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Abstract—The Sum-of-Squares (SoS) hierarchy
of semidefinite programs is a powerful algorithmic
paradigm which captures state-of-the-art algorithmic
guarantees for a wide array of problems. In the av-
erage case setting, SoS lower bounds provide strong
evidence of algorithmic hardness or information-
computation gaps. Prior to this work, SoS lower
bounds have been obtained for problems in the
“dense" input regime, where the input is a collection
of independent Rademacher or Gaussian random vari-
ables, while the sparse regime has remained out of
reach. We make the first progress in this direction by
obtaining strong SoS lower bounds for the problem of
Independent Set on sparse random graphs. We prove
that with high probability over an Erd6s-Rényi ran-
dom graph G ~ G, s with average degree d > log?n,

degree-Dg,s SoS fails to refute the existence of an
. . . n .
independent set of size k = () 7\/3(1%”)([)505)50) in

G (where cj is an absolute constant), whereas the true
size of the largest independent set in G is O (%).

Our proof involves several significant extensions
of the techniques used for proving SoS lower bounds
in the dense setting. Previous lower bounds are based
on the pseudo-calibration heuristic of Barak et al.
[FOCS 2016] which produces a candidate SoS solution
using a planted distribution indistinguishable from
the input distribution via low-degree tests. In the
sparse case the natural planted distribution does admit
low-degree distinguishers, and we show how to adapt
the pseudo-calibration heuristic to overcome this.

Another notorious technical challenge for the
sparse regime is the quest for matrix norm bounds.
In this paper, we obtain new norm bounds for graph
matrices in the sparse setting. While in the dense
setting the norms of graph matrices are characterized
by the size of the minimum vertex separator of the
corresponding graph, this turns not to be the case
for sparse graph matrices. Another contribution of our
work is developing a new combinatorial understand-
ing of structures needed to understand the norms of
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I. INTRODUCTION

The Sum-of-Squares (SoS) hierarchy is a pow-
erful convex programming technique that has led
to successful approximation and recovery algo-
rithms for various problems in the past decade.
S0S captures the best-known approximation algo-
rithms for several classical combinatorial optimiza-
tion problems. Some of the additional successes
of SoS also include Tensor PCA [HSS15], [MSS16]
and Constraint Satisfaction Problems with addi-
tional structure [BRS11], [GS11]. SoS is a family
of convex relaxations parameterized by degree; by
taking larger degree, one gets a better approxi-
mation to the true optimum at the expense of
a larger SDP instance. Thus we are interested in
the tradeoff between degree and approximation
quality. For an introduction to Sum-of-Squares al-
gorithms, see [BS16], [FKP19].

The success of SoS on the upper bound side
has also conferred on it an important role for
the investigation of algorithmic hardness. Lower
bounds for the SoS hierarchy provide strong un-
conditional hardness results for several optimiza-
tion problems and are of particular interest when
NP-hardness results are unavailable. An important
such setting is the study of average case com-
plexity of optimization problems, where relatively
few techniques exist for establishing NP-hardness
results [ABB19]. In this setting, a study of the SoS
hierarchy not only provides a powerful benchmark



for average-case complexity, but also helps in un-
derstanding the structural properties of the prob-
lems: what makes them algorithmically challeng-
ing? Important examples of such results include an
improved understanding of sufficient conditions
for average-case hardness of CSPs [KMOW17]
and lower bounds for the planted clique problem
[BHK"16].

An important aspect of previous lower bounds
for the SoS hierarchy is that they apply for the
so-called dense setting, which corresponds to cases
when the input distribution can be specified by a
collection of independent Rademacher or Gaussian
variables. In the case of planted clique, this corre-
sponds to the case when the input is a random
graph distributed according to G, 1 i.e. specified

by a collection of (3) independent Rademacher

variables. In the case of CSPs, one fixes the struc-
ture of the lower bound instance and only con-
siders an instance to be specified by the signs of
the literals, which can again be taken as uniformly
random {—1,1} variables. Similarly, recent results
by a subset of the authors [PR20] for tensor PCA
apply when the input tensor has independent
Rademacher or Gaussian entries. The techniques
used to establish these lower bounds have proved
difficult to extend to the case when the input dis-
tribution naturally corresponds to a sparse graph (or
more generally, when it is specified by a collection
of independent sub-gaussian variables, with Orlicz
norm w(1) instead of O(1)).

In this paper we are interested in extending
lower bound technology for SoS to the sparse
setting, where the input is a graph with average
degree d < n/2. We use as a case study the
fundamental combinatorial optimization problem
of independent set. For the dense case d = n/2,
finding an independent set is equivalent to find-
ing a clique and the paper [BHK'16] shows an
average-case lower bound against the Sum-of-
Squares algorithm. We extend the techniques in-
troduced there, namely pseudocalibration, graph
matrices, and the approximate decomposition into
positive semidefinite matrices, in order to show
the first average-case lower bound for the sparse
setting. We hope that the techniques developed in
this paper offer a gateway for the analysis of SoS
on other sparse problems. Section IV lists several
such problems that are likely to benefit from an
improved understanding of the sparse setting.

Sample G ~ G, 4 as an Erd6s-Rényi random

graph! with average degree d, where we think of
d < n. Specializing to the problem of independent
set, a maximum independent set in G has size:

Fact I.1 ([COE15], [DM11], [DSS16]). W.h.p. the max
independent set in G has size (1+04(1)) - 294 . n.

The value of the degree-2 SoS relaxation for
independent set equals the Lovédsz ¢ function,
which is an upper bound on the independence
number «(G), by virtue of being a relaxation. For
random graphs G ~ G, 4/, this value is larger by
a factor of about v/d than the true value of a(G)
with high probability.

Fact 1.2 ([COO05]). W.h.p. 8(G) = @(%).

We will prove that the value of higher-degree
S0S is also on the order of 1/+/d, rather than n/d,
and thereby demonstrate that the information-
computation gap against basic SDP/spectral algo-
rithms persists against higher-degree SoS.

A. Our main results

The solution to the convex relaxations obtained
via the SoS hierarchy can be specified by the so-
called “pseudoexpectation operator".

Definition L3 (Pseudoexpectation). A degree-D
pseudoexpectation operator IE is a linear functional on
polynomials of degree at most D (in n variables) such
that E[1] = 1 and E[f?] > 0 for every polynomial f
with degree at most D /2. A pseudoexpectation is said
to satisfy a polynomial constraint ¢ = 0 if E[f - g] = 0
for all polynomials f when deg(f -g) < D.

In considering relaxations for independent set
of a graph G = (V, E), with variables x, being the
0/1 indicators of the independent set, the SoS re-
laxation searches for pseudoexpectation operators
satisfying the polynomial constraints

YoeV, x,z, =x, and V(u,v)€E x,x,=0

The objective value of the convex relaxation is
given by the quantity E[Y,cy xp] = Ypev E[xo].
For the results below, we say that an event occurs
with high probability (w.h.p.) when it occurs with
probability at least 1 — O(1/n¢) for some ¢ > 0.
The following theorem states our main result.

Theorem 1.4. There is an absolute constant cy €
IN such that for sufficiently large n € IN and

Unfortunately our techniques do not work for a random d-
regular graph. See the open problems (Section IV).



d € [(logn)?,n%), and parameters k, Dsys satisfying

n
k < ,
~ DQ-logn-dl/?

it holds w.h.p. for G = (V,E) ~ G, 4/, that there
exists a degree-Dg,g pseudoexpectation satisfying

YoeV,x2=x, and Y(u,v)€E,x,x, =0,

and objective value E[Y ey xo] > (1 —o0(1))k.
Remark 1.5. This is a170n-trivial lower bound when-

q1/2 o
ever Dg,g < <logn .

Remark 1.6. It suffices to set co = 20 for our current
proof. We did not optimize the tradeoff in Dg,s with
k, but we did optimize the log factor (with the hope of
eventually removing it).

Remark L7. Using the same technique, we can
prove an n©) SoS-degree lower bound for all d €

[/, n1 ]

For n® < d < n%5, the theorem gives a poly-
nomial 7° SoS-degree lower bound. For smaller
d, the bound is still strong against low-degree
SoS, but it becomes trivial as Dg,g approaches
(d1/2/logn)/¢ or d approaches (logn)? since k
matches the size of the maximum independent
set in G, hence there is an actual distribution
over independent sets of this size (the expectation
operator for which is trivially is also a pseudoex-
pectation operator).

The above bound says nothing about the “al-
most dense” regime d € [n'"¢,n/2]. To handle
this regime, we observe that our techniques, along
with the ideas from the )(log n)-degree SoS bound
from [BHK"16] for the dense case, prove a lower
bound for any degree d > n®.

Theorem 1.8. For any e1,e5 > 0 there is 6 > 0, such
that for d € [n*1,n/2] and k < dl/z#gz, it holds w.h.p.
for G = (V,E) ~ Gy 4/, that there exists a degree-
(6logd) pseudoexpectation satisfying

Yo € V,x%:xv

and objective value E[Y ey xo] > (1 —0(1))k.

and ¥(u,v) € E,x,;xy =0,

In particular, these theorems rule out
polynomial-time certification (i.e. constant degree
SoS) for any d > polylog(n).

B. Our approach

Proving lower bounds for the case of sparse
graphs requires extending the previous techniques
for SoS lower bounds in multiple ways. The work

closest to ours is the planted clique lower bound
of [BHK"16]. The idea there is to view a random
graph G ~ G,, 1, as a random input in {—1,1}®),
and develop a canonical method called “pseudo-
calibration” for obtaining the pseudoexpectation E
as a function of G. The pseudocalibration method
takes the low-degree Fourier coefficients of 1 based
on a different distribution on inputs G (with large
planted cliques), and takes higher degree coeffi-
cients to be zero. This is based on the heuristic
that distribution G,, 1/, and the planted distribu-
tion are indistinguishable by low-degree tests. The
pseudoexpectation obtained via this heuristic is
then proved to be PSD (i.e., to satisfy E[f2] > 0)
by carefully decomposing its representation as a
(moment) matrix A. One then needs to estimate
the norms of various terms in this decomposition,
known as “graph matrices", which are random
matrices with entries as low-degree polynomials
(in {—1,1}®)), and carefully group terms together
to form PSD matrices.

Each of the above components require a sig-
nificant generalization in the sparse case. To begin
with, there is no good planted distribution to work
with, as the natural planted distribution (with a
large planted independent set) is distinguishable
from G, 4/, via low-degree tests! While we still use
the natural planted distribution to compute sorme
pseudocalibrated Fourier coefficients, we also trun-
cate (set to zero) several low-degree Fourier coef-
ficients, in addition to the high-degree coefficients
as in [BHK'16]. In particular, when the Fourier
coefficients correspond to subgraphs where certain
vertex sets are disconnected (viewed as subsets of
(3)), we set them to zero. This is perhaps the most
conceptually interesting part of the proof, and we
hope that the same “connected truncation” will be
useful for other integrality gap constructions.

The technical machinery for understanding
norm bounds, and obtaining PSD terms, also re-
quires a significant update in the sparse case.
Previously, norm bounds for graph matrices were
understood in terms of minimum vertex separators
for the corresponding graphs, and arguments for
obtaining PSD terms required working with the
combinatorics of vertex separators [AMP20]. How-
ever, the number of vertices in a vertex separator
turns out to be insufficient to control the relevant
norm bounds in the sparse case. This is because
of the fact that unlike random =+1 variables, their
p-biased analogs no longer have Orlicz norm O(1)
but instead O(ﬁ), which results in both the ver-

tices as well as edges in the graph playing a role in



the norm bounds. To handle this, we characterize
the norms of the relevant random matrices in terms
of vertex separators, where the cost of a separator
depends on the number of vertices and also the
number of induced edges. Another issue is that the
estimates on spectral norms obtained via the trace
power method can fluctuate significantly due to
rare events (presence of some dense subgraphs),
and we need to carefully condition on the absence
of these events.

A more detailed overview of our approach is
presented in Section III.

C. Related work

Several previous works prove SoS lower
bounds in the dense setting, when the inputs
can be viewed as independent Gaussian or
Rademacher random variables. Examples include
the planted clique lower bound of Barak et al.
[BHK"16], CSP lower bounds of Kothari et al.
[KMOW17], and the tensor PCA lower bounds
[HKP*17], [PR20]. The technical component of
decomposing the moment matrix in the dense case,
as a sum of PSD matrices, is developed into a
general “machinery” in a recent work by a subset
of the authors [PR20]. A different approach than
the ones based on pseudocalibration, which also
applies in the dense regime, was developed by
Kunisky [Kun20].

For the case of independent set in random
sparse graphs, many works have considered the
search problem of finding a large independent
set in a random sparse graph. Graphs from
Gy d4/n are known to have independent sets of
size (1 +04(1)) - 214 . 5 with high probability,
and it is possible to find an independent set of
size (1 + o04(1)) - % n, either by greedily
taking a maximal independent set in the dense
case [GM75] or by using a local algorithm in
the sparse case [Wor95]. This is conjectured to be
a computational phase transition, with concrete
lower bounds against search beyond % -n for
local algorithms [RV17] and low-degree polyno-
mials [Wei20]. The game in the search problem is
all about the constant 1 vs 2, whereas our work
shows that the integrality gap of SoS is signifi-
cantly worse, on the order of v/d. Lower bounds
against search work in the regime of constant d
(though in principle they could be extended to
at least some d = w(1) with additional technical
work), while our techniques require d > log(n).
For search problems, the overlap distribution of two
high-value solutions has emerged as a heuristic

indicator of computational hardness, whereas for
certification problems it is unclear how the overlap
distribution plays a role.

Norm bounds for sparse graph matrices were
also obtained using a different method of ma-
trix deviation inequalities, by a subset of the au-
thors [RT20].

The work [BBK'20] constructs a computation-
ally quiet planted distribution that is a candidate
for pseudocalibration. However, their distribution
is not quite suitable for our purposes. % 3

A recent paper by Pang [Pan2l] fixes a
technical shortcoming of [BHK"16] by construct-
ing a pseudoexpectation operator that satisfies
“Y wev Xuv = k” as a polynomial constraint (whereas
the shortcoming was E[Y,cy x5] > (1 —0(1))k like
we have here).

II. TECHNICAL PRELIMINARIES
A. The Sum-of-Squares hierarchy

The Sum-of-Squares (SoS) hierarchy is a hier-
archy of semidefinite programs parameterized by
its degree D. We will work with two equivalent
definitions of a degree-D SoS solution: a pseu-
doexpectation operator E (Definition 1.3) and a
moment matrix. For a degree-D solution to be well
defined, we need D to be at least the maximum
degree of all constraint polynomials. The degree-
D SoS algorithm checks feasibility of a polyno-
mial system by checking whether or not a degree-
D pseudoexpectation operator exists. This can be
done in time 7°(P) via semidefinite programming
(ignoring some issues of bit complexity [RW17]).
To show an SoS lower bound, one must construct
a pseudoexpectation operator that exhibits the de-
sired integrality gap.

1) Moment matrix: We define the moment ma-
trix associated with a degree-D pseudoexpectation
E.

Definition II.1 (Moment Matrix of E). The moment

matrix A = A(E) associated to a pseudoexpectation E

2[BBK*20] provide evidence that their distribution is hard
to distinguish from G, 4/, with probability 1 —o(1) (it is not
“strongly detectable”). However, their distribution is distin-
guishable with probability (1), via a triangle count (it is
”wgakly detectable”). In SoS pseudocalibration, this manifests
as [E[1] = ©4(1). We would like the low-degree distinguishing
probability to be o(1) i.e. E[1] = 14 04(1) so that normalizing
by E[1] does not affect the objective value.

3 Another issue is that their planted distribution introduces
noise by adding a small number of edges inside the planted
independent set.



is a (<E§]/2) X (<[D"]/2) matrix with rows and columns
indexed by subsets of 1,] C [n] of size at most D /2

and defined as
AL ] :=E [xf : xf} .

To show that a candidate pseudoexpectation
satisfies E[f2] > 0 in Definition 1.3, we will rely
on the following standard fact.

Fact I1.2. In the definition of pseudoexpectation, Defini-
tion 1.3, the condition E[f?] > 0 for all deg(f) < D/2
is equivalent to A > 0.

B. p-biased Fourier analysis

Since we are interested in sparse Erdos-Rényi
graphs in this work, we will resort to p-biased
Fourier analysis [O’D14, Section 8.4]. Formally, we
view the input graph G ~ Gy, as a vector in
{0,1}2) indexed by sets {i,j} for i,j € [n],i # j,
where each entry is independently sampled from
the p-biased Bernoulli distribution, Bernoulli(p).
Here, by convention G, = 1 indicates the edge e
is present, which happens with probability p. The
Fourier basis we use for analysis on G is the set
of p-biased Fourier characters (which are naturally
indexed by graphs H on [n]).

Definition II.3. x denotes the p-biased Fourier char-
acter,

1-p

1—p p
For H a subset or multi-subset of ([Z]), let xy(G) :=
HeGH X(Ge)‘

We will also need the function 1 — G, which
indicates that an edge is not present.

Definition Il4. For H C ([g]), let 17(G) =

HeGH(l - Gé’)'

When H is a clique, this is the independent set
indicator for the vertices in H.

Proposition IL5. For e € {0,1}, 1+ 1/%){@) =
ﬁ(l — e). Therefore, for any H C ([g]),
\T|/2
P > _ 1
— x1(G) = ——g - 1a(G)-
T;H(l_p (1—pH H
C. Ribbons and graph matrices

A degree-D pseudoexpectation operator is a

[n]
vector in R(<D), The matrices we consider will

have rows and columns indexed by all subsets
of [n]. We express the moment matrix A in terms
of the Fourier basis on Gy,,. A particular Fourier
character in a particular matrix entry is identified
by a combinatorial structure called a ribbon.

Definition II.6 (Ribbon). A ribbon is a tuple
R = (V(R),E(R), AR, Br), where (V(R),E(R)) is an
undirected multigraph without self-loops, V(R) C [n],
and Ag,Br C V(R) Let Cg := V(R) \ (AR U BR).

Definition I1.7 (Matrix for a ribbon). For a ribbon
R, the matrix MR has rows and columns indexed by
all subsets of [n] and has a single nonzero entry,

xe®)(G) I=Ag,]=Br
0 Otherwise

MRg[I,]] :{

Definition II.8 (Ribbon isomorphism). Two ribbons
R, S are isomorphic, or have the same shape, if there
is a bijection between V(R) and V(S) which is a
multigraph isomorphism between E(R),E(S) and is a
bijection from AR to As and Br to Bs. Equivalently,
letting Sy, permute the vertex labels of a ribbon, the two
ribbons are in the same S,-orbit.

If we ignore the labels on the vertices of a
ribbon, what remains is the shape of the ribbon.

Definition II.9 (Shape). A shape is an equiva-
lence class of ribbons with the same shape. Each
shape has associated with it a representative & =
(V(a),E(a), Uy, Vi), where Uy, Vy, C V(a). Let
Wy :=V(a) \ (Ux U Vp).

Definition I1.10 (Embedding). Given a shape « and
an injective function ¢ : V() — [n], we let ¢(a) be
the ribbon obtained by labeling « in the natural way.

Definition IL1.11 (Graph matrix). For a shape a, the
graph matrix M, is

My = )

injective @:V (a)—[n]

M (n)-

Injectivity is an important property of graph
matrices. On the one hand, we have a finer par-
tition of ribbons than allowing all assignments,
and this allows more control. On the other hand,
injectivity introduces technically challenging “in-
tersection terms” into graph matrix multiplication.
A graph matrix is essentially a sum over all ribbons
with shape a (this is not entirely accurate as each
ribbon will be repeated |Aut(«)| times).

Definition II1.12 (Automorphism). For a shape «,
Aut(w) is the group of bijections from V(«) to itself
such that all vertices in U, UV, are fixed and the map
is a multigraph automorphism on E(a) and a graph
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Figure 1. An example of a ribbon and a shape

automorphism on F(«). Equivalently, Aut(a) is the
stabilizer subgroup (of Sy) of any ribbon of shape .

Fact I1.13.

My = )

injective @:V (a)—[n]

= |Aut(a)| Z Mg
R ribbon of shape w

Mo ()

Example II.14 (Ribbon). As an example, consider
the ribbon in Fig. 1. We have Agr = {1,2},Br =
{3},V(R) = {1,2,3},E(R) = {{1,2},{2,3}}. The
Fourier character is Xp, = X13X23- And finally, Mg
is a matrix with rows and columns indexed by subsets of
[n], with exactly one nonzero entry Mg({1,2},{3}) =

X{13)X{2,3)- Succinctly,
column {3}

Mr = yow {1,2} —

Example II.15 (Shape). In Fig. 1, consider the
shape « as shown. We have U, = {uy,uz},Vy =
{v1}, Wo = @,V(x) = {uq,uz,v1}, and E(a) =
{{u1, 01}, {uo, v1}}. My is a matrix with rows and
columns indexed by subsets of [n]. The nonzero entries
will have rows and columns indexed by {a1,ay} and
by respectively for all distinct aj,ay,by € [n], with
the corresponding entry being My ({a1,a2},{b1}) =
Xay by Xay by - Succinctly,

column {by}

Ma = yow {ay,a5} —

Definition I1.16 (Proper). A ribbon or shape is proper
if it has no multi-edges. Otherwise, it is improper. Let
muly (e) be the multiplicity of edge e in ribbon or shape
Q.

An improper ribbon or shape with an edge
e of multiplicity 2, e.g., has a squared Fourier
character x2. Since this is a function on {0,1},
by expressing it in the Fourier basis an improper
ribbon or shape can be decomposed in a unique
way into a linear combination of proper ones,
which we call linearizations.

Definition I1.17 (Linearization). Given an improper
ribbon or shape w, a linearization B is a proper ribbon
or shape such that mulg(e) < muly(e) for all e € E(«).

Definition I1.18 (Isolated vertex). For a shape a, an
isolated vertex is a degree-0 vertex in W,. Let I, denote
the set of isolated vertices in w. Similarly, for a ribbon
R, the isolated vertices are denoted Ig.

We stress that an isolated vertex never refers
to degree-0 vertices inside Uy U V.

Definition I1.19 (Trivial shape). A shape « is trivial
if V(o) = Uy = Vy and E(a) = Q.

M, for a trivial « is the identity matrix re-
stricted to the degree-|U,| block.

Definition II.20 (Transpose). Given a ribbon R or
shape w, we define its transpose by swapping Ar and
Br (resp. Uy and V). Observe that this transposes the
matrix for the ribbon/shape.

III. AN OVERVIEW OF THE PROOF TECHNIQUES

Here, we will give a sketch of the proof tech-
niques that we utilize in our SoS lower bound.
Recall that we are given a graph G ~ G, where
d = pn is the average degree and our goal is to
show that for any constant ¢ > 0, Dgo5 ~ n® for
some 6 > 0, degree Dgog SoS thinks there exists
an independent set of size k ~ W
whereas the true independent set has size ~ "¢
for some absolute constant cy.

To prove the lower bound, we review the
Planted Clique lower bound [BHK'16] and de-
scribe the obstacles that need to be overcome in
the sparse setting.

A. Modified pseudocalibration

Since SoS is a convex program, the goal of
an SoS lower bound is to construct a dual ob-
ject: a set of pseudomoments E[x%] for each small



S C V(G), which are summarized in the moment
matrix. The moment matrix must (i) obey the prob-
lem constraints (ii) be SoS-symmetric, and (iii) be
positive semidefinite (PSD). Following the recipe
of pseudocalibration introduced by [BHK ' 16], we
can produce a candidate moment matrix which is
guaranteed to satisfy the first two conditions, while
like all other SoS lower bounds, the hard work
remains in verifying the PSDness of the moment
matrix. Pseudocalibration has been successfully
exploited in a multitude of SoS lower bound ap-
plications, e.g., [BHK"16], [KMOW17], [MRX20],
[GJJ20], [PR20]. So, this is a natural starting point
for us.

Failure of pseudocalibration: The first obsta-
cle we overcome is the lack of a planted distri-
bution. Pseudocalibration requires a planted and
random distribution which are hard to distinguish
using the low-degree, likelihood ratio test (i.e. FE[1]
is bounded whp) [HKP*17], [Hop18]. In the case
of sparse independent set, we have the following
natural hypothesis testing problem with which one
may hope to pseudocalibrate.

- Null Hypothesis: Sample a graph G ~ Gy, .

- Alternate Hypothesis: Sample a graph G ~
Gu,p- Then, sample a subset S C [n] where
each vertex is chosen with probability % Then,
plant an independent set in S, i.e. remove all
the edges inside S.

In the case of sparse independent set, the
naive planted distribution 7s distinguishable from
a random instance via a simple low-degree test —
counting 4-cycles. In all uses of pseudocalibration
that we are aware of, the two distributions being
compared are conjecturally hard to distinguish by
all polynomial-time algorithms. We are still search-
ing for a suitable planted distribution for sparse
independent set, and we believe this is an exciting
question on its own.

Fixing pseudocalibration via connected trun-
cation: To get around with this issue, we close
our eyes and “pretend” the planted distribution
is quiet, ignoring the obvious distinguisher, and
make a “connected truncation” of the moment ma-
trix to remove terms which correspond to counting
subgraphs in G. What remains is that E[x%] is
essentially independent of the global statistics of G.
It should be pointed out here that this is inherently
distinct from the local truncation for weaker hi-
erarchies (e.g. Sherali-Adams) where the moment
matrix is an entirely local function [CM18]. In
contrast, our E[x®] may depend on parts of the

graph that are far away from S, in fact, even up to
radius 1%, exceeding the diameter of the random
graph!

At this point, the candidate moment matrix
can be written as follows.

()]
\V@L o\
rrG) ) T

Here, S ranges over all proper shapes a of
appropriately bounded size such that all vertices
of w are connected to Uy, U V,. The latter property is
the important distinction from standard pseudo-
calibration and will turn out to be quite essential
for our analysis.

Using connected objects to take advantage of
correlation decay is also a theme in the cluster
expansion from statistical physics (see Chapter 5
of [FV18]). Although not formally connected with
connected truncation, the two methods share some
similar characteristics.

B. Approximate PSD decompositions, norm bounds
and conditioning

Continuing, to show the moment matrix is
PSD, Planted Clique [BHK'16] performs an ap-
proximate factorization of the moment matrix in
terms of graph matrices. A crucial part of this
approach is to identify "dominant" and "non-
dominant" terms in the approximate PSD decom-
position. Then, the dominant terms are shown to
be PSD and the non-dominant terms are bounded
against the dominant terms. In this approach, a
crucial component in the latter step is to control
the norms of graph matrices.

Tighter norm bounds for sparse graph matri-
ces: Existing norm bounds in the literature [MP16],
[AMP20] for graph matrices have focused exclu-
sively on the dense setting G, ;,,. Unfortunately,
while these norm bounds apply for the sparse
setting, they’re too weak to be useful. Consider the
case where we sample G ~ G, and try to bound
the spectral norm of the centered adjacency matrix.

n(l—p) )
VP
whereas the true norm is O(y/n) regardless of

d. This is even more pronounced when we use
shapes with more vertices. So, our first step is to
tighten the existing norm bounds in the literature
for sparse graph matrices.

Existing norm bounds give a bound of O(

For a shape «, a vertex separator S is a subset
of vertices such that there are no paths from U, to



Vi in &\ S. It is known from previous works that
in the dense case the spectral norm is controlled
by the number of vertices in the minimum vertex
separator between U, and V,. Assuming a does
not have isolated vertices and U, NV, = @ for sim-
plicity, the norm of M, is given by the following
expression, up to polylog factors and the leading
coefficient of at most |V («)[IV @1,

V()| =[V(S)|

[ My < max Vn

vertex separator S

However, it turns out this is no longer the con-
trolling quantity if the underlying input matrix is
sparse, and tightly determining this quantity arises
as a natural task for our problem, and for future
attack on SoS lower bounds for other problems
in the sparse regime. To motivate the difference,
we want to point out this is essentially due to the
following simple observation. For k > 2,

[E[xH]| =1
(W5
d

k—2
k 1-r)
[E[YT]] < < ; )

for X a uniform =+1 bit and Y a p-biased ran-
dom variable Ber(p). This suggests that in the
trace power method, there will be a preference
among vertex separators of the same size if some
contain more edges inside the separator (because
vertices inside vertex separators are “fixed” in the
dominant term in the trace calculation, and thus
edges within the separator will contribute some

large power of /%, creating a noticeable influence

on the final trace). Finally, this leads us to the
following characterization for sparse matrix norm
bounds, up to polylog factors and the leading
coefficient of at most |V (a)|!V @],

M| < max yaV@IVO) (

vertex separator S

We prove this via an application of the trace
method followed by a careful accounting of the
large terms.

The key conceptual takeaway is that we need
to redefine the weight of a vertex separator to
also incorporate the edges within the separator, as
opposed to only considering the number of ver-
tices. We clearly distinguish these with the terms
Dense Minimum Vertex Separator (DMVS) and Sparse
Minimum Vertex Separator (SMVS). When p = %,
these two bounds are the same up to lower order
factors.

E(S
T\
p

Approximate PSD decomposition: We then
perform an approximate PSD decomposition of
the graph matrices that make up A. The general
factoring strategy is the same as [BHK "16], though
in the sparse regime we must be very careful
about what kind of combinatorial factors we allow.
Each shape comes with a natural “vertex decay”
coefficient arising from the fractional size of the
independent set and an “edge decay” coefficient
arising from the sparsity of the graph. The vertex
decay coefficients can be analyzed in a method
similar to Planted Clique (which only has vertex
decay). For the edge decay factors, we use novel
charging arguments. At this point, the techniques
are strong enough to prove Theorem L8, an SoS-
degree O (logn) lower bound for d > n®. The
remaining techniques are needed to push the SoS
degree up and the graph degree down.

Conditioning: In our analysis, it turns out
that to obtain strong SoS lower bounds in the
sparse regime, a norm bound from the vanilla
trace method is not quite sufficient. Sparse random
matrices” spectral norms are fragile with respect
to the influence of an unlikely event, exhibiting
deviations away from the expectation with polyno-
mially small probability (rather than exponentially
small probability, like what is obtained from a
good concentration bound). These “bad events”
are small dense subgraphs present in a graph
sampled from Gy, p.

To get around this, we condition on the high
probability event that G has no small dense sub-
graphs. For example, for d = n!~¢ whp every small
subgraph S has O(|S|) edges (even up to size n°).
For a shape which is dense (i.e. v vertices and
more than O(v) edges) we can show that its norm
falls off extremely rapidly under this conditioning.
This allows us to throw away dense shapes, which
is critical for controlling combinatorial factors that
would otherwise dominate the moment matrix.

This type of conditioning is well-known: a
long line of work showing tight norm bounds for
the simple adjacency matrix appeals to a similar
conditioning argument within the trace method
[BLM15], [Bor19], [FM17], [DMO*19]. We instan-
tiate the conditioning in two ways. The first is
through the following identity.

Observation IIL.1. Given a set of edges E C ([Z}), if
we know that not all of the edges of E are in E(G) then

|E|—|E|
”) X/ (G)

Xe(G) = —p

E/CE:E/#£E (



This simple observation can be applied re-
cursively to replace a dense shape a by a sum
of its sparse subshapes {B}. The second way we
eliminate dense shapes is by using a bound on the
Frobenius norm which improves on the trace cal-
culation for dense shapes. After conditioning, we
can restrict our attention to sparse shapes, which
allows us to avoid several combinatorial factors
which would otherwise overwhelm the “charging”
argument.

Handling the subshapes {B} requires some
care. Destroying edges from a shape can cause
its norm to either go up or down: the vertex
separator gets smaller (increasing the norm), but
if we remove edges from inside the SMVS, the
norm goes down. An important observation is we
do not necessarily have to apply Observation IIL.1
on the entire set of edges of a shape, but we can
also just apply it on some of the edges. We will
choose a set of edges Res(a) C E(«) that “protects
the minimum vertex separator” and only apply
conditioning on edges outside Res(«). In this way
the norm of subshapes § will be guaranteed to be
less than a. The fact that it’s possible to reserve
such edges is shown separately for the different
kind of shapes we encounter in our analysis

Finally, we are forced to include certain dense
shapes that encode indicator functions of indepen-
dent sets. These shapes must be factored out and
tracked separately throughout the analysis.* After
handling all of these items we have shown that A
is PSD.

IV. OPEN PROBLEMS

Several other problems on sparse graphs are
conjectured to be hard for SoS and it is our hope
that the techniques here can help prove that these
problems are hard for SoS. These problems include
MaxCut and k-Coloring. For MaxCut in particular,
since there are no constraints other than booleanity
of the variables it may be possible to truncate
away dense shapes, which we could not do here
due to the presence of independent set indicator
functions.

Another direction for further research is to
handle random graphs which are not Erdés-Rényi.
Since the techniques here depend on graph matrix
norms, one would hope that they generalize to dis-
tributions such as d-regular graphs for which low-

4One may ask if we could definitionally get rid of dense
shapes, like we did for disconnected shapes via the connected
truncation, but these dense shapes are absolutely necessary.

degree polynomials are still concentrated. How-
ever, in the non-iid setting, it is not clear what the
analogue of graph matrices should be used due to
the lack of a Fourier basis that is friendly to work
with.

The polynomial constraint “) ,cy xp = k” is
not satisfied exactly by our pseudoexpectation op-
erator. It’s possible that techniques from [Pan21]
can be used to fix this.

The parameters in this paper can likely be im-
proved. One direction is to remove the final factor
of logn from our bound. This would allow us to
prove an SoS lower bound for the “ultrasparse
regime” d = O(1) rather than d > log?n. This
setting is interesting as there is a nontrivial algo-
rithm that finds an independent set of half optimal
size [GS17], [RV17]. Furthermore, this algorithm is
local in a sense that we don’t define here. It would
be extremely interesting if this algorithm could be
converted into a rounding algorithm for constant-
degree SoS.

Another direction is to improve the depen-
dence on Dgys. While our bound has a ol Docg)
dependence on Dsg, we conjecture that the depen-
dence should actually be (1 — p)©(Psos), If so, this
would provide strong evidence for the prevailing
wisdom in parameterized complexity and proof
complexity that a maximum independent set of
size k requires n?K) time to find/certify (corre-
sponding to SoS degree Q(k)).
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