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The emerging atomic force microscope (AFM)-based nanolithography offers promising opportunities for
nanopatterning applications. However, critical issues reside in the nanomachining process because the
heterogeneous material properties and machine tool (AFM tip) quality variations can create significant
uncertainties at this nanoscale. Therefore, in-process monitoring is essential for timely anomaly detection
and real-time process characterizations. This paper reports a sensor-based monitoring approach that
allows classifications of different conditions of vibration-assisted nanopatterning in real-time by auto-
matically selecting acoustic emission spectral responses that distinguish different amounts of material
removal. It opens up an avenue toward process characterizations and mechanisms discovery in
vibration-assisted nanoscale manufacturing.

� 2022 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.
1. Introduction

The emerging atomic force microscopy (AFM)-based nanopat-
terning shows great potential for fueling the demand for cost-
effective custom maskless lithography in numerous applications.
Various AFM-based nanopatterning processes have been investi-
gated for different nano-fabrication purposes, such as mechanical
direct scratching [1–3], dynamic plowing [4,5], electrical-field-
assisted nanolithography [6–9], thermal–mechanical removing
[10–12], and depositions [13,14]. The vibration-assisted
AFM-based nanomachining process has been innovated recently
[15–17] to reduce the tip wear and improve the nanopatterning
efficiency in processes involving mechanical contact of tips. By
integrating in-plane vibration, this AFM-based nanomachining
process can fabricate 3D nanopatterns on different materials with
high fidelity [18,19].

However, the imaging and inspection of nanopatterns by
vibration-assisted AFM-based nanomachining can only be carried
out via post-imaging processes [20]. Such offline techniques cannot
provide real-time information reflecting the success or failure of
the process and require extensive time and effort for fabricated
nanopattern characterizations. Additionally, deficiency in real-
time informatics impedes the process parameters tuning for
desired feature dimensions during nanomachining. Moreover, the
post-imaging using AFM scanning may wear the AFM tips (causing
increased tip radius and degraded tip sharpness), resulting in the
low fidelity for both nanomachining and post-imaging processes.
Therefore, devising a real-time monitoring and characterization
approach for nano-fabrication would allow in-process evaluations
and timely interventions for quality assurance to increase effi-
ciency and significantly reduce the rework time and costs.

The readily available information provided by the AFM setup
includes deflection and torsional signals. These indirect signals
have limited accuracies because the AFM probes manifest signifi-
cant variations in the cantilever’s stiffness and spring constant,
even from the same batch [21]. Therefore, utilizing such signals
to predict the nanomachining process’s success via sensor-based
modeling approaches becomes challenging. The acoustic emission
(AE) sensor captures elastic waves sourced from the material
deformation, fracture, and friction during the material removal
processes. Therefore, this highly sensitive sensor shows potential
for in-process monitoring and real-time inspection for precision
machining [22,23]. Reports related to the investigations into
machining mechanisms during AFM scratching have been reported
elsewhere [24,25]. Compared to previous studies, our current setup
incorporates vibrations to facilitate material removals, which poses
a problem in analyzing the AE characteristics because the AE
bursts/waveforms are highly coupled with process vibrations,
and the conventional measures (e.g., energy levels and count rates)
may not be accurate.
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In this report, we present a pilot testing showing the validity of
applying AE-sensor for in-process monitoring and characteriza-
tions of vibration-assisted AFM-based nanomachining process,
which opens up a new avenue towards process characterizations
and mechanisms discovery for vibration-assisted AFM
nanomachining.
2. Hardware setup and experiment description

The vibration-assisted AFM-based nanomachining experiments
were performed inside a commercial AFM system (XE7, Park Sys-
tems Corporation, Suwon, South Korea) with an in-house fabri-
cated vibration stage. As shown in Fig. 1 a), two piezoelectric
actuators are mounted perpendicularly at the bottom of the alu-
minum pillar, where the sample is placed on top of the pillar. In-
plane circular xy-vibration at 2 kHz is generated on the sample
by driving two piezoelectric actuators with two sinusoid wave-
forms, between which a 90-degree phase shift is set. The sample
is prepared by spin-coating a 200 nm PMMA layer on a silicon sub-
strate and then post-baked at 180 �C for 90 s. A signal generator
(USB-6259, National Instruments, Austin, TX, USA) and two signal
amplifiers (PX200, PiezoDrive, Shortland, NSW, Australia) with an
amplification rate of 20 are used to generate input signals for the
piezoelectric actuators. The sample mounting plate is attached
with an AE sensor (s9225 from Physical Acoustics, Princeton Jct,
Fig. 1. (a) The AFM-based nano-lithography setup with mounted AE sensor and the
monitored AE signal, (b) the surface morphology after five nano-fabricated trenches (f
respectively, and (c) the surface profile (heights and widths) of the machined trenches.
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NJ, USA). A data acquisition (DAQ) system (using the NI-USB-
6259) is implemented to gather the AE sensor signals at a sampling
rate of 500 kHz. The DLC190 AFM probe is applied for nano-
machining on the PMMA sample.

To validate the presented monitoring schemes, a set of nano-
fabrication (scratching) experiments is devised with varying cut-
ting forces (50, 150, 250, 350, and 450 nNs) on a PMMA sample
surface with a scratching length of about 1 lm. The scanned
machined trenches were captured in Fig. 1 b). Fig. 1 c) was a line
profile across five trenches. It may be noticed that the varying
forces create significantly distinct patterns on the machined sur-
faces. The machined trench widths (based on the varying cutting
force from 50 nN to 450 nN) are 16 nm, 43 nm, 53 nm, 69 nm,
and 82 nm, and the trench depths are 1.0 nm, 4.8 nm, 8.2 nm,
12.1 nm, and 16.4 nm, respectively. The collected AE signals, along
with the spectrograms, are shown in Fig. 2. This set of experiments
with the real-time collected sensor signals is used to investigate
the validity of the AE sensor setup in characterizing different
nano-fabrication conditions.
3. Characterizations of nano-fabrications via a temporal-
spectral based classification tool on ae signals

The AE signal captures the transients, i.e., time-varying fre-
quency patterns associated with the material deformation and
associated data acquisition system (DAQ) for synchronously gathering in-process
rom left to right) using varying cutting forces as 50, 150, 250, 350, and 450 nNs,



Fig. 2. (a) The segmented AE signals under five different cutting forces, and (b) the corresponding spectrograms showing the transient patterns (time-varying spectral
features).
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fractures at irregular intervals during machining [26]. First, the
temporal-spectral features of the transient AE signals are extracted
via a sliding windowwith the fast Fourier transformation shown as
the spectrogram in Fig. 3 a), where the x-axis is the time index and
the y-axis is the frequency range, and the energy of various fre-
quency bands (in dB) is represented using a color map. Next, the
extracted spectral features are used as inputs for a random forest
model [22] for classifications of different cutting conditions [see
Fig. 3 b)]. The random forest implicitly selects the features (subsets
of frequency bands) that contribute most to the classification
problem. The selected features are associated with the Gini impor-
tance values, which intuitively suggest their significances in the
8

classification problem, i.e., characterizing different machining
conditions.

The results based on the presented random forest are shown in
Fig. 4. Fig. 4 a) is the confusion matrix that suggests that the
approach can accurately (�100 %) predict different cutting condi-
tions based on the temporal-spectral features. It, therefore, shows
the significance of the AE sensor signals toward process character-
izations at the nanoscale level of machining.

To further understand why the AE signal can distinguish differ-
ent nanopatterning conditions, we also test the AE signal capability
in characterizing machining conditions vs surface scratching (no
material removed) on the current AFM setup nano-fabrications.



Fig. 3. The framework of the sensor-based machine learning approach for characterizations of different nano-fabrication conditions: (a) the applied temporal-spectral
analysis for feature extractions from AE signals, and (b) a random forest algorithm that uses AE spectral features for process characterizations.
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Results also show 100 % accuracy in detecting cutting vs non-
cutting scratching [see Fig. 4 b) to d)]. The AE signals [in Fig. 4
c)] are highly nonstationary and time-varying, which exhibits the
nature of intermittent dynamics. As shown in Fig. 4 e), our pre-
sented approach allows finding the most significant spectral fea-
tures by their importance values. It may be noticed that the
frequency bands around 150 kHz and the low-frequency range
9

from 30 kHz to 50 kHz contribute to the classification problem.
These spectral bands are highly correlated to the acoustic emission
frequency response for PMMA/acrylic material failure [27]. There-
fore, the proposed monitoring scheme allows accurate estimations
of the nanomachining conditions based on frequency features cap-
turing the AE responses related to material failures during
vibration-assisted nanomachining.



Fig. 4. (a) The confusion matrix showing the high accuracy of classification of different nano-fabrication conditions, (b) the surface profile of non-cutting surface scratching
(of about � 0.1 nN downforce) and cutting (second box with a trench left), (c) the segmented AE signals under non-cutting vs cutting conditions, (d) the confusion matrix
showing high accuracy of classifying non-cutting and cutting conditions, and (e) the most significant frequency responses contributing to the classification of cutting vs non-
cutting processes (importance values on the y-axis).
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4. Conclusions and future work

This paper reports an AE sensor-based monitoring scheme
toward process characterizations of material removal processes
under nano-fabrications. The major contributions can be summa-
rized as follows:

1. This letter reports a pilot testing that enables the sensor-based
monitoring for the vibration-assisted AFM-based nano-
manufacturing process via characterizing the temporal-
spectral features emanated from the intermittent AE signal.
10
The temporal-spectral feature-based random forest approach
allows accurate characterizations for nano-fabrication under
different levels of cutting forces;

2. The most significant spectral AE features in distinguishing
differences between cutting conditions are highly correlated
to the failure modes of PMMA materials. Therefore, this pre-
sented framework automatically selects the characteristics of
intermittent AE signals under the vibration-assisted
AFM-based nano-machining, which will help to unravel the
fundamental understanding of vibration assisted nano-
machining.
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In the future, investigations into micromachining and the
mechanism explanations for nano-fabrication will be conducted
using the presented monitoring scheme.
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