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Abstract—The Sum-of-Squares (SoS) hierarchy is
a semi-definite programming meta-algorithm that cap-
tures state-of-the-art polynomial time guarantees for
many optimization problems such as Max-k-CSPs and
Tensor PCA. On the flip side, a SoS lower bound
provides evidence of hardness, which is particularly
relevant to average-case problems for which NP-
hardness may not be available.

In this paper, we consider the following average
case problem, which we call the Planted Affine Planes
(PAP) problem: Given m random vectors d1, . . . , dm in
Rn, can we prove that there is no vector v ∈ Rn

such that for all u ∈ [m], 〈v, du〉2 = 1? In other
words, can we prove that m random vectors are not
all contained in two parallel hyperplanes at equal
distance from the origin? We prove that for m ≤ n3/2−ε,
with high probability, degree-nΩ(ε) SoS fails to refute
the existence of such a vector v.

When the vectors d1, . . . , dm are chosen from the
multivariate normal distribution, the PAP problem is
equivalent to the problem of proving that a random
n-dimensional subspace of Rm does not contain a
boolean vector. As shown by Mohanty–Raghavendra–
Xu [STOC 2020], a lower bound for this problem
implies a lower bound for the problem of certifying
energy upper bounds on the Sherrington-Kirkpatrick
Hamiltonian, and so our lower bound implies a
degree-nΩ(ε) SoS lower bound for the certification
version of the Sherrington-Kirkpatrick problem.

The full version of the paper is available at http:
//arxiv.org/abs/2009.01874.

I. INTRODUCTION

The Sum-of-Squares (SoS) hierarchy is a semi-
definite programming (SDP) hierarchy which pro-
vides a meta-algorithm for polynomial optimiza-
tion [Las15]. Given a polynomial objective function

and a system of polynomial equalities and inequal-
ities as constraints, the SoS framework specifies
a family of increasingly “larger” SDP programs,
where each program provides a convex relaxation
to the polynomial optimization problem. The fam-
ily is indexed by a size parameter D called the
SoS degree. Roughly speaking, the larger the SoS
degree D, the tighter the relaxation, but also, the
greater the computational time required to solve
the convex program, with D = O(1) correspond-
ing to polynomial time and D = n able to ex-
actly solve an optimization problem on n boolean
variables. Due to the versatility of polynomials in
modeling computational problems, the SoS hierar-
chy can be applied to a vast range of optimization
problems. It has been shown to be quite successful
in this regard, as it captures state-of-the-art ap-
proximation guarantees for many problems such
as Sparsest Cut [ARV04], MaxCut [GW95], Tensor
PCA [HSS15] and all Max-k-CSPs [Rag08].

The success of SoS for optimization confers
on it an important role as an algorithmic tool.
For this reason, on the flip side, understanding
the degree range for which SoS fails to provide
a desired guarantee to a computational problem
can be useful to the algorithm designer in two
ways. Firstly and more concretely, since SoS is a
proof system capturing a broad class of algorithmic
reasoning [FKP19], an SoS lower bound can inform
the algorithm designer not only of the minimum
degree required within the SoS hierarchy, but also
to avoid methods of proof that are captured by
low-degree SoS reasoning. Secondly, an SoS lower
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bound can serve as strong evidence for computa-
tional hardness [HKP+17], [Hop18], even though
it is not a formal guarantee against all types of
algorithms. This hardness evidence is particularly
relevant to average-case problems for which we
do not have NP-hardness (see, e.g., the SoS lower
bound on the Planted Clique problem [BHK+16]).

Our main results concern the performance of
SoS on the following basic optimization problem

OPT(W) := max
x∈{±1}n

xᵀWx, (1)

where W is a symmetric matrix in Rn×n. This
problem arises in the fields of computer science
and statistical physics, though the terminology
can sometimes differ. Computer scientists might
regard x ∈ {±1}n as encoding a bipartition of
[n] = {1, 2, . . . , n}. Note that by taking W to be a
graph Laplacian [HLW06, Section 4] the problem is
equivalent to the MaxCut problem, a well-known
NP-hard problem in the worst case [Kar72]. A
statistical physicist might regard x as encoding
spin values in a spin-glass model. The matrix −W
is regarded as the Hamiltonian of the underlying
physical system, where entry −Wi,j models the
interaction between spin xi and xj (with −Wi,j ≥ 0
being ferromagnetic and −Wi,j < 0 being anti-
ferromagnetic). Then, the optimized x corresponds
to the minimum-energy, or ground, state of the
system.

Instead of considering OPT(W) for a worst-
case W, one can consider the average-case prob-
lem in which W is sampled according to some
distribution. One of the simplest models of random
matrices is the Gaussian Orthogonal Ensemble,
denoted GOE(n) for n-by-n matrices and defined
as follows.

Definition I.1. The Gaussian Orthogonal Ensemble,
denoted GOE(n), is the distribution of 1√

2
(A + Aᵀ)

where A is a random n× n matrix with i.i.d. standard
Gaussian entries.

Taking W ∼ GOE(n) for the optimization
problem OPT(W) of Eq. (1) gives rise to the
so-called Sherrington–Kirkpatrick (SK) Hamilto-
nian [SK75]. Note that GOE(n) is a particular kind
of Wigner matrix ensemble, thereby satisfying the
semicircle law, which in this case establishes that
the largest eigenvalue of W is (2+ on(1)) ·

√
n with

probability 1−on(1). Thus, a trivial spectral bound
establishes OPT(W) ≤ (2+on(1)) · n3/2 with prob-
ability 1− on(1). However, in a foundational work
based on a variational argument [Par79], Parisi

conjectured that

E
W∼GOE(n)

[OPT(W)] ≈ 2 · P∗ · n3/2,

where P∗ ≈ 0.7632 is now referred to as the
Parisi constant. In a breakthrough result, Tala-
grand [Tal06] gave a rigorous proof of Parisi’s
conjecture 1. The question then became, “is
there a polynomial-time algorithm that given
W ∼ GOE(n) computes an x achieving close to
OPT(W)?" As it turns out, the answer was essen-
tially shown to be yes by Montanari [Mon19]!

The natural question we study is that of cer-
tification: “is there an efficient algorithm to certify
an upper bound on OPT(W) for any input W,
that improves upon the trivial spectral bound?"
In particular, we can ask how well SoS does
as a certification algorithm. The natural upper
bound of (2 + on(1)) · n3/2 obtained via the spec-
tral norm of W is also the value of the degree-
2 SoS relaxation [MS16]. Two independent recent
works of Mohanty–Raghavendra–Xu [MRX19] and
Kunisky–Bandeira [KB19] show that degree-4 SoS
does not perform much better, and a heuristic ar-
gument from [BKW19] suggests that even degree-
(n/ log n) SoS cannot certify anything stronger
than the trivial spectral bound. Thus we ask,

Can higher-degree SoS certify better upper bounds for
the Sherrington–Kirkpatrick problem,

hopefully closer to the true bound 2 · P∗ · n3/2?

Our Results. We answer the question above neg-
atively by showing that even at degree as large
as nδ, SoS cannot improve upon the basic spectral
algorithm. More precisely, we have the following
theorem which is our first main result and our
most important contribution.

Theorem I.2. [Main I] There exists a constant δ > 0
such that, w.h.p. for W ∼ GOE(n), there is a degree-nδ

SoS solution for the Sherrington–Kirkpatrick problem
with value at least (2− on(1)) · n3/2.

In light of the result of Montanari [Mon19],
the situation is intriguing. Montanari showed that
for all ε > 0, there is a Oε(n2) time randomized
algorithm that given a random W drawn from
the Gaussian Orthogonal Ensemble, outputs an x
such that xTWx ≥ (1− ε)OPT(W). The correctness
of the algorithm assumes a widely-believed con-

1The results of Talagrand [Tal06] were for the Sherrington–
Kirkpatrick and mixed p-spin systems with p even. In [Pan14],
Panchenko generalized these results to arbitrary mixed p-spin
systems (also including odd p).



jecture from statistical physics known as the full
replica symmetry breaking assumption. However,
we show an integrality gap for SoS.

Based on this, it is an interesting ques-
tion whether SoS, together with an appropriate
rounding scheme, is optimal for the Sherrington-
Kirkpatrick problem. On the one hand, the sit-
uation could be similar to the Feige-Schechtman
integrality gap instance for MaxCut [FS02]. For
the Feige-Schechtman integrality gap instance, SoS
fails to certify the value of the optimal solution.
However, applying hyperplane rounding to the
SoS solution gives an almost-optimal solution for
these instances. It could be the case that there is a
rounding scheme which takes an SoS solution for
the Sherrington-Kirkpatrick problem on a random
W and returns an almost optimal solution x. On
the other hand, we currently don’t know what this
rounding scheme would be.

In order to prove Theorem I.2, we first intro-
duce a new average-case problem we call Planted
Affine Planes (PAP) for which we directly prove
a SoS lower bound. We then use the PAP lower
bound to prove a lower bound on the Sherrington–
Kirkpatrick problem. The PAP problem can be
informally described as follows (see Definition II.1
for the formal definition).

Definition I.3 (Informal statement of PAP). Given
m random vectors d1, . . . , dm in Rn, can we prove that
there is no vector v ∈ Rn such that for all u ∈ [m],
〈v, du〉2 = 1? In other words, can we prove that m
random vectors are not all contained in two parallel
hyperplanes at equal distance from the origin?

This problem, when we restrict v to a Boolean
vector in {± 1√

n}
n, can be encoded as the feasibility

of the polynomial system

∃v ∈ Rn s.t. ∀i ∈ [n], v2
i =

1
n

,

∀u ∈ [m], 〈v, du〉2 = 1.

Hence it is a ripe candidate for SoS. However,
we show that SoS fails to refute a random in-
stance. The Boolean restriction on v actually makes
the lower bound result stronger since SoS can-
not refute even a smaller subset of vectors in
Rn. In this work, we will consider two different
random distributions, namely when d1, . . . , dm are
independent samples from the multivariate normal
distribution and when they are independent sam-
ples from the uniform distribution on the boolean
hypercube.

Theorem I.4 (Main II). For both the Gaussian and
Boolean settings, there exists a constant c > 0 such
that for all ε > 0 and δ ≤ cε, for m ≤ n3/2−ε, w.h.p.
there is a feasible degree-nδ SoS solution for Planted
Affine Planes.

It turns out that the Planted Affine Plane
problem introduced above is closely related to the
following “Boolean vector in a random subspace”
problem, which we call the Planted Boolean Vector
problem, introduced by [MRX19] in the context of
studying the performance of SoS on computing the
Sherrington–Kirkpatrick Hamiltonian.

The Planted Boolean Vector problem is to cer-
tify that a random subspace of Rn is far from
containing a boolean vector. Specifically, we want
to certify an upper bound for

OPT(V) :=
1
n

max
b∈{±1}n

bᵀΠVb,

where V is a uniformly random p-dimensional
subspace2 of Rn, and ΠV is the projector onto V. In
brief, the relationship to the Planted Affine Plane
problem is that the PAP vector v represents the
coefficients on a linear combination for the vector
b in the span of a basis of V.

An argument of [MRX19] shows that, when
p � n, w.h.p., OPT(V) ≈ 2

π , whereas they also
show that w.h.p. assuming p ≥ n0.99, there is a
degree-4 SoS solution with value 1− on(1). They
ask whether or not there is a polynomial time
algorithm that can certify a tighter bound; we rule
out SoS-based algorithms for a larger regime both
in terms of SoS degree and the dimension p of the
random subspace.

Theorem I.5. [Main III] There exists a constant c > 0
such that, for all ε > 0 and δ ≤ cε, for p ≥ n2/3+ε,
w.h.p. over V there is a degree-nδ SoS solution for
Planted Boolean Vector of value 1.

Our Approach. We now provide a brief high-level
description of our approach (see Section III for a
more detailed overview). The bulk of our technical
contribution lies in the SoS lower bound for the
Planted Affine Planes problem, Theorem I.4. We
then show that Planted Affine Planes in the Gaus-
sian setting is equivalent to the Planted Boolean
Vector problem. The reduction from Sherrington-
Kirkpatrick to the Planted Boolean Vector problem
is due to Mohanty–Raghavendra–Xu [MRX19].

2V can be specified by a basis, which consists of p i.i.d.
samples from N (0, I).



As a starting point to the PAP lower bound,
we employ the general techniques introduced by
Barak et al. [BHK+16] for SoS lower bounds. We
use their pseudocalibration machinery to produce
a good candidate SoS solution Ẽ. The operator
Ẽ unfortunately does not exactly satisfy the PAP
constraints “〈v, du〉2 = 1”, it only satisfies them
up to a tiny error. We use an interesting and
rather generic approach to round Ẽ to a nearby
pseudoexpectation operator Ẽ

′ which does exactly
satisfy the constraints.

For degree D, the candidate SoS solution can
be viewed as a (pseudo) moment matrix M with
rows and columns indexed by subsets I, J ⊂ [n]
with size bounded by D/2 and with entries

M[I, J] := Ẽ[vIvJ ].

The matrix M is a random function of the inputs
d1, . . . , dm, and the most challenging part of the
analysis consists of showing that M is positive
semi-definite (PSD) with high probability.

Similarly to [BHK+16], we decompose M
as a linear combination of graph matrices, i.e.,
M = ∑α λα · Mα, where Mα is the graph matrix
associated with shape α. In brief, each graph matrix
aggregates all terms with shape α in the Fourier
expansions of the entries of M – the shape α is
informally a graph with labeled edges with size
bounded by poly(D). A graph matrix decomposi-
tion of M is particularly handy in the PSD anal-
ysis since the operator norm of individual graph
matrices Mα is (with high probability) determined
by simple combinatorial properties of the graph
α. One technical difference from [BHK+16] is that
our graph matrices have two types of vertices t

and i ; these graph matrices fall into the general
framework developed by Ahn et al. in [AMP20].

To show that the matrixM is PSD, we need to
study the graph matrices that appear with nonzero
coefficients in the decomposition. The matrix M
can be split into blocks and each diagonal block
contains in the decomposition a (scaled) identity
matrix. From the graph matrix perspective, this
means that certain “trivial” shapes appear in the
decomposition, with appropriate coefficients. If we
could bound the norms of all other graph matrices
that appear against these trivial shapes and show
that, together, they have negligible norm compared
to the sum of these scaled identity blocks, then we
would be in good shape.

Unfortunately, this approach will not work.
The kernel of the matrix M is nontrivial, as
a consequence of satisfying the PAP constraints

“〈v, du〉2 = 1", and hence there is no hope of show-
ing that the contribution of all nontrivial shapes in
the decomposition of M has small norm. Indeed,
certain shapes α appearing in the decomposition
of M are such that ‖λα ·Mα‖ is large. As it turns
out, all such shapes have a simple graphical sub-
structure, and so we call these shapes spiders.

To get around the null space issue, we restrict
ourselves to Null(M)⊥, which is the complement
of the nullspace ofM. We show that the substruc-
ture present in a spider implies that the spider is
close to the zero matrix in Null(M)⊥. Because of
this, we can almost freely add and subtract Mα

for spiders α while preserving the action of M on
Null(M)⊥. Our strategy is to “kill” the spiders by
subtracting off λα · Mα for each spider α. But be-
cause Mα is only approximately in Null(M)⊥, this
strategy could potentially introduce new graph
matrix terms, and in particular it could introduce
new spiders. To handle this, we recursively kill
them while carefully analyzing how the coeffi-
cients of all the graph matrices change. After all
spiders are killed, the resulting moment matrix
becomes

∑
0≤k≤D/2

1
nk · Ik + ∑

γ : non-spiders
λ′γ ·Mγ,

for some new coefficients λ′γ. Here, Ik is the ma-
trix which has an identity in the kth block and
the remaining entries 0. Using a novel charging
argument, we finally show that the latter term
is negligible compared to the former term, thus
establishing M� 0.

Summary of Related Work and Our Contribu-
tions. We now summarize the existing work on
these problems and our contributions. Degree-4
SoS lower bounds on the Sherrington-Kirkpatrick
Hamiltonian problem were proved indepen-
dently by Mohanty–Raghavendra–Xu [MRX19]
and Kunisky–Bandeira [KB19] whereas we prove
an improved degree-nδ SoS lower bound for some
constant δ > 0. Our result is obtained by re-
ducing the Sherrington-Kirkpatrick problem to the
“Boolean Vector in a Random Subspace” problem
which is equivalent to our new Planted Affine
Planes problem on the normal distribution. The re-
duction from Sherrington-Kirkpatrick problem to
the “Boolean Vector in a Random Subspace” is due
to Mohanty–Raghavendra–Xu [MRX19]. The re-
sults of Mohanty–Raghavendra–Xu [MRX19] and
Kunisky–Bandeira [KB19] build on a degree-2 SoS
lower bounds of Montanari and Sen [MS16]. Re-
garding upper bounds, Montanari [Mon19] gave



an efficient randomized message passing algo-
rithm to estimate OPT(W) in the SK problem
within a (1− ε) factor under the full replica sym-
metry breaking assumption.

Degree-4 SoS lower bounds on the “Boolean
Vector in a Random Subspace” problem for
p ≥ n0.99 were proved by Mohanty–
Raghavendra–Xu in [MRX19] where this problem
was introduced. We improve the dependence on p
to p ≥ n2/3+ε for any ε > 0 and obtain a stronger
degree-ncε SoS lower bound for some absolute
constant c > 0.

II. TECHNICAL PRELIMINARIES

In this section we record problem statements,
then define and discuss the main objects in our
SoS lower bound: pseudoexpectation operators,
the moment matrix, and graph matrices.

For a vector or variable v ∈ Rn, and I ⊆ [n],
we use the notation vI := ∏i∈I vi. When a state-
ment holds with high probability (w.h.p.), it means
it holds with probability 1 − on(1). In particular,
there is no requirement for small n.

A. Problem statements

We introduce the Planted Affine Planes prob-
lem over a distribution D.

Definition II.1 (Planted Affine Planes (PAP) prob-
lem). Given d1, . . . , dm ∼ D where each du is a vector
in Rn, determine whether there exists v ∈ {± 1√

n}
n

such that

〈v, du〉2 = 1,

for every u ∈ [m].

Our results hold for the Gaussian setting D =
N (0, I) and the boolean setting where D is uni-
formly sampled from {±1}n, though we conjecture
(see the full version of the paper) that similar SoS
bounds hold under more general conditions on D.

Observe that in both settings the solution vec-
tor v is restricted to be Boolean (in the sense that
the entries are either 1√

n or −1√
n ) and an SoS lower

bound for this restricted version of the problem is
stronger than when v can be an arbitrary vector
from Rn.

The Sherrington–Kirkpatrick (SK) problem
comes from the spin-glass model in statistical
physics [SK75].

Definition II.2 (Sherrington-Kirkpatrick problem).
Given W ∼ GOE(n), compute

OPT(W) := max
x∈{±1}n

xᵀWx.

The Planted Boolean Vector problem was in-
troduced by Mohanty–Raghavendra–Xu [MRX19],
where it was called the “Boolean Vector in a Ran-
dom Subspace”.

Definition II.3 (Planted Boolean Vector problem).
Given a uniformly random p-dimensional subspace V
of Rn in the form of a projector ΠV onto V, compute

OPT(V) :=
1
n

max
b∈{±1}n

bᵀΠVb.

B. Sum-of-Squares solutions

We will work with two equivalent definitions
of a degree-D SoS solution: a pseudoexpectation
operator and a moment matrix. We tailor these
definitions to our setting of feasibility of systems
of polynomial equality constraints given by the
common zero set of a collection of polynomials P
on ± 1√

n Boolean variables v1, . . . , vn. For a degree-
D solution to be well defined, we need D to be at
least the maximum degree of a polynomial in P .
Let R≤D(v1, . . . , vn) be the subset of polynomials
of degree at most D from the polynomial ring
R(v1, . . . , vn). We denote the degree of a polyno-
mial f ∈ R(v1, . . . , vn) by deg( f ).

1) Pseudoexpectation operator: We formally de-
fine the pseudoexpectation operators used in our
setting.

Definition II.4 (Pseudoexpectation). Given a finite
collection of “constraint” polynomials P of degree
at most D on ± 1√

n Boolean variables v1, . . . , vn, a
degree-D pseudoexpectation operator Ẽ is an operator
Ẽ : R≤D(v1, . . . , vn)→ R satisfying:

1) Ẽ[1] = 1,

2) Ẽ is an R-linear operator, i.e., Ẽ[ f + g] = Ẽ[ f ] +
Ẽ[g] for every f , g ∈ R≤D(v1, . . . , vn),

3) Ẽ[ f 2] ≥ 0 for every f ∈ R≤D(v1, . . . , vn) with
deg( f 2) ≤ D.

4) Ẽ[(v2
i −

1
n ) · f ] = 0 for all i ∈ [n] and for every

f ∈ R≤D(v1, . . . , vn) with deg( f ) ≤ D− 2, and

5) Ẽ[g · f ] = 0 for every g ∈ P , f ∈
R≤D(v1, . . . , vn) with deg( f · g) ≤ D.

Note that Ẽ behaves similarly to an expec-
tation operator restricted to R≤D(v1, . . . , vn) with



the caveat that Ẽ is only guaranteed to be non-
negative on sum-of-squares polynomials.

The degree-D SoS algorithm checks feasibility
of a polynomial system by checking whether or
not a degree-D pseudoexpectation operator exists.
To show an SoS lower bound, one must construct
a pseudoexpectation operator.

2) Moment matrix: We define the moment ma-
trix associated with a degree-D pseudoexpectation
Ẽ.

Definition II.5 (Moment Matrix of Ẽ). The moment
matrix M =M(Ẽ) associated to a pseudoexpectation
Ẽ is a ( [n]

≤D/2)× ( [n]
≤D/2) matrix with rows and columns

indexed by subsets of I, J ⊆ [n] of size at most D/2
and defined as

M[I, J] := Ẽ
[
vI · vJ

]
.

To show that a candidate pseudoexpectation
satisfies Item 3 in Definition II.4, we will rely on
the following standard fact.

Fact II.6. In the definition of pseudoexpectation, Def-
inition II.4, the condition in Item 3 is equivalent to
M� 0.

C. Graph matrices

To studyM, we decompose it using the frame-
work of graph matrices. Originally developed in the
context of the planted clique problem, graph ma-
trices are random matrices whose entries are sym-
metric functions of an underlying random object –
in our case, the set of vectors d1, . . . , dm. We take
the general presentation and results from [AMP20].
For our purposes, the following definitions are
sufficient.

The graphs that we study have two types of
vertices, circles i and squares t . We let Cm be a set
of m circles labeled 1 through m, which we denote
by 1 , 2 , . . . , m , and let Sn be a set of n squares la-
beled 1 through n, which we denote by 1 , 2 , . . . , n .
We will work with bipartite graphs with edges
between circles and squares, which have positive
integer labels on the edges. When there are no mul-
tiedges (the graph is simple), such graphs are in
one-to-one correspondence with Fourier characters
on the vectors du. An edge between u and i with
label l represents hl(du,i) where {hk} is the Fourier
basis (e.g. Hermite polynomials).

simple graph with labeled edges ⇐⇒ ∏
u ∈Cm ,

i ∈Sn

h
l( u , i )

(du,i)

An example of a Fourier polynomial as a graph
with labeled edges is given in Fig. 1. Unlabeled
edges are implicitly labeled 1.

i1

u

j1

i2 j2

3

w1

2

Figure 1. The Fourier polynomial
h3(du,i1 )h1(du,i2 )h2(du,w1 )h1(du,j1 )h1(du,j2 ) represented as
a graph.

Define the degree of a vertex v, denoted
deg(v), to be the sum of the labels incident to v,
and |E| to be the sum of all labels. For intuition
it is mostly enough to work with simple graphs,
in which case these quantities make sense as the
edge multiplicities in an implicit multigraph.

Definition II.7 (Proper). We say an edge-labeled
graph is proper if it has no multiedges.

The definitions allow for “improper” edge-
labeled multigraphs which simplify multiplying
graph matrices.

Definition II.8 (Matrix indices). A matrix index is
a set A of elements from Cm ∪ Sn.

We let A( i ) or A( u ) be 0 or 1 to indicate if
the vertex is in A.

Definition II.9 (Ribbons). A ribbon is an undirected,
edge-labeled graph R = (V(R), E(R), AR, BR), where
V(R) ⊆ Cm ∪ Sn and AR, BR are two matrix indices
(possibly not disjoint) with AR, BR ⊆ V(R), represent-
ing two distinguished sets of vertices. Furthermore, all
edges in E(R) go between squares and circles.

We think of AR and BR as being the “left” and
“right” sides of R, respectively. We also define the
set of “middle vertices” CR := V(R) \ (AR ∪ BR).
If e 6∈ E(R), then we define its label l(e) = 0. We
also abuse notation and write l( i , u ) instead of
l({ i , u }).

Akin to the picture above, each ribbon corre-
sponds to a Fourier polynomial. This Fourier poly-
nomial lives inside a single entry of the matrix MR.
In the definition below, the hk(x) are the Fourier
basis corresponding to the respective setting. In
the Gaussian case, they are the (unnormalized)



Hermite polynomials, and in the boolean case, they
are just the parity function, represented by

h0(x) = 1, h1(x) = x, hk(x) = 0 (k ≥ 2)

Definition II.10 (Matrix for a ribbon). The matrix
MR has rows and columns indexed by subsets of
Cm ∪ Sn, with a single nonzero entry defined by

MR[I, J] =


∏

e∈E(R),
e={ i , u }

hl(e)(du,i) I = AR, J = BR

0 Otherwise

Next we describe the shape of a ribbon, which
is essentially the ribbon when we have forgotten
all the vertex labels and retained only the graph
structure and the distinguished sets of vertices.

Definition II.11 (Index shapes). An index shape is
a set U of formal variables. Furthermore, each variable
is labeled as either a “circle” or a “square”.

We let U( i ) and U( u ) be either 0 or 1 for
whether i or u , respectively, is in U.

Definition II.12 (Shapes). A shape is an undirected,
edge-labeled graph α = (V(α), E(α), Uα, Vα) where
V(α) is a set of formal variables, each of which is
labeled as either a “circle” or a “square”. Uα and Vα

are index shapes (possibly with variables in common)
such that Uα, Vα ⊆ V(α). The edge set E(α) must
only contain edges between the circle variables and the
square variables.

We’ll also use Wα := V(α) \ (Uα ∪ Vα) to
denote the “middle vertices” of the shape.

Remark II.13. We will abuse notation and use
i , j , u , v , . . . for both the vertices of ribbons and the

vertices of shapes. If they are ribbon vertices, then the
vertices are elements of Cm ∪ Sn and if they are shape
vertices, then they correspond to formal variables with
the appropriate type.

Definition II.14 (Trivial shape). Define a shape α to
be trivial if Uα = Vα, Wα = ∅ and E(α) = ∅.

Definition II.15 (Transpose of a shape). The trans-
pose of a shape α = (V(α), E(α), Uα, Vα) is defined to
be the shape αᵀ = (V(α), E(α), Vα, Uα).

For a shape α and an injective map σ : V(α)→
Cm ∪Sn, we define the realization σ(α) as a ribbon
in the natural way, by labeling all the variables
using the map σ. We also require σ to be type-
preserving i.e. it takes square variables to Sn and
circle variables to Cm. The ribbons that result are
referred to as ribbons of shape α; notice that this

partitions the set of all ribbons according to their
shape34.

Finally, given a shape α, the graph matrix Mα

consists of all Fourier characters for ribbons of
shape α.

Definition II.16 (Graph matrices). Given a shape
α = (V(α), E(α), Uα, Vα), the graph matrix Mα is

Mα = ∑
R is a ribbon of shape α

MR

The moment matrix for PAP will turn out to
be defined using graph matrices Mα whose left
and right sides only have square vertices, and no
circles. However, in the course of the analysis we
will factor and multiply graph matrices with circle
vertices in the left or right.

D. Norm bounds

The spectral norm of a graph matrix is
determined, up to logarithmic factors, by rel-
atively simple combinatorial properties of the
graph. For a subset S ⊆ Cm ∪ Sn, we de-
fine the weight w(S) := (# circles in S) ·
logn(m) + (# squares in S). Observe that nw(S) =
m# circles in S · n# squares in S.

Definition II.17 (Minimum vertex separator). For
a shape α, a set Smin is a minimum vertex separator if
all paths from Uα to Vα pass through Smin and w(Smin)
is minimized over all such separating sets.

Let Wiso denote the set of isolated vertices in
Wα. Then essentially the following norm bound
holds for all shapes α with high probability (a
formal statement can be found in the full version
of the paper):

‖Mα‖ ≤ Õ
(

n
w(V(α))−w(Smin)+w(Wiso)

2

)
In fact, the only probabilistic property required

of the inputs d1, . . . , dm by our proof is that the
above norm bounds hold for all shapes that arise in
the analysis. We henceforth assume that the norm
bounds for the Gaussian case and for the boolean
case hold.

3Partitions up to equality of shapes, where two shapes are
equal if there is a type-preserving bijection between their
variables that converts one shape to the other. When we operate
on sets of shapes below, we implicitly use each distinct shape
only once.

4Note that in our definition two realizations of a shape may
give the same ribbon.



III. PROOF STRATEGY

Here we explain in more detail the ideas for
the Planted Affine Planes lower bound. Towards
the proof of Theorem I.4, fix a constant ε > 0 and
a random instance d1, . . . , dm with n ≤ m ≤ n3/2−ε.
We will construct a pseudoexpectation operator
and show that it is PSD up to degree D = 2 · nδ

with high probability.

We start by pseudocalibrating to obtain a pseu-
doexpectation operator Ẽ. The operator Ẽ will ex-
actly satisfy the “booleanity" constraints “v2

i = 1
n "

though it may not exactly satisfy the constraints
“〈v, du〉2 = 1" due to truncation error in the pseu-
docalibration. Taking the truncation parameter nτ

to be larger than the degree D of the SoS solution,
i.e., δ � τ, the truncation error is small enough
that we can round Ẽ to a nearby Ẽ

′ that exactly
satisfies the constraints. This is formally accom-

plished by viewing Ẽ ∈ R
( [n]≤D) as a vector and

expressing the constraints as a matrix Q such that
Ẽ satisfies the constraints iff it lies in the null space
of Q. The choice of Ẽ

′ is then the projection of Ẽ
to Null(Q). The end result is that we construct
a moment matrix M f ix = M + E that exactly
satisfies the constraints such that ‖E‖ is tiny.

After performing pseudocalibration, in both
settings, we will have essentially the graph matrix
decomposition

M = ∑
shapes α

λα Mα

= ∑
shapes α:

deg( i )+U( i )+V( i ) even,

deg( u ) even

1

n
|Uα |+|Vα |

2

·

 ∏
u ∈V(α)

h
deg( u )

(1)



· Mα

n|E(α)|/2

Here hk(1) is in both settings the k-th Hermite
polynomial, evaluated on 1.

In this decomposition of M, the trivial shapes
will be the dominant terms which we will use to
bound the other terms. Recall that a shape α =
(V(α), E(α), Uα, Vα) is trivial if Uα = Vα, Wα = ∅
and E(α) = ∅. These shapes contribute scaled
identity matrices on different blocks of the main
diagonal ofM, with trivial shape α contributing an
identity matrix with coefficient n−|Uα |. Two trivial
shapes are illustrated in Fig. 2.

Let Mtriv be this diagonal matrix of trivial
shapes in the above decomposition ofM. To prove
that M � 0, we attempt the simple strategy of
showing that the norm of all other terms can be
“charged” against this diagonal matrix Mtriv. For

u1

Uα ∩Vα

1
n

u1

u2

1
n2

Uα ∩Vα

Figure 2. Two examples of trivial shapes.

several shapes this strategy is indeed viable. To
illustrate, let’s consider one such shape α depicted
in Fig. 3.

u1

w1

v1

w3

w2u u′

Uα Vα

Figure 3. Picture of basic non-spider shape α.

This graph matrix has |λα| = Θ( 1
n5 ). Using the

graph matrix norm bounds, with high probability
the norm of this graph matrix is Õ(n2m): there are
four square vertices and two circle vertices which
are not in the minimum vertex separator. Thus, for
this shape α, with high probability |λα| ‖Mα‖ is
Õ
(

m
n3

)
and thus λα Mα � 1

n Id (which is the multi-
ple of the identity appearing in the corresponding
block of Mtriv).

Unfortunately, as pointed out in the introduc-
tion, some shapes α that appear in the decomposi-
tion have ‖λα Mα‖ too large to be charged against
Mtriv. These are shapes with a certain substructure
(actually the same structure that appears in the
matrix Q used to project the pseudoexpectation
operator!) whose norms cannot be handled by the
preceding argument, and which we denote spiders.
The following graph depicts one such spider shape
(and also motivates this terminology):

The norm ‖λα Mα‖ of this graph is Ω̃( 1
n2 ), as

can be easily estimated through the norm bounds
(the coefficient is λα = −2

n4 , the minimum vertex
separator is u , and there are no isolated vertices).
This is too large to bound against 1

n2 Id, which is
the coefficient of Mtriv on this spider’s block.

To skirt this and other spiders, we restrict
ourselves to vectors x ⊥ Null(M), and observe
that this spider α satisfies xᵀMα ≈ 0. To be more
precise, consider the following argument. Consider
the two shapes in Fig. 5, β1 and β2 (take note of



u1

u2

v1

v2

u

Uα Vα

Figure 4. Picture of basic spider shape α.

the label 2 on the edge in β2).

u1

u2

u u

Uβ1

Vβ1

Vβ2

w

Uβ2 = ∅

2

Figure 5. Picture of shapes β1 and β2.

We claim that every column of the matrix
2Mβ1 +

1
n Mβ2 is in the null space of M. There

are m nonzero columns indexed by assignments to
V, which can be a single circle 1 , 2 , . . . , m . The
nonzero rows are ∅ in β2 and { i , j } for i 6= j
in β1. Fixing I ⊆ [n], entry (I, u ) of the product
matrix M(2Mβ1 +

1
n Mβ2) is

2 ∑
i<j
Ẽ[vI vivj] · duiduj +

1
n Ẽ

[vI ] ·∑
i
(d2

ui − 1)

= 2 ∑
i<j
Ẽ[vI vivj] · duiduj+

Ẽ[vI v2
i ] ·∑

i
d2

ui − Ẽ[vI ] (Ẽv2
i =

1
n
)

= ∑
i,j
Ẽ[vI vivj]duiduj − Ẽ[vI ]

= Ẽ[vI(〈v, du〉2 − 1)]

= 0 (Ẽ〈v, du〉2 = 1)

In words, the constraint “〈v, du〉2 = 1” creates
a shape 2β1 +

1
n β2 that lies in the null space of

the moment matrix. On the other hand, we can
approximately factor the spider α across its central
vertex, and when we do so, the shape β1 appears
on the left side.

Therefore Mα ≈ Mβ1 Mᵀ
β1

≈ (Mβ1 +
1

2n Mβ2)Mᵀ
β1

. The columns of the matrix Mβ1 +
1

2n Mβ2 are in the null space of M, so for x ⊥
Null(M) we have xᵀMα ≈ 0.

u1

u2

u u

Uβ1

u1

u2

Uβ1

× ≈

u1

u2

v1

v2

u

Uα Vα

Vβ1 Vβ1

Figure 6. Approximation β1 × βᵀ
1 ≈ α.

More formally, we are able to find coefficients
cβ so that all columns of the matrix

A = Mα + ∑
β

cβ Mβ

are in Null(M). We then observe the following
fact:

Fact III.1. If x ⊥ Null(M) and MA = 0, then
xᵀ(AB +M)x = xᵀ(BᵀAᵀ +M)x = xᵀMx.

Using the fact, we can freely add multiples of
A to M without changing the action of M on
Null(M)⊥. A judicious choice is to subtract λα A
which will “kill” the spider from M. Doing this
for all spiders, we produce a matrix whose action
is equivalent on Null(M)⊥, and which has high
minimum eigenvalue by virtue of the fact that it
has no spiders, showing that M is PSD.

The catch is two-fold: first, the coefficients
cβ may contribute to the coefficients on the non-
spiders; second, the further intersection terms Mβ

may themselves be spiders ( though they will
always have fewer square vertices than α). Thus
we must recursively kill these spiders, until there
are no spiders remaining in the decomposition of
M. The resulting matrix has some new coefficients
on the non-spiders

M′ = ∑
non-spiders β

λ′β Mβ.

We must bound the accumulation on the coeffi-
cients λ′β. We do this by considering the web of
spiders and non-spiders created by each spider
and using bounds on the cβ and λα to argue that
the contributions do not blow up, via an interesting
charging scheme that exploits the structure of these
graphs.

IV. SHERRINGTON-KIRKPATRICK LOWER BOUNDS

Here, we show the reductions to Planted
Affine Planes in Theorem I.5 and Theorem I.2.
Recall that in the Planted Boolean Vector problem,



we wish to optimize

OPT(V) :=
1
n

max
b∈{±1}n

bᵀΠVb,

where V is a uniformly random p-dimensional
subspace of Rn.

Theorem I.5. [Main III] There exists a constant c > 0
such that, for all ε > 0 and δ ≤ cε, for p ≥ n2/3+ε,
w.h.p. over V there is a degree-nδ SoS solution for
Planted Boolean Vector of value 1.

Proof: We wish to produce an SoS solu-
tion Ẽ on boolean variables b1, . . . , bn such that
Ẽ[bᵀΠVb] = n. Instead of sampling a uniformly
random p-dimensional subspace V of Rn, we
first sample d1, . . . , dn i.i.d. p-dimensional Gaus-
sian vectors from N (0, I), then form an n-by-p
matrix A with rows d1, . . . , dn, and finally take
V to be the span of the columns of A. Since the
columns of A are isotropic i.i.d. random Gaussian
vectors, we have that V is a uniform p-dimension
subspace5 of Rn.

We will consider V as the input for the
Planted Boolean Vector problem while the vectors
d1, . . . , dn will be used to construct a pseudoex-
pectation operator for the Planted Affine Planes
problem6. Since n ≤ p3/2−Ω(ε), by Theorem I.4,
for all δ ≤ cε for a constant c > 0, w.h.p., there
exists a degree-nδ pseudoexpectation operator Ẽ

′

on formal variables v = (v1, . . . , vp) such that
Ẽ
′
[〈v, du〉2] = 1 for every u ∈ [n].

Define Ẽ by Ẽ[bu] := Ẽ
′
[〈v, du〉] for all u ∈

[n] and extending it to all polynomials on {bu}
by multilinearity. This is well defined because
Ẽ
′
[〈v, du〉2] = 1. Note that Ẽ is a valid pseudo-

expectation operator of the same degree as Ẽ
′.

Finally, observe that

1
n Ẽ

[bᵀΠVb] =
1
n Ẽ
′
[vᵀAᵀΠV Av] =

1
n Ẽ
′
[vᵀAᵀAv] = 1.

Now we prove lower bounds for the
Sherrington-Kirkpatrick problem, using a
reduction and proof due to [MRX19]. We include it
here for completeness. Recall that the SK problem
is to compute

OPT(W) := max
x∈{±1}n

xᵀWx,

where W is sampled from GOE(n).

5Except for a zero measure event.
6Note that the vectors du are not “given" in the Planted

Boolean Vector problem, though the construction of Ẽ is not
required to be algorithmic in any sense anyway.

Theorem I.2. [Main I] There exists a constant δ > 0
such that, w.h.p. for W ∼ GOE(n), there is a degree-nδ

SoS solution for the Sherrington–Kirkpatrick problem
with value at least (2− on(1)) · n3/2.

We will use the following standard results
from random matrix theory of GOE(n).

Fact IV.1. Let λ1 ≥ . . . ≥ λn be the eigenvalues of
W ∼ GOE(n) with corresponding normalized eigen-
vectors w1, . . . , wn. Then,

1) For every p ∈ [n], the span of w1, . . . , wp is a
uniformly random p-dimensional subspace of Rn

(see e.g. [OVW16, Section 2]).

2) W.h.p., λn0.67 ≥ (2 − o(1))
√

n (Corollary of
Wigner’s semicircle law [Wig93])

Proof of Theorem I.2: Let p = n0.67 and
W ∼ GOE(n). Let λ1 ≥ . . . ≥ λn be the eigen-
values of W with corresponding orthonormal set
of eigenvectors w1, . . . , wn. By Fact IV.1, we have
that λp ≥ (2− o(1))

√
n and that w1, . . . , wp span

a uniformly random p-dimensional subspace V of
Rn.

We consider V as the input of the Boolean
Planted Vector problem and by Theorem I.5, for
some constant δ > 0, w.h.p. there exists a degree-nδ

pseudoexpectation operator Ẽ such that Ẽ[x2
i ] = 1

and Ẽ[∑
p
i=1〈x, wi〉2] = Ẽ[xᵀΠV x] = n. Now,

Ẽ[xᵀWx] = Ẽ[
n

∑
i=1

λi〈x, wi〉2] ≥ λpẼ[xᵀΠV x]− |λn | Ẽ[
n

∑
i=p+1

〈x, wi〉2]

≥ (2− o(1))n3/2 − |λn | Ẽ[〈x, x〉 −
p

∑
i=1
〈x, wi〉2]

= (2− o(1))n3/2.

Remark IV.2. Using the same proof as above, we can
obtain Theorem I.2 even if we were only able to prove
SoS lower bounds for Planted Affine Planes for some
m = ω(n). So, pushing the value of m up to n3/2−ε,
which is Theorem I.4, offers only a modest improvement.

V. OPEN PROBLEMS

We conjecture that for the Planted Affine
Planes problem, the problem remains difficult even
with the number of vectors increased to m = n2−ε.

Conjecture V.1. Theorem I.4 holds with the bound on
the number of sampled vectors m loosened to m ≤ n2−ε.

The justification for the conjecture is that this is
the regime in which Ẽ[1] = 1 + o(1) in pseudocal-
ibration. Analyzing Ẽ[1] is an established way to
hypothesize about the power of SoS in hypothesis
testing problems (see [HKP+17], [Hop18]).



Dual to the Planted Affine Planes problem,
we conjecture a similar bound for Planted Boolean
Vector problem whenever d ≥ n1/2+ε.

Conjecture V.2. Theorem I.5 holds with the bound on
the dimension p of a random subspace loosened to p ≥
n1/2+ε.

We conjecture that the Planted Boolean Vector
problem/Planted Affine Planes problem is still
hard for SoS if the input is no longer i.i.d. Gaussian
or boolean entries, but is drawn from a “ran-
dom enough” distribution. For example, if in the
random instance of PAP the vectors du are i.i.d.
samples from Sn, or a random orthonormal system,
degree nδ SoS should still believe the instance is
satisfiable (after appropriate normalization of v).
Or, taking the view of Planted Boolean Vector,
if the subspace is the eigenspace of the bottom
eigenvectors of a random adjacency matrix, the
instance should still be difficult. This last setting
arises in MaxCut, for which we conjecture the
following.

Conjecture V.3. Let d ≥ 3, and let G be a random
d-regular graph on n vertices. For some δ > 0, w.h.p.
there is a degree-nδ pseudoexpectation operator Ẽ on
boolean variables xi with MaxCut value at least

1
2
+

√
d− 1
d

(1− od,n(1))

The above expression is w.h.p. the value of
the spectral relaxation for MaxCut, therefore qual-
itatively this conjecture expresses that degree nδ

SoS cannot significantly beat the basic spectral
relaxation.

We should remark that, with respect to the goal
of showing that SoS cannot significantly outper-
form the Goemans-Williamson relaxation, random
instances are not integrality gap instances. The
main difficulty in comparing (even degree-4) SoS
to the Goemans-Williamson algorithm seems to be
the lack of a candidate hard input distribution.

Evidence for this conjecture comes from the
fact that the only property required of the random
inputs d1, . . . , dm was that norm bounds hold for
the graph matrices with Hermite polynomial en-
tries. When the variables {du,i} are sampled i.i.d
from some other distribution, if we use graph
matrices for the orthonormal polynomials under
that distribution and assume suitable bounds on
the moments of the distribution, similar norm
bounds hold [AMP20]. When du ∈R Sn or another
distribution for which the coordinates are not i.i.d,
it seems likely that if we use e.g. the basis of

spherical harmonics, then similar norm bounds
hold.
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