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Abstract
Cohen, Peri and Ta-Shma [11] considered the following question: Assume the vertices of an expander
graph are labelled by ±1. What “test” functions f : {±1}t → {±1} can or cannot distinguish t

independent samples from those obtained by a random walk? [11] considered only balanced labellings,
and proved that for all symmetric functions the distinguishability goes down to zero with the spectral
gap λ of the expander G. In addition, [11] show that functions computable by AC0 circuits are
fooled by expanders with vanishing spectral expansion.

We continue the study of this question. We generalize the result to all labelling, not merely
balanced ones. We also improve the upper bound on the error of symmetric functions. More
importantly, we give a matching lower bound and show a symmetric function with distinguishability
going down to zero with λ but not with t. Moreover, we prove a lower bound on the error of functions
in AC0 in particular, we prove that a random walk on expanders with constant spectral gap does
not fool AC0.
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43:2 Expander Random Walks: The General Case and Limitations

1 Introduction

Expanders are sparse undirected graphs that have many desirable pseudorandom properties.
A formal definition can be given in several equivalent ways and here we consider the algebraic
definition where an undirected graph G = (V, E) is a λ-spectral expander if the second
largest eigenvalue of its normalized adjacency matrix M is bounded above by λ. For
simplicity, we only consider regular graphs, in which case M is also the random walk matrix
of G. Expander graphs are among the most useful combinatorial objects in theoretical
computer science, pivotal in derandomization [18, 29], complexity theory [37, 1, 12] and
coding theory [32, 22, 33, 13] to name a few. Many works in the literature have studied
explicit constructions of expander graphs (see, e.g., [24, 25, 7, 30, 6, 26]) and utilized their
pseudorandom properties. We refer the reader to the excellent expositions [17, 35] and to
Chapter 4 of [36].

Expanders can be thought of as spectral sparsifiers of the clique. Let J be the normalized
adjacency matrix of the n-vertex complete graph with self-loops, i.e., the n × n matrix
with all entries equal to 1

n . One can express the normalized adjacency matrix M of G as
M = (1 − λ)J + λE for some operator E with spectral norm bounded by 1. As such, one
can hope to substitute a sample of two independent vertices with the “cheaper” process
of sampling an edge from an expander and using its two (highly correlated) end-points.
This is captured, e.g., by the expander mixing lemma [2]. This idea also appears in many
derandomization results, [18, 3, 28, 29, 31, 9].

A useful generalization of the above is to consider not just an edge but rather a length
t − 1 random walk (where the length is measured in edges) on the expander as a replacement
to t independent samples of vertices. For concreteness, consider a labelling val : V → {±1}
of the vertices with mean µ = E [val(V )]. Quite a lot is known about random walks on
expanders. Next, we elaborate on the hitting property of expanders [1, 10, 19, 5] as well as
the expander Chernoff bound [1, 10, 19, 14, 16].

The hitting property states that for every set A ⊂ V , a length t − 1 random walk is
contained in A with probability at most (µ + λ)t. For λ ≪ µ, this bound is close to µt -
the probability of the event with respect to t independent samples. The expander hitting
property corresponds to a random walk “fooling” the AND function, that is, for every λ-
spectral expander and every labelling val as above, the AND function cannot distinguish
with good probability labels obtained by t independent samples from labels obtained by
taking a length t − 1 random walk. The fundamental expander Chernoff bound states that
the number of vertices in A visited by a random walk is highly concentrated around its
measure |A|/|V |. The expander Chernoff bound corresponds to fooling functions indicating
whether the normalized Hamming weight of the input is concentrated around some number
µ. Perhaps surprisingly, it was shown that even the highly sensitive PARITY function is
fooled by a random walk on expanders (this was noted independently by Alon in 1993 for
arbitrarily long walks, Wigderson and Rozenman in 2004 for length 1 walks, and [33] where
the result appears).

Sometimes a random walk is not a good replacement to independent samples. To see
this, suppose G is a λ-spectral expander for some constant λ, that has a cut A ⊂ V with
|A| = |V |

2 and |E(A, A)| ⩾ µ|A| for µ ⩾ 1
2 + Ω̃(λ). Such graphs exist (see [15, Section 7]). If

one samples t independent vertices (v1, . . . , vt) from the graph, we expect (vi, vi+1) to cross
the cut about half the time, and by the Chernoff bound the actual number of cut crossings
is highly concentrated around the mean. In contrast, when we take a random walk on the
graph we expect to cross the cut a µ-fraction of the time, and intuitively the number of cut
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crossings should be concentrated around µ.1 Thus, the simple test function that counts the
number of times we cross the cut and apply a threshold at 1

2 + τ for some τ = Θ̃(λ) should
distinguish with probability close to 1 between a random walk and independent samples.

This brings to the forefront a natural question that was recently raised by [11] (see also
the work of Guruswami and Kumar [15] who considered a related question).

What test functions does a random walk on an expander fool?

Formally, we compare two distributions on the set {±1}t. The first “ideal” distribution
is obtained by sampling independently and uniformly at random t vertices v1, . . . , vt and
returning (val(v1), . . . , val(vt)). If we let µ = E[val(V )], the latter induces the distribution Uµ

t

in which the t bits are independent and each has mean µ. The second distribution, denoted
by RWG,val, is obtained by taking a length t − 1 random walk on the graph, namely, sample
v1 uniformly at random from V , and then for i = 2, 3, . . . , t, sample vi uniformly at random
from the set of neighbors of vi−1, and return (val(v1), . . . , val(vt)). Denote

EG,val(f) = |E f(RWG,val) − E f(Uµ
t )| .

Informally, EG,val(f) measures the distinguishability between these two distributions as
observed by the test function f on the graph G with respect to the labelling val. We wish to
have a discussion that holds uniformly on all λ-spectral expanders (on any number of vertices)
and for every labelling. The bound, however, is expected to depend on the expectation µ of
the labelling. We denote by Eλ,µ(f) the supremum of EG,val(f) over all λ-spectral expanders
G, on any number of vertices, and all labelling functions val : V → {±1} with E[val(V )] = µ.

The work [11] focuses on the case µ = 0. One result shows that

Eλ,0(MAJ) ⩽ O

(
λ2
√

t

)
(1.1)

Their main result states that for each balanced labelling, for every symmetric function
f : {±1}t → {±1},

Eλ,0(f) = O(λ · log3/2(1/λ)). (1.2)

This readily implies, for the specific case of balanced labelling, a central limit theorem with
respect to the total variation distance, that vanishes as λ → 0, thus strengthens previous
results that considered the Kolmogorov distance [20, 23, 21] instead of the total variation
distance.

To summarize the state of knowledge so far:
Every symmetric function is fooled with error probability going down to zero with the
spectral gap λ (see Equation (1.2)), where µ = 0.
The MAJ function is fooled with error probability going down to zero with t even when λ

is fixed (see Equation (1.1)); and,
The PARITY, AND, OR functions are fooled with error probability going down to zero
exponentially fast with t even when λ is fixed.

Accordingly, let us say an error function vanishes with λ, if the error function is vanishing as
λ → 0. Similarly, we say an error function vanishes with t, if for some fixed λ ⩾ 0, it is going
down to zero together with t.

1 To show such a concentration one needs to invoke a Chernoff bound for a walk on the corresponding
directed line graph.

ICALP 2022



43:4 Expander Random Walks: The General Case and Limitations

[11] further considers non-symmetric functions. In particular, they analyze test functions
that are computable by AC0 circuits and prove that if f is computable by a size-s depth-d
circuit then

Eλ,0(f) = O(
√

λ · (log s)2(d−1)). (1.3)

Thus, for balanced labelling, every test function in AC0 cannot distinguish t independent
labels from those obtained by a random walk on a λ-spectral expander provided λ is taken
sufficiently small. This result can be thought of as an analog of Braverman’s celebrated
result [8] (see also [34]) that studies the pseudorandomness of k-wise independent distributions
with respect to AC0 test functions. However, for it to be meaningful, the spectral gap λ

should be small.

1.1 Our contribution
The work of [11] leaves several open problems. First, and foremost, while [11] show the error
function of any symmetric function vanishes with λ, it leaves open the possibility that a
better convegence exists and, perhaps, the error function of any symmetric function vanishes
with t, i.e., for some fixed λ, the error function goes down to zero together with the walk
length t. Indeed, this is the case with the AND, OR and PARITY functions, where the
error vanishes exponentially fast with t, and the MAJ function where the error goes down
polynomially in t (see Equation (1.1)). Similarly, one may ask whether the error of AC0

functions decays faster than Equation (1.3) and allows for larger spectral gaps λ then dictated
by the above bound.

Our first result is that there exists a symmetric function for which the error function does
not vanish with t:

▶ Theorem 1. There exists a family of symmetric functions (ft)t∈N where ft : {±1}t → {±1}
such that for every λ there is a λ-spectral expander G = (V, E), and a labelling val : V → {±1}
with E[val(V )] = 0, such that for all t, EG,val(ft) = Ω(λ).

To explain how we obtain such a lower bound on a function f , we first review how [11]
obtained their upper bound. The key idea in [11] is to expand the test function f under
consideration in the Fourier basis. The question of fooling general test functions then
reduces to the study of test functions that are Fourier characters. Now, let G denote the
adjacency matrix of the graph (i.e, M = 1

d G). Also, for a labelling ℓ : V → {±1} let
us denote by P the diagonal matrix with ℓ(i) in the i’th element on the diagonal. One
can check that for the parity function χ[t] : {±1}t → {±1}, χ[t](x) =

∏t
i=1 xi, we get

E[χ[t](RWG,val)] = 1T
(∏t

i=1 PG
)

1,, where 1 = ( 1√
n

, . . . , 1√
n

).
In general,

E[χS(RWG,val)] =1T

(
t∏

i=1
P δS(i)G

)
1, (1.4)

where δS(i) is 1 if i ∈ S an 0 otherwise. In [11] it is shown how to upper bound this expression
for any λ-expander G and µ-biased function val.

For the proof of Theorem 1 we choose a λ-expander G and a labelling function val such
that we can exactly express Equation (1.4) in terms of λ, S. To do so, we first choose G to
be a Cayley graph over an Abelian group, and we use the fact that the eigenvectors of such
a graph correspond to the characteristic functions of the underlying group, regardless of
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the set of generators used. One disadvantage in choosing a Cayley graph over an Abelian
group is that it cannot give constant degree exapnders, though this is not a concern to us
because with logarithmic degree we can have vanishing second eigenvalue. Next, we choose
the underlying group to be Zn

2 . This guarantees that the characteristic functions of Zn
2 , and

therefore also all the entries in all eigenvectors, are Boolean, i.e., either 1 or −1. Finally,
we choose the labelling function val to correspond to the entries of the eigenvalue with the
second largest eigenvalue.

The above choices guarantee that P1 = v2 and Pv2 = 1 (because P 2 = I). Also G1 = 1
and Gv2 = λv2. It follows that no matter what S is,

(∏t
i=1 P δS(i)G

)
1 belongs to the two

dimensional subspace Span (1, v2) and, furthermore, has a closed expression as a function of
t, λ and S.

We finally choose a function f for which we can estimate the expression we get. We
choose f to have high mass on its second Fourier level. It turns out that we can take f to be,
e.g., the threshold function that returns one if the number of ones exceeds the mean by one
standard deviation, and this function has error function that is of the order λ, and, therefore,
in particular, vanishes with λ but not with t. It is interesting to note that, in contrast, the
MAJ function, that has threshold at the mean, vanishes with t.

Next, using the same graph and labelling we also prove that constant spectral expansion
does not suffice to fool AC0 circuits. In fact, the bound obtained by [11] is tight up to a
polynomial. Let AC(d) denote the class of all languages with polynomial size boolean circuit
of depth at most d. Then:

▶ Theorem 2. There exists a constant ε > 0 such that the following holds. For every integer
d ⩾ 3 there exist td, cd ∈ N, and a family of functions (ht)td⩽t∈N ⊂ AC(d) such that the
following holds. For every λ ⩾ cd

logd−2 t
there is a λ-spectral expander G = (V, E) and a

labelling val : V → {±1} with E[val(V )] = 0 such that EG,val(ht) ⩾ ε.

The choice of function f here is more complicated. The key idea is that two adjacent
bits obtained by such a random walk are λ correlated. Thus, evaluating a function f on
the parity of consecutive bits obtained by a random walk is the same as applying the noise
operator Tλ(f) (see Claim 17 for an exact statement). Having this key fact, we construct
small depth functions that are highly sensitive to small noise. We first start with the Tribes
function composed with XOR on two adjacent bits. This gives a function in AC(3) with
large distinguishability. We then give a recursive construction of a family of functions
hd ∈ AC(d + 1) for every d, where in each step we increase the depth by one and the noise
sensitivity of hd by a logarithmic factor. This gives the desired dependence of EG,val(hd) on d.

Finally, we also tighten and simplify the upper bounds given in [11]. We prove:

▶ Theorem 3. For every symmetric function f : {±1}t → {±1}, all µ ∈ (−1, 1) and
0 < λ < 1−|µ|

128e it holds that

Eλ,µ(f) ⩽ 124√
1 − |µ|

· λ.

Theorem 3 improves upon the corresponding theorem in [11] in two ways:

1. First, the results in [11] are obtained only for balanced test functions f . In contrast,
Theorem 3 holds for every test function f with arbitrary bias µ.

2. Second, the bound stated in Theorem 3 improves upon the bound in Equation (1.2) by
removing the log3/2(1/λ) factor.

ICALP 2022



43:6 Expander Random Walks: The General Case and Limitations

The extension of the results of [11] to arbitrary bias µ is obtained by modifying the
Fourier basis we work with. For a given bias µ we choose a basis that consists of

∏
i∈S

xi−µ√
1−µ2

for all S ⊆ [t]. The improvement of the poly-logarithmic factor is achieved by using a more
direct Fourier analysis argument. The proof strategy of [11] is to bound the error of weight
indicator functions, and use it to handle weights around the mean. Then the argument
invokes the expander Chernoff bound for bounding the remaining weights. Our approach
does not go through analyzing weight indicator functions nor it uses the expander Chernoff
bound. Instead, we use a very simple bound on the Fourier mass of symmetric functions,
which gives a simpler and better analysis.

1.2 Open problems

We conclude the introduction with several open problems that follow from our work.

1. Can one combine the distribution obtained by a random walk on an expander with
another pseudorandom distribution to obtain stronger results for functions in AC0. For
example, does permuting the values of the random walk with a pairwise independent
permutation yields a distribution that better fools AC0?

2. As explained before, our lower bounds are obtained for a graph G that is a Cayley graph
over an Abelian group. It is well-known that such a Cayley graph with constant expansion
gap, has degree that depends on the number of vertices. Thus, a natural question is
whether we can give similar lower bounds for constant degree graphs.

3. Continuing this line of thought, it is still possible that there is a family of graphs that
fools all symmetric functions with error going down to zero with t. I.e., that while for
some graphs (like Cayley graphs over Zn

2 ) there are bad labelling functions, for some
other expander graphs, no such bad labellings exist. Similarly, it is possible that for some
specific expanders better bounds exist for test functions in AC0. Finding such graphs is
a compelling goal that might require studying additional properties of graphs beyond
expansion.

4. Finally, there is still a polynomial gap between the value of λ that fools functions in AC0

and the corresponding lower bound we obtain. Any progress towards closing this gap will
be interesting.

1.3 Paper organization

In Section 2 we give some background, mainly on Fourier Analysis. In Section 3 we recall
the basic framework of [11], except that we do it for arbitrary bias µ rather than just bias
µ = 0. In Section 4 we choose the graph and labelling function that we use for the lower
bounds, and for which we can compute exactly the error induced by characters. In Section 5
we prove Theorem 1 and show that threshold function at one standard deviation away from
the mean has error that goes down to zero with λ but not with t. In Section 6 we prove
a special case of Theorem 2 for the case of d = 3. The full proof of Theorem 2 appears
in the full version of the paper. Then we turn to give a better upper bound on the error
function and in show a better and tight upper bound with a simpler proof. Finally we show
the threshold function about the mean (if µ = 0 it is MAJ) and weight indicator functions
do vanish with t. The last two results appear in the full version of the paper.
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2 Preliminaries

We let [n] = {1, . . . , n}, 1 ∈ Rn denote the all 1s vector, i.e., 1 = (1, . . . , 1)T ∈ Rn. We
let 1 ∈ Rn denote the normalized vector of 1, i.e 1 = 1√

n
· 1, we also use J := 11T. When

we write ∥ · ∥ we always refer to the L2-norm. Unless stated otherwise, log x = log2 x.
Throughout the paper, we make use of the following well known inequalities about binomial
coefficients. Let a ⩾ b ⩾ 1 be integers. Then, ( a

b )b ⩽
(

a
b

)
⩽ ( ea

b )b.

2.1 Fourier analysis
Consider the space of functions f : {±1}t → R, along with the inner product

⟨f, g⟩ = 2−t
∑

x∈{±1}t

f(x)g(x).

It is a well-known fact that the set {χS(x) | S ⊆ [t]}, where χS(x) =
∏

i∈S

xi, forms an

orthonormal basis with respect to this inner product, which is called the Fourier basis. Thus
every function f : {±1}t → R can be uniquely represented as f(x) =

∑
S⊆[t]

f̂(S)χS(x), where

f̂(S) ∈ R.
In this work we consider other bases, with respect to a similar inner product. Let µ ∈

[−1, 1], and denote by Uµ
t the distribution over {±1}t where each bit is chosen independently

with expectation µ. Define ⟨f, g⟩µ = Ex∼Uµ
t

[f(x)g(x)]. Denote by σ =
√

1 − µ2, and let
χµ

S(x) =
∏

i∈S
xi−µ

σ . It is easy to see that the set {χµ
S(x) | S ⊆ [t]}, forms an orthonormal

basis with respect to this new inner product, which is called the µ-biased Fourier basis. To
see this, note that, by design, for S ̸= ∅, E[χµ

S ] = 0 and E[(χµ
S)2] = 1. Similarly to the

standard Fourier basis, every function f : {±1}t → R can be uniquely represented as

f(x) =
∑

S⊆[t]

f̂µ(S)χµ
S(x),

where f̂µ(S) ∈ R.
We say that a function f : {±1}t → R is symmetric if for every permutation σ ∈ St,

f(x1, . . . , xt) = f(xσ(1), . . . , xσ(t)). It is not hard to show that if f is symmetric, then for
every S1, S2 ⊆ [t], with |S1| = |S2|, f̂µ(S1) = f̂µ(S2). This allows us to use the following
definition for symmetric functions: f̂µ(k) =

∣∣∣f̂µ([k])
∣∣∣, which is the absolute value of the

Fourier coefficients of any weight k character. For more details on biased Fourier analysis see
Chapter 8 of [27].

3 The basic framework extended to arbitrary balanced tests

[11] reduced the analysis of the error function of a balanced test function f to the analysis of
the error function of characters. In this section we restate this framework, but do it in a
more general way that applies to any test function f , no matter how balanced it is.

Let G = (V, E) be a regular λ-spectral expander, and let val : V → {±1} be a labelling
of the vertices of G with E[val(V )] = µ. Let t ⩾ 1 be an integer. We want to compare two
distributions on {±1}t:

The distribution obtained by sampling t vertices v1, . . . , vt uniformly and independently at
random, and outputting the ordered tuple (val(v1), . . . , val(vt)). Note that this is the same
distribution as sampling a sequence of t elements in {±1} independently from a µ-biased
distribution, that is a distribution with expectation µ. We denote this distribution by Uµ

t .

ICALP 2022
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RWG,val is the distribution obtained by sampling a random length t − 1 path v1, . . . , vt

in G and outputting the ordered tuple (val(v1), . . . , val(vt)). Equivalently, sample v1
uniformly at random from V . Then, for i = 2, 3, . . . , t, sample vi uniformly at random
from the neighbours of vi−1.

Let f : {±1}t → {±1} be a test function. Expand f in the µ-biased Fourier basis,

f(x) =
∑

S⊆[t]

f̂µ(S)χµ
S(x).

▶ Lemma 4. Let G = (V, E) be a regular λ-spectral expander, and let val : V → {±1} be a
labelling of the vertices of G with E[val(V )] = µ. Then, for every function f : {±1}t → R,

EG,val(f) ⩽
∑
S⊆T
S ̸=∅

|f̂µ(S)|EG,val(χµ
S).

Proof. Since E[val] = µ, for S ̸= ∅, E[χµ
S(Uµ

t )] = 0 and thus E[f(Uµ
t )] = f̂µ(∅). Hence,

EG,val(f) = |E f(RWG,val) − E f(Uµ
t )| =

∣∣∣ ∑
S⊆T
S ̸=∅

f̂µ(S) E[χµ
S(RWG,val)]

∣∣∣.
For S ̸= ∅, EG,val(χµ

S) = | E[χµ
S(RWG,val)]|. The proof follows by the triangle inequality. ◀

Lemma 4 motivates us to consider parity test functions which we do next. We start
by introducing some notation. For an integer k ⩾ 2, we define the family Fk of subsets of
[k − 1] that, informally, consists of all subsets for which at least one of every two consecutive
elements participate in the set. We also require the “end points” 1, k − 1 to participate in
the set. Formally, we define

Fk = {I ⊆ [k − 1] | {1, k − 1} ⊆ I and ∀j ∈ [k − 2] {j, j + 1} ∩ I ̸= ∅} . (3.1)

So, for example, F6 consists of the elements {1, 3, 5}, {1, 2, 4, 5} as well as of all subsets of
[5] that have as a subset any one of these two elements, namely, {1, 2, 3, 5}, {1, 3, 4, 5} and
{1, 2, 3, 4, 5}. We extend the definition in the natural way to k = 0, 1 by setting F0 = F1 = ∅.

▶ Definition 5. For integers t ⩾ 1, 2 ⩽ k ⩽ t and j ∈ [k − 2] define the map

∆j :
(

[t]
k

)
→ N

as follows. Let S ⊆ [t] of size k ⩾ 2 and denote S = {s1, . . . , sk} where s1 < · · · < sk. For
i ∈ [k − 1] write δi = si+1 − si. Define

∆j(S) =min(δj , δj+1).

▶ Definition 6. For an integer t ⩾ 1 define the map ∆ :
( [t]
⩾2
)

→ N as follows. Let S ⊆ [t] of
size k ⩾ 2. For k = 2 we define ∆(S) = ∆1(S), and for k ⩾ 3,

∆(S) =
k−2∑
i=1

∆i(S). (3.2)

We prove:
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▶ Proposition 7. Let G = (V, E) be a regular λ-spectral expander and val : V → {±1} a
labelling of the vertices of G with E[val(V )] = µ. Then, for every 1 ⩽ k ⩽ t and S ⊆ [t] of
size k,

EG,val(χµ
S) ⩽

(
1 + |µ|
1 − |µ|

) k−1
2

·
∑

I∈Fk

λ

∑
j∈I

∆j(S)
⩽

(
1 + |µ|
1 − |µ|

) k−1
2

2k · λ∆(S)/2.

We remark that for sets of size |S| = 1 the sum is taken over the empty index set F1 and so
equals 0. We also note that when |µ| = 1 the error is trivially zero, while our bound tends to
infinity.

Proof. Consider any non-empty subset S ⊆ [t] of size |S| = k. As E[χS(Uµ
t )] = 0 we have

that

EG,val(χµ
S) = |E[χµ

S(RWG,val)]| .

We wish to express the right hand side algebraically. Let n = |V | and identify V with [n] in
an arbitrary way. Let P be the n × n diagonal matrix with

Pv,v = val(v) − µ√
1 − µ2

for every v ∈ [n]. We slightly abuse notation and denote the random walk matrix (that is,
the normalized adjacency matrix) of G also by G. Define δS(i) = 1 if i ∈ S and δS(i) = 0
otherwise and observe that

E[χµ
S(RWG,val)] = 1T

(
t∏

i=1
P δS(i)G

)
1,

where, recall, 1 is the all one vector normalized by 1√
n

. Indeed, informally, at the i’th step
we take a random step using G and then, depending on i being an element of I or not, we
multiply by P or by I, respectively. Thus, we can write

E[χµ
S(RWG,val)] = 1T Gt−sk

(
k−1∏
i=1

PG∆i

)
PGs11 = 1T

(
k−1∏
i=1

PG∆i

)
P1, (3.3)

where we have used the regularity of G, namely, G1 = 1.
Next, we use the spectral decomposition of G. As G is a λ-spectral expander we know

that G = J + λE where ∥ E ∥ ⩽ 1. Similarly, As Gℓ is a λℓ-spectral expander we have that
Gℓ = J + λℓEℓ for some operator Eℓ with bounded norm ∥ Eℓ ∥ ⩽ 1. Thus,

k−1∏
i=1

PG∆i =
∑

I⊆[k−1]

k−1∏
i=1

PBi(I), (3.4)

where

Bi(I) =
{

λ∆iE∆i
i ∈ I;

J otherwise.

For I ⊆ [k − 1] let

eI = 1T

(
k−1∏
i=1

PBi(I)
)

P1.
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Equations (3.3) and (3.4) imply that

E[χS(RWG,val)] =
∑

I⊆[k−1]

eI . (3.5)

Not all subsets I ⊆ [k − 1] contribute non-zero values eI to the sum. Indeed, if k − 1 ̸∈ I

then Bk−1(I) = J and so

eI = 1T

(
k−2∏
i=1

PBi(I)
)

(PJ)P1 = 1T

(
k−2∏
i=1

PBi(I)
)

(P11T )P1

= 1T

(
k−2∏
i=1

PBi(I)
)

P1(1T P1) = 0,

because

1T P1 = 1√
1 − µ2

·
∑
i∈[n]

val(i) − µ

n
= E[val(V )] − µ√

1 − µ2
= 0.

Similarly eI = 0 for I not containing 1. Moreover, if j, j + 1 are both not contained in I for
some j ∈ [k − 2] then

eI = 1T

(
j−1∏
i=1

PBi(I)
)

(PBj(I))(PBj+1(I))

 k−2∏
i=j+2

PBi(I)

P1

= 1T

(
j−1∏
i=1

PBi(I)
)

(PJ)(PJ)

 k−2∏
i=j+2

PBi(I)

P1 = 0,

Because

(PJ)(PJ) = (P11T )(P11T ) = P1(1T P1)1T = 0.

Thus, any subset I ⊆ [k − 1] that may contribute to the sum in Equation (3.5) is contained
in Fk as defined in Equation (3.1).

Next, we look at I ∈ Fk. We have that

eI = 1T

(
k−1∏
i=1

PBi(I)
)

P1 ⩽
k−1∏
i=1

∥PBi(I)∥ ⩽ ∥P∥k−1
∏
i∈I

∥Bi(I)∥. (3.6)

Recall that for every i ∈ I, Bi(I) = λ∆iE∆i
and that ∥E∆i

∥ ⩽ 1. Thus,
∏

i∈I ∥Bi(I)∥ ⩽∏
i∈I λ∆i . Also, Let M be the n × n diagonal matrix defined by Mv,v = val(v) for all v ∈ [n].

Note that P = 1√
1−µ2

(M − µI). As ∥M∥ = 1, using the triangle inequality we get

∥P∥ ⩽
∥M∥ + ∥µI∥√

1 − µ2
⩽

1 + |µ|√
1 − µ2

=

√
1 + |µ|
1 − |µ|

. (3.7)

Equation (3.6) and Equation (3.7) together imply that eI ⩽
(

1+|µ|
1−|µ|

) k−1
2 ∏

i∈I λ∆i . This
proves the first inequality in the proposition.

To prove the second inequality consider I ∈ Fk, and notice that

2
∑
i∈I

∆i ⩾
k−2∑
i=1

δi∆i + δi+1∆i+1 ⩾
k−2∑
i=1

min(∆i, ∆i+1),

because for every i ∈ [k − 2], at least one of i, i + 1 is in I. To complete the proof of the
second inequality notice also that |Fk| ⩽ 2k−1. ◀
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4 Choosing the graph

In this section we choose an expander graph for which we obtain a precise analytic formula
for the expectation of characters under the input distribution given by the random walk.

▷ Claim 8. Let G = ([n], E) be a regular graph with second largest eigenvalue λ2 and
corresponding eigenvector v2. Further assume all coordinates in v2 have ±1 values. Define
val2 : [n] → {±1} by val2(i) = v2(i) . Let S ⊆ [n], |S| = k. Let P be the diagonal matrix
corresponding to val2, that is, Pi,i = val2(i) = v2(i). Then,(

k−1∏
i=1

PG∆i

)
P1 =

λ
∑(k−2)/2

i=1
∆2i+1

1 k ∈ Neven,

λ
∑(k−1)/2

i=1
∆2i+1v2 k ∈ Nodd.

Proof. We will prove the claim by induction. For the base case k = 1 it holds that∏k−1
i=1 PG∆i = I, and the statement follows as IP1 = v2 = λ0v2. For the induction

step, note that(
k∏

i=1
PG∆i

)
P1 = PG∆k

(
k−1∏
i=1

PG∆i

)
P1.

If k ∈ Neven than k − 1 ∈ Nodd and, using the induction hypothesis we get that

PG∆k

(
k−1∏
i=1

PG∆i

)
P1 = PG∆k λ

∑(k−2)/2
i=1

∆2i+1v2 = λ
∑k/2

i=1
∆2i+1

1,

which is what we wanted to prove. The proof in the case that k ∈ Nodd is similar. ◁

▶ Definition 9. For S ⊆ [t] denote ∆odd(S) =
∑⌊(|S|−1)/2⌋

i=1 ∆2i+1(S).

▶ Corollary 10. Let G = ([n], E) and val2 : [n] → {±1} be as above. Then,

E[χS(RWG,val2)] =
{

λ∆odd(S) |S| ∈ Neven,

0 |S| ∈ Nodd.

Proof. Note that Pv2 = 1 and P1 = v2. As before, it holds that

E[χS(RWG,val2)] = 1T

(
k−1∏
i=1

PG∆i

)
P1 = 1

n
1

T

(
k−1∏
i=1

PG∆i

)
P1.

Using Claim 8, we conclude that,

E[χS(RWG,val2)] =
{

λ∆odd(S) · 1
n1

T
1 k ∈ Neven,

λ
∑k−1/2

i=1
∆2i+1 · 1

n1
Tv2 k ∈ Nodd.

The fact that G is regular implies that 1Tv2 = 0, which finishes the case that k is odd; the
case that k is even is handled similarly by noting that 1T

1 = n. ◀

We now give an example to such a graph G. Cayley graphs over an Abelian group
commute and share an orthonormal basis of eigenvectors, which is known to be the set of all
characters of the group. If the group is Zn

2 , the eigenvectors have entries that are 2nd roots
of unity, i.e., have ±1 entries as desired. The eigenvalues have a direct correspondence to the
set of generators of the Cayley graph. Building on that, [4] proved that for every 0 < λ < 1
of the form 1

m for m ∈ N and m ⩽ n ∈ N, there is a Cayley graph on the n dimensional
boolean cube, with λ2 = λ. The degree of this graph depends both on n and λ.

From now on we let G be a regular expander with second largest eigenvalue λ and
corresponding eigenvector with ±1 entries, and we let val2 reflect that eigenvector.
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5 A lower bound for symmetric functions

In this section we prove the following theorem.

▶ Theorem 11. Let 0 < c0 ⩽ 1, and let G, val2 be as in the previous section, for 0 < λ <
c2

0
12800·e . Let f : {±1}t → {±1} be a symmetric function with

∣∣∣f̂(2)
∣∣∣ ⩾ c0√

(t
2)

. Then,

EG,val2(f) ⩾ 0.001c0λ.

The idea behind the proof is to show that when choosing G, val2 as in Section 4, the
upper bound given by [11] is tight (up to the redundant poly logarithmic factor). We will
use the following claim from [11].

▶ Lemma 12 ([11], Lemma 4.4). Denote

βk =
∑

S⊆[t]
|S|=k

E[χS(RWG,val)]. Then, βk ⩽ 2k

(
t − 1
⌊ k

2 ⌋

)(
λ

1 − λ

)⌈ k
2 ⌉

. (5.1)

Using these notations we are now ready to prove Theorem 11.

Proof of Theorem 11. Denote by B2 = {{i, i + 1} | i ∈ [t − 1]}, note that |B2| = t − 1 and
that for every S ∈ B2 it holds that ∆odd(S) = 1. Recall that EG,val2(χS) = 0 if |S| = 1,
therefore,

EG,val2(f) =

∣∣∣∣∣∣
∑

S⊆[t],|S|⩾2

f̂(|S|) E[χS(RWG,val)]

∣∣∣∣∣∣ (5.2)

⩾
∣∣∣f̂(2)

∣∣∣
∣∣∣∣∣∣

∑
S⊆[t],|S|=2

E[χS(RWG,val)]

∣∣∣∣∣∣−

∣∣∣∣∣∣
∑

S⊆[t],|S|>2

f̂(|S|)EG,val2(χS)

∣∣∣∣∣∣ . (5.3)

However, by Corollary 10,

∣∣∣f̂(2)
∣∣∣
∣∣∣∣∣∣

∑
S⊆[t],|S|=2

E[χS(RWG,val)]

∣∣∣∣∣∣ ⩾
∣∣∣f̂(2)

∣∣∣ ∑
S∈B2

λ ⩾ c0
√

2
√

t − 1
t

λ ⩾
c0√

2
λ.

Furthermore,∣∣∣∣∣∣
∑

S⊆[t],|S|>2

f̂(S)EG,val2(χS)

∣∣∣∣∣∣ ⩽
∑
k⩾3

∣∣∣f̂(k)
∣∣∣βk ⩽

∑
k⩾3

1√(
t
k

)2k

(
t − 1
⌊ k

2 ⌋

)(
λ

1 − λ

)⌈ k
2 ⌉

,

where in the last inequality we used Lemma 12. The right hand side of the above equation is
bounded above by∑

k⩾3
(16e)k/2λk/2 ⩽ 124λ1.5.

We omit the calculations. Assume that λ ⩽ c2
0

128e·100 . Then Equation (5.2) yields

EG,val2(f) ⩾ c0√
2

λ − 124λ1.5 ⩾ 0.04c0λ. ◀



G. Cohen, D. Minzer, S. Peleg, A. Potechin, and A. Ta-Shma 43:13

In order to prove Theorem 1, we are left with providing a function f that satisfies the
conditions of Theorem 11. Next, we show that the threshold function at one standard
deviation distance from the mean has non-vanishing error in t.

We use the following definitions and claim. For integers t and w ∈ {0, 1, . . . , t} let
1w : {±1}t → {0, 1} be the function indicating whether the weight of the input is w. That
is, 1w(x1, . . . , xt) = 1 if |{i ∈ [t] | xi = 1}| = w and 1w(x1, . . . , xt) = 0 otherwise. We also
define 1>w : {±1}t+1 → {0, 1} be the function indicating whether the weight of the input is
greater w. That is, 1w(x1, . . . , xt) = 1 if

∑
i xi > w and 1w(x1, . . . , xt) = 0 otherwise.

▷ Claim 13. For every S ⊆ [t], it holds that

(̂1w)µ(S) =
̂(1>w)µ(S ∪ {0})√

1 − µ2
.

Proof.

1w(x1, . . . , xt) = 1>w(1, x1, . . . , xt) − 1>w(0, x1, . . . , xt)

=
∑

S⊆{0,...,t}

̂(1>w)µ(S)χµ
S(1, x1, . . . , xt) −

∑
S⊆{0,...,t}

̂(1>w)µ(S)χµ
S(0, x1, . . . , xt)

=
∑

S⊆{0,...,t}

̂(1>w)µ(S)(χµ
S(1, x1, . . . , xt) − χµ

S(0, x1, . . . , xt))

∑
S⊆{0,...,t}

0∈S

̂(1>w)µ(S) 1√
1 − µ2

χµ
S\{0}(x1, . . . , xt),

and the claim follows. ◁

Proof of Theorem 1. Take f = 1>w for w = t−
√

t
2 . We claim that

∣∣∣f̂(2)
∣∣∣ > c0√

(t
2)

, for some

absolute constant c0 > 0 and therefore by Theorem 11, EG,val(ft) ⩾ c · λ for some constant c.
Indeed, by Claim 13 we have f̂(2) = 1̂w(1) for 1w : {±1}t−1 → {0, 1}. To compute 1̂w(1) we
apply [11, Claim 4.9] for w = t−

√
t

2 and get

∣∣∣1̂w(1)
∣∣∣ =

∣∣∣∣∣∣ 1
2t−1

(
t−1
w

)(
t−1

1
) ⌊ 1

2 ⌋∑
ℓ=0

(−1)1−ℓ

(
w

ℓ

)(
t − 2w − 1

1 − 2ℓ

)∣∣∣∣∣∣ = 1
2t−1

(
t−1
w

)
t − 1 (t − 1 − 2w).

Substituting w = t−
√

t
2 , together with the fact that

( t−1
t−

√
t

2

)
⩾ Ω

(
1√
t
2t
)

, concludes the
proof. ◀

6 A lower bound for AC0 tests

In this section we use the noise operator. The following definitions and claims appear in [27].

▶ Definition 14. Let ρ ∈ [−1, 1]. For a fixed x ∈ {±1}t we write y ∼ Nρ(x) to denote the
random string y that is drawn as follows: for each i ∈ [t] independently,

yi =
{

xi with probability 1+ρ
2 ,

−xi with probability 1−ρ
2 .
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▶ Definition 15. Let ρ ∈ [−1, 1]. The noise operator Tρ is the linear operator on functions
{±1}t → R defined by Tρf(x) = Ey∼Nρ(x) f(y). The fact that the operator is linear follows
directly from the linearity of the expectation.

Notice that T1(f) = f whereas T0(f) is the constant function T0(f) = E f . We make use
of the following lemma.

▶ Lemma 16. For every function f : {±1}t → R it holds that: T̂ρf(S) = f̂(S)ρ|S|.

The starting point of this section is to connect the expectation of f under a random walk
and the noise function Tλ(f), we prove this claim in the full version of the paper.

▷ Claim 17. For f : {±1}t → R define f̃ : {±1}2t → R by

f̃(x1, x2, . . . , x2t−1, x2t) = f(x1 · x2, . . . , x2t−1 · x2t).

Then, E[f̃(RWG,val2)] = (Tλf)(1).

Proof. For {s1, . . . , sk} = S ⊆ [t] denote 2S : = {2s1 − 1, 2s1, . . . , 2sk − 1, 2sk} ⊆ [2t]. Note
that ∆odd(2S) = |S|.

f̃(x1, x2, . . . , x2t−1, x2t) = f(x1 · x2, . . . , x2t−1 · x2t)

=
∑

S⊆[t]

f̂(S)χS(x1 · x2, . . . , x2t−1 · x2t)

=
∑

S⊆[t]

f̂(S)χ2S(x1, x2, . . . , x2t−1, x2t).

Therefore,

E[f̃(RWG,val2)] =
∑

S⊆[t]

f̂(S) E[χ2S(RWG,val2)]

=
∑

S⊆[t]

f̂(S)λ|S|

=
∑

S⊆[t]

f̂(S)λ|S|χS(1),

which is equal to Tλ(f)(1) by Lemma 16. For the second equality we used Corollary 10. ◁

6.1 A lower bound for the Tribes function composed with IP
We now construct a function in AC(3), that satisfies Theorem 2. Later on we extend
the construction inductively to obtain the general theorem. The idea behind the depth-3
construction is the following. We look for a function f = f(x1, . . . , xt) ∈ AC(2) such that

| E[f(Ut)] − Tλ(f)(1)| ⩾ λ · log t. (6.1)

We then look at f̃(y1, . . . , y2t) = f(y1 · y2, . . . , y2t−1 · y2t) ∈ AC(3) and note that:
E[f̃(Ut)] = E[f(Ut)] as the product of two uniform ±1 bits is uniform; However,
by Claim 17, E[f̃(RWG,val2)] = Tλ(f)(1).
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Together,

Eλ(f̃) ⩾ EG,val2(f̃) = | E[f̃(Ut)] − E[f̃(RWG,val2)]| = | E[f(Ut)] − Tλ(f)(1)] ⩾ λ · log t,

which in turns implies Theorem 2, for d = 3.
We take f to be the Tribes function. Fix t; we choose parameters r, h such that r ·h ⩽ t by

taking h = log(t) − log log(t)2 and r = ⌊ t
log t ln(2)⌋. Partition [t] into disjoint sets I1, . . . , Ir,

each of size h. We define f : {±1}t → {0, 1} to be the Tribes function on t bits and define g

to be the related function

f(z1, . . . , zt) =
∨

i∈[r]

∧
j∈Ii

zj , g(z1, . . . , zt) =
∧

i∈[r]

∨
j∈Ii

zj .

Here, −1 is interpreted as “true”, 1 is interpreted as “false”. Note that f, g ∈ AC(2).
As before, we choose G to be a Cayley graph on the boolean hypercube with λ2 = λ and

val = val2.

▷ Claim 18. The functions f and g are almost balanced with respect to the uniform
distribution. Quantitatively, E[f ], E[g] ∈

[
1
2 − O

(
log t

t

)
, 1

2 + O
(

log t
t

)]
.

Proof. From De Morgan’s identity we have g(x1, . . . , xt) = 1−f(x1, . . . , xt), so E[g] = 1−E[f ]
and so it is enough to prove the statement for f . To this end write

E[f ] = Pr[f = 1] = 1 −
r∏

i=1
Pr

∧
j∈Ii

zj = 0


= 1 −

r∏
i=1

1 − Pr

∧
j∈Ii

zj = 1

 = 1 −
(

1 − 1
2h

)r

.

Using the fact that 1 − ε = e−ε+O(ε2) we obtain that

1 −
(

1 − 1
2h

)r

= 1 − e−2−hr+O(2−2hr)

= 1 − e− ln 2+O( log t
t ) = 1

2 + Θ
(

log t

t

)
,

as desired. ◁

Denote by µp the product distribution over {±1}t, wherein for each i ∈ [t] we have that
Pr[zi = −1] = p. Abusing notation denote µp(f) = Ex∼µp

[f(x)].

▷ Claim 19. Let p = 1−ε
2 and assume ε ⩾ k

log(t) . Then,

µp(f), µp(g) ⩽ e−k/10.

Proof. First, we analyze µp(f). By definition it is equal to

Pr
µp

[f = 1] = 1 − (1 − ph)r = 1 − (1 − 2−h(1 − ε)h)r

= 1 −

(
1 − 2−h

(
1 − k

log t

)h
)r

⩽ 1 −
(
1 − 2−he−k

)r
.

2 Recall that log t = log2 t
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Using (1 − δ)r ⩾ 1 − rδ, we get that the above expression is bounded by r2−he−k ⩽ e−k.
Next, we upper bound µp(g). By definition, it is equal to

Pr
µp

[g = 1] ⩽ (1 − (1 − p)h)r = (1 − 2−h(1 + ε)h)r =
(

1 − 2−h

(
1 + k

log t

)h
)r

.

Using (1 + δ)r ⩾ δr for δ > 0, we get that this is at most

(1 − 2−hk)r ⩽ e−r2−hk ⩽ e−k/10. ◁

We now prove Theorem 2 for d = 3. We take h(x1, y1, . . . , xt, yt) = f(x1 · y1, . . . , xt · yt).
h ∈ AC(3) because f ∈ AC(2).

On the one hand, by Claim 17, E[h(RWG,val2)] = Tλ(f)(1) = µ 1−λ
2

(f). By Claim 19, and
using λ ⩾ k

log t , we get that E[h(RWG,val2)] < e−k/10.
On the other hand, By Claim 18, E[h] = E[f ] ⩾ 1

2 − O( log t
t ).

Together, h is as desired.
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