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ON THE GROTHENDIECK–SERRE CONJECTURE ON

PRINCIPAL BUNDLES IN MIXED CHARACTERISTIC

ROMAN FEDOROV

Abstract. Let R be a regular local ring. Let G be a reductive R-group
scheme. A conjecture of Grothendieck and Serre predicts that a principal
G-bundle over R is trivial if it is trivial over the quotient field of R. The
conjecture is known when R contains a field. We prove the conjecture for a
large class of regular local rings not containing fields in the case when G is
split.

1. Introduction and main results

Let R be a regular local ring; let G be a reductive group scheme over R. A con-
jecture of Grothendieck and Serre (see [36, Remarque, p.31], [12, Remarque 3,
p.26–27], and [19, Remarque 1.11.a]) predicts that a principal G-bundle over R is
trivial, if it is trivial over the fraction field of R. Recently this has been proved in
the case when R contains a field in [10], it was extended to the case of finite fields
in [31]. In this paper we consider the case when R contains no field, that is, the
case of mixed characteristic.

Note that a regular local ring R contains no field if and only if there is a prime
number p (necessarily unique) such that p is neither invertible nor zero in R. In
this case R contains the localization Z(p) of Z at the prime ideal (p) = pZ.

Thus, we assume that R is a Z(p)-algebra. We will also assume that R/pR is a
regular ring. In this case a theorem of Popescu [35, 37, 38] reduces the question to
the case when R is a localization of a finitely generated smooth Z(p)-algebra A at

a maximal ideal. Taking the closure of SpecA in PN
Z(p)

, we may assume that R is

the local ring of a closed point x on an integral scheme X projective over Z(p).
Additionally, we will assume that (I) the fiber Xp is generically reduced, and that

(II) the set of points where X is not regular intersects Xp in a subset of codimension
at least two in Xp. Note that condition (I) is satisfied if the fiber Xp is irreducible
because the projection is smooth at x. On the other hand, both conditions are
satisfied if the set of points where the projection X → SpecZ(p) fails to be smooth,
has codimension at least 3 in X.

Below we will prove the conjecture of Grothendieck and Serre under the above
assumptions when the group schemeG is split; see Theorem 1. We work in a slightly
greater generality: we weaken condition (I) and we consider projective schemes over
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any excellent discrete valuation ring Λ, not just Z(p)-schemes. In particular, Λ can
be a localization of any number ring at a maximal ideal.

We note that previously the conjecture was known in a very few mixed char-
acteristic cases, namely, when G is a torus [7], when dimR = 1, when R is
Henselian [26]. Next, the case of G = PGL(n,R) follows from a similar state-
ment for Brauer groups [7, Thm. 4.3] (more generally, one can derive the statement
for G = PGL(A), where A is an Azumaya algebra over R). Also, in [27] the
conjecture is proved when G is quasisplit and dimR = 2 but there it is assumed
that the residue field of R is infinite. Thus our results are new even in dimension
two. We also note that while the current paper was under review, the subject was
further developed, see [4].

1.1. Definitions and conventions. A group scheme G over a scheme S is called
reductive if it is affine and smooth as an S-scheme and if, moreover, all its geometric
fibers are connected reductive algebraic groups. This definition of a reductive R-
group scheme coincides with [8, Exp. XIX, Def. 2.7].

A reductive group schemeG over a local scheme S is split if it contains a maximal
torus T ⊂ G such that T � (Gm,S)

r for some r (cf. [8, Exp. XXII, Prop. 2.2]).
Note that such a group scheme comes as a pullback from SpecZ (see [8, Exp. XXV,
Thm. 1.1]).

Let G be a group scheme faithfully flat and finitely presented over S. An S-
scheme G with a left action of G is a principal G-bundle over S, if G is faithfully
flat and finitely presented over S, and the morphism G ×S G → G ×S G, whose
first component is the action and the second is the projection, is an isomorphism
(see [20, Sect. 6]). A principalG-bundle E over S is trivial if there is an isomorphism
of S-schemes E � G compatible with the action of G, where G acts on itself by
left multiplication. A principal G-bundle is trivial if and only if it has a section as
an S-scheme.

If T is an S-scheme, we will use the term “principal G-bundle over T” to mean
a principal G×S T -bundle over T . We usually skip the adjective ‘principal’ as we
are only considering principal G-bundles.

Assume that G is affine over S. In this case, we denote by H1
fppf(S,G) the

pointed set of isomorphism classes of G-bundles over S (as every such bundle is
locally trivial in the fppf topology). The subset corresponding to étale locally trivial
bundles is denoted by H1

ét(S,G). We note that if G is smooth over S, then we have

H1
ét(S,G) = H1

fppf(S,G).

If T is an S-scheme and s ∈ S is a point, we write Ts for the fiber T ×S s. We write
k(s) for the residue field of s.

The symbol ‘�’ means that two objects are isomorphic; we use the equality ‘=’
to emphasize that the isomorphism is canonical. We use boldface font for group
schemes (e.g G, B, etc.) and the calligraphic font for principal bundles (e.g. G, E ,
etc.).

The notation #A stands for the number of elements of the finite set A.

1.2. Main result.

Theorem 1. Let Λ be an excellent discrete valuation ring; let b ∈ SpecΛ be the
closed point. Let X be an integral scheme and π : X → SpecΛ be a flat projective
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morphism. Denote by Xsing the set of y ∈ X such that the local ring OX,y is not
a regular ring. Assume that π : X → SpecΛ satisfies the following properties

(I) The smooth locus of Xb is dense in Xb.
(II) The intersection Xsing ∩Xb has codimension at least two in Xb.

Let x ∈ X be a closed point such that π is smooth at x. Let GX,x be a split
reductive OX,x-group scheme. Then a principal GX,x-bundle over OX,x is trivial,
if it has a rational section.

The proof of the theorem occupies Sections 2–4.

Remarks.

• The set Xsing is closed in X, since Λ is excellent; see [16, Scholie 7.8.3(iv)].
• We note that Xsing ∩Xb is in general smaller than the set of points where
Xb is not regular.

• The condition that Λ is excellent is not needed. Indeed, the Grothendieck–
Serre conjecture is known for regular local rings containing finite fields [28,
31,32]. Thus we may assume that Λ does not contain a finite field. In this
case Λ is automatically excellent; see [16, Scholie 7.8.3(iii)]. However, we
prefer to keep this assumption in order to have our theorem independent
from Panin’s results [28, 31, 32].

• Condition (I) is satisfied if Xb is irreducible, because π is smooth at x.
• If the residue field of b is perfect, then Condition (I) is equivalent to the
condition that Xb has no multiple components.

• We expect that, more generally, the theorem and its proof hold for the semi-
local rings of finitely many closed points on X. Note that the conjecture is
proved in the case of semi-local Dedekind domains in [21], which extends
the results of [26]. See also [33] in the split case.

The following result of independent interest will be used in the proof.

Theorem 2. Let R be a Noetherian local ring. Let H be a split reductive group
scheme over R. Let F be a principal H-bundle over A1

R := SpecR[t] such that F is
trivial over the complement of a closed subscheme that is finite over SpecR. Then
F is trivial.

This theorem is similar to [29, Thm. 1.3] and to [10, Thm. 3]. It will be proved
in Section 2. Note that the ring R is not required to be regular.

1.3. Example: quadratic forms. We have the following relative result. Let R
be a regular local ring and let the R-group scheme SOn be the split form of the
special orthogonal group scheme.

Theorem 3. Let R be a regular local ring such that the Grothendieck–Serre conjec-
ture holds for R and SO2n. Assume that 2 is invertible in R. Let Q =

∑
i,j qijxixj

and Q′ =
∑

i,j q
′
ijxixj be quadratic forms in n variables with coefficients in R such

that their discriminants are invertible in R. Assume that there is a linear transfor-
mation with coefficients in the fraction field of R, taking Q to Q′. Then there is a
linear transformation with coefficients in R taking Q to Q′.

When 2 is not necessarily invertible in R we have the following result. Define
the split quadratic form over R as follows

Qn = x1xm+1 + · · ·+ xmx2m if n = 2m
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and

Qn = x1xm+1 + · · ·+ xmx2m + x2
2m+1 if n = 2m+ 1.

Note that SOn is the special orthogonal group scheme associated to Qn (see [22,
Ch. IV, Sect. 5] for the correct definition in the case when 2 is not invertible in R).
Recall (see e.g. [22, Ch. IV, Sect. 3]) that if n is odd and Q is a quadratic form
with coefficients in R, then one can define its half-discriminant (which is just 1/2
times the discriminant if 2 is invertible in R).

Theorem 4. Let R be a regular local ring such that the Grothendieck–Serre conjec-
ture holds for R and SOn. Let Q =

∑
i,j qijxixj be a quadratic form in n variables

with coefficients in R such that its discriminant is invertible in R if n is even, and
its half-discriminant is invertible in R if n is odd. Assume that there is a linear
transformation with coefficients in the fraction field of R, taking Q to Qn. Then
there is a linear transformation with coefficients in R taking Q to Qn.

Note that, if X and x are as in Theorem 1, then the conditions of Theorems 3
and 4 are satisfied for R = OX,x. Theorems 3 and 4 are proved in Section 5.

1.4. Outline of the paper. We start by proving Theorem 2 in Section 2. After
that we proceed with the proof of Theorem 1. Let us give a brief overview of the
proof. By [26] we may assume that the relative dimension of the flat morphism
X → SpecΛ is at least one.

The fist step in the proof is to fiber a neighborhood of x in X into curves.
Thus we choose an appropriate neighborhood X ′ of x in X and a smooth fibration
X ′ → S of relative dimension one, having some nice properties (see Definition 3.2
below). We extend G to a principal bundle F over X ′ such that F is trivial over
the complement of a subscheme finite over S. This step, carried out in Section 3
differs crucially from the equal characteristic case. In particular, we use the fact
that a generically trivial principal bundle can be reduced to a Borel subgroup on
the complement of a codimension two subscheme, see Proposition 3.10.

In Section 4 we complete the proof of Theorem 1 as follows. We pull F back to
an open subset of X ′ ×S U , where U := SpecOX,x. Then, we descend the bundle
obtained to A1

U , employing the theory of nice triples of Panin (cf. [29, Def. 3.1]
and Definition 4.2 below), reducing Theorem 1 to Theorem 2. See Remark 4.11
regarding the rationale for using nice triples.

In Section 5 we prove Theorems 3 and 4.

2. Bundles over A1
: Proof of Theorem 2

2.1. Horrocks type statement. The following statement and its proof are close
to [29, Thm. 9.6].

Proposition 2.2. Let R be a Noetherian local ring, U := SpecR. Let x ∈ U be
the closed point. Let H be a reductive group scheme over U such that there is an
embedding H → GL(n, U) for some positive integer n. Let P1

x be the x-fiber of the
projection P1

U → U , let Hx be the x-fiber of H. Let H be an H-bundle over P1
U

such that its restriction to P1
x is a trivial Hx-bundle. Then H is isomorphic to the

pullback of an H-bundle over U .

Proof. By [6, Cor. 6.12(ii)] the quotient X := GL(n, U)/H is represented by an
affine scheme.
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Consider the associated GL(n, U)-bundle H′ := GL(n, U)×HH. Let, under the
equivalence between GL(n, U)-bundles and rank n locally free coherent sheaves,
H′ correspond to the sheaf S on P1

U . By the assumption on H, Sx is isomorphic to
⊕n

i=1OP1
x
. Thus

H1(P1
x,Hom(Sx,Sx)) = H1(P1

x,⊕n2

i=1OP1
x
) = 0.

Therefore, according to [14, Cor. 4.6.4], S is a free sheaf. Thus H′ is trivial.
Consider the morphism of exact sequences, induced by the canonical projection

prU : P1
U → U ,

MorU (U,X )
∂−−−−→ H1

ét(U,H) −−−−→ H1
ét(U,GL(n, U))

pr∗U

⏐⏐�
⏐⏐�

⏐⏐�
MorU (P

1
U ,X )

∂−−−−→ H1
ét(P

1
U ,H) −−−−→ H1

ét(P
1
U ,GL(n, U)).

The class of [H] ∈ H1
ét(P

1
U ,H) is in the image of ∂, because H′ is trivial. It remains

to show that the morphism pr∗U is surjective. This follows from [25, Prop. 6.1]. This
proposition is applicable because P1

x is projective and Xx is affine, so any morphism
P1
x → Xx must be constant. �

2.3. Gluing principal bundles. As before, let R be a Noetherian local ring,
U := SpecR. Let H be a split reductive group scheme over U . Let Y = 0 × U be
the zero section in P1

U . Let DY := SpecR[[t]] be the “formal disc around Y ”, let

ḊY := SpecR((t)) be the “punctured formal disc.” There is commutative diagram
of morphisms of U -schemes (see [9, Sect. 4.1] for details)

ḊY −−−−→ DY⏐⏐�
⏐⏐�

P1
U − Y −−−−→ P1

U .

Further, we explained in [9] that given an H-bundle over P1
U −Y , an H-bundle over

DY , and an isomorphism between their restrictions to ḊY , we can glue the bundles
to make an H-bundle over P1

U ; see [9, Prop. 4.4].
This construction can be used to modify H-bundles over P1

U in the following

sense. Given an H-bundle H over P1
U , its trivialization over ḊY , and a loop α ∈

H
(
R((t))

)
, we construct a new H-bundle H(α) over P1

U as follows. We view α as

an isomorphism between H|ḊY
and the trivial H-bundle over ḊY , and use it to

glue H|P1
U−Y with the trivial H-bundle over DY .

2.4. End of the proof of Theorem 2. We use the notations from the statement
of Theorem 2. As before, let U := SpecR and let Y = 0 × U ⊂ P1

U . Since
P1
U − Y � A1

U , we may view F as an H-bundle over P1
U − Y . Let us trivialize F

on a complement of a subscheme Z ⊂ P1
U − Y finite over U . Note that Z is closed

in P1
U . Let us extend F to an H-bundle F̃ over P1

U by gluing F with the trivial
bundle over P1

U − Z (observe that both bundles are trivial over the intersection
P1
U − Y − Z).

Consider the Hx-bundle F̃x over P1
x obtained by restricting F̃ . Note that F̃x is

generically trivial because it is trivial over P1
x − Zx. Thus it is trivial over P1

x − 0
by [11, Cor. 3.10(a)]. Fix such a trivialization.
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On the other hand, F̃ is trivialized over DY , as the morphism DY → P1
U factors

through P1
U − Z. Fix such a trivialization, it gives rise to a trivialization of F̃x

over DYx
.

Thus we get two trivializations of F̃x over ḊYx
; they differ by an element

α ∈ H(ḊYx
) = H

(
k((t))

)
,

where k := k(x).

Lemma 2.5. The natural map H
(
R((t))

)
→ H

(
k((t))

)
is surjective.

Proof. Let T be a split maximal torus in H. Let B be a Borel subgroup scheme
such that T ⊂ B ⊂ H. Let B− be the opposite Borel subgroup scheme (see [8,
Exp. XXII, Prop. 5.9.2]). Let U− and U be the unipotent radicals of B− and
B respectively. Let E be the subgroup of the abstract group H

(
k((t))

)
gener-

ated by U−(k((t))) and U
(
k((t))

)
. It follows from [8, Exp. XXVI, Cor. 5.2] that

H
(
k((t))

)
= T

(
k((t))

)
· E.

Next, every element of E extends to H
(
R((t))

)
, see [10, Lemma 5.24]. Thus,

it remains to show that every element of T
(
k((t))

)
extends to T

(
R((t))

)
. Since

T is split, it is enough to show that every non-zero element of k((t)) extends to
an invertible element of R((t)), which is obvious because R is local. �

By the previous lemma, we can extend the loop α to a loop α̃ ∈ H
(
R((t))

)
.

Since F̃ is trivialized over ḊY and α̃−1 ∈ H
(
R((t))

)
, we obtain a new principal

bundle F̃(α̃−1) over P1
U (see the end of Section 2.3).

It is easy to see from the construction, that the restriction of F̃(α̃−1) to P1
x is a

trivial Hx-bundle. Indeed, F̃(α̃−1)|P1
x
� F̃x(α

−1) and α was chosen in such a way

that the trivialization of F̃x on P1
x − Yx extends to a trivialization of F̃x(α

−1) on
P1
x (cf. [10, Prop. 5.22]).
By [6, Cor. 6.12(i)] there is an embedding H → GL(n, U). Then by Proposi-

tion 2.2, F̃(α̃−1) is isomorphic to a pullback of an H-bundle over U . Since the

restriction of F̃(α̃−1) to Y = 0×U is trivial, we see that F̃(α̃−1) is trivial. Finally,
we see that

F � F̃(α̃−1)|P1
U−(0×U)

is trivial. The proof of Theorem 2 is complete. �

3. Quasi-elementary fibrations

Now we start the proof of Theorem 1, which will occupy this and the next
sections. In this section we introduce the notion of a quasi-elementary fibration.
The main result is Proposition 3.22, which lets us construct a quasi-elementary
fibration from the data of Theorem 1. We keep the notations from Theorem 1. Set
U := SpecOX,x. We may identify the unique closed point of U with x; denote the
residue field of x by k(x). As we have already mentioned, there is a split reductive Z-
group schemeGZ such thatGX,x � GZ×ZSpecOX,x (see [8, Exp. XXV, Thm. 1.1]).
Set G := GZ ×Z SpecΛ; this is a split reductive Λ-group scheme. Then we have
GX,x � G×Λ SpecOX,x. We use this isomorphism to identify the group schemes.
Thus, according to our convention, principalGX,x-bundles are the same as principal
G-bundles.
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3.1. Definition of quasi-elementary fibrations. The notion of an elementary
fibration was introduced in [1, Exp. XI, Def. 3.1]. The following notion is a weak
version of elementary fibration: we only assume that the projection is smooth over
the open part, we do not require the fibers to be integral, and we only require the
divisor to be finite surjective over the base (see also [29, Def. 2.1]).

Definition 3.2. A quasi-elementary fibration is an affine smooth morphism of
Noetherian schemes p : X ′ → S that can be included in a commutative diagram

X ′ j ��

p
���

��
��

��
� X

p̄

��

Y
i��

q
����
��
��
��

S

satisfying the following conditions

(i) p̄ is flat projective of pure relative dimension one;
(ii) j is an open embedding, i is a closed embedding, and X ′ = X − Y ;

(iii) X is a regular scheme of pure dimension;

(iv) q is finite surjective.

We note that S is automatically regular, see [15, Prop. 17.3.3(i)].

Convention 3.3. Let S be a scheme, let Ti be S-schemes, and let s ∈ S be a
point. By shrinking (S, s) we mean replacing S by a Zariski neighborhood S′ of s
and replacing each Ti by Ti ×S S′.

3.4. General preliminaries. The following lemma will be used many times, in
particular, for constructing quasi-elementary fibrations.

Lemma 3.5. Let T and S be Noetherian schemes. Let ϕ : T → S be a projective
morphism with fibers of dimension one (but not necessarily of pure dimension), let
s ∈ S be a closed point. Let T1, T2 ⊂ T be closed subschemes finite over S and such
that T1 ∩ T2 = ∅. Then

(i) If L is an S-ample line bundle over T , then for all large N we may shrink
(S, s) so that we can find σ ∈ H0(T,L⊗N ) such that σ vanishes on T1 and
does not vanish at any point of T2.

(ii) After shrinking (S, s), we can find a closed subset D ⊂ T such that D is
finite over S, T1 ⊂ D, T2 ∩D = ∅, and T −D is affine over S.

(iii) After shrinking (S, s), we can find a finite surjective S-morphism Π: T →
P1
S such that Π(T1) ⊂ 0× S, Π(T2) ⊂ ∞× S.

Proof. For part (i), consider T0 := T1∪(T2)s and let IT0
be the sheaf of ideals of T0.

Notice that R1ϕ∗(L⊗N ⊗ IT0
) vanishes in a neighborhood of s for large N . Thus,

after shrinking (S, s), we can find a section of L⊗N such that this section vanishes
on T1 and does not vanish at any point of (T2)s. It remains to shrink (S, s) again.

For part (ii), we may choose a very ample line bundle L over T/S. By enlarg-
ing T2, we may assume that it contains a closed point in each one-dimensional
irreducible component of Ts. Let σ be a section of L⊗N provided by the first part,
letD be the zero locus of σ. Then the fiber ofD over s is finite. SinceD is projective
over S, dimensions of the fibers are upper semicontinuous (see [17, Cor. 13.1.5]).
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Thus, after shrinking (S, s), we may assume that D is quasi-finite over S. Since D
is projective over S, it is finite over S. Now T −D is affine over S because L⊗N is
very ample.

For part (iii), we may assume that each of T1 and T2 contains at least one point
on each irreducible one-dimensional component of Ts. Let L be a very ample line
bundle on T/S. Thus, by part (i), by shrinking (S, s) and replacing L by its power,
we can find a section τ1 of L such that τ1 vanishes on T1 but not at the points of
T2. Let T

′ be the zero set of τ1.
As in part (ii), we may assume that T ′ is finite over S. Shrinking (S, s) and

applying part (i) again, we see that there is a section τ2 of L⊗N for some N > 0
such that τ2 vanishes on T2 but not at the points of T ′.

Consider the projective morphism Π: T → P1
S given by [τN1 : τ2]. Its restriction

to Ts is finite because it is a morphism of one-dimensional projective schemes Ts →
P1
s such that both the preimage of zero and the preimage of infinity intersect all

one-dimensional components of Ts. Thus, by shrinking (S, s), we may assume that
Π is finite. Clearly, we have Π(T1) ⊂ 0× S and Π(T2) ⊂ ∞× S.

It remains to show that Π is surjective. Since Π is closed (being finite), we
only need to check that for any generic point ω of S the base-changed morphism
Πω : Tω → P1

ω is surjective. If not, then its image is finite, so Πω cannot be
finite because Tω is one-dimensional. This contradiction completes the proof of
surjectivity. �

3.6. Weighted blow-ups. The scheme X in Definition 3.2 will be constructed via
blowing up, similarly, to the Artin’s result [1, Exp. XI, Prop. 3.3]. However, since
Proposition 3.12 below produces hypersurfaces rather than hyperplanes, we will
need to do a weighted version of blowing up. Denote by PZ(l0, . . . , lm) the weighted
projective space, that is,

PZ(l0, . . . , lm) := Proj(Z[x0, . . . , xm]), deg xi = li.

For a Noetherian scheme S, set PS(l0, . . . , lm) := PZ(l0, . . . , lm)× S.
Let Z be a reduced Noetherian scheme, let L be an invertible sheaf on Z and let

σi ∈ H0(Z,L⊗li), i = 0, . . . ,m.

Let Z0 be the intersection of the zero loci of σi. The sections σi give rise to a
morphism

Z − Z0
μ−→ PZ(l0, . . . , lm).

Denote by Blσ0,...,σm
(Z) the closure of the graph of μ in

PZ(l0, . . . , lm) = Z × PZ(l0, . . . , lm).

We call it a weighted blow-up of Z along Z0. We view it as a scheme with reduced
scheme structure. We note that it is quite different from the usual blow-up. In
particular, it depends on sections σ0, . . . , σm and not just on their common zero-
locus Z0.

We have a projection

λ : Blσ0,...,σm
(Z) → Z;

this is a projective morphism. Note the following easy lemma.

Lemma 3.7. Notation as above, the base change of λ with respect to the inclusion
Z − Z0 ↪→ Z is an isomorphism.
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Proof. Results from the construction. �

We will consider weighted blow-ups only in the case, when l0 = 1. For a scheme
S, denote by ÂS the open subset of PS(1, l1, . . . , lm) given by x0 �= 0. If S = SpecA,

then ÂS = SpecA[y1, . . . , ym], where yi = xi/x
li
0 . Thus, for any S, we have a

canonical isomorphism ÂS = Am
S , in particular, ÂS is smooth over S.

In our applications, Z and Z0 will be of pure dimensions and we will have
dimZ − dimZ0 = m+ 1, in particular, Z0 will be a complete intersection in Z.

It is well-known that the blow-up of a regular scheme along a regular closed sub-
scheme is regular (see e.g. [23, Thm. 8.1.19]). We prove a slightly weaker statement
in the weighted case, which is still sufficient for our purposes.

Lemma 3.8. Notation as above, assume that Z and Z0 are regular schemes and
that Z0 is of pure codimension m + 1 in Z. Then Blσ0,...,σm

(Z) ∩ ÂZ is a regular

scheme. The dimension of Blσ0,...,σm
(Z) ∩ ÂZ at a closed point x is equal to the

dimension of Z at λ(x).

Proof. The statement is local over Z, so we may assume that Z = SpecA is affine
and that L is a trivial line bundle. Choosing a trivialization of L, we may view σi

as elements of A. Put Z ′ := Blσ0,...,σm
(Z) ∩ ÂZ . By [23, Cor 4.2.17] we only need

to show that Z ′ is regular at each closed point x. Let x ∈ Z ′ lie over z := λ(x) ∈
Z = SpecA. Viewing z as a prime ideal of A, we may assume that z ⊃ (σ0, . . . , σm)
(otherwise we are done by Lemma 3.7).

Claim. Let dσi be the image of σi in the cotangent space T ∗
z of Z at z. Then the

vectors dσ0, . . . , dσm are linearly independent.

Proof. Consider the local rings OZ,z and OZ0,z = OZ,z/(σ0, . . . , σm). Since Z0 is
of codimension m + 1 in Z, we easily see that the height of the ideal (σ0, . . . , σm)
in OZ,z is at least m+ 1. Thus

(1) dimOZ,z ≥ dimOZ0,z +m+ 1.

Next, the maximal ideal of OZ0,z can be generated by m0 := dimOZ0,z elements
because Z0 is regular. Let τ1, . . . , τm0

be such generators. Then the maximal ideal
of OZ,z is

(σ0, . . . , σm, τ̃1, . . . , τ̃m0
)

for any lift of τi to τ̃i ∈ OZ,z . If dσ0, . . . , dσm were linearly dependent, we would
have dimT ∗

z < (m+ 1) +m0, which gives a contradiction with (1). �

Recall that ÂZ = SpecA[y1, . . . , ym], where yi = xi/x
li
0 . Thus we have sections

dyi of the cotangent sheaf of ÂZ . Let T ∗
x be the cotangent space of ÂZ at x.

Since x is closed in Z ′, it is also closed in the z-fiber of Z ′. Thus we can identify
T ∗
x = (T ∗

z ⊗k(z) k(x)) ⊕ V , where V is the k(x)-vector space with basis dy1, . . . ,
dym.

Let T ∗ be the cotangent space of Z ′ at x. We have the surjective projection
T ∗
x → T ∗; denote the kernel of this projection by K. Since σi − yiσ

li
0 vanishes on

Z ′, and dσi are linearly independent, the dimension of K is at least m. Thus

(2) dimT ∗ ≤ dimz Z.

We need a general statement about dimensions.
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Claim. Let f : S′ → S be a closed and surjective morphism of Noetherian schemes.
Let s ∈ S′ be a schematic point. Then dims S

′ ≥ dimf(s) S.

Proof. We will prove by induction on n the following statement: let f : S′ → S be a
closed and surjective morphism of Noetherian schemes. Let s ∈ S′ be a schematic
point. If dimf(s) S ≥ n, then dims S

′ ≥ n. If n = 0, the statement is obvious.
Assume that the statement is true for n = k − 1, let us prove the statement for
n = k.

Assume that dimf(s) S ≥ k. We easily reduce to the case, when S′ is integral.
We have a chain of prime ideals:

Of(s),S � Ik+1 � · · · � I1.

The ideal I1 corresponds to the generic point of an integral closed subscheme S1 ⊂ S
such that f(s) ∈ S1. We have dimf(s) S1 ≥ k− 1. By induction hypothesis we have

dims f
−1(S1) ≥ k−1. But f−1(S1) is a proper closed subset of S′ containing s and

S′ is irreducible, so dims S
′ ≥ k. �

If follows from this claim that the dimension of Z ′ at x is greater than or equal to
the dimension of Z at z because the morphism λ : Blσ0,...,σm

(Z) → Z is closed and
surjective (being projective and dominant). Combining this inequality with (2), we
see that Z ′ is regular at x. The statement about the dimensions is now also clear.
The proof of Lemma 3.8 is complete. �

3.9. Reductions of principal bundles to Borel subgroups. Let H be a re-
ductive group scheme over a Noetherian scheme T . Let B be a Borel subgroup
scheme of H (assumed to exist). Recall that a B-bundle B induces an H-bundle
H×B B. By a B-reduction of an H-bundle H we mean a pair (B, s), where B is a
B-bundle, s : H ×B B → H is an isomorphism. If such a reduction exists, we say
that H can be reduced to B.

Proposition 3.10. Let H be a reductive group scheme over a Noetherian normal
scheme T . Let B be a Borel subgroup scheme of H (assumed to exist). Assume that
H is an H-bundle. Then a B-reduction of H over a dense open subset of T can be
extended to an open subset whose complement has codimension at least two in T .

Proof. By [8, Exp. XXVI, Cor. 3.6, Lm. 3.20] the quotient H/B is represented
by a projective scheme. It is easy to see from the étale descent that this quotient
classifies B-reductions of H. Thus, we just need to show that a section of H/B over
a dense open subset of T can be extended to an open subset whose complement has
codimension at least two in T . However, H/B is proper over T , so the statement
follows from [13, Cor. 7.3.5, Remarque 7.3.7]. �

3.11. Bertini type Theorems. Let us define the dimension of the empty scheme
to be −1. The following proposition follows easily from results of [34].

Proposition 3.12. Assume that T1, . . . , Tn are non-empty locally closed sub-
schemes of PN

k , where k is a finite field. Let T ′ ⊂ T be smooth locally closed
subschemes of PN

k , and let F be a finite set of closed points of PN
k . Assume that

for all i such that Ti is finite, we have Ti ∩ F = ∅. Then there is a hypersurface
H ⊂ PN

k such that the scheme theoretic intersections H ∩T and H ∩T ′ are smooth,
F ⊂ H, and for i = 1, . . . , n we have dim(H ∩ Ti) < dimTi.
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We remark that if Ti is a point, then the condition dim(H ∩ Ti) < dimTi means
that H ∩ Ti = ∅.

Proof. Replacing each Ti by the set of its top-dimensional irreducible components,
we may assume that each Ti is irreducible. For i = 1, . . . , n choose a closed point
pi ∈ Ti − F . We claim that there is a hypersurface H such that

• H ∩ T and H ∩ T ′ are smooth;
• F ⊂ H;
• For all i, we have pi /∈ H.

Then the statement follows from [34, Thm. 1.3]. In more detail, for a point p ∈ PN
k ,

let Ôp be the completion of the local ring O
P
N
k ,x. We apply [34, Thm. 1.3] with

the following local conditions. If p = pi for some i, then Up ⊂ Ôp is the condition
that H does not pass through p. If p ∈ F , then the conditions is that H passes
through p and the intersections H ∩ T and H ∩ T ′ are smooth at p (by definition,
an intersection is smooth at p, if p does not belong to this intersection). In the
remaining case, the condition is just that H ∩ T and H ∩ T ′ are smooth at p
(cf. the proof of [34, Thm. 3.3]). The hypersurface H satisfies conditions of the
proposition. �

The following proposition will be used to construct quasi-elementary fibrations.

Proposition 3.13. Let k be a field and let X ⊂ PN1

k be a closed subscheme of pure
dimension n, let Xsm ⊂ X be an open subscheme smooth over k and let x ∈ X be a
closed point. Let T1 and T2 be closed subsets of X of dimensions at most n− 1 and
n − 2 respectively such that x /∈ T2. For an integer r consider the r-fold Veronese
embedding PN1

k ↪→ PNr

k and identify X with a closed subscheme of PNr

k , using this

embedding. Then there are a positive integer r and sections σ0 ∈ H0(PNr

k ,O(1)),

σ1 ∈ H0(PNr

k ,O(l1)), . . . , σn−1 ∈ H0(PNr

k ,O(ln−1)) for some positive integers li
such that

(i) σ0(x) �= 0.

(ii) Let ϕ : PNr

k ��� Pk(1, l1, . . . , ln−1) be the rational morphism defined by the
sections σi. Then the subscheme ϕ−1(ϕ(x))∩Xsm is smooth of dimension
one over k(ϕ(x)).

(iii) ϕ−1(ϕ(x)) ∩ T1 is finite.
(iv) ϕ−1(ϕ(x)) ∩ T2 = ∅.
(v) {σ0 = σ1 = · · · = σn−1 = 0} ∩Xsm is finite and étale over k.
(vi) {σ0 = σ1 = · · · = σn−1 = 0} ∩ Ti = ∅ for i = 1, 2.

The proof of this proposition in the finite field case is significantly different from
the proof in the infinite case.

Proof of Proposition 3.13 in the case, when k is finite. We inductively construct
σ0, . . . , σn−1 such that σ0(x) �= 0, and for m = 1, . . . , n− 1 we have σm(x) = 0,

dim({σ0 = · · · = σm = 0} ∩ Ti) < n−m− i,

dim({σ1 = · · · = σm = 0} ∩ Ti) ≤ n−m− i,

and the intersections

{σ0 = · · · = σm = 0} ∩Xsm and {σ1 = · · · = σm = 0} ∩Xsm

are smooth over k of dimensions n−m− 1 and n−m respectively.
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For m = 0 we apply Proposition 3.12 with T1, T2, T3 = x, F = T ′ = ∅,
and T = Xsm. We get σ0 ∈ H0(PN1

k ,O(r)). We can view it as an element of

H0(PNr

k ,O(1)). We have σ0(x) �= 0, {σ0 = 0} ∩Xsm is smooth of dimension n− 1
over k, and dim({σ0 = 0} ∩ Ti) < n− i.

Assume that σ0, . . . , σm−1 are already constructed. To construct σm we apply
Proposition 3.12 to {σ0 = · · · = σm−1 = 0}∩Ti, T

′ = {σ0 = · · · = σm−1 = 0}∩Xsm,
T = {σ1 = · · · = σm−1 = 0} ∩Xsm, and F = {x}.

By construction, σ0, . . . , σn−1 satisfy the conditions of the proposition. (Note
that ϕ−1(ϕ(x)) is contained in {σ1 = . . . = σn−1 = 0}). �

Proof of Proposition 3.13 in the case, when k is infinite. We will take r = 2 and
l1 = · · · = ln−1 = 1. Set V := H0(PN2

k ,O(1)); we view the vector space V as a
scheme over k.

Lemma 3.14. Assume that k is algebraically closed. Let X, Xsm, x, T1, T2 be
as in the statement of Proposition 3.13. Then there is a non-empty open subset
W ⊂ V n such that every point (σ0, . . . , σn−1) ∈ W satisfies the conditions of the
proposition. More precisely, conditions (ii) and (v) mean that ϕ−1(ϕ(x)) and {σ0 =
· · · = σn−1 = 0} intersect Xsm transversally.

Proof. Recall that we have a 2-fold Veronese embedding PN1

k ↪→ PN2

k . Let Grx(N2+
1, n) stand for the Grassmannian of codimension n − 1 subspaces containing x

in PN2

k . It follows from [1, Exp. XI, Thm. 2.1(ii)] that there is a non-empty
open subset U ⊂ Grx(N2 + 1, n) such that every subspace from U intersects
Xsm transversally. Let W ′ ⊂ V n be the open subspace defined by the condi-
tions that for all (σ0, . . . , σn−1) ∈ W ′ we have σ0(x) �= 0, and the rational mor-

phism ϕ : PN2

k ��� Pn−1
k defined by σ0, . . . , σn−1 is such that the Zariski closure of

ϕ−1(ϕ(x)) is a codimension n− 1 projective subspace of PN2

k . We get a morphism
π : W ′ → Grx(N2 + 1, n) sending (σ0, . . . , σn−1) ∈ W ′ to the Zariski closure of
ϕ(ϕ−1(x)). Set W ′′ := π−1(U). Clearly, W ′′ is open. Since π is dominant, W ′′

is non-empty. For each (σ0, . . . , σn−1) ∈ W ′′ the intersection ϕ−1(ϕ(x)) ∩ Xsm

is transversal. We show similarly that for every other condition of the proposi-
tion there is a non-empty open subset in V n whose points possess the property
(use [1, Exp. XI, Thm. 2.1(i)] for (v), use an inductive argument similar to the
proof in the finite field case for the other properties). The intersection of these
open subsets is non-empty, since V n is irreducible; it is the required set W . �

We return to the proof of Proposition 3.13. Let k̄ be an algebraic closure of k.
Consider the finite scheme x ×k k̄. Let x1, . . . , xm ∈ Xk̄ be all its closed points.
Applying the previous lemma to Xk̄, X

sm
k̄

, xi, (T1)k̄, and (T2)k̄, we get a dense open

subset W̃i ⊂ Ṽ := H0(PN2

k̄
,O(1)). Let p : Ṽ → V be the projection. There is a

non-empty open subset W ⊂ V such that p−1(W ) ⊂ ∩m
i=1W̃i. Since k is infinite, we

can find a k-rational point (σ0, . . . , σn−1) ∈ W . We claim that this point satisfies
the conditions of the proposition.

Let us check condition (ii) first. Set s := ϕ(x), k′ := k(s), Y := ϕ−1(s). Then Y
is smooth over s. We need a lemma whose meaning is that Y and Xsm intersect
transversally.
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Lemma 3.15. Let Z be the scheme theoretic intersection of Xsm and Y . Then the
canonical morphism of sheaves

α : Ω
P
N2
k /k

|Z → ΩY/s|Z ⊕ ΩXsm/k|Z
is injective and locally split.

Proof. Note that the sheaves Ω
P
N2
k /k

|Z and ΩY/s|Z ⊕ ΩXsm/k|Z are locally free.

Thus, it is enough to check that for every geometric point z̄ ∈ Z(k̄) the pullback

of this morphism to z̄ is injective. Let ϕ̄ : PN2

k̄
��� Pn−1

k̄
be the rational morphism

defined by the sections σ̄i := σi ×k k̄. Set x̄ := x ×k Spec k̄, s̄ := s ×k Spec k̄. Set
Y i := ϕ̄−1(ϕ̄(xi)) and X

sm
:= Xsm ×k Spec k̄. Note that ϕ(z̄) = ϕ(xi) for some i.

The pullback of α to z̄ is the canonical morphism

ᾱ : Ω
P
N2
k̄

/k̄
|z̄ → Ω(Y×kSpec k̄)/s̄|z̄ ⊕ ΩX

sm
/k̄|z̄.

We also have a canonical isomorphism

Ω(Y×kSpec k̄)/s̄
|z̄ ⊕ ΩX

sm
/k̄|z̄

�−→ ΩY i/k̄
|z̄ ⊕ ΩX

sm
/k̄|z̄.

Indeed, Y i is the fiber of Y ×k Spec k̄ over ϕ(z̄) = ϕ(xi) ∈ s̄. The composition of

these two morphisms is injective because X
sm

and Y i intersect transversally. It
follow that ᾱ is injective. �

If follows from the above lemma that the cokernel of α is a locally free sheaf of
rank one. On the other hand, we have a surjective morphism Cokerα � ΩZ/k′ .
We will use the following lemma.

Lemma 3.16. Let Z be a scheme of finite type over a field k′ such that all its
components are of dimension at least one and the sheaf ΩZ/k′ is locally generated
by one element. Then Z is smooth over k′.

Proof. It is enough to prove the statement after a base change to an algebraic
closure of k′. Thus, we may assume that k′ is algebraically closed. In this case, for
every closed point of Z we have (ΩZ/k′)z = mz/m

2
z, where mz is the maximal ideal

of the local ring OZ,z . Since this vector space is generated by one element, we see
that Z is regular at z. Thus Z is regular. Since k′ is algebraically closed, we see
that Z is smooth over k′. �

Now condition (ii) follows from the above lemma. Condition (v) is verified
similarly. The remaining conditions are clear. �

3.17. Constructing quasi-elementary fibrations. In this section we prove the
following proposition.

Proposition 3.18. Let X → SpecΛ and x ∈ X be as in Theorem 1. That is,
Λ is an excellent discrete valuation ring, b ∈ SpecΛ is the closed point. Also,
X is an integral scheme, X is flat and projective over SpecΛ, and X satisfies
conditions (I) and (II) of Section 1.2. The projection X → SpecΛ is smooth at
the closed point x ∈ X. We also assume that the relative dimension of the flat
morphism X → SpecΛ is at least one. Let X0 be an open subscheme of X such
that x ∈ X0. Assume also that the intersection of X0 with the fiber Xb is dense
in this fiber. Assume that Z is a closed subset of X0 of codimension at least two.
Then there is an open subscheme X ′ ⊂ X0 containing x, a connected Λ-scheme S



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

572 ROMAN FEDOROV

smooth over Λ, and a Λ-morphism p : X ′ → S such that p is a quasi-elementary
fibration and Z ∩X ′ is finite over S.

Proof. The proof is somewhat technical but it follows the same strategy as the
proofs of [29, Prop. 2.3] and of Artin’s result [1, Exp. XI, Prop. 3.3].

We may assume that X0 is smooth over SpecΛ (use condition (I) and openness
of smoothness). Set Y 0 := X − X0. Set n = dimX − 1 = dimXb. Note that
dimY 0

b ≤ n − 1. Denote by Z the Zariski closure of Z in X. Then (Z)b is the

intersection of Z with Xb, which is in general larger than the closure of Zb. In any
case,

dim(Z)b ≤ dimZ ≤ n− 1.

Lemma 3.19. There is a Λ-embedding X ↪→ PN
Λ for some N , a section σ0 ∈

H0(PN
k(b),O(1)), and sections σi ∈ H0(PN

k(b),O(li)) for some positive integers li,

satisfying the following conditions

• σ0(x) �= 0;
• (Xsing)b ∩ ϕ−1(ϕ(x)) = ∅, where ϕ : PN

k ��� Pk(1, l1, . . . , ln−1) is the ratio-
nal morphism defined by the sections σi;

• Y 0
b ∩ ϕ−1(ϕ(x)) is finite;

• (Z)b ∩ ϕ−1(ϕ(x)) is finite;
• (Z − Z)b ∩ ϕ−1(ϕ(x)) = ∅;
• (Z)b ∩ {σ0 = σ1 = · · · = σn−1 = 0} = ∅;
• X0

b ∩ ϕ−1(ϕ(x)) is smooth of dimension one over b;
• (Xsing)b ∩ {σ0 = σ1 = · · · = σn−1 = 0} = ∅.
• Xb ∩ {σ0 = σ1 = · · · = σn−1 = 0} is finite and étale over b;

Proof. Note that

• dim(Xsing)b ≤ n− 2 by condition (II) on X;
• x /∈ Xsing by assumption;
• dim(Z − Z)b ≤ dim(Z − Z) ≤ n− 2;
• x /∈ Z − Z because Z is closed in X0

b and x ∈ X0
b .

Consider any Λ-embedding X ↪→ PN1

Λ for an integer N1. We apply Proposi-

tion 3.13 with Xb, X
0
b , x, T1 = Y 0

b ∪ (Z)b and T2 = (Z −Z)b ∪ (Xsing)b. We claim

that the composition of X ↪→ PN1

Λ with the r-fold Veronese embedding satisfies
the requirements. In fact, all conditions except the last one are immediate. Since
{σ0 = σ1 = . . . = σn−1 = 0} ∩ Y 0

b = ∅, we get the last condition. �

We can lift each σi to a section σ̃i ∈ H0(PN
Λ ,O(li)), because the reduction

map from the Λ-module H0(PN
Λ ,O(li)) to the k(b)-vector space H0(PN

k(b),O(li)) is

surjective. Similarly, we can lift σ0 to a section σ̃0 ∈ H0(PN
Λ ,O(1)). Set L :=

OP
N
Λ
(1)|X , σ′

i := σ̃i|X , so that σ′
i ∈ H0(X,L⊗li). Set XBl := Blσ′

0,...,σ
′
n−1

(X) (see

Section 3.6).
Denote by ϕ̃ the rational morphism PN

Λ ��� PΛ(1, l1, . . . , ln−1) defined by σ̃0, . . . ,
σ̃n−1. Let λ : XBl → X be the canonical morphism. Denote by E the exceptional
locus of λ, that is, E = λ−1(X ∩{σ̃0 = · · · = σ̃n−1 = 0}). By Lemma 3.7, λ induces

an isomorphism XBl − E = X − {σ̃0 = · · · = σ̃n−1 = 0}). Set Ẑ := λ−1(Z) and

Ŷ := λ−1(Y 0). We identify x with its unique λ-preimage in XBl, see Lemma 3.7.
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We have a projective morphism p̄ : XBl → S := PΛ(1, l1, . . . , ln−1), defined as the
composition of the closed embedding XBl → PX(1, l1, . . . , ln−1) and the projection
PX(1, l1, . . . , ln−1) → PΛ(1, l1, . . . , ln−1). Set s := p̄(x) = ϕ̃(x) and F := p̄−1(s).

Lemma 3.20. Denote by Xs
Bl the set of points of XBl, where p̄ is not smooth.

Then

(i) F is the Zariski closure of λ−1(ϕ̃−1(s) ∩X0);
(ii) F is of pure dimension one;
(iii) XBl is regular at the points of F ;
(iv) p̄ is flat at the points of F ;
(v) Xs

Bl ∩ F is finite;

(vi) E ∩ F , Ŷ ∩ F , and Ẑ ∩ F are finite;

(vii) Ẑ ∩ F = λ−1(Z) ∩ F ;

(viii) Ẑ ∩ E ∩ F = Ẑ ∩ Ŷ ∩ F = Ẑ ∩Xs
Bl ∩ F = ∅.

Proof. According to Lemma 3.19, {σ0 = · · · = σn−1 = 0} is finite over b. It follows
that p̄|E is a finite morphism. Using this fact and the fact that λ−1(ϕ̃−1(s) ∩ Y 0)
is finite, we see that F is a union of λ−1(ϕ̃−1(s) ∩X0) and a finite set. However,
since XBl is irreducible of dimension n+1 all the components of F have dimension
at least one. Now (i) follows and (ii) follows from (i).

Next, we have a regular open subscheme X −Xsing ⊂ X. Set

L̃ := {σ̃0 = · · · = σ̃n−1 = 0}.

We claim that X ∩ L̃ is contained in X −Xsing. Indeed, the intersection Xsing ∩ L̃
is proper over Λ, so, if it is nonempty, it must intersect the closed fiber, which
contradicts the penultimate statement in Lemma 3.19.

Further, we claim that X ∩ L̃ is a locally complete intersection in X − Xsing.
Indeed, the integral scheme X−Xsing is of dimension n+1 because the closed fiber
Xb−Xsing

b is of dimension n, and X−Xsing is flat over Λ. Further, X∩ L̃ is locally
given by n equations. So to show that it is a locally complete intersection we just
need to show that every component of X ∩ L̃ has dimension at most one. Again,
the morphism X ∩ L̃ → SpecΛ is proper, so it is enough to show that the central
fiber Xb ∩ L̃ is finite, which is a part of Lemma 3.19. We see that X ∩ L̃ is a locally
complete intersection in the regular scheme X − Xsing. Now by [24, Thm. 23.1]

X ∩ L̃ is flat over SpecΛ. It follows from Lemma 3.19 and openness of étalness for
flat morphisms that X ∩ L̃ is étale over SpecΛ. Since

λ(F ) ⊂ ϕ̃−1(s) ∪ (Xb ∩ L̃) ⊂ X −Xsing,

part (iii) follows from Lemma 3.8.
Next, let x be a closed point of F . Then λ(x) is a closed point of X because λ

is proper. Applying Lemma 3.8, we see that we have

dimx XBl = dimλ(x) X = n+ 1 = dimp̄(x) S + dimx F,

where we used part (ii). Thus p̄ is flat at x by [24, Thm. 23.1] and part (iii).
Now (iv) follows because the set of points, where p̄ is flat is open, and closed points
are dense in F because F is a scheme of finite type over a field.

To prove (v) note that p̄, being flat on F , is smooth exactly where the fiber
is smooth. Now use part (i) and Lemma 3.19. The remaining statements follow
from (i) and the respective properties of L and H0 (see Lemma 3.19). �
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Lemma 3.21. After shrinking (S, 1b) in the sense of Convention 3.3 and replacing

XBl, E, Ŷ , and Ẑ by their intersections with p̄−1(S), we may assume that

(i) S is connected, affine, and smooth over Λ;
(ii) XBl is regular;
(iii) p̄ is flat of pure relative dimension one;

(iv) Xs
Bl, E, Ŷ , and Ẑ are finite over S;

(v) There is a closed subset Y ⊂ XBl finite and surjective over S such that

Y ⊃ E ∪Xs
Bl ∪ Ŷ , Y ∩ Ẑ = ∅, x /∈ Y , and XBl − Y is affine.

Proof. First of all, (i) is obvious, (ii) follows from the fact that the set of points,
where XBl is regular is open in XBl (because Λ is excellent) and the fact that p̄ is
closed. Next, flatness in (iii) follows from Lemma 3.20(iv) together with the fact
that set of points, where a morphism of finite type is flat, is open.

Further, it follows from the construction that XBl and S are irreducible. Since
p̄ is flat, it is open, hence we can apply [17, Cor. 14.2.2.(i)] to conclude that p̄ is
equidimensional. The set F = p̄−1(1b) is of pure dimension one by Lemma 3.20(ii).
We see that p̄ is of pure relative dimension one.

Next, (iv) follows because the dimensions of fibers of a projective morphism are
upper semicontinuous (see [17, Cor. 13.1.5]) and a quasi-finite projective morphism
is finite; finally, (v) follows from Lemma 3.5(ii) (note that Y is automatically sur-
jective over S because the fibers of XBl are projective, while the fibers of XBl − Y
are affine). �

Let us summarize. Just before Lemma 3.21 we constructed a projective mor-
phism p̄ : XBl → S, a morphism λ : XBl → X and a subscheme Ŷ ⊂ XBl. Then
in Lemma 3.21 we replaced S, XBl, and Ŷ by open subschemes following Conven-
tion 3.3. We also constructed a closed subset Y ⊂ XBl. The restriction of λ to
X ′ := XBl − Y is an open embedding, so we can identify X ′ with an open subset
of X0. Now it follows from the construction and Lemma 3.21 that p̄|X′ : X ′ → S
is a quasi-elementary fibration (with X = XBl). Also, shrinking (S, 1b) again if
necessary, we may assume that under the identification of X ′ and λ(X ′) we have

Ẑ = Z ∩X ′, so Z ∩X ′ is finite over S (use Lemma 3.21(vii)). This completes the
proof of Proposition 3.18. �
Proposition 3.22. Let Λ, X, x and GX,x be as in Theorem 1 and let G be a split
Λ-group scheme such that GX,x � G ×Λ SpecOX,x. Assume also that the relative
dimension of X → SpecΛ is at least one. Let G be a GX,x-bundle having a rational
section. Then there are

• an open affine subscheme X ′ ⊂ X containing x;
• a quasi-elementary fibration p : X ′ → S with S connected and smooth
over Λ;

• a principal divisor Z ′ ⊂ X ′ finite over S;
• a G-bundle F over X ′ extending G such that F is trivial over X ′ − Z ′;
• a finite surjective S-morphism X ′ → A1

S.

3.23. Proof of Proposition 3.22. We will use the notations and the assumptions
from the statement of the proposition. We start with a lemma.

Lemma 3.24. We can find a regular open subscheme X0 ⊂ X such that x ∈ X0,
X0 ∩Xb is dense in Xb, and G can be extended to a G-bundle G0 over X0 that is
trivial over a dense open subset of X0.
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Proof. We can find an open subscheme X1 ⊂ X such that x ∈ X1, and G can be
extended to a G-bundle G1 over X1. Since G is generically trivial, G1 is trivial on
the complement of a proper closed subscheme Z1 ⊂ X1. Since Xb is smooth at x, we
see that x lies on a single irreducible component of Xb. Thus we may assume that
X1 does not intersect irreducible components of Xb other than that containing x.

Denote by n the dimension of Xb. It follows from the flatness of the morphism
π : X → SpecΛ that the Krull dimension of X is n + 1. Let Z1 be the Zariski
closure of Z1 in X. We have

dim(Z1 − Z1) < dimZ1 ≤ n.

It follows that Z1−Z1 cannot contain an irreducible component of Xb (use flatness
of π : X → SpecΛ again). Thus Z1 cannot contain irreducible components of Xb

other than the component containing x. Consider the trivial G-bundle Gtriv over
X − Z1. The trivialization of G1 is an isomorphism between G1 and Gtriv over the
open subset X1 − Z1. Thus we can glue G1 with Gtriv over X1 − Z1 to make a
G-bundle G2 over X2 := (X −Z1)∪X1. One now takes X0 to be the regular locus
of X2 and sets G0 := G2|X0 . It follows from the construction and property (II) of
π : X → SpecΛ, that X0 satisfies the requirements of the lemma. �

Fix such X0 and G0 provided by the above lemma. Since G is split, there is
a split maximal torus T ⊂ G and a Borel subgroup B ⊂ G containing T. Fix
such T ⊂ B. The trivialization of G0 over a dense open subset of X0 gives a B-
reduction of G0 over this subset. Thus, according to Proposition 3.10, G0 can be
reduced to B over X0 − Z, where Z is closed and of codimension at least two in
X0. By Proposition 3.18, there is an open subscheme X ′ ⊂ X0 containing x, and
a quasi-elementary fibration p : X ′ → S with S connected and smooth over SpecΛ
such that Z ∩X ′ is finite over S. We may assume that S is affine. We will use the
notations from Definition 3.2. In particular, we have a flat projective morphism
p̄ : X → S. Set s := p̄(x) and F := p̄−1(s).

Note that Z ∩X ′ is closed in X (being finite over S), so applying Lemma 3.5(ii)
to Z ∩X ′, Y ⊂ X, we find a closed subscheme Z1 ⊂ X ′ such that Z ∩X ′ ⊂ Z1, Z1

is finite over S, and X − Z1 is an affine scheme (we might need to shrink (S, s)).
Then X ′ − Z1 = (X − Z1) ∩X ′ is also affine as the intersection of two open affine
subschemes of a separated scheme.

Set F := G0|X′ . Note that F is reduced to the Borel subgroup B over X ′ − Z1,
that is, there is a B-bundle B over X ′ − Z1 such that the G-bundles G ×B B and
F|X′−Z1

are isomorphic. Let U be the unipotent radical of B, then the quotient
B/U is isomorphic to the split torus T. Let B/U be the induced T-bundle (this
quotient is representable by a scheme because of the étale descent, see [2, VIII,
Cor. 7.9] for a stronger statement). We claim that (after shrinking (S, s) again) we
can find a closed subset Z2 ⊂ X ′−Z1 such that Z2 is finite over S, the bundle B/U
is trivial over X ′ − Z1 − Z2, and X ′ − Z1 − Z2 is affine. Since a principal bundle
for a split torus corresponds to a collection of line bundles, and the intersection of
open affine subschemes of a separated scheme is affine, this follows from the next
lemma.

Lemma 3.25. Let � be a line bundle over X ′′ := X ′ − Z1. Then (after shrinking
(S, s)) there is a subscheme Z ′′ ⊂ X ′′ finite over S such that � is trivial over X ′′−Z ′′

and X ′′ − Z ′′ is affine.
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Proof. First of all, we may extend � to X because X is a regular scheme. Set
X∞ := (X − X ′′) ∩ F , this is a finite scheme. Adding finitely many points to
X∞, we may assume that it intersects each irreducible component of F . Since X
is projective over an affine scheme, X∞ is contained in an open affine subscheme
of X. Thus we can consider the semilocal ring of X∞ in X; denote it by A. Since
A is semilocal, � is trivial over A. Thus there is a closed subscheme Z ′′ ⊂ X such
that �|X−Z′′ is trivial and Z ′′ ∩ X∞ = ∅. In particular, Z ′′ ∩ F is finite by our
choice of X∞. Shrinking (S, s), we may assume that Z ′′ is finite over S and that
Z ′′ ⊂ X ′′. Now by Lemma 3.5(ii) we may assume that X−Z ′′ (and thus X ′′−Z ′′)
are affine. �

Now we finish the proof of the proposition. Choose Z2 ⊂ X ′ − Z1 such that
B/U is trivial over X ′ − Z1 − Z2, X

′ − Z1 − Z2 is affine, and Z2 is finite over S.
By [8, Exp. XXVI, Cor. 2.3] we see that B and thus F are trivial over X ′−Z1−Z2.

Note that Z1 ∪Z2 is closed in X. By Lemma 3.5(iii), by shrinking (S, s) we can
find a finite surjective morphism Π: X → P1

S such that

Z1 ∪ Z2 ∪ {x} ⊂ Z ′ := Π−1(0× S), Y ⊂ Y ′ := Π−1(∞× S).

Clearly, X ′′′ := X − Y ′ is smooth and affine over S. Also, Z ′ is finite over S. It
is easy to check that the restriction of p to X ′′′ is a quasi-elementary fibration.
Next, Z ′ is a principal divisor in X ′′′ because 0 × S is a principal divisor in A1

S .
Clearly, F is trivial over X ′′′−Z ′. This completes the proof of Proposition 3.22. �

4. End of Proof of Theorem 1

In this section, we use the notion of a nice triple to reduce Theorem 1 to The-
orem 2. We keep the notations and the assumptions from Theorem 1. As before,
U := SpecOX,x and G is a Λ-group scheme such that GX,x = G ×OX,x

SpecΛ.
Let G be a generically trivial G-bundle over U . We need to show that G is trivial.
By [26] we may assume that the relative dimension of the flat morphismX → SpecΛ
is at least one (though, in fact, it is easy to prove the theorem if this dimension is
zero, see Remark 4.12).

4.1. Nice triples. Recall the notion of a nice triple from [29, Def. 3.1].

Definition 4.2. A nice triple over U is a triple (qU : X → U, f,Δ), where X is
an irreducible affine scheme smooth over U and such that all its fibers are of pure
dimension one, f ∈ Γ(X ,OX ) is such that its zero locus Z is finite over U , and
Δ: U → X is a section of qU such that Δ∗(f) �= 0. These data are subject to the
condition that there exists a finite U -morphism X → A1

U .

Remark 4.3. The finiteness of Z is equivalent to the condition that

Γ(X ,OX )/f · Γ(X ,OX )

be finite as a Γ(U,OU )-module.

Proposition 4.4. Assumptions being as in Theorem 1, let U := SpecOX,x and
let G be a principal G-bundle over U having a rational section. Then there are a
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nice triple (qU : X → U, f,Δ) and a G-bundle E over X such that

(i) Δ∗E � G;
(ii) E is trivial over the complement of the zero locus Z of f .

Moreover, if the field k(x) is finite, then we may choose this nice triple
so that

(iii) There is at most one point z ∈ Zx rational over k(x);
(iv) For any integer r ≥ 1 one has

#{z ∈ Zx| [k(z) : k(x)] = r} ≤ #{z ∈ A1
x| [k(z) : k(x)] = r}.

The proof, given below, is similar to [28, Thm. 4.3], [29, Prop 6.1], and [30,
Sect. 3–4].

Proof. By Proposition 3.22 there are

• an open affine subscheme X ′ ⊂ X containing x;
• a quasi-elementary fibration p : X ′ → S with S connected and smooth
over Λ;

• a principal divisor Z ′ ⊂ X ′ finite over S;
• a G-bundle F over X ′ extending G and such that F is trivial over X ′−Z ′;
• a finite surjective S-morphism X ′ → A1

S .

Put X ′ := X ′ ×S U , let q′U : X ′ → U be the projection. Let g ∈ H0(X ′,OX′) be
an equation of Z ′, set f ′ = p∗1(g) ∈ H0(X ′,OX ′). Let Δ be the composition

U
diag−−−→ U ×S U

can×IdU−−−−−→ X ′ ×S U = X ′.

Let X be the connected component of X ′ containing Δ(U). Then X is irreducible
because it is regular and connected. Since p : X ′ → S is flat (even smooth) of
relative dimension one, q′U is also so, and we see that every component of each fiber
is one-dimensional. Next, Δ∗(f ′) = g|U �= 0 because g �= 0 and X ′ is integral. By
construction (q′U |X , f ′|X ,Δ) is a nice triple. Let E ′ be the pullback of F to X ′ and
E be the restriction of E ′ to X . It is clear that E satisfies the conditions of our
proposition, so this completes the proof in the case when the field k(x) is infinite.

Consider the case when k(x) is finite. Let T be a finite subscheme of X in-
tersecting every component of Xx. Set Y := Δ(U) ∪ Z ∪ T . Clearly, Y is finite
over U ; let {y1, . . . , ym} be all of its closed points; let S := Spec(Oy1,...,ym

) be the
corresponding semilocal scheme. Clearly, Δ factors through S.

Lemma 4.5. There exists a finite étale morphism ρ : S ′ → S and a section Δ′ : U →
S ′ such that ρ ◦Δ′ = Δ, Δ′(x) is the only k(x)-rational point of the fiber S ′

x, and
for any integer r ≥ 1 one has

(3) #{z ∈ S ′
x| [k(z) : k(x)] = r} ≤ #{z ∈ A1

x| [k(z) : k(x)] = r}.

Proof. Let A := Oy1,...,ym
so that S = SpecA, let I be the ideal of Δ(U), so that

A = I ⊕R. Let mi be the maximal ideal of A corresponding to yi so that m1, . . . ,
mm are all the maximal ideals of A. We may assume that y1 = Δ(x) so that m1 is
the ideal of Δ(x), that is, m1 ⊃ I.

Choose a large number N > 0 and for each i = 2, . . . ,m a monic polynomial
fi ∈ (A/mi)[t] of degree N and such that

• if A/mi is finite, then fi is irreducible;
• if A/mi is infinite, then fi is a product of distinct monic polynomials of
degree one.
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Take f1 ∈ (A/m1)[t] of the form tg, where g is irreducible of degree N − 1. By the
Chinese Remainder Theorem applied coefficientwise we can find a monic polynomial
f ∈ A[t] such that deg f = N , f ∈ I + tA[t] and f mod mi = fi for all i. Set
S ′ := Spec(A[t]/(f)). Clearly, S ′ is finite and flat over S. Thus, to check that S ′ is
étale over S it is enough to check that the fiber of S ′ over each yi ∈ S is reduced.
But this follows from the definition of fi.

The morphism Δ′ is induced by the composition

A[t]/(f) → A[t]/(I + tA[t]) = R.

Next, for every i > 1 such that A/mi is finite, there is only one point of S ′
x lying

over yi. On the other hand, if a point of S ′
x lies over yi such that A/mi is infinite,

then the degree of this point over x is infinite as well (because we assumed that
k(x) is finite). Thus we have

#{z ∈ S ′
x| [k(z) : k(x)] = r}

⎧⎪⎨
⎪⎩

= 1 if r = 1,

= 0 if 2 ≤ r ≤ N − 2,

≤ m if r ≥ N − 1.

It follows that Δ′(x) is the unique k(x)-rational point of the fiber S ′
x and that

condition (3) is satisfied for N large enough. �

Take ρ, S ′ and Δ′ as in the above lemma. We can extend ρ and S ′ to a neigh-
borhood of S to get a diagram

S ′ � � ��

ρ

��

V ′

θ

��
U

Δ′
����������

Δ �� S � � �� V � � �� X ,

where V is an open subscheme of X , θ is finite étale. Note that S ⊂ V implies that
Y ⊂ V by the definition of S.

Lemma 4.6. There is an open subscheme W ⊂ V such that W ⊃ Y and W admits
a finite U-morphism to A1

U .

Proof. By definition of nice triples we have a dominant morphism X → A1
U , which

gives an embedding of the field of functions of A1
U into the field of functions of

X . Let X be the normalization of P1
U in the field of functions of X . Note that

U is excellent and therefore Nagata ring, so normalization gives a finite morphism
Π̃: X → P1

U . Since X is normal, Π̃−1(A1
U ) = X . Thus X − X is finite over ∞× U

and thus over U . Next, X x−Vx = (X x−Xx)∪ (Xx−Vx) is finite (the second term
is finite because it does not intersect Tx). It follows that X − V is finite over U
(indeed, it is projective and the closed fiber is finite). Using Lemma 3.5(iii), we find
a finite morphism Π: X → P1

U such that Π(Y) ⊂ 0×U and Π(X −V) ⊂ ∞×U . It

remains to take W := Π
−1

(A1
U ). �

Let W be as in the above lemma. Let X ′′ be the connected component of
θ−1(W) containing Δ′(U). Set q′′U := qU ◦θ|X ′′ and f ′′ = f ◦θ|X ′′ . Then (q′′U : X ′′ →
U, f ′′,Δ′) is the sought-for nice triple. The proof of Proposition 4.4 is complete. �

Let (qU , f,Δ) be a nice triple provided by the above proposition. We may assume
that f vanishes at Δ(x) (so that Δ(x) ∈ Z), otherwise the statement of Theorem 1
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is obvious. If k(x) is finite, then by condition (iii) of Proposition 4.4 Δ(x) is the
only k(x)-rational point of Zx.

Proposition 4.7. Notation being as in Theorem 1, set R := OX,x and U :=
SpecR. Let (qU , f,Δ) be a nice triple over U such that Δ(x) ∈ Z. Assume that
this nice triple satisfies conditions (iii) and (iv) of Proposition 4.4 if k(x) is finite.
Then there are a finite surjective U-morphism σ : X → A1

U , a monic polynomial
h ∈ R[t] vanishing on σ(Z), and an element g ∈ Γ(X ,OX ) such that

(i) the morphism σg := σ|Xg
is étale, where Xg is the open subscheme of X

given by {g �= 0};
(ii) the data (R[t], σ∗

g : R[t] → Γ(X ,OX )g, h) satisfy the hypothesis of [5, Prop.
2.6], that is, R[t] is Noetherian, Γ(X ,OX )g is finitely generated as an R[t]-
algebra, σ∗

g(h) is not a zero divisor in Γ(X ,OX )g, and σ∗
g induces an iso-

morphism

R[t]/(h) � Γ(X ,OX )g/(σ
∗
g(h) · Γ(X ,OX )g);

(iii) Δ(U) ∪ Z ⊂ Xg.

Proof. If R contains a field, then this follows from the proofs of [30, Thm 3.8 and
Cor. 7.2]. In our case the proof is completely similar but we will still give it for the
sake of completeness. Let, as in the proof of Lemma 4.6, X be the normalization
of P1

U in the field of functions of X , so we have a Cartesian diagram

X Π−−−−→ A1
U⏐⏐�
⏐⏐�

X Π̃−−−−→ P1
U

with finite surjective horizontal morphisms and vertical morphisms being open em-
beddings.

Consider the reduced finite scheme (Zx)red. We can find a closed embedding
ι1 : (Zx)red → A1

x. Indeed, if k(x) is finite, this follows from condition (iv) in
Proposition 4.4 together with the fact that a finite extension of a finite field is
determined up to isomorphism by its degree. If k(x) is infinite, the statement
follows from the fact that for any finite extension of k(x) there are infinitely many
points in A1

x whose residue field is isomorphic to this extension.
Next, let (Zx)(2) be the first infinitesimal neighborhood of (Zx)red in Xx. We

can extend ι1 to a closed embedding ι2 : (Zx)(2) → A1
x because Xx is smooth of

dimension one over k(x).

Let O(1) be the canonical line bundle on P1
U and set L := Π̃∗O(1). Let s0

(resp. s∞) be the section of L vanishing exactly on Π̃−1(∞×U) (resp. on Π̃−1(0×
U)).

Since Xx is of pure dimension one and Zx is a finite scheme, we can find a closed
subset W ⊂ Xx such that W ∩ Zx = ∅ and W has exactly one point on each
irreducible component of Xx.

Lemma 4.8. For n � 0 there is a section s1 ∈ H0(X ,L⊗n) such that

(i) The restriction of s1 to Π̃−1(∞× U) coincides with sn∞.
(ii) s1 equals zero on W .
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(iii) The restriction of s1 to Z(2) is equal to ι∗2(t) · sn0 , where t is a coordinate

on A1
x.

Proof. Let I be the ideal sheaf of Π̃−1(∞ × U) ∪ W ∪ Z(2) and let pU : X → U

and prU : P1
U → U be the projections. Then by the projection formula for n large

enough we have

R1(pU )∗(L⊗n ⊗ I) = R1(prU )∗(O(1)⊗n ⊗ (Π̃)∗I) = 0.

The rest of the proof is completely similar to the proof of Lemma 3.5(i). �
Let s1 be as in the lemma, we set σ := s1/s

n
0 .

Claim 1. The morphism σ is finite, flat, and surjective.

Indeed, consider the projective morphism σ̄ : X → P1
U given by [s1 : sn0 ]. Note

that, since Π̃ is finite, every one-dimensional irreducible component of X x contains
a point of Π̃−1(∞ × x). On the other hand, every such component contains a
point of W . Now it follows from the construction that σ̄ is non-constant on each
one-dimensional component of X x (because every such component contains a point

of W and a point of Π̃−1(∞ × x)). Arguing as in the proof of Lemma 3.5(iii),
we see that σ̄ is finite and surjective. Since X = σ̄−1(A1

U ), we see that σ is also
finite and surjective. Since X and A1

U are regular schemes, the flatness follows
from [24, Thm. 23.1]. Claim 1 is proved. �

Since σ is flat, the set of points, where it is étale, is open. Denote this open
subset by X ′.

Claim 2. Δ(U) ∪ Z ⊂ X ′.

First of all, the morphism σ is étale at the points of Zx. Indeed, since σ is flat,
it is enough to show that σx : Xx → A1

x is étale at the points of Zx. This follows
easily from condition (iii) of Lemma 4.8. Since all the closed points of Z are in Zx,
it follows that Z ⊂ X ′. Since the only closed point Δ(x) of Δ(U) is also in Zx, we
see that Δ(U) ⊂ X ′. �
Claim 3. σ|Z is a closed embedding.

Recall that U = SpecR. Let mx be the maximal ideal of x ∈ U . We first show
that σ|Zx

: Zx → A1
x is a closed embedding. Since this morphism is set-theoretically

injective, it is enough to show that for every closed point y ∈ Zx the induced
morphism (R/mx)[t] → OZx,y is surjective. By construction the composition

(R/mx)[t] → OZx,y → OZx,y/m
2
y

is surjective, where my is the maximal ideal of OZx,y and the statement follows
from the Nakayama Lemma.

It follows that the morphism (R/mx)[t] → Γ(Zx,OZx
) induced by σ is sur-

jective. By the Nakayama Lemma it implies that the morphism of R-modules
R[t] → Γ(Z,OZ) induced by σ is also surjective because Γ(Z,OZ) is a finite R-
module. Claim 3 follows. �

Thus we can identify σ(Z) with a closed subscheme of A1
U . Moreover, Z � σ(Z).

Claim 4. We have σ−1(σ(Z)) = Z � Z ′ for some closed subscheme Z ′ ⊂ X and
Z ′ ∩Δ(U) = ∅.

Indeed, the étale morphism σ|X ′ has a section over σ(Z). This section can be
viewed as a morphism s : Z → σ−1(σ(Z)). By [18, Cor. 17.3.5.], this morphism is
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étale, so it is an open morphism. But it is also a closed embedding, so σ−1(σ(Z)) =
Z �Z ′ for some closed subscheme Z ′. The unique closed point Δ(x) of Δ(U) is in
Z, so it is not in Z ′. It follows that Z ′ ∩Δ(U) = ∅. �
Claim 5. There is a monic polynomial h ∈ R[t] such that the zero locus of h
coincides with σ(Z).

Let Z1, . . . , Zn be the irreducible components of Zred. Since X is regular, it
is locally factorial, so the principal ideal (f) can be written as p

r1
1 . . . prnn , where

pi ⊂ Γ(X ,OX ) is the prime ideal corresponding to Zi and ri are some positive
integers. Note that pi is of height one.

Let qi be the preimage of pi under σ∗ : R[t] → Γ(X ,OX ). By the going-down
property of flat extensions, qi is a height one prime ideal. Since R[t] is factorial,
the ideal qi is principal. Write qi = (hi) and set h = hr1

1 . . . hrn
n . By Claim 3 σ|Zi

is a closed embedding, so (hi) is the ideal of σ(Zi).
Next, the closed embedding σ|Z : Z → A1

U corresponds to the surjective homo-
morphism of rings R[t] → Γ(Z,OZ) = Γ(X ,OX )/(f). Clearly, h is in the kernel of
this morphism. We need to show that the induced homomorphism

R[t]/(h) → Γ(X ,OX )/(f)

is an isomorphism. Since X is affine, we can find g′ ∈ Γ(X ,OX ) such that
g′|Z = 1 and g′|Z′ = 0, where Z ′ is as in Claim 4. Let Xg′ be the correspond-
ing principal open subset of X and let σg′ := σ|Xg′ . Then the canonical morphism

Γ(X ,OX )/(f) → Γ(Xg′ ,OXg′ )/(f) is an isomorphism, so it is enough to show that
the composed homomorphism

(4) R[t]/(h) → Γ(X ,OX )/(f) → Γ(Xg′ ,OXg′ )/(f)

is an isomorphism. Consider the filtration of the R[t]-module R[t]/(h) by the quo-
tients of principal ideals:

R[t]/(h) ⊃ (h1)/(h) ⊃ . . . ⊃ (hr1
1 )/(h) ⊃ (hr1

1 h2)/(h) ⊃
. . . ⊃ (hr1

1 hr2
2 )/(h) ⊃ . . . ⊃ (h)/(h) = 0.

We also have a similar filtration of the R[t]-module M := Γ(Xg′ ,OXg′ )/(f):

M ⊃ h1M ⊃ . . . ⊃ hr1
1 M ⊃ hr1

1 h2M ⊃ . . . ⊃ hr1
1 hr2

2 M ⊃ . . . ⊃ hM = 0.

The homomorphism (4) is a homomorphism of filtered R[t]-modules, so we only
need to check that it induces an isomorphism on the associated graded modules.
This boils down to checking that for each i the canonical homomorphism

R[t]/(hi) → Γ(Xg,OXg
)/(hi)

is an isomorphism. Since (hi) is the ideal of σ(Zi), this is equivalent to the fact
that σ induces an isomorphism σ−1

g (σ(Zi)) → σ(Zi), which, in turn, follows from
the definition of g. Claim 5 is proved. �

Now we can finish the proof Proposition 4.7. The closed subscheme Δ(U) ∪ Z
is contained in the open subset X ′ − Z ′. Thus we can find g ∈ H0(X ,OX ) such
that Δ(U) ∪ Z ⊂ Xg ⊂ X ′ − Z ′. By definition of X ′ the morphism σg := σ|Xg

is
étale. Thus, we only need to verify condition (ii) of the proposition. Obviously,
R[t] is Noetherian and Γ(X ,OX )g is finitely generated as an R[t]-algebra. Since X
is integral and σ is surjective, σ∗

g(h) is not a zero divisor in Γ(X ,OX )g. We have

σ−1
g (Z) = (Z � Z ′) ∩ Xg = Z.
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Thus σg induces an isomorphism σ−1
g (σ(Z)) → σ(Z). This is equivalent to the

isomorphism of part (ii) of Proposition 4.7. The proof is complete. �

4.9. End of the proof of Theorem 1.

Proposition 4.10. The notation and assumptions being as in Theorem 1, put
U := SpecOX,x and let G be a generically trivial principal G-bundle over U . Then
there is a G-bundle F over A1

U such that

• F is trivial over the complement of a closed subscheme Y ⊂ A1
U such that

Y is finite over U ;
• F|0×U � G.

Proof. By Proposition 4.4, there is a nice triple (qU : X → U, f,Δ) and a G-bundle
E over X such that

• Δ∗E � G;
• E is trivial over the complement of the zero locus Z of f .

Moreover, if the field k(x) is finite, this nice triple satisfies assumptions (iii)
and (iv) of Proposition 4.4. As we explained before the Proposition 4.7, we may
assume that Δ(x) ∈ Z. Let a U -morphism σ : X → A1

U , a monic polynomial
h ∈ R[t] vanishing on σ(Z), and an element g ∈ Γ(X ,OX ) be those provided by
Proposition 4.7. After performing an affine transformation of A1

U , we may assume
that Δ∗(σ) coincides with the closed embedding 0 × U ↪→ A1

U . Condition (ii) of
Proposition 4.7 together with [5, Prop. 2.6] shows that the diagram

Xgσ∗(h) −−−−→ Xg⏐⏐� σg

⏐⏐�
(A1

U )h −−−−→ A1
U

can be used to glue principal G-bundles in the following sense: given a G-bundle
over (A1

U )h, a G-bundle over Xg, and an isomorphism of their pullbacks to Xgσ∗(h),

we can glue the bundles to make aG-bundle over A1
U . In particular, since Xgσ∗(h) ⊂

Xf , we can glue E|Xg
with the trivial G-bundle over (A1

U )h to make a desired G-

bundle F over A1
U .

Clearly, all the conditions of the proposition are satisfied with Y := {h = 0},
which is finite over U because h is monic. �

It remains to apply Theorem 2 to R = OX,x, H := GX,x = G ×Λ U , and F .
The proof of Theorem 1 is complete. �
Remark 4.11. When the residue field k(x) is infinite, one can prove the main the-
orem without using the nice triples by descending the G-bundle F from Proposi-
tion 3.22 to A1

S directly and applying Theorem 2. This would not work if k(x) is
finite because the analogue of conditions (iii) and (iv) of Proposition 4.4 might fail
for the special fiber of the quasi-elementary fibration p : X ′ → S. The advantage
of nice triples to quasi-elementary fibrations, is that the original principal bundle is
the pullback via a closed morphism Δ. Thus we were able to “improve” the original
nice triple by replacing it with an étale base change having a section over Δ(U).

Remark 4.12. It is not necessary to use [26] in the case, when dimX = 1, as we
can easily re-prove the required statement in this case. Indeed, let a GX,x-bundle
G have a rational section. Then it is generically trivial, so it admits a generic
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reduction to any Borel subgroup of GX,x. By Proposition 3.10, such a reduction
extends to SpecOX,x (because dimOX,x = 1). By [8, Exp. XXVI, Cor. 2.3] we see
that G has a reduction to a split maximal torus of GX,x. Now it is easy to see that
G is trivial.

5. Proofs of Theorems 3 and 4

We keep the notation and assumptions from the statements of the theorems.

Proof of Theorem 4. Let On be the R-group scheme of orthogonal transformations
of Qn. The scheme of isomorphisms Isom(Q,Qn) is a principal On-bundle over
SpecR. This bundle is locally trivial in the fppf topology. (Note that if n is odd
and 2 /∈ R×, then On is not smooth over R.) Thus, we only need to show that the
natural morphism H1

fppf(R,On) → H1
fppf(K,On) has a trivial kernel.

Note that SOn is a split reductive group scheme. If n is odd, we have On �
μ2 ×SOn, where μ2 is the group scheme of square roots of unity. Since we assume
that the Grothendieck–Serre conjecture holds for R and SOn, the natural mor-
phism H1

fppf(R,SOn) → H1
fppf(K,SOn) has a trivial kernel (recall that for smooth

group schemes there is no difference between fppf principal bundles and étale prin-
cipal bundles). On the other hand, we have H1

fppf(R, μ2) = R×/(R×)2 (because

H1(R,O×
R) = 1, since R is local). Similarly, H1

fppf(K,μ2) = K×/(K×)2. It follows

now from factoriality of R that the morphism H1
fppf(R, μ2) → H1

fppf(K,μ2) has a
trivial kernel. This completes the proof in the case, when n is odd.

If n is even, we have an exact sequence 1 → SOn → On → Z/2Z → 1 by [22,
Ch. 4, Prop. 5.2.2]. This gives an exact sequence of cohomology

Z/2Z(R) ��

=

��

H1
fppf(R,SOn) ��

��

H1
fppf(R,On) ��

��

H1
fppf(R,Z/2Z)

��
Z/2Z(K) �� H1

fppf(K,SOn) �� H1
fppf(K,On) �� H1

fppf(K,Z/2Z).

Note that the right vertical arrow has a trivial kernel. Next, the morphismOn(K) →
Z/2Z(K) is surjective (again by [22, Ch. 4, Prop. 5.2.2]). Again, by our assumption
the middle vertical arrow has a trivial kernel. Now an easy diagram chase proves
the claim. The proof of Theorem 4 is complete. �

Assume now that 2 is invertible in R.

Proof of Theorem 3. According to [3, I, Cor. 4.7(i)], the orthogonal sum Q⊥(−Q)
is isomorphic to Q2n. Applying Theorem 4, we see that Q′⊥(−Q) � Q⊥(−Q).
Since 2 is invertible in R, we may apply Witt’s cancellation theorem (see [3, I,
Cor. 4.3]) to conclude that Q and Q′ are isomorphic. �
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morphismes de schémas. I (French), Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259.
MR173675
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morphismes des schémas, seconde partie. Inst. Hautes Études Sci. Publ. Math., (24):5–231,
1965.
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5, Soc. Math. France, Paris, 1995, pp. Exp. No. 190, 299–327. MR1603475

[21] N. Guo, The Grothendieck–Serre conjecture over semilocal Dedekind rings, Transformation

Groups, 1–21, 2020.
[22] M.-A. Knus, Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 294, Springer-Verlag,
Berlin, 1991. With a foreword by I. Bertuccioni, DOI 10.1007/978-3-642-75401-2. MR1096299

[23] Q. Liu and R. Erne, Algebraic geometry and arithmetic curves, volume 6. Oxford University
Press on Demand, 2002.

[24] H. Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathe-
matics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese
by M. Reid. MR1011461

[25] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse
der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)],
vol. 34, Springer-Verlag, Berlin, 1994, DOI 10.1007/978-3-642-57916-5. MR1304906
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