite over S (use Lemma B2T([¥d)). This completes the
proof of Proposition O

Proposition 3.22. Let A, X, z and Gx ; be as in Theorem [l and let G be a split
A-group scheme such that Gx , ~ G x5 Spec Ox . Assume also that the relative
dimension of X — Spec A is at least one. Let G be a Gx ,-bundle having a rational
section. Then there are

e an open affine subscheme X' C X containing x;

e a quasi-elementary fibration p: X' — S with S connected and smooth
over A;

a principal divisor Z' C X' finite over S;

a G-bundle F over X' extending G such that F is trivial over X' — Z';

a finite surjective S-morphism X' — Al.

3.23. Proof of Proposition [3.22 We will use the notations and the assumptions
from the statement of the proposition. We start with a lemma.

Lemma 3.24. We can find a regular open subscheme X° C X such that x € X©,
X%N X, is dense in Xy, and G can be extended to a G-bundle GY over X9 that is
trivial over a dense open subset of X°.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



GROTHENDIECK-SERRE IN MIXED CHARACTERISTIC 575

Proof. We can find an open subscheme X; C X such that z € Xi, and G can be
extended to a G-bundle G; over X;. Since G is generically trivial, G; is trivial on
the complement of a proper closed subscheme Z; C X;. Since X}, is smooth at x, we
see that x lies on a single irreducible component of X;. Thus we may assume that
X3 does not intersect irreducible components of X;, other than that containing x.

Denote by n the dimension of Xj. It follows from the flatness of the morphism
7m: X — SpecA that the Krull dimension of X is n + 1. Let Z; be the Zariski
closure of Z; in X. We have

d1m(71 — Zl) < dim Z1 <n.

It follows that Z; — Z; cannot contain an irreducible component of Xj, (use flatness
of 7: X — SpecA again). Thus Z; cannot contain irreducible components of X
other than the component containing z. Consider the trivial G-bundle G;,.;, over
X — Z,. The trivialization of G; is an isomorphism between G; and Gi,i, over the
open subset X; — Z;. Thus we can glue G; with G, over X7 — Z; to make a
G-bundle G, over Xy := (X — 71) U X;. One now takes X° to be the regular locus
of X5 and sets G° := Ga|xo. It follows from the construction and property (II) of
m: X — Spec A, that X satisfies the requirements of the lemma. O

Fix such X° and GY provided by the above lemma. Since G is split, there is
a split maximal torus T C G and a Borel subgroup B C G containing T. Fix
such T C B. The trivialization of G° over a dense open subset of X° gives a B-
reduction of G° over this subset. Thus, according to Proposition B.I0, G° can be
reduced to B over X? — Z, where Z is closed and of codimension at least two in
X°. By Proposition B.I8 there is an open subscheme X’ C X containing z, and
a quasi-elementary fibration p: X’ — S with S connected and smooth over Spec A
such that Z N X’ is finite over S. We may assume that S is affine. We will use the
notations from Definition In particular, we have a flat projective morphism
p: X — S. Set s:=p(z) and F := p~1(s).

Note that Z N X’ is closed in X (being finite over S), so applying Lemma [3.5I(H)
to ZNX',Y C X, we find a closed subscheme Z; € X’ such that ZNX' C Z1, Z4
is finite over S, and X — Z; is an affine scheme (we might need to shrink (S, s)).
Then X’ — Z; = (X — Z;) N X' is also affine as the intersection of two open affine
subschemes of a separated scheme.

Set F := G%x,. Note that F is reduced to the Borel subgroup B over X’ — Z;,
that is, there is a B-bundle B over X’ — Z; such that the G-bundles G xB B and
Fl|x/—z, are isomorphic. Let U be the unipotent radical of B, then the quotient
B/U is isomorphic to the split torus T. Let B/U be the induced T-bundle (this
quotient is representable by a scheme because of the étale descent, see [2, VIII,
Cor. 7.9] for a stronger statement). We claim that (after shrinking (.5, s) again) we
can find a closed subset Zo C X’ — Z; such that Z, is finite over S, the bundle 5/U
is trivial over X' — Zy — Z5, and X' — Z; — Z, is affine. Since a principal bundle
for a split torus corresponds to a collection of line bundles, and the intersection of
open affine subschemes of a separated scheme is affine, this follows from the next
lemma.

Lemma 3.25. Let £ be a line bundle over X" := X' — Z1. Then (after shrinking
(S, s)) there is a subscheme Z'' C X" finite over S such that ¢ is trivial over X" —Z"
and X" — 7" is affine.
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Proof. First of all, we may extend ¢ to X because X is a regular scheme. Set
Xo = (X — X")N F, this is a finite scheme. Adding finitely many points to
X+, we may assume that it intersects each irreducible component of F. Since X
is projective over an affine scheme, X, is contained in an open affine subscheme
of X. Thus we can consider the semilocal ring of X, in X; denote it by A. Since
A is semilocal, £ is trivial over A. Thus there is a closed subscheme Z” C X such
that ¢|x_,, is trivial and Z” N Xoo = 0. In particular, Z” N F is finite by our
choice of X. Shrinking (S, s), we may assume that Z” is finite over S and that
Z" ¢ X". Now by Lemma B.5|{) we may assume that X — Z” (and thus X" — Z")

are affine. O

Now we finish the proof of the proposition. Choose Zy C X’ — Z; such that
B/U is trivial over X' — 71 — Zy, X' — Zy — Zs is affine, and Z, is finite over S.
By [8, Exp. XXVI, Cor. 2.3] we see that B and thus F are trivial over X' —Z; — Zs.

Note that Z; U Zs is closed in X. By Lemma B[], by shrinking (S, s) we can
find a finite surjective morphism II: X — P} such that

ZiUZyU{zycZ =11 0xS), YCY :=I"'(ccx8).

Clearly, X" := X — Y’ is smooth and affine over S. Also, Z’ is finite over S. It
is easy to check that the restriction of p to X' is a quasi-elementary fibration.
Next, Z' is a principal divisor in X’ because 0 x S is a principal divisor in A};.
Clearly, F is trivial over X" — Z’. This completes the proof of Proposition[3.220 O

4. END oF PROOF OoF THEOREM [I]

In this section, we use the notion of a nice triple to reduce Theorem [l to The-
orem 2l We keep the notations and the assumptions from Theorem [Il As before,
U := SpecOx , and G is a A-group scheme such that Gx . = G X0, SpecA.
Let G be a generically trivial G-bundle over U. We need to show that G is trivial.
By [26] we may assume that the relative dimension of the flat morphism X — Spec A
is at least one (though, in fact, it is easy to prove the theorem if this dimension is
zero, see Remark [.12)).

4.1. Nice triples. Recall the notion of a nice triple from [29 Def. 3.1].

Definition 4.2. A nice triple over U is a triple (qu: X — U, f,A), where X is
an irreducible affine scheme smooth over U and such that all its fibers are of pure
dimension one, f € I'(X,Oy) is such that its zero locus Z is finite over U, and
A: U — X is a section of ¢y such that A*(f) # 0. These data are subject to the
condition that there exists a finite U-morphism X — A}].

Remark 4.3. The finiteness of Z is equivalent to the condition that
(X, 0x)/f - T(X,0x)
be finite as a T'(U, Oy )-module.

Proposition 4.4. Assumptions being as in Theorem [, let U := Spec Ox , and
let G be a principal G-bundle over U having a rational section. Then there are a
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nice triple (qu: X — U, f,A) and a G-bundle € over X such that
(i) A*E ~G;
(ii) & is trivial over the complement of the zero locus Z of f.
Moreover, if the field k(x) is finite, then we may choose this nice triple
so that
(ili) There is at most one point z € Z, rational over k(z);
(iv) For any integer r > 1 one has

#{z € Zo| [k(2)  k(2)] = r} < #{z € Ay| [k(2) : k()] = r}.

The proof, given below, is similar to [28, Thm. 4.3], [29, Prop 6.1], and [30,
Sect. 3-4].

Proof. By Proposition B.22] there are

e an open affine subscheme X’ C X containing x;
e a quasi-elementary fibration p: X’ — S with S connected and smooth
over A;
e a principal divisor Z’ C X’ finite over S;
e a G-bundle F over X’ extending G and such that F is trivial over X' — Z’;
e a finite surjective S-morphism X’ — AlL.
Put X' := X' xg U, let g¢j;: X’ — U be the projection. Let g € H°(X’,Ox) be
an equation of Z', set f' = pj(g) € H°(X',Ox). Let A be the composition

U LR gy e, xr U = X

Let X be the connected component of X’ containing A(U). Then X is irreducible
because it is regular and connected. Since p: X' — S is flat (even smooth) of
relative dimension one, g;; is also so, and we see that every component of each fiber
is one-dimensional. Next, A*(f") = g|y # 0 because g # 0 and X' is integral. By
construction (g;;|x, f'|x,A) is a nice triple. Let & be the pullback of F to X’ and
& be the restriction of & to X. It is clear that £ satisfies the conditions of our
proposition, so this completes the proof in the case when the field k(x) is infinite.

Consider the case when k(z) is finite. Let T be a finite subscheme of X in-
tersecting every component of X,. Set J := A(U)U ZUT. Clearly, Y is finite
over U; let {y1,...,ym} be all of its closed points; let S := Spec(O,, ... 4,.) be the
corresponding semilocal scheme. Clearly, A factors through S.

Lemma 4.5. There exists a finite étale morphism p: 8’ — S and a section A': U —
S’ such that po A" = A, A'(z) is the only k(x)-rational point of the fiber S.., and
for any integer r > 1 one has

(3) #{z € Syl [k(2) + k(@) = r} < 4#{z € Ay] [k(2) : k(2)] =7}

Proof. Let A := Oy, ...y, so that S = Spec 4, let I be the ideal of A(U), so that
A=1® R. Let m; be the maximal ideal of A corresponding to y; so that my, ...,
m,, are all the maximal ideals of A. We may assume that y; = A(z) so that my is
the ideal of A(z), that is, my D I.
Choose a large number N > 0 and for each ¢ = 2,...,m a monic polynomial

fi € (A/m;)[t] of degree N and such that

e if A/m; is finite, then f; is irreducible;

e if A/m; is infinite, then f; is a product of distinct monic polynomials of

degree one.
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Take f; € (A/my)[t] of the form tg, where g is irreducible of degree N — 1. By the
Chinese Remainder Theorem applied coefficientwise we can find a monic polynomial
f € Alt] such that degf = N, f € I + tAJt] and f mod m; = f; for all i. Set
S’ := Spec(AJt]/(f)). Clearly, &’ is finite and flat over S. Thus, to check that S’ is
étale over S it is enough to check that the fiber of " over each y; € S is reduced.
But this follows from the definition of f;.

The morphism A’ is induced by the composition

Alt]/(f) — Alt/(I + tAft]) = R.

Next, for every ¢ > 1 such that A/m; is finite, there is only one point of S, lying
over y;. On the other hand, if a point of S, lies over y; such that A/m; is infinite,
then the degree of this point over x is infinite as well (because we assumed that
k(x) is finite). Thus we have

—lifr=1,
#{z eS| [k(z) :k(z)]=r}{=0if2<r <N -2,
<mifr>N-1.

It follows that A’(x) is the unique k(x)-rational point of the fiber S, and that
condition (3] is satisfied for N large enough. |

Take p, 8’ and A’ as in the above lemma. We can extend p and S’ to a neigh-
borhood of S to get a diagram

Sl(ﬂv/
AR
P 0

U —2.58¢ Y« X,

where V is an open subscheme of X', 6 is finite étale. Note that S C V implies that
Y C V by the definition of S.

Lemma 4.6. There is an open subscheme W C V such that W D Y and W admits
a finite U-morphism to Al;.

Proof. By definition of nice triples we have a dominant morphism X — A}, which
gives an embedding of the field of functions of A}, into the field of functions of
X. Let X be the normalization of P}, in the field of functions of X. Note that
U is excellent and therefore Nagata ring, so normalization gives a finite morphism
m: X — P},. Since X is normal, TT-'(A};) = X. Thus X — X is finite over oo x U
and thus over U. Next, X, —V, = (X, — X,) U (X, —V,) is finite (the second term
is finite because it does not intersect T.). It follows that X — V is finite over U
(indeed, it is projective and the closed fiber is finite). Using Lemma B5I[), we find
a finite morphism IT: X — P}, such that II(Y) C 0 x U and II(X — V) Coox U. It

remains to take W := ﬁ_l(Ab). O

Let W be as in the above lemma. Let X" be the connected component of
6=1(W) containing A'(U). Set q}; := quo0|x» and f”" = fof|x~. Then (q};: X" —
U, ", A’) is the sought-for nice triple. The proof of Proposition @4lis complete. [

Let (qu, f, A) be a nice triple provided by the above proposition. We may assume
that f vanishes at A(x) (so that A(z) € Z), otherwise the statement of Theorem [I]
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is obvious. If k(z) is finite, then by condition (i) of Proposition [£4] A(z) is the
only k(x)-rational point of Z,.

Proposition 4.7. Notation being as in Theorem [, set R := Ox, and U :=
Spec R. Let (qu, f,A) be a nice triple over U such that A(z) € Z. Assume that
this nice triple satisfies conditions () and (M) of Proposition L4l if k(x) is finite.
Then there are a finite surjective U-morphism o: X — A}, a monic polynomial
h € R[t] vanishing on o(Z), and an element g € T'(X,Ox) such that

(i) the morphism o4 := o|x, is élale, where X, is the open subscheme of X
given by {g # 0};

(ii) the data (R[t],o;: R[t] = I'(X,0x)4,h) satisfy the hypothesis of [5, Prop.
2.6], that is, R[t] is Noetherian, I'(X,Ox)4 is finitely generated as an R|[t]-

algebra, o;(h) is not a zero divisor in I'(X,0x)y, and o}, induces an iso-

morphism

R[t]/(h) = T(X,0x)y/(0g(h) - T(X, Ox)g);
(i) A(U)UZ C X,.

Proof. If R contains a field, then this follows from the proofs of [30, Thm 3.8 and
Cor. 7.2]. In our case the proof is completely similar but we will still give it for the
sake of completeness. Let, as in the proof of Lemma F.6] X be the normalization
of P}, in the field of functions of X, so we have a Cartesian diagram

X —1 AL

Lo

X s Py
with finite surjective horizontal morphisms and vertical morphisms being open em-
beddings.

Consider the reduced finite scheme (Z;);.q. We can find a closed embedding
t1: (Z2)rea — AL. Indeed, if k() is finite, this follows from condition (iv)) in
Proposition 4] together with the fact that a finite extension of a finite field is
determined up to isomorphism by its degree. If k(x) is infinite, the statement
follows from the fact that for any finite extension of k(x) there are infinitely many
points in Al whose residue field is isomorphic to this extension.

Next, let (Z;)2) be the first infinitesimal neighborhood of (Z;),eq in X,. We
can extend ¢; to a closed embedding io: (ZI)(Q) — A}C because X, is smooth of
dimension one over k(x).

Let O(1) be the canonical line bundle on P}, and set £ = II*O(1). Let sg
(resp. So0) be the section of £ vanishing exactly on I~ (co x U) (resp. on IT~(0 x
0)).

Since X, is of pure dimension one and Z, is a finite scheme, we can find a closed
subset W C X, such that W N Z, = () and W has exactly one point on each
irreducible component of X;.

Lemma 4.8. For n>> 0 there is a section s; € HO(X, L®™) such that

(i) The restriction of s; to I~ (co x U) coincides with s, .
(ii) s1 equals zero on W.
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(ili) The restriction of s1 to 22y is equal to 15(t) - i, where t is a coordinate
on Al

Proof. Let T be the ideal sheaf of II~'(co x U) U W U Z9) and let py: X — U
and pry: ]P’%] — U Dbe the projections. Then by the projection formula for n large
enough we have

R (pu)« (L5 ® T) = R (pru).(O(1)®" @ (11).T) = 0.
The rest of the proof is completely similar to the proof of Lemma B.5I(). |
Let s1 be as in the lemma, we set o := s1/s§.
Claim 1. The morphism o is finite, flat, and surjective.

Indeed, consider the projective morphism &: X — Pi, given by [s1 : sB]. Note
that, since II is finite, every one-dimensional irreducible component of X', contains
a point of 1:[_1(00 x ). On the other hand, every such component contains a
point of W. Now it follows from the construction that & is non-constant on each
one-dimensional component of X', (because every such component contains a point
of W and a point of 1:1*1(00 x x)). Arguing as in the proof of Lemma B3I,
we see that & is finite and surjective. Since X = 67 (A};), we see that o is also
finite and surjective. Since X and Aj; are regular schemes, the flatness follows
from [24, Thm. 23.1]. Claim 1 is proved. |

Since o is flat, the set of points, where it is étale, is open. Denote this open
subset by X”.

Claim 2. A(U)UZ C X',

First of all, the morphism o is étale at the points of Z,. Indeed, since o is flat,
it is enough to show that o,: X, — Al is étale at the points of Z,. This follows
easily from condition ([l of Lemmal48l Since all the closed points of Z are in Z,,
it follows that Z C X’. Since the only closed point A(x) of A(U) is also in Z,, we
see that A(U) C X”. O

Claim 3. o|z is a closed embedding.

Recall that U = Spec R. Let m, be the maximal ideal of x € U. We first show
that 0|z, : Z, — Al is a closed embedding. Since this morphism is set-theoretically
injective, it is enough to show that for every closed point y € Z, the induced
morphism (R/mg)[t] = Oz, , is surjective. By construction the composition

(R/my)[t] = Oz, — Oz, /m}

is surjective, where m, is the maximal ideal of Oz, , and the statement follows
from the Nakayama Lemma.

It follows that the morphism (R/my)[t] — T'(Z;,Oz,) induced by o is sur-
jective. By the Nakayama Lemma it implies that the morphism of R-modules
R[t] — T'(Z,0%z) induced by o is also surjective because I'(Z,Oz) is a finite R-
module. Claim 3 follows. O

Thus we can identify o(Z) with a closed subscheme of A},. Moreover, Z ~ o(Z).

Claim 4. We have o~ !(c(Z)) = Z U Z’ for some closed subscheme Z’ C X and
Z'NAU) =0.

Indeed, the étale morphism o|y/ has a section over o(Z). This section can be
viewed as a morphism s: Z — o~ (0(Z)). By [18, Cor. 17.3.5.], this morphism is
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étale, so it is an open morphism. But it is also a closed embedding, so 0~ (0 (Z)) =
Z U Z’ for some closed subscheme Z’. The unique closed point A(z) of A(U) is in
Z, 50 it is not in Z’. Tt follows that Z' N A(U) = 0. O

Claim 5. There is a monic polynomial h € R[t] such that the zero locus of h
coincides with o(Z).

Let 2, ..., Z, be the irreducible components of Z,.4. Since X is regular, it
is locally factorial, so the principal ideal (f) can be written as pi*...pI», where
p; C I'(X,0x) is the prime ideal corresponding to Z; and r; are some positive
integers. Note that p; is of height one.

Let q; be the preimage of p; under o*: R[t] — ['(X,Ox). By the going-down
property of flat extensions, g; is a height one prime ideal. Since R[t] is factorial,
the ideal g; is principal. Write q; = (h;) and set h = h{'...hl». By Claim 3 0|z,
is a closed embedding, so (h;) is the ideal of o(Z;).

Next, the closed embedding o|z : £ — A}; corresponds to the surjective homo-
morphism of rings R[t] = T'(Z,0z) =T(X,0x)/(f). Clearly, h is in the kernel of
this morphism. We need to show that the induced homomorphism

R[t]/(h) = T(X, Ox)/(f)
is an isomorphism. Since X is affine, we can find ¢ € T'(X,0Ox) such that
g'|z =1 and ¢'|z2 = 0, where 2’ is as in Claim 4. Let Xy be the correspond-
ing principal open subset of X and let oy = 0] X, Then the canonical morphism
D(X,0x)/(f) = T'(Xy, Ox,,)/(f) is an isomorphism, so it is enough to show that
the composed homomorphism

(4) R[t]/(h) = T(X,0x)/(f) = T(Xy,Ox,,)/(f)

is an isomorphism. Consider the filtration of the R[t]-module R[t]/(h) by the quo-
tients of principal ideals:

R[t]/(h) D (h1)/(h) > ... > (h1")/(h) D (hi*ha)/(h) D
. D (h*hy?)/(h) D ... D (h)/(h)
We also have a similar filtration of the R[t]-module M :=I'(Xy,Ox,,)/(f):
M>hM>...Dh'M D hi*heM D ... D h*h3>M D ... D hM = 0.

The homomorphism @) is a homomorphism of filtered R[t]-modules, so we only
need to check that it induces an isomorphism on the associated graded modules.
This boils down to checking that for each i the canonical homomorphism

R[t]/(hi) = T(Xy, O, )/ (hi)

is an isomorphism. Since (h;) is the ideal of o(Z;), this is equivalent to the fact
that o induces an isomorphism o, '(0(Z2;)) — o(Z2;), which, in turn, follows from
the definition of g. Claim 5 is proved. O

Now we can finish the proof Proposition 7l The closed subscheme A(U) U Z
is contained in the open subset X’ — Z’. Thus we can find g € H°(X,Oy) such
that A(U)U Z C X, C &' — Z'. By definition of X’ the morphism o, := o|x, is
étale. Thus, we only need to verify condition (@) of the proposition. Obviously,
RJt] is Noetherian and I'(X, Ox), is finitely generated as an R]t]-algebra. Since X

is integral and o is surjective, o (h) is not a zero divisor in I'(X', Ox),. We have

o, (2)=(ZUuZ)nX, =Z.

0.
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Thus ¢, induces an isomorphism o, " (0(Z)) = ¢(Z). This is equivalent to the

isomorphism of part (i) of Proposition 47 The proof is complete. |
4.9. End of the proof of Theorem [l

Proposition 4.10. The notation and assumptions being as in Theorem [, put
U :=SpecOx , and let G be a generically trivial principal G-bundle over U. Then
there is a G-bundle F over A}] such that
o F is trivial over the complement of a closed subscheme Y C AIU such that
Y is finite over U;
[ ]:‘OXU ~ g

Proof. By Proposition 4] there is a nice triple (¢y: X — U, f, A) and a G-bundle
& over X such that

o A*E ~G;

e & is trivial over the complement of the zero locus Z of f.

Moreover, if the field k(x) is finite, this nice triple satisfies assumptions (i)
and (¥)) of Proposition 44l As we explained before the Proposition 7} we may
assume that A(z) € Z. Let a U-morphism o: X — A};, a monic polynomial
h € R[t] vanishing on ¢(Z), and an element g € I'(X,Ox) be those provided by
Proposition L7l After performing an affine transformation of A};, we may assume
that A*(o) coincides with the closed embedding 0 x U < A{;. Condition (f) of
Proposition 7] together with [5, Prop. 2.6] shows that the diagram

Xga*(h) _— Xg

| |

Ay —— Ay
can be used to glue principal G-bundles in the following sense: given a G-bundle
over (A};)n, a G-bundle over X, and an isomorphism of their pullbacks to Xyo=(h)
we can glue the bundles to make a G-bundle over Ab. In particular, since Xgg=(p) C
Xy, we can glue €|y, with the trivial G-bundle over (A};); to make a desired G-

bundle F over Ab.

Clearly, all the conditions of the proposition are satisfied with Y := {h = 0},
which is finite over U because h is monic. (]

It remains to apply Theorem 2 to R = Ox ., H := Gx, = G xp U, and F.
The proof of Theorem [ is complete. O

Remark 4.11. When the residue field k(z) is infinite, one can prove the main the-
orem without using the nice triples by descending the G-bundle F from Proposi-
tion to Ay directly and applying Theorem 2l This would not work if k(z) is
finite because the analogue of conditions (i) and (M) of Proposition .4l might fail
for the special fiber of the quasi-elementary fibration p : X’ — S. The advantage
of nice triples to quasi-elementary fibrations, is that the original principal bundle is
the pullback via a closed morphism A. Thus we were able to “improve” the original
nice triple by replacing it with an étale base change having a section over A(U).

Remark 4.12. Tt is not necessary to use [26] in the case, when dim X = 1, as we
can easily re-prove the required statement in this case. Indeed, let a Gx ,-bundle
G have a rational section. Then it is generically trivial, so it admits a generic

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



GROTHENDIECK-SERRE IN MIXED CHARACTERISTIC 583

reduction to any Borel subgroup of Gx ;. By Proposition B0, such a reduction
extends to Spec Ox , (because dim Ox , = 1). By [8 Exp. XXVI, Cor. 2.3] we see
that G has a reduction to a split maximal torus of Gx ;. Now it is easy to see that
G is trivial.

5. PROOFS OoF THEOREMS [3] AND []

We keep the notation and assumptions from the statements of the theorems.

Proof of Theorem [. Let O,, be the R-group scheme of orthogonal transformations
of @,. The scheme of isomorphisms Isom(Q, @) is a principal O,-bundle over
Spec R. This bundle is locally trivial in the fppf topology. (Note that if n is odd
and 2 ¢ R*, then O,, is not smooth over R.) Thus, we only need to show that the
natural morphism Hflppf(R, 0,)— Hflppf(K, 0,,) has a trivial kernel.

Note that SO, is a split reductive group scheme. If n is odd, we have O, ~
o X SOy, where s is the group scheme of square roots of unity. Since we assume
that the Grothendieck—Serre conjecture holds for R and SO,,, the natural mor-
phism Hflppf(R, SO,,) — Hflppf(K, SO,,) has a trivial kernel (recall that for smooth
group schemes there is no difference between fppf principal bundles and étale prin-
cipal bundles). On the other hand, we have Hy (R, p2) = R*/(R*)* (because
H'(R,03) = 1, since R is local). Similarly, Hflppf(K, p2) = K> /(K*)2. Tt follows
now from factoriality of R that the morphism Hg (R, p2) — Hy (K, pi2) has a
trivial kernel. This completes the proof in the case, when n is odd.

If n is even, we have an exact sequence 1 — SO,, — O,, — Z/2Z — 1 by [22]

Ch. 4, Prop. 5.2.2]. This gives an exact sequence of cohomology
Z/QZ(R) - Hflppf(Rv Son) - Hflppf(R7 On) - Hflppf(R’ Z/QZ)

- | | |

Z)2Z(K) — H} (K, SO,) — H} (K, 0,) — HL (K, Z/2L).

Note that the right vertical arrow has a trivial kernel. Next, the morphism O,,(K) —
Z/27(K) is surjective (again by [22] Ch. 4, Prop. 5.2.2]). Again, by our assumption
the middle vertical arrow has a trivial kernel. Now an easy diagram chase proves
the claim. The proof of Theorem Ml is complete. ([

Assume now that 2 is invertible in R.

Proof of Theorem Bl According to [3, I, Cor. 4.7(i)], the orthogonal sum Q1 (—Q)
is isomorphic to Q2. Applying Theorem M, we see that Q' L(—Q) ~ QL(-Q).
Since 2 is invertible in R, we may apply Witt’s cancellation theorem (see [3] I,
Cor. 4.3]) to conclude that @ and @’ are isomorphic. O
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