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Adaptive Graph-Constrained Group Testing

Saurabh Sihag"”, Member, IEEE, Ali Tajer

Abstract—This paper considers the problem of adaptive group
testing for isolating up to k defective items from a population of
size n. There exist restrictions or preferences which determine how
the items can be pooled for testing. A graphical model formalizes
the pooling restrictions and preferences. Such graph-constrained
group testing is investigated in three settings: populations with
defectives, populations facing the potential presence of inhibitors,
and populations with community structures. Adaptive group test-
ing frameworks are provided for each setting. In populations
without inhibitors, existing non adaptive frameworks can isolate
the defective items perfectly with © (k log n/k) number of tests,
where is the G-mixing time of a random walk over the underly-
ing graph. This paper provides a two-stage framework that can
perfectly isolate up to k defective items for a regular graph using
©(k2lognk + k) number of tests, thus achieving an approx-
imate gain of a factor of k over the non-adaptive frameworks.
This twostage framework’s principles are extended to community-
structured graphs and graphs with up to 7 inhibitor items. In par-
ticular, when inhibitors are present in the graph, a four-stage group
testing framework is proposed. The results show that in the regime
r = O(k) for a fully connected graph, ©((k + r)logn/(k +
r) + r log n) tests are sufficient for isolating the defective items.
This matches the corresponding necessary condition on tests which
scales (k + ) log n. The adaptive graphconstrained group testing
framework is also empirically evaluated.

Index Terms—Adaptive algorithms, communities, detection,
graphical models, group testing.

1. INTRODUCTION

N GROUP testing, the central objective is to identify up to k
I items with a property of interest (such as being defective) in
a population of size h > k. This is achieved by pooling different
subsets of the items and testing the pooled subsets individually.
Group testing approaches are effective in practice because they
provide significant savings in the number of tests required to
isolate the defectives compared with testing each item indepen-
dently. As aresult, group testing algorithms have been studied in

Manuscript received February 8, 2021; revised August 29, 2021; accepted
December 10, 2021. Date of publication December 21, 2021; date of current
version January 18, 2022. The work of Saurabh Sihag and Ali Tajer was
supported in part by the U. S. National Science Foundation under the CA-
REER Award ECCS-1554482 and the Grant DMS-1737976, and in part by
the RPI-IBM Artificial. Intelligence Research Center. The work of Urbashi
Mitra was supported by ARO W911NF1910269, DOE DE-SC0021417, Swedish
Research Council 2018-04359, NSF CCF-2008927, and ONR 503400-78050.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Yue M. Lu. (Corresponding author: Ali Tajer.)

Saurabh Sihag is with the University of Pennsylvania, Philadelphia, PA 19104
USA (e-mail: saurabh.sihag@pennmedicine.upenn.edu).

Ali Tajer is with the Department of Electrical, Computer and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail:
tajer @ecse.rpi.edu).

Urbashi Mitra is with the Department of Electrical Engineering, University
of Southern California, Los Angeles, CA 90007 USA (e-mail: ubli@usc.edu).

Digital Object Identifier 10.1109/TSP.2021.3137026

, Senior Member, IEEE, and Urbashi Mitra

, Fellow, IEEE

a wide range of domains, including healthcare [1], sensor fault
detection and diagnosis [2]-[4], diagnosis in digital circuits [5],
[6], and more recently for rapid and scalable testing for isolating
infected individuals in the COVID-19 pandemic [7]-[9]. Each
test on a pool of items indicates the presence of at least one
defective item in the pool [10].

Group testing frameworks can be classified based on their
structures in multiple dimensions. The nomenclature pertinent to
the scope of this paper revolves around non-adaptive and adap-
tive frameworks. When the tests are designed independently of
each other, the group testing framework is called non-adaptive.
In contrast, when the pools of items to be tested are determined
sequentially, the framework is called adaptive. In non-adaptive
group testing, when the items can be selected to be pooled
without any constraints, thatis, any item can be pooled arbitrarily
with any subset of items, the existing results show that in the
regime k = O(n?) for B < 1/3, ©(k?logn) pooled tests are
sufficient to isolate the defective items perfectly under a zero-
error criterion [10] and ©(k log n) pooled tests are sufficient to
isolate the defective items under a vanishing error criterion [11].
In contrast, adaptive group testing approaches facilitate perfect
isolation of defective items by using ©(klogn/k + k) tests
under different error criteria [12], [13] for 8 € (0,1).

The second related taxonomy specifies whether there exists
any constraint that limits pooling the items arbitrarily. While
in some applications there does not exist a hard constraint on
pooling and any subset of items can be randomly accessed simul-
taneously for pooled testing (such as spectrum hole search for
cognitive radios [14]-[16] or anomaly detection [17]), in some
domains there exist hard constraints or preferences that specify
that each given item can be pooled with only a pre-specified
subset of items. Such constraints are governed by underlying
relationships among the items depending on the context. Exam-
ples of such underlying relationships include proximity, access
rights, and correlation among different items. Some specific
applications characterized by such constraints include network
tomography [18] and testing for infection [19]. For network
tomography, a routing mechanism governs the host node’s in-
formation transfer to the network’s receiver node. Therefore,
the measurements are characterized by the set of nodes lying
on the information transfer path. In infection detection, there
is a preference in pooling certain items over others, such as
testing of infection in a population, where community structure
and the nature of interactions within the population may affect
individuals’ pooling.

In such settings, the relationships among the items, and subse-
quently, the constraints on pooling, can be represented by graph-
ical models [20]. In [20], a non-adaptive group testing approach
is proposed for a population of n items that form the vertices of
an underlying graphical model wherein pooling is restricted by
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the graph structure. It is shown that ©(k*c? log n/k) tests can
perfectly isolate up to k defectives under the zero-error criterion,
where w is the S-mixing time of the random walk over the
underlying graph [20]. In this paper, we investigate adaptive,
multi-stage group testing approaches under similar graphical
constraints on pooling. Our results show that the gain in the
number of tests over the non-adaptive approach scales with &,
mirroring the gain achieved by the adaptive approaches over
non-adaptive approaches under no constraints on pooling [13].

A. Related Literature

There exists an extensive literature on different information-
theoretic and computational aspects of group testing. In this
subsection, we provide an overview of the literature pertinent
to adaptive and constrained group testing as the two key aspects
of the framework investigated in this paper. We will also discuss
the literature on group testing in the presence of inhibitors. The
performance of a group testing framework is measured by the
number of tests required to correctly isolate the defective items
under different criteria [21] and [22]. In various regimes of the
relative number of the defectives with respect to the population
size, generally, the number of tests sufficient for recovering the
defective items scales sublinearly in the population size [10].

Adaptivity: When a sequence of tests is specified indepen-
dently of the tests’ outcomes, the testing framework is referred
to as non-adaptive [11], [23], and [24]. In contrast, when the set
of tests already performed guide the subsequent tests’ design,
the framework is referred to as adaptive [25]-[27].

The non-adaptive group testing frameworks consist of one
stage of multiple tests performed in parallel as the set of items
being tested in each test does not depend on the outcomes of the
other tests. On the other hand, incorporating limited adaptivity
by introducing multiple stages allows recovering the defective
items more efficiently and in a broader set of regimes [13], [28]—
[31]. For instance, in the two-stage approaches, the first stage
consists of a set of non-adaptive tests to reduce the search space
for defective items by culling a large fraction of the non-defective
items. The second stage depends on the outcome of the first stage
and generally consists of individually testing the items retained
by the first stage [13], [28], and [29]. The same principle can be
used to extend the two-stage frameworks to general multi-stage
ones. The tradeoffs between the number of stages and the number
of tests have been studied in [30], where different regimes of k
and n are characterized for two-, three-, and four-stage group
testing to be sufficient to isolate up to k defective items from n
total items. A computationally efficient four-stage approach that
achieves the optimal number of tests when limited errors in the
test outcomes can be tolerated has been studied in [31].

Pooling constraints: Group testing approaches under graph-
ical constraints imposed by the topology have been studied
in [4], [20], [32]-[34], and under the community structures have
been studied in [35]. The existing studies on graph-constrained
group testing are mainly focused on the non-adaptive strate-
gies [4], [20], [32], and [33]. These studies propose different
non-adaptive group testing frameworks and characterize suffi-
cient conditions (in terms of the number of tests) for isolating
defective items for different classes of graphs. Specifically,
the pool of edges, i.e., the connected subgraph to be tested,
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was determined using deterministic rules in [4] and [32]. The
connected subgraphs to be tested were determined randomly
in [20] and [33]. Adaptive algorithms for community-aware
group testing have been studied in [35] where the group of
items to be tested can be divided into multiple communities. The
aforementioned graph-constrained group testing frameworks are
typically motivated by applications in network tomography,
where statistical inference is performed by observing the flow
of information over the edges or links in the network [36].
Therefore, to identify any failed links in the network in this
context, group testing strategies that employ pooled test on a
set of connected links can be leveraged. Pooling constraints are
also relevant to applications such as drug discovery and blood
screening in bioinformatics. In a broader context, the interac-
tions among different biological modules, ranging from DNAs,
genes, and proteins to complex chemical compounds such as
drugs have been modeled as networks in this domain [37].
In such networks, a strategic design of pools for testing that
accommodates various interactions (such as synergistic or an-
tagonistic) among entities overcomes the drawbacks in random
pooling, which ignores these interactions and, therefore, enables
more meaningful interpretations into the outcomes of tests [38],
[39].

Inhibitors: Testing biological samples for blood screening in
practice faces different challenges due to dilution of the testing
performance as the pool sizes increase [1] and the presence
of blockers or inhibitors in the samples that may inhibit the
detection of compounds relevant for the disease [40]. However,
in related applications such as drug discovery, it is desirable
to pool together compounds that achieve a blocking objec-
tive, for instance, a drug blocking a pathogenic protein [41].
Motivated by such scenarios, group testing approaches in the
presence of inhibitors have been studied in [13], [41]-[44].
Specifically, lower bounds on the number of tests for non-
adaptive group testing with inhibitors have been studied in [42]
and a four-stage group testing algorithm whose performance
meets the lower bounds in [42] has been proposed in [13]. A
probabilistic non-adaptive group testing framework for isolat-
ing defectives in the presence of inhibitors was characterized
in [43].

B. Contributions

While unconstrained group testing is well-investigated under
both adaptive and non-adaptive settings, the existing studies
on graph-constrained group testing are mainly limited to the
non-adaptive methods [20]. In this paper, we propose three
adaptive graph-constrained group testing frameworks . The
first framework is a two-stage approach that is characterized by
random walk based pooling of items for tests in the first stage.
The idea of random walk based pooling in this paper is similar
to the pooling strategy of [20] with the key distinction that our
group testing framework hinges on a generic (and potentially
non-uniform) random walk. We show, both theoretically and em-
pirically, that conditions on the number of tests in our two-stage
approach are less stringent compared to these for the existing
non-adaptive approaches. For a degree regular graph, the results
in [20] show that © (w?k? log %) tests are sufficient for isolating
up to k defective vertices for one-stage group testing under
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a zero-error criterion. Our two-stage group testing framework
reduces the number of tests to ©(w?klog % + k) for isolating
up to k defectives, thus showing an improvement of a factor of
k over the one-stage group testing frameworks.

Random walks over a graph with loosely connected structures
can have high mixing times. This renders pooling based on a
random walk in such graphs infeasible. Alternative approaches
for pooling, such as pooling random edges and testing the
largest connected component formed by them have been adopted
in [33]. However, applicability of such approaches is also limited
for graphs with loosely connected structures. Motivated by this,
we extend the two-stage framework and design a three-stage
group testing framework for graph models with community
structures. In contrast to [35], our framework in the context
of community-structured models is minimally adaptive, and
the performance measures are characterized by the zero-error
criterion. We also consider the problem of group testing with
graph constraints in the presence of inhibitors and extend the
principles of the two-stage group testing framework to provide
a four-stage group testing framework that requires a number of
tests that matches, up to a factor of w?, to the asymptotically
optimal number of tests for the corresponding scenario under
no graph constraints established in [13]. Finally, we evaluate the
theoretical results and our frameworks’ performance in a case
study motivated by the spread of infection in a population with
underlying communities.

II. PRELIMINARIES

Consider a population of n items labeled by V = {1,...,n}.
A subset L C V of these objects are defective. We define k as
the maximum number of defective items.

Definition 1 (Defective vector): Define the binary variable
u; € {0,1} to signify the state of item ¢ € V, where u; =1
indicates that it is defective. Accordingly, define the defective
vector as U = [uy, ..., Up).

In multi-stage group testing, each stage’s design is characterized
by the number of pooled tests and the set of items pooled in each
test, which we formalize next.

Definition 2: Define T(A) as the number of pooled tests we
perform on a subset of items A C V.

Definition 3 (Test matrix): For performing 7'(A) pooled tests
on the items in A C V, we define X(T') € {0, 1}7(A)xI4l a5
a binary matrix whose (t,7)'" element, denoted by xy;, is set
according to

1 ifitemi € Aisincluded in test ¢

0 otherwise

24i(T) = [X(T))ys = {
(D

In our designs, we will be controlling the number of items
pooled for each test, formalized by bounds on || X (7')]|~, where
[IX (7]~ is the £oo-norm of X (T), which equals the maximum
¢1-norm of any row of X(T').

Definition 4 (Pooling capacity): We say that the pooling
capacity of a test is ¢ if up to ¢ items can be pooled for each
individual test. This indicates for a given test matrix X (7") we
have || X(7T)||e < 2.

We denote the outcome of the test t € {1,...,T(A)} on the
items in A by y; € {0,1}. The outcome y; = 1 indicates that
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the group of items pooled together in test ¢ includes at least
one defective item, and the outcome y; = 0 indicates that
all items are deemed non-defective. Accordingly, we define
Yy =y, yrl.

Definition 5 (Noiseless group testing): Fix the set of items
A CV and the number of pooled tests T(A). For a given
defective vector u and a given test matrix X (7'), the outcome
of a noiseless group test is specified by

ye = \/ wi - 2u(T), )

€A

where V denotes the Boolean inclusive or.

In this paper, we focus on noiseless group testing, and we are

interested in the zero-error criterion for the exact recovery of

defective items. In unconstrained (conventional) group testing,

there is no restriction on the identities of items to be pooled in

each test. In graph-constrained group testing, in contrast, there

are two distinctions:

¢ Pooling restrictions: Restrictions or preferences on pool-
ing may be imposed by a pre-specified set of conditions that
characterize the environment. These restrictions specify the
set of items that a givenitem ¢ € V' can be pooled with. We
denote the set of items that item ¢ can be pooled with by
N,; C V. For instance, for the identification of congested
links in network tomography, end-to-end measurements
that consist of information flow between two different
points in the network are commonly leveraged. When the
points are not directly connected, the measurements must
follow a feasible path between them in the network.
¢ Pooling preferences: Furthermore, while item ¢ can be

pooled with all items in V', we assume that there is a pre-
specified bias profile, according to which ¢ will be pooled
with different items with possibly distinct likelihoods. For
instance, in network tomography, it may be logistically
easier to transmit information over certain paths in the
network, thus inducing preferences in pooling.
Another application in which pooled tests may be charac-
terized by preferences is drug discovery in bioinformat-
ics. Drug discovery typically involves identifying “lead
compounds” which are more active than other biolog-
ical compounds in biological assays [41]. Broadly, the
identities of compounds pooled together may determine
their activity (for instance, synergistic or antagonistic).
Specifically, a pool of individually inactive compounds
may give an active result when pooled together in a test.
This phenomenon is called synergism, which is crucial to
combination therapies in the pharmaceutical industry [41].
Therefore, strategic pooling determined by the topology of
molecular interaction networks is a better approach for sta-
tistical analysis in bioinformatics than random pooling [38]
and [39]. These aspects imply the alignment of the pooled
testing approaches applied in different applications in drug
discovery with the characteristics of pooling preferences
for graph-constrained group testing discussed in this paper.
However, not all applications may benefit from such pref-
erences in pooling. For instance, in the problem of isolat-
ing infection spread in a population, pooling of samples
collected from members known to have more frequent
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inter-personal interactions (such as family members, co-
workers, etc.) may be more likely over an arbitrary pooling
of samples, thus inducing a bias in group testing. If the
infection is more likely to be contagious than sporadic,
this bias in pooling may limit the advantages offered by
group testing.
We note that the pooling restrictions or preferences implicit in
a graph-constrained setting motivate our choice of the zero-error
criterion in this paper. Note that when the pooling of items is
constrained by the graph topology, the symmetry in identifying
the defective items is lost, i.e., some defective items may be
harder to identify than others. This is in contrast to unconstrained
group testing, in which different items are generally defective
with equal probabilities. Such a symmetry can be leveraged
to decrease the complexity of a non-adaptive group testing
procedure to O(klogn/k) by considering a probabilistic error
criterion as opposed to a zero-error criterion, which has com-
plexity O(k?logn/k). However, such a probabilistic recovery
relaxation in error criterion is not as straightforward in the
context of graph-constrained group testing and the choice of
a zero-error criterion is comparatively more robust.
We formalize pooling restrictions and preferences by an undi-

rected and connected graph G = (V, E), in which the vertices
represent the items, edge connections signify the restrictions,
and edge weights capture preferences. When vertices 7,5 € V'
are connected, we denote the edge connecting them by (i, ) €
E. Hence, given the definition of N;, N; specifies the set of
immediate neighbors of vertex i. The weight of the edge (3, j) is
denoted by w;;. We assume that the edge weights are normalized
and fall in the range [w, 1] for some w € (0, 1]. When (i, j) ¢ E,
we set w;; = 0. Accordingly, for each vertex i € V' we define
the weighted degree as

deg,, (i) = > wi;. 3)

JeV

The following definition formalizes the notion that pooling
designs that enable the construction of the test matrix X(7T')
should conform to the structure of graph G.

Definition 6 (Graph-constrained pooling): For a given set
of items V/, and an associated undirected and weighted graph
G = (V, E), we say that pooling is graph-constrained when the
items pooled in each test form an induced path or an induced
cycle in G.

In this paper, our focus will be on weight-bounded graphs.

Definition 7 ((v,d)-regular graph): A graph is called

(v, d)-regularif foralli € V we have deg,, (i) € [v, d] for given
constants d > v > 0.
We remark that a fully-connected, unweighted graph is equiva-
lent to an (n, n)-regular graph with w = 1 and an unweighted,
degree regular graph with degree v is equivalent to a (v,v)-
regular graph with w = 1. While we primarily focus on general
(v, d)-regular graphical models, we will also provide results for
the special cases in which graph G includes non-overlapping
community structures, which are formalized next.

Definition 8 (Community-structured graphs): We say that
graph G consists of M communities if G is partitioned to
M disjoint subgraphs {G,, = (Vip, Ep,) :m € {1,...,M}},
such that, n,,, = |V:n|. The intra-community edges in G,,, have
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Healthy @D

Defective %

Fig. 1. A population with (n — 3) healthy and k = 3 defective items. It is
a (2w, 5)-regular graph, since 2 < N; < 5 and for the weights we have w <
w;; < 1. The pooling capacity is £ = 2. The connectivity structure specifies the
pooling constraints. The set of items that item 1 can be pooled with, i.e., N1,
is shown in the solid shaded region. Two tests are depicted in hashed shaded
regions (Pool 1 and Pool 2). The outcome of test on Pool 1 is y; = 1 and the
outcome of the test on Pool 2 is y; = 0.

weight s,,,, and the inter-community edges have weight ¢, i.e.,

Sm if (i,j) € By Yme{l,...,M}

. 4
q if i and j belong to different communities @

Wij; =
We also remark that the parameters s,, and ¢ can be selected
independently. The neighbors of vertex ¢ € V,,, within the com-

munity G, are denoted by N,;" = Vi N N;. We denote the
minimum weight degree of any vertex in community G,,, by v,,,,
where clearly, v,,, < v. Hence, subgraph G,,, is (v, d)-regular.
An example of a community-structured graph with £ = 1 defec-
tive is illustrated in Fig. 1. In biological applications, the study of
biological compounds that “inhibit” or block the activity of other
entities is of particular interest. For instance, in drug discovery,
an example of the activity of the lead compounds is their binding
to pathogenic proteins, that eventually inhibit their activity. On
the one hand, such inhibitors block the detection of pathogenic
proteins in a population of biomolecules if their identity is
unknown. On the other hand, inhibitor compounds are crucial
in designing drugs [44]. However, not all lead compounds may
have a uniform activity profile. For instance, a lead compound
(inhibitor) may inhibit only a subset of pathogenic proteins or
a pathogenic protein may be inhibited only by a specific pool
of lead compounds. Such interactions have been modeled by
“immune-defectives” graphs in [44]. Therefore, motivated by
such biological applications, in which the presence of inhibitory
compounds may inhibit the detection of items of interest (in this
case, defective items), we also consider the setting in which the
items may consist of inhibitors, where the activity of an inhibitor
is defined next.

Definition 9 (Inhibitor): Distinct from the defective and non-
defective items, an object is called an inhibitor if its presence in
a pool renders the output of testing the pool meaningless.
Hence, under the potential presence of inhibitors among the
objects, we have ternary outputs for the tests. Specifically, the
outcome of a test ¢ is y; € {0, 1, e}, where y; = e indicates that
the objects pooled in test ¢ contain at least one inhibitor. We
assume that there can be at most 7 inhibitor items among the n
items, when inhibitors are present. We denote the set of inhibitors
by J C V. In multi-stage group testing, in principle, all the test
matrices and test outputs are leveraged to form an estimate for
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KC. In the group testing frameworks discussed in this paper, the
preliminary stages will be used to winnow out the non-defective
vertices of the graph, and the final decisions will be formed based
on individual tests in the last stage.

III. GRAPH-CONSTRAINED POOLING

This section provides the key ingredients of the multi-stage
graph-constrained group testing algorithms presented in Sec-
tion IV for different settings. Selecting and grouping the items
such that the selection conforms to the underlying graph is facili-
tated via a random walk discussed in Section III-A. The random
walk model is then leveraged to construct the test matrices in
Section III-B.

A. Random Walk Over the Graph

To construct the test matrices that conform to the pooling
restrictions imposed by a general (v, d)-regular graph G, we
adopt a random walk over G. Specifically, each test is designed
independently of the rest through a random walk. The vertices
visited by the random walk represent the items to be pooled. Each
walk’s origin is selected randomly, and its length is bounded by
the pooling capacity /. Each vertex may be visited more than
once, and the random walks in different tests are allowed to cross
paths. In this subsection, we formalize a generic random walk
process over a given graph GG. We also provide the definitions
and notations that we will leverage in describing the algorithms
and their attendant analyses. The definitions of the random walk
described in the context of G readily extend to its connected
subgraphs as well, which we will leverage for community-aware
group testing and group testing with inhibitors.

We define II as an n X n transition matrix that models a
sequential random walk on G. The element of II at coordinate
(i,7) signifies the probability that a random walk moves from
vertex 4 to vertex j, and it is defined as the weight of edge w;;
relative to the aggregate weight of the edges emitting from vertex
7, 1.€.,

Wij
> jen; Wij

Denote the stationary probability distribution of the random

1], = . Vi,jeV. (5)

walk by 7 = [ry, ..., m,], representing the distribution of the
position in the graph if we run a random walk for an infinite
number of steps. Accordingly, define

i

A
and Tt = mMax — . (6)
i,jeV T

A
Tmax = Iznea‘«/x T,
Corresponding to a graph G and its stationary probability dis-
tribution 7r, the mixing time quantifies the length of time after
which the distribution of the vertices visited by any random walk
on GG becomes point-wise close to the stationary distribution
7 [45], and it is formally defined next.
Definition 10 ([3-mixing time): For a random walk of length
7 over G = (V, E) with the stationary probability distribution
m, define 7], as the position distribution when the random walk
starts at vertex v € V. The S-mixing time with respect to the £,
norm is the smallest integer 7 such that

Iy =7l <8, VE=T, (7)
for any v € V. We denote the S-mixing time by .
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The definitions provided in this section readily extend to random
walks over the connected subgraphs of G too. To represent these
metrics for a subgraph F' C G, we use the notations II(F),
Tmax(F'), Tratio(F'), and 7 (F).

B. Test Matrix Construction

The efficiency of the group testing framework is quantified
by the number of tests required for successfully isolating the
defective items. The following two definitions play pivotal roles
in distinguishing the efficiency of different test matrices.

Definition 11 ((o, 1), n)-selector Matrix): A Boolean matrix
X € {0,1}T7*™ is (0,1, n)-selector for integers 1 < 1 < o <
n if any submatrix of A constructed by choosing o columns of
A, contains at least v distinct rows of the identity matrix /.
As established in [13], in a two-stage group testing framework,
if the test matrix of the first stage is a (2k, k + 1, n)-selector,
then it is possible to perfectly identify all the defective items in
the absence of inhibitors.

Definition 12 (k-disjunct Matrix): A matrix is said to be k-

disjunct if no set of &£ columns has a Boolean sum that is a
superset of any other single column.
In unconstrained testing, a test matrix X(7") that is k-disjunct
and its respective test outcomes can be decoded using existing
algorithms for the perfect isolation of up to k defective items
in the noiseless setting [46]. This property is leveraged in [20]
to design a one-stage group testing framework with graph con-
straints. In this context, we add the following remark [47].

Remark 1: A (k+ 1,k + 1,n)-selector matrix is equivalent

to a k-disjunct matrix with n columns.
We note that in unconstrained testing, the two-stage group
testing framework that leverages a (2k, k 4+ 1,n)-selector test
matrix in the first stage to isolate a superset of defectives
followed by individual testing of the isolated items is known
to require a factor k fewer tests compared with one-stage group
testing. Specifically, in the one-stage framework in [10], it was
shown that © (k2 logn/k) pooled tests are sufficient to form a
k-disjunct matrix, and consequently, to perfectly isolate up to
k defective items. On the other hand, in [13] it was shown that
O(klogn/k) pooled tests are sufficient to forma (2k, k 4+ 1,n)-
selector matrix, and subsequently, O(klogn/k + k) tests are
sufficient to perfectly isolate up to k defective items. Parallel
to these results for unconstrained group testing, we will show
that the same level of gain in the number of tests (i.e., factor k)
can also be achieved in graph-constrained group testing when
we use multi-stage group testing versus non-adaptive one-stage
group testing [20].!

IV. ALGORITHMS AND MAIN RESULTS

In this subsection, we provide multi-stage graph-constrained
group testing algorithms for (v, d)-regular graphs. The common

"Noisy settings with up to e incorrect test outcomes can be accommodated in
the one-stage group testing framework by considering a more restrictive (k, e)-
disjunct matrix design [20, Definition 2]. We remark that noisy settings with
up to e incorrect test outcomes can similarly be accommodated in the two-stage
group testing framework by modifying Definition 11 to a more restrictive selector
matrix design, (2k, k + 1,n, e)-selector matrix. A (2k, k + 1, n, e)-selector
matrix is characterized by the property that any submatrix constructed by a
random selection of 2k columns contains at least e copies of k + 1 distinct rows
of the identity matrix Iog.
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Algorithm 1: Forming a Test Matrix X (7') on Subgraph F'.

1: input subgraph F' with nr number of vertices,
pooling capacity ¢, number of tests T’

2: set matrix X(7') = Oryp,
3: fortestt € {1,...,T} do
4: initialize vprey = 0, v = 0
5: sample vertex v from V' according to 7w (F’) and set
[X(T)]tv =1
6: for j € {2,...,(} do
7. set Uprey = v
8: sample vertex v from the neighborhood of vprey
according to II(F)
9: set [X(T)]w =1
10: end for
11: end for

12:  return test matrix X (7")

Algorithm 2: Decoding X (7') and y.

I: input test matrix X (7'), test outcomes y
2: initialize empty set H = &

3: forcolumnj € {1,...,np} do

4: If y covers j-th column of X(T') then
5: add j to H

6: end if

7:  end for

8: return set H

theme of the algorithms in different settings is that the prelimi-
nary stages are intended to remove the non-defective vertices of
the graph, deferring the final decisions about the defective items
to the last stage. Forming the test matrices constitutes the core of
these algorithms. We start by providing two subroutines for any
subgraph F' spanning np vertices in G that are instrumental
to filtering out the non-defective vertices in F' using pooled
testing. The first subroutine (Algorithm 1) provides the steps
for constructing a test matrix using graph-constrained pooling
over . The second subroutine (Algorithm 2) provides the steps
for decoding the test outcomes and the test matrix jointly.

The decision on the item represented by j-th column in X (7')
being discarded for further decision making hinges on Step 4 in
Algorithm 2, which tests if the respective column of X (7T) is
covered by y, i.e., the positions of 1’s in j-th column of X (7')
form a subset of the positions of 1's in y.

A. (v,d)-Regular Graphs with no Inhibitors

We first discuss the two-stage group testing framework for
recovering K perfectly in the absence of inhibitors. The two
stages of the framework for successful recovery of IC over (v, d)-
regular graph G are described below.

1. Filtration: We conduct T¢ parallel pooled tests to form

a test matrix X (7F) according to Algorithm 1 and deter-
mine the test outcome vector y. Test matrix X (7F) and
decision vector y are subsequently used by Algorithm 2
to distill the set of candidates to the set H (generated by
Algorithm 2). We are interested in identifying a superset
of IC with 2k — 1 elements. It is shown in [13, Theorem
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3] that if X(TF) is a (2k, k + 1, n)-selector matrix, then
the output of Algorithm 2 consists of 2k — 1 vertices that
form a superset of IC. We reprise the proof of this claim
from [13] in Appendix A for completeness.
2 Isolation: Each of the vertices in Stage 1 is tested individ-
ually. This leads to identifying all defective items.
Therefore, the total number of tests performed is

Toota = T + [H] , ®)
and when X(Tg) is a (2k,k + 1,n)-selector matrix, we
have Tiotay = TF + 2k — 1. Since the construction of X(7F)
is stochastic due to random walks involved, X (7F) being a
(2k, k + 1, n)-selector matrix is ensured only stochastically. For
this purpose, we define a Bernoulli random variable

b2 1 X(TF) is a (2k, k + 1, n)-selector matrix ©)
10 otherwise ’

Therefore, the objective is to appropriately select 7Tf, such
that, we have P(b = 1) > 1 — e for some € € [0,1/2). We next
formalize sufficient conditions on 7F for selector matrix con-
struction and the total number of tests Tiotq for perfect isolation
of K.

Theorem 1 (Two-stage group testing): When graph G is
(v, d)-regular and the 3-mixing time constant is set to § = max,
if ¢ and T satisfy

(i)
kT maxTratio™

1
TF =0 (w27rratio (k log% + log )) )
€
then when k = O(z—) we have the following guarantees:
1) The filtration process identifies 2k — 1 elements forming
a superset of K with a probability at least 1 — ¢, i.e.,

P(CCH and |H|=2k—-1)>1—¢. (12)

2) Tiotas number of tests is sufficient to perfectly recover /C
with probability at least 1 — €, where
n

1
Tiotal = © (wzﬂratio (k log 3 + log e) + k) . (13)

Proof: See Appendix B. (]
From Theorem 1, we make the following observations.

Remark 2 (Optimal scaling behavior): The total number
of tests Tiotal sufficient for isolating I with high probability
scales as O(w matiok log % + k), achieving a linear scaling
behavior in k. This matches the scaling behavior of £ in the
information-theoretic lower bound of & log 7+ on the number of
tests for isolating £ defectives from n items without constraints
on pooling [10].

Remark 3 (Tradeoff between graph sparsity and defective-
ness): There exists an inherent tradeoff between the size of
the defective set (k) and the sparsity of the graph, captured
by v. Specifically, a larger value for v implies that there exist
more paths that do not contain a defective node for a given
k. In adaptive pooling, in order to effectively winnow out the
non-defective items, it is desirable to have as many defective-free
pools as possible. This is, however, hindered as & increases for
a given v, which leads to an increase in number of tests Tiptg).
It can be even observed that in certain settings, if the value of &k
exceeds a certain level, perfect isolation of the defective items

(10)

(1)
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may become infeasible. For instance, consider a 10-vertex graph
in which the vertices V' = {1,...10} are connected in a circle
(v = 2). Assume that nodes {1, 3,5,7,9} are defective. In this
example, we will never be able to isolate all defectives when
¢ > 1 because the pooled test will always return an outcome
of one. Such an interplay between k and the pooling capacity
¢ and graph sparsity v is also observed in Theorem 1, where
it is shown that recovery is guaranteed only in the regime
k = O(;2%z) which reflects a tradeoff between the sparsity
of the gra{f)'fl (captured by ) and the feasible maximum number
of defectives k that can be successfully isolated, with an increase
in v implying a broader set of feasible values for k.

Remark 4 (Connection to non-adaptive group testing): Com-
parison with the results for the non-adaptive graph-constrained
group testing indicates that the total number of tests in our frame-
work scales by a factor k slower than O (w?matiok? log 7) tests
sufficient in the non-adaptive framework, indicating a significant
reduction in complexity. Such a comparison can be carried
out by leveraging the tradeoff mentioned above. Specifically,
Theorem 1 considers a given graph with an arbitrary value of
v, and imposes a condition (upper bound) on k in terms of
v to provide sufficient conditions for recovering the defective
items. On the other hand, the analysis in [20] takes the dual
approach of letting k& change freely and imposing a condition
(lower bound) on v as a function of k. This condition of [20]
is equivalent to v = Q(kw?matio/w) in our framework. We can
re-interpret the results in [20] from the perspective of feasibility
of k for a given (v, d)-regular graph, where both non-adaptive
and adaptive graph-constrained group testing frameworks work
for the same regimes of k.

Remark 5 (Matrix design): The conditions on the pooling
capacity (length of random walk) ¢ and the number of pooled
tests Tr are the key factors influencing the design of X(TF).
The factors @, Tmax, and yatio are indicators of the bias in the
random walk over the graph, and increasing the bias implies an
increase in all these metrics. Based on Theorem 1, we note that
TF increases with an increase in the 5-mixing time w and the
metrics Tmax and 7atio Of the random walk. On the other hand,
for a fixed k, an increase in w implies that the upper bound on
¢ in (10) shrinks. Clearly, a stronger bias necessitates a larger
number of pooled tests 7" and a smaller pooling capacity ¢.

Remark 6 (Mixing time): The S-mixing time w significantly
influences the feasibility of group testing and is impacted by
the graph’s connectivity. Specifically, if the graph is ‘loosely’
connected, a higher S-mixing time implies that 7 random walks
are not guaranteed to cover all vertices in the graph. There-
fore, a desirable property for the graph-constrained random
walk is the ability to mix rapidly (i.e., for instance, @ being
poly-logarithmic in n) to avoid bottlenecks in the coverage of
vertices [48]. We also remark that if the mixing time of a graph
is not known, it can be estimated by existing algorithms in the
literature [49].

Remark 7 (Restrictions on network access): In certain ap-
plications such as network tomography, only some parts of the
network may be accessible and only a subset of vertices can be
used as starting or ending points of the random walk. In these
applications, we can modify our analysis along similar lines as
in [20] to show that the number of tests 7F increases by a factor
of w2, while preserving the other dependencies on & and n.
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The following corollary summarizes the results for two-stage
group testing based on an unbiased random walk for a degree-
regular graph withw = 1and d = v. Inthis setting, the 5-mixing
time can be approximated by @ = O(log Slogn/(1 — 7)) for
a degree-regular graph, where 7 is the eigenvalue of IT with the
second highest absolute value and (1 — 7) is the eigengap of the
random walk over GG [45].

Corollary 1 (Degree-regular graph): When graph G'is (v, v)-
regular with w = 1 and the [-mixing time constant is set to
B = n~2, if the parameters satisfy

n(l —n) log*n n 1
! O(klog%z)’ F @<1n kng+Oge ’

(14)

then when k = O(”l(olg%”j) we have the following guarantees:
1) The filtration process identifies 2k — 1 elements forming

a superset of K with a probability at least 1 — ¢, i.e.,
P(IKCH and [H|=2k—-1)>1—¢€. (15)

2) Tiotas number of tests is sufficient to perfectly recover C
with probability at least 1 — €, where

Tiotal = © (( b log4nlogﬂ + log 1) + k) .
1—n k €
(16)
From Corollary 1, we note that the number of tests Tiotg scales as
O(klog* nlog %) for a degree-regular graph. We next formalize
the result for a fully-connected graph, in which case we have
Tratio = 1.

Corollary 2 (Fully connected graph): For a fully connected

graph, the S-mixing time is z = 1 and the total number of tests
Tiotal scales as ©(klogn/k + k).
Note that the information-theoretic lower bound on the number
of tests for recovering k defective items out of n total number
of items scales as k log n/k [10]. Therefore, in the asymptote of
large n, when k = O(n), the number of tests for the two-stage
group testing framework has an optimal scaling behavior.

We next discuss the extension of the two-stage group testing
framework in Theorem 1 to graphs with community structures.
In practical scenarios, vertices within the same community likely
have higher affinity than the vertices in different communities,
i.e., the edge weights satisfy s,, > ¢ and, therefore, the graph
G may consist of loosely-connected subgraphs. Since the -
mixing time tw depends on the eigengap of I1, it increases rapidly
for loosely-connected graphs [45]. Thus, the two-stage group
testing framework in Theorem 1 may be practically infeasible
in practice for graphs with communities. Using this motivation,
we next provide a framework graphs with community structures.

B. (v, d)-Regular Graphs with Communities

For community-aware group testing in the absence of inhibitors,
we include an additional scanning stage prior to the filtration
step to identify the communities with at least one defective
item. In this stage, each community in the graph is treated
as an independent entity, and the test determines whether the
community consists of at least one defective vertex. We denote
the set of communities deemed to have at least one defective
vertex by the preliminary stage by M C M. The number of tests
performed in this step is denoted by 75. The subsequent stages
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for each community in M follow similar steps as discussed in
Section IV-A for two-stage group testing.

1. Scanning: Each community m € M is treated as an indi-
vidual entity. We conduct 75 number of tests, where in each
test, a pool of a subset of communities in M are tested for
the presence of a defective item. In this stage, we use an
existing optimal group testing method for non-adaptive
group testing based on disjunct matrix construction to
determine the set M [10].

2. Filtration: For each community m € M, we conduct
TF ., parallel pooled tests, with the pooling capacity ¢y,
on G,,. The test matrix X (7F ,,,) is formed using similar
steps as described in Algorithm 1. The outcomes of tests
and X (7 ,,,) are jointly decoded using similar steps as in
Algorithm 2 to a set of vertices denoted by H.,,,. If X (T ,,,)
is a (2k, k + 1, n,,)-selector matrix, then H,, consists of
2k — 1 vertices that form a superset of the defective items
in community m.

3. Isolation: Finally, each of the |H,,| selected vertices
from community m € M is tested individually, and the
outcomes from all communities in M are combined to
isolate /C.

Therefore, the total number of tests to isolate the defective set
IC for graphs with communities is given by

Totar = Ts + > (Trm + [Hml) -
meM

Successfully isolating K is predicated upon perfectly isolating
the communities M in the scanning stage, and appropriately
constructing matrices X (Ts) and X (7T ,,, ). Determining M is a
standard group testing problem, and we use an existing optimal
strategy in the scanning stage. Subsequently, the efficiency of
community-aware group is characterized by {Tf ,,, : m € M}.
We formalize this with the help of a Bernoulli random variable
by, for community m defined as

b L 1 X(Tk ;) is a (2k, k + 1, n,y, )-selector matrix
™ 1 0 otherwise

a7

Therefore, the objective is to determine an appropriate number
of pooled tests based on random walks for each community
m € M such that we have P(b,, = 1) > 1 — € for some € €
[0,1/2). The following lemma characterizes the number of tests
sufficient for identifying communities with defective vertices in
the scanning stage.

Lemma 1 (Community identification): T tests is sufficient
for perfectly identifying the communities that have at least one
defective vertex, where 15 is defined as

T2 © (k*log 22) if k< VM
* 7 )M otherwise

The proof of Lemma 1 follows directly from the classical
group testing results on disjunct matrix construction driven
non-adaptive group testing [10]. We remark that the dependence
of Ts on k in (18) can be scaled from k% down to k by adopting
a vanishing error criterion [10]. However, to maintain consis-
tency with the subsequent stages, we have provided the results
corresponding to the zero error criterion in Lemma 1.

We next provide a sufficient condition for a community-aware
graph-constrained group testing framework to isolate the defec-
tive items from the communities in M. The following theorem

(18)
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characterizes the number of tests for the test matrix X (7 ,,)
being a (2k, k + 1, n,, )-selector matrix and the total number of
tests required for isolating up to k defective vertices in the graph.
For this purpose, we denote the 3,,-mixing time for graph G,
by @,.

Theorem 2 (Community-aware group testing): In community
m € M, when the (,,-mixing time constant for G, is set to
B = n;f, if the parameters satisfy

1
bn=0 <k77rmax(Gm)7Tratio(Gm)wm> ’ (19)

Nam, 1
Tk m = © (w?nmano(Gm) (k log 7 + log e)) , (20

then when k = O
tees:
1) The filtration stage identifies 2k — 1 elements forming a
superset of IC,,, with probability at least 1 — ¢, i.e.,

P (K C Hyn and [Hpp| =2k —1) > 1 — ¢, . (21)

2) Tiotas number of tests is sufficient to perfectly recover
with probability at least [, . \,(1 — €,,), where

Tota =Ts + > (Tem +2k—1) .
meM

(o{é-ym2) we have the following guaran-

(22)

The proof of Theorem 2 follows directly from the proof of
Theorem 1. From Theorem 2, we observe that the number of
tests for isolating up to & defectives from community m, Tk ,,
has linear dependence on k. We argue that the number of tests
for each community can be further improved by incorporating
more side information when available, such as the number of
defectives per community [35]. The conditions on 7T ,,, and £,,,
collectively determine the design of test matrix X (7 ,,) for
community m.

C. (v,d)-Regular Graphs with Inhibitors

A four-stage framework for identifying defective items in the
presence of inhibitors is proposed in [13]. The first three stages
of the strategy in [13] employ selector matrices for filtering out
potential inhibitors, defectives, and non-defectives, respectively.
The final and fourth stage individually tests the retained items.
We extend this approach to the graph-constrained testing setting
by leveraging random walks for constructing the selector matri-
ces in the first three stages. When there are up to r inhibitors,
the different stages of a four-stage group testing framework are
formalized as follows.

1. Benchmark specification: In the first stage, our goal is to
identify a certain pool of items Aps C V that tests positive
and does not contain any inhibitor, i.e., Aps N J = @ and
Aps N K # . In this stage, we conduct Thg pooled tests
on graph G with pooling capacity {ps to form a test matrix
according to steps similar to Algorithm 1. We adopt pooled
testing to identify Apg such that it isolate as many items
as possible with a substantially smaller number of tests
compared with testing each item individually. Note that in
this stage, a pooled test has an outcome 1 if and only if the
pool of items tested has at least one defective item and no
inhibitors. If X (Tps) isa (k 4+ r,r + 1, n)-selector matrix,
there exists a pool Ay, such that, |Aps| = n/(k + r) [13].
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The set Aps enables us to isolate a superset of all inhibitors
from the items V'\ Apg in the next stage.

2. Inhibitor detection: In this stage, our goal is to identify
a superset of the set of inhibitors 7. For this purpose,
we first exclude the vertices in the set Aps and their
associated edges from the graph to focus on the subgraph
with the vertices Vig = V'\ Aps. The number of vertices in
the remaining graph is denoted by nig = n — | Aps|. We
conduct Tiy number of pooled tests with pooling capacity
lig on the subgraph Gig = (Vig, Eig) spanned by vertices
Viq and a set of edges Ejq C E that consists of all edges
(u,v) such that u,v € Vig. Using steps similar to those
in Algorithm 1, the pooled tests enable us to form a test
matrix X(7ig) of dimension Tig X njg. In this stage, the
outcome y; of a pooled test is determined by coupling
the ' pool of items in X (7T}g) with the pool Aps. Since
the pool Apg consists of at least one defective vertex and
no inhibitors, the outcome of a pooled test in this stage
is e if and only if the t*® pool consists of at least one
inhibitor and it is 1, otherwise. By using the principles
from Section IV-A, we note that a superset of inhibitors
J can be identified by using steps similar to those in
Algorithm 2 with trivial transformation to the outcome
vector [13]. Therefore, by leveraging a test matrix X (7ig)
thatis a (2r, 7 + 1, njg)-selector matrix, we can identify a
set of vertices Ajg C V such that |Ajg| = 2r — 1 and Ajg
is a superset of 7.

3. Filtration: In this stage, our goal is to cull the non-
defective vertices from the subgraph in G obtained by
removal of set of vertices Ajq. For this purpose, we exclude
the vertices in the set Ajg and adopt a random walk for
collecting data from on the subgraph Gt = (V;, Et) with
vertices V; = V'\ Ajg, such that the number of vertices in
Gyis given by ng = n — | Aiq| and the set of edges Ey C F
that consists of all edges (u,v) such that u,v € V. We
conduct 7t number of pooled tests with pooling capacity
5. The pooled tests enable us to form a test matrix X (7%)
of dimension 73 X n; using steps similar to those in Algo-
rithm 1. We next decode X (7+) and its respective outcomes
using steps similar to those in Algorithm 2. Therefore,
if X(Tz) is a (2k, k + 1, ng)-selector matrix, Algorithm 2
yields an outcome Ay such that |As| = 2k — 1 and A is a
superset of K.

4. Isolation: Finally, we individually test the vertices in Ajq U
Ay isolated in stages 2 and 3.

In this context, the total number of tests sufficient for successful
isolation of defective vertices K is given by

Tiotal = Tbs + Tig + Tt + |Aia] + A4 , (23)

where the total number of pooled tests Tps + Tiq + 1t deter-
mines the efficiency of the four-stage group testing framework.
Therefore, the numbers of pooled tests in the first three stages
must be selected such that they facilitate constructing appro-
priate selector test matrices in their respective stages with high
likelihood. This can be compactly conveyed by using Bernoulli
random variable b,,, for stage m defined as

)

b L 1 X(T},) is an appropriate selector matrix for stage m
7] 0 otherwise
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where T = Tps, To = Tigq, and T3 = T;. Hence, in stages 1—
3, we construct test matrices {7ps, Tiq, 73} via random walks
by agpropriately selecting the number of tests such that
PO, bm =3)>1—¢foreec[0,1/2). Next, we provide
sufficient conditions for perfectly recovering K in the presence of
inhibitors 7. For this purpose, we denote mixing time constants
in the first three stages by wyps, w@iq, and s, respectively. The
following lemmas capture the design specifications for the test
matrices in different stages.

Lemma 2 (Benchmark creation): When graph G is (v, d)-
regular and its ps-mixing time constant is set to Fps = " if
lps and Thg satisty

1
los = O () , (24)
TTmax Tratio Whs
(r+1) n 1
Ths = O (ﬂ'ratiowgs . (k+r)log T + log - ,
(25)

then when the maximum number of inhibitors satisfies r =
O(m), the test matrix X(Tys) is a (k+ 7,7+ 1,n)-
selector matrix with a probability at least 1 — € > 0.
Proof: The proof follows directly from the construction of a
(a0, k 4+ 1, n)-selector matrix in Appendix B. O
Lemma 3 (Inhibitor detection): When graph Giq is (vig, d)-
Tmax(Gid) Jif

regular and its mixing time constant is set to Sig = o
I

lig and Tiqy satisfy

1
g =0 , 26
d (Twidﬂ'max(Gid)Trratio(Gid)) (26)

1
Tig=0© (Wratio(Gid)w% (T log nig + log 6>> , 27

then when the maximum number of inhibitors satisfies r =
O(%), the test matrix X (7iq) is a (27,7 + 1, njq)-
selector matrix with a probability at least 1 — e.

Proof: The proof follows directly from Appendix B where we
replace k with r as a parameter in the construction of selector
matrix. (|
Note that Lemma 3 is equivalent to the results for the con-
struction of a (2k, k + 1, n)-selector matrix in Theorem 1 with
parameters in terms of r. Furthermore, lemmas 2 and 3 provide
distinct conditions on the number of inhibitors 7 for successful
construction of the respective selective matrices in stages 1 and 2.
Since vjq < v, we argue that the condition in Lemma 3 is more
stringent and therefore, captures the overall condition on the
number of inhibitors.

Lemma 4 (Filtration): When graph Gt is (14, w)-regular and

ts mixing time constant is set to J; = ”"‘%EGO, if ¢ and T satisfy

1
P , 28
f <wa7rmax(Gf)7Tratio(Gf)> .
1
CZ} — @ (Wratio(Gf)w? (k/’ log % + log 6)) 9 (29)

then when the maximum number of defective items satisfies
k= O(%), the test matrix X(7t) is a (2k, k + 1, ng)-
selector matrix with a probability at least 1 — e.

The proof directly follows the proof of Theorem 3. Lemmas 2—4

collectively establish the following overall performance for the
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four-stage group testing framework. From lemmas 3—4, we note
that the number of pooled tests 7ig and 7} in stages 2 and 3
depend on the properties of their respective random walks on
reduced graphs Gig and Gy, respectively.

Theorem 3 (Group testing with inhibitors): If the subgraphs

Giq and Gt have connected edge structures and their mixing time
constants are set according to lemmas 2—4, the four-stage group
testing framework isolates the defective items with probability
atleast (1 — €)3, when the pooling capacities and the number of
tests follow those specified by lemmas 2—4.
In general, it is known that the number of tests for recovering
up to k defective items and r inhibitors from a pool of n items
scales at least as fast as (k + 7)logn [40]. When we have a
fully connected graph G (i.e., an (n, n)-regular graph) with an
unbiased random walk, the mixing time constants for all stages
are set as wys = wiq = ws = 1. In this setting, the following
theorem characterizes the scaling behavior of the number of
tests for four-stage group testing.

Theorem 4 (Fully connected graph): When graph G is fully
connected, by performing an unbiased random walk, the number
of tests sufficient for recovering up to k defective vertices in the
presence of up to r inhibitor vertices is specified as follows.

e In the regime r = O(k), Tiotal Zrows as

n

@((k‘—l—r)longrr

+ rlog n> .

e In the regime k = o(7), Tiotal grows as O(r2logn).

Remark 8: Based on the scaling behaviors of Tiptg in different
regimes in Corollary 4, we remark that the asymptotic scaling
behaviors of Tiota matches with those for non-adaptive group
testing in [43]. In the regime » = O(k), the number of tests for
the four-stage group testing framework scales almost linearly in
r and k. On the other hand, in the regime k = o(r), the number

of tests scales as 72,

V. NUMERICAL RESULTS

In Section V-A, we empirically evaluate the constructional
aspects of graph-constrained group testing algorithms in this
paper and compare them with those in the existing literature.
In Section V-B, we implement the algorithms presented for a
case study where various aspects are motivated by the realistic
settings of infectious diseases.

A. Selector Matrix Construction

Selector matrix construction is instrumental to the filtration
stage in group testing algorithms in Section IV-A and Sec-
tion IV-B as well as benchmark creation, inhibitor detection,
and filtration stages in the four-stage group testing algorithm
in Section IV-C. In our numerical evaluations, we assess the
construction of a (2k, k + 1, n)-selector matrix and compare
the complexity of graph-constrained construction of a (2k, k +
1, n)-selector matrix against that of a (k + 1, k + 1, n)-selector
matrix (or a k-disjunct matrix with n columns) which is relevant
to the existing one-stage frameworks.

We consider a (40, 40)-regular graph G with number of ver-
tices n = 100, minimum edge weight w = 1, and the maximum
number of defective items k& = 2. In this setting, each vertex
has 40 vertices in its immediate neighborhood. We first evaluate
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Fig.3. Likelihood of forming a (2k, k + 1, n)-selector matrix versus pooling
capacity £.

the likelihoods of successful construction of different selector
matrices versus the length of a random walk over G. Figure 2
depicts the success rate of forming a (k + 1, k + 1, n)-selector
matrix using random walk construction characterized by differ-
ent number of tests 7r and pooling capacity ¢ over 1000 random
instances. Similarly, Fig. 3 depicts the success rate of forming a
(2k, k + 1, n)-selector matrix using random walk construction
over 1000 random instances. These two figures indicate that for
a smaller number of tests, the likelihood of forming the test
matrix with desired properties increases up to a certain pooling
capacity (4 in this case), followed by a sharp decline as the
length of the random walk is further increased beyond 5 for
(2k, k + 1,n)-selector matrix and a gradual decline in the case
of (k+ 1,k + 1,n)-selector matrix. These observations indi-
cate that there is an upper limit on the pooling capacity beyond
which the likelihood of successful selector matrix construction
diminishes. This is consistent with the implications of Theorem 1
and the discussion in Remark 3. These experiments also indicate
that the construction of a (k + 1,k 4 1,n)-selector matrix is
more robust to the variations in pooling capacity than that of a
(2k, k + 1, n)-selector matrix. Furthermore, we observe that the
number of tests required for constructing (2k, k + 1, n)-selector
matrix with a given likelihood is less and becomes closer to
half of that sufficient for the construction of a (k + 1,k + 1, n)-
selector matrix with a similar likelihood as the likelihood be-
comes closer to 1. This observation confirms what is expected
analytically, that is constructing a (2k, k + 1, n)-selector ma-
trix can be achieved by a factor of k smaller number of tests
than that for the construction of a (k + 1,k + 1, n)-selector
matrix.

We also evaluate the likelihood of constructing a (2k, k +
1, n)-selector matrix for graphs with different degrees v in Fig. 4.
For the results in this figure, we set the pooling capacity fixed as
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Fig. 4. Empirical likelihood of forming a (2k, k + 1, n)-selector matrix ver-
sus degree v for graphs of size n = 100, number of tests, T = 60 and pooling
capacity, £ = 4.

Success rate

Pooling capacity

Fig. 5. Empirical likelihood of forming a (2k, k + 1, n)-selector matrix ver-
sus R for graphs of size n = 100 and number of tests, T = 60.

¢ =4 and number of tests 7 = 60 and vary v. As expected
from the results in Theorem 1, we observe that the success
rate of forming the selector matrix improves with an increase
in connectivity and, therefore, a decrease in the mixing time of
the graph, as implied by increasing v.

We next evaluate the likelihood of constructing a (2k, k +
1,n)-selector matrix for graphs with different characteristics
of random walk in Fig. 5. Specifically, we consider a graph
with M = 4 communities and set s,,, = s,Vm € {1,2,3,4}.To
reflect the bias of the random walk in the graph, we define R £ g .
Figure 5 illustrates the success rate for forming a selector matrix
for TF = 60 samples over 1000 random instances for different
R. Clearly, as the bias increases, the success rate drops for the
same number of samples as indicated by Theorem 1.

B. Infection Detection

In this section, we evaluate our framework in the context
of infection spread in a human population whose interac-
tions are modeled by a community-structured graph. We use
the community-aware group testing framework described in
Section IV-B for this setup. Note that this framework was
designed for noiseless testing, which is not a realistic setting
in practice. Therefore, we characterize the performance of the
pooled test adopted for group testing

1) Infection Test: We motivate the test performance by exist-
ing epidemiology studies. We note that the relative costs of false-
positive errors and false-negative errors of a test can be different
in practice. For instance, a significant number of false-negative
errors in testing a population leads to infected individuals labeled
as healthy. Therefore, tolerating a high rate of false-negatives
diminishes the test’s efficacy since it does not isolate the infected
individuals. Thus, tests are designed with a focus on minimizing

391

the false-negative error. However, in pooled testing strategies,
the sensitivity of the test may depend on different factors such as
the number of infected individuals in the pool [1], viral loading
in a sample collected from an individual, and the number of
tests that can be performed using one sample [50]. Motivated by
these considerations, we assume that the false-positive error rate
is 0 and use the following approximation for the success rate for
when ¢ individuals are pooled together to be tested, and the pool
consists of 7 number of infected individuals [1]:

P(i,0) =1—a® , (30)
where « and ~y are context-specific parameters. For instance, for
HIV testing we have o = 0.00033 and v = 0.179 [1]. Clearly, a
test’s error rate increases with an increase in ¢ and decreases in
the number of infected individuals ¢. Since collecting samples
is straightforward and less resource-intensive for mass testing
in various contexts [7], the dilution effect is compensated by
collecting enough samples that allow repeated testing of the
pooled individuals. Specifically, if p samples are available per
individual, the pooled test can be performed p times, increasing
the overall success rate to

Po(i,0) =1 —a® >P,(f) =1—a? . (31)
Clearly, p controls the likelihood of noiseless setting being
observed in practice, and more samples per individual increases
this likelihood. In our experiments, we evaluate the testing
performance for different p.

2) Distribution of Defectives: We considered the scenarios
of independent defectives and graph-constrained defectives. We
randomly selected a set of k vertices, denoted by H, from which a
set J C H isinfected (or turn defective). In the case of indepen-
dent defectives, we assumed that the vertices in H are selected
independently at random from the set V. For graph-constrained
defectives, we assumed that the vertices in H form a connected
subgraph. The probability associated with a set of vertices H
being exposed to the infection is given by

(32)

Wy
k (uw)eE ucH,veH

where Zj, is the normalizing factor such that (%) is a valid
probability measure. Each vertex in H can be defective with
probability 0.9, which determines 7 . In the context of infectious
disease, we are more likely to encounter graph-constrained
defectives. For comparison, we evaluated the community-aware
group testing framework over both cases of distributions of
defectives in the graph.

3) Community-Aware Group Testing: To evaluate the effi-
ciency in a population with community structures, we con-
sider a population of n = 10000 individuals scaterred in M =
5 communitys and set v = d = 400. We assume that there
were at most k£ = 10 infected individuals. The intra-community
edge weight s, in community m is selected randomly from
[0.67, 1] and we set ¢ = 1/150. We evaluate the performance for
graph-consistent infections as well as independent infections and
depict the respective performances of the group testing frame-
work in Figs. 6 and 7. For our experiments, we set the pooling ca-
pacity to £ = 37, which is verified to achieve maximum success
rate in the construction of selector matrices by graph-constrained
pooling on individual communities. The number of pooled tests
is set to be 1200 for each community, beyond which we did not
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Fig. 6. Likelihood of successfully isolating of infected vertices versus sensi-
tivity of the test for different number of samples per vertex. The set of infected
vertices are selected randomly according to (32).
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Fig. 7. Likelihood of successfully isolating of infected vertices versus sensi-
tivity of the test for different number of samples per vertex. The infected vertices
are selected randomly and independently.

observe any noticeable improvement in the rate of forming a
selector matrix. In our experiments, we observe that collecting
up to 3 samples per individual resulted in a very high success rate
when the test had high sensitivity (greater than 0.85) for both
scenarios of the distribution of defective vertices in the graph.
Furthermore, we observe that the group testing framework has
a higher success rate for scenarios with graph-consistent defec-
tives as compared to that with independent defectives except for
the case when p = 1.

VI. CONCLUSIONS

In this paper, we have considered the problem of adaptive
group testing where pooling and testing the groups are con-
strained with pre-specified restrictions. A graphical model has
been adopted to represent the constraints. We have proposed
three group testing frameworks. First, a two-stage group testing
framework has been proposed for the perfect recovery of the
defective items. This approach has been subsequently extended
to a three-stage group-testing framework for graphical models
that are community-structured. This setting is motivated by
settings where the graphs may be loosely connected. Finally,
when the inhibitors can exist in the graph, the two-stage group
testing framework has been extended to a four-stage group
testing framework, where the additional stages are responsible
for identifying and filtering out the potential inhibitors. We have
characterized sufficient conditions for all three frameworks that
specify the number of tests sufficient for ensuring a perfect
recovery of the defectives. The graph-constrained group testing
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framework has also been evaluated in a case study on infection
spread in a population with underlying communities.

APPENDIX A
PROOF OF VALIDITY OF ALGORITHM 2

In this section, we provide the proof that Algorithm 2 outputs
asetof 2k — 1 items that form a superset of KC. The proof follows
the same arguments as those in the proof of [13, Theorem 3]. Let
there be k' < k defectives in n items, such that || = &’ In the
noiseless setting, the outcome vector y is a Boolean sum of the
k' columns associated with the defective set K. Therefore, we
claim that besides the columns associated with items in /C, there
are at most 2k — k' — 1 columns completely covered by y. This
can be proved by contradiction. To begin, let there be more than
2k — k' — 1 columns besides those associated with K that are
completely covered by y. Next, consider a submatrix of X(7')
that consists of &’ columns in K and any random set of 2k — &/
additional columns that are covered by y. We denote this set of
2k — k' columns by Z £ {z;,..., 200 '}, where z; € V and
Z N K = . By definition of a (2k, k + 1, n)-selector matrix,
this submatrix consists of at least £ + 1 rows of identity matrix
I, Therefore, at least one of such k£ + 1 rows has anentry 1 ina
column in the set Z. We denote the index of this row by x. Since
the entries in columns associated with C all have entry O inrow z,
this implies that the corresponding entry in y is 0. However, this
contradicts the assumption that y covers all columns in the set
Z for X(T'). Thus, we conclude that by discarding all columns
not covered by y, Algorithm 2 isolates 2k — 1 columns, k" of
which correspond to the k" defectives.

APPENDIX B
PROOF OF THEOREM 1

The number of tests Tiotg hinges on characterizing the number
of pooled tests in the filtration stage, i.e. T, for the construction
of a (2k, k + 1, n)-selector matrix. Therefore, in this proof, our
focus is on the design of (2k, k + 1, n)-selector matrix. From the
definition of selector matrix in Definition 11, note that a selector
matrix is characterized by the presence of rows of an identity
matrix in any submatrix formed by selecting a certain number
of columns. Therefore, we start the proof by characterizing the
probability that a random walk visits one vertex but not any
other in a given set of vertices in Lemma 5. Subsequently, we
will leverage Lemma 5 to characterize the total probability of the
events that violate the construction of a (2k, k + 1, n)-selector
matrix.

To begin the proof, we consider a random walk of length ¢ such
that the sequence of vertices visited by the random walk is given
by W = [vg,...,vs] where vy € V is a randomly initialized
state of the random walk and v; is the vertex visited by the
random walk in i*® time step for v; € V,Vi € {1,...,(}. We
define x,, as the probability that the random walk visits vertex

u, such that
Xu = P(u € {vo, ..

’U@]) .

We also define x4 as the probability that the random walk visits
a vertex u but not any vertex in a given set () C V/, such that,

., v¢} where W = [ug, . .. (33)
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|Q| < k. Therefore,

XgéP(ue{vo,...,w},{vo,...,w}ﬂQ:@,

where W = [vg, ..., v¢]) . (34)

For brevity, we denote the event {{vg,...,v} N Q = @} by

D and its complement by D. Then, based on the analysis of

a random walk with random initialization, we formalize the
property of x& for any choice of u and ) in Lemma 5.

Lemma 5: Foranode u € V and aset of vertices @ C V such

that u & @, we have
Xg _q (Emin@ 7TU> ’

w

(35)

for the choice of pooling capacity ¢ and the regime for k specified
in Theorem 1.

Proof: See Appendix D. (]

Next, to find the number of tests T in Theorem 1, we charac-
terize the events when the matrix X (7F) is not («k, k + 1,n)-
selector. Specifically, note that an («k, k + 1, n)-selector matrix
is equivalent to the following definition from [29, Theorem 5]
which states that: For any two disjoint set of vertices F; C V and
F, C V,suchthat, |Fy| = kand |F»| = (« — 1)k, there always
exists at least one row for which [X(7)];,, = 1 for some col-
umn u € F; in the test matrix X (7¢) and [X(TF)];; = 0,Vj €
Fy U Fy\{u}.Inthis context, using a union bound and Lemma 5,
the probability that X (7F) is not («k, k + 1, n)-selector can be
upper bounded by

P (X(TF) is not (ak, k + 1, n)-selector)

(k) (- ety g

n—1

< exp ((ak —1)log h=D) +(k+1)loga

(a — 1)klmmax
Te 1 1-—
+1F og( p

where (37) follows from (36) by using the upper bound
log (Z;) < nglog % + no for any pair of positive integers ny >
ns. Then, the upper bound in (36) is strictly less than € > 0 if
we have

(ak —1)log 2=t + (k + 1)log o + (v + 1)k — log e
_ log (1 _ ((O‘fl)k)‘eﬂ'max)

w

+ (v + 1)k:> , (37)

T >

(38)
which is further simplified by using Taylor series expansion of
log(1 — z) to the condition

w n—
—_— k—1)1
(@ — D)k)7rmax <(O‘ Jos P
+(k+1)loga+ (a+ 1)k —loge) . (39)
1

Since we have { = O(7—_——), the condition on the number
of tests T" can be further simplified to

2 . _
T — @(w ”’a;"’ ((ak —1)log —

T >

a— ak —1

+(k+1)10ga+(a+1)k—loge>>, (40)

which completes the proof for a = 2.
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APPENDIX C
AUXILIARY RESULTS

In this section, we provide two auxiliary results which are instru-
mental to the proof of Lemma 5 in Appendix B. We first establish
the following lemma which characterizes the probability that a
random walk of length ¢ visits a given node more than z times.

Lemma 6: For any instance of random walk of length ¢, there
exists z = O(Tatio™ ), such that, the probability that the random
walk visits a vertex u more than z times is at most x,, /4.

Proof: Let A; be a Bernoulli random variable that takes the
value 1 if the random walk visits vertex u at step ¢ > 0 and 0,
otherwise. Then, for any step ¢ > w, we have

E[A;] <maxm, + 0, 41)
veV

where (41) follows from the definition of S-mixing time in

Definition 10. By leveraging 5 = mmax/n, we simplify (41)

to E[4;] < 2max,cy 7,. The number of times the random

walk visits vertex u between times ¢; and ¢y is given by
A

ty & ta )
A2 =32, Ai and we have

]E[Af;] < 2¢maxm, . (42)
veV
Therefore, by Markov’s inequality, we have
20 v v
P(AL > () < 2= (43)

¢

By setting ¢ = Q(7ratioww), and by leveraging (50), we get
P(AL > () < X+, Next, by setting z = @ + (, we get

P(Agzz)gP(Agzz—wK%. (44)

]
Next, we provide Lemma 7 which characterizes the distribu-
tion of an event at current step of the random walk in a probability
space conditioned on any event that is more than w steps away
from the current state of the random walk.
Lemma 7: For any ¢ and j, such that, j > ¢ + @, we have
28

min,, m,

P(v;=ulvj=v,R;) —P(vi=u|v;=v)| <

— _ B )
where R; is any event that depends only on the states of the
random walk up to time ¢ given by [vg, . .., v;].

The proof of follows from (45) and [20, Proposition 23].

APPENDIX D
PROOF OF LEMMA 5

We start by characterizing the probability x,, for any vertex
u € V. Recall that the position distribution, i.e., the distribution
of the most recent vertex visited by the random walk at step ¢ is
given by Tl'f'}o. We denote the probability that the random walk
visited u at step ¢ by m%_(u). Then, when we have ¢ > @, it
follows from the definition of S-mixing time in Definition 10
that

75, = 7l < 5. (45)
Next, for a random walk of length ¢, we consider the vertices

visited by the random walk at the time steps in the set W, =
{0, %, 2w, ..., L}, such that, |[W,| = [{/w]. Let the sequence
of vertices visited by the random walk at the time steps in W,
be given by Viw,. Therefore, probability that the vertex u is
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visited by the random walk of length ¢ is lower bounded by
the probability that the random walk visited w at time steps in
Wi, ie., xu > P(u € Vay,). Note that the distribution of the
vertices visited by the random walk after w steps is S-close to
the stationary distribution 7. Therefore, using (45) and union
bound, we have

L)@
P(u ¢ Vaw,) < (1 - mi‘I/l Ty + ,8) , (46)
ve
For any § < % min, ey m,, we have
1 L)@
P(u & Vaw,) < <1 — — min 7Tv) , 47
2 veV
fmin,cy m,
<exp|\————| (48)
2w
Sl_Q(ﬂmlnvevﬂ'v> . 49)
w
From (49), we directly obtain
Yo =0 (fmmvevm,> ) (50)
w
The rest of the proof focuses on characterizing X, for which

we adopt the high level ideas similar to that in [20] and leverage
auxiliary results on different events associated with the random
walk in Appendix C. We note that

X9 > P(D,u e W,Y?), (51)

where V7 represents the event that v is not visited by the random
walk in first 2zo steps and not more than z times overall in £ steps.
Furthermore, from (51), we have

X9 >P(D,ue W,Y?7),
—P(ueW,Y;)(1-P(DlucW,).
Note that
Plue W, ) >Plue W)+ P2 —Plue WUYZ),
(54

(52)
(53)

Xu

=5 - (55)

where (55) follows from (54) using (33) and Lemma 6. There-

fore, by showing that P(D|u € W, Y?) is upper bounded by a

constant, the proof of claim (35) in Lemma 5 is complete. In this

context, when conditioned on Y, the event u € W is a union

of at most & disjoint events of the form {v; = v} for i > 2w.
Therefore, using [20, Proposition 18], we have

P(Dju € W,Y?) <k max P(D|v; =u,V7).

i€[2a+1,0)

To upper bound P(D|v; = u,Y?) in (56), we will leverage
the auxiliary results in Appendix C regarding the behavior
of random walk and provide a general upper bound for any
i € {2w+1,...,¢}. For this purpose, we consider a random
walk which is initialized as vy = ug such that ug € @@ and
where the vertex v; = u for some ¢ > 2w. Then, we select
the time points ¢ = w, to £ — wand t3 S+ w, such that,
t1 < to <tz < L. Next, we divide sequence of vertices W
visited by the random walk into 4 parts: W', Wfff 1 W;j 115
and Wfs 41, Where W; denotes the set of vertices visited by
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the random walk between steps j and 4, for j < ¢. Using union
bound, we have

P(D|v; = u,v0 = ug) < w1 +wa + w3 +wy , (56)
where
w = P(WE NQ # Blv; = u,v0 = ug) (57
wgéP(WifJﬂﬂQ#@m:U,UO:UO) ) (58)
w3éP(ng’HﬂQ#@lm:u,voiuo) ) (59)
w4éP(Wf3+1ﬂQ#®|vi:u,vgzuo) . (60)

Note that the section of the random walk that spans W7, is
sufficiently far, i.e., greater than w steps from time steps ¢ and
0. Therefore, by using (45) and union bound for the number of
steps in the random walk and the number of possible vertices
that can lie in ), we have

wy < lk(maxm, + ) . 61)
veV

Next, note that without the conditioning on the event v; = u,
the probability of the event W, 1 N Q) # @ conforms to the
statistics of the distribution which is S-close to the stationary
distribution of random walk over GG. By using Lemma 7, we
note that conditioning on the event v; = w shifts the distribution
of Wi,11 N Q # & by a factor of at most ¢kS’. Therefore, by
using (45) and (45) in Lemma 7, we get

woy < Lk(maxm, + 5+, (62)

where 3’ £ #ﬁ,g is the upper bound in (45). To analyze

w3, we note that
k
P(vit1 € Qv = u,v0 = up) < Pmay (63)

where ¢k is the sum of the largest & transition probabilities
at any vertex in G. Equation (63) follows by noting that there
are at most k vertices that lie in the set () in the neighborhoods
of u. Furthermore, P (v;11 € Q|v; = u,vg = ug) = P(v;41 €
Q|v; = u) because of the Markov property of random walk.
Similarly, for any time j € {i + 1,...,¢}, we have

P(v; € Qlv; = u) < ¢y - (64)
Note that for the (v, d)-regular graph with weights in [w, 1], a
vertex can have a maximum degree of wd, and therefore, a max-
imum of wd vertices in its immediate neighborhood. Similarly,
if the vertex has the minimum degree of v, it can have at least v
vertices and at most v /w vertices in its immediate neighborhood.
Therefore, by using these observations and leveraging (5), we

note that

k

Phax < o

For any time j € {t2 + 1,...,t3}, using (45) in Lemma 7, we
have

(65)

P(v; € Qv = u,v0 = tp) < Pax + 5. (66)
Therefore, by union bound over the number of time steps and
using (65), we get

k
ws <228 L omg (67)
wvr

The probability w; is analyzed in a similar fashion as ws.
Note that the Markov chain over the vertices is time reversible
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and conditioning on vy changes the probability by at most §'.
Therefore, we have

2
w < 224 wp (68)
wv

By combining (61), (62), (67), and (68), we get

_ k
P(D|v; = u,vg = ug) < 327 383 (w + lk) + 20k max .
wv v
(69)

Next, to relax the condition on the initialization of the random
walk, we note that

P(Dlv; = u) < P(vo € Qlv; = u) + P(Dlv; = u,v9 = ug) -
(70)

Note that the probability P(vy € Qlv; = u) < P(vg € Q) +
p' from Lemma 7 and P(vg € Q) < kmax, 7,. Therefore,
from (69) and (70), we have

_ k
P(Dlv; = u) < 3% + 36 (w + k) + 3k maxm, . (71)

Next, we note that to evaluate the probability P(D|v; = u, V?),
we shrink the probability space to that conditioned on Y:.
Therefore, P(D|v; = u,Y?) is not significantly larger (say by
no more than a factor of 1 + € with € < 1) than P(D|v; = u)
if the event that the random walk does not visit a vertex u more
than z times is close to 1. By taking a union bound on the number
of times a random walk visits an vertex u, we get

P(Dlv; = u, Y¥) < (1 +€)z

k
x <3w + 38/ (w0 + k) + 3£k7rmax> ,
wvr
(72)

where by noting that z = O (7o) from Lemma 6, we can
bound (72) by a constant if we have
1
) ,  (73)

kT maxTratio™

vw = U kato) , L= 0 <

and S in Theorem 1 for sufficiently large n. By leveraging (72)
under the conditions in (73) and (53), the proof of Lemma 5 is
complete.

REFERENCES

[1] N. T. Nguyen, H. Aprahamian, E. K. Bish, and D. R. Bish, “A method-
ology for deriving the sensitivity of pooled testing, based on viral load
progression and pooling dilution,” J. Transl. Med., vol. 17, no. 1, pp. 1-10,
Aug. 2019, Art. no. 252.

[2] M. T. Goodrich and D. S. Hirschberg, “Efficient parallel algorithms for
dead sensor diagnosis and multiple access channels,” in Proc. ACM Symp.
Parallelism Algorithms Architectures, 2006, pp. 118-127.

[3] A. Cohen, A. Cohen, and O. Gurewitz, “Secure group testing,” in Proc.
IEEE Int. Symp. Inf. Theory, 2016, pp. 1391-1395.

[4] N.J. Harvey, M. Patrascu, Y. Wen, S. Yekhanin, and V. W. Chan, “Non-
adaptive fault diagnosis for all-optical networks via combinatorial group
testing on graphs,” in Proc. IEEE Int. Conf. Comput. Commun., Barcelona,
Spain, 2007, pp. 697-705.

[5] A. B. Kahng and S. Reda, “New and improved BIST diagno-
sis methods from combinatorial group testing theory,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 3, pp. 533-543,
Mar. 2006.

[6] S. P. Prabhu, “Techniques for enhancing test and diagnosis of digital
circuits,” Ph.D. dissertation, Dept. Elect. Comput. Eng., Virginia Tech,
Blackburg, VA, USA, 2015.

[7]1 C. Gollier and O. Gossner, “Group testing against COVID-19,” Covid
Econ., vol. 1, no. 2, pp. 32-42, Apr. 2020.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

395

R. Goenka, S.-J. Cao, C.-W. Wong, A. Rajwade, and D. Baron, “Contact
tracing enhances the efficiency of COVID-19 group testing,” in Proc. Int.
Conf. Acoust., Speech, Signal Process., 2021, pp. 8168—8172.

A. Heidarzadeh and K. Narayanan, “Two-stage adaptive pooling with RT-
gPCR for COVID-19 screening,” in Proc. Int. Conf. Acoust., Speech, Signal
Process., 2021, pp. 8148-8152.

M. Aldridge, O. Johnson, and J. Scarlett, “Group testing: An information
theory perspective,” Found. Trends Commun. Inf. Theory, vol. 15, no. 3—4,
pp. 196-392, Feb. 2019.

G. K. Atia and V. Saligrama, “Boolean compressed sensing and noisy
group testing,” IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1880-1901,
Mar. 2012.

D. Du and F. Hwang, Pooling Designs and Nonadaptive Group Test-
ing: Important Tools for DNA Sequencing. Singapore: World Scientific,
2006.

A. De Bonis, L. Gasieniec, and U. Vaccaro, “Optimal two-stage algo-
rithms for group testing problems,” SIAM J. Comput., vol. 34, no. 5,
pp. 1253-1270, 2005.

A. Tajer, R. Castro, and X. Wang, “Adaptive sensing of congested spectrum
bands,” IEEE Trans. Inf. Theory, vol. 58, no. 9, pp. 6110-6125, Sep. 2012.
A. Sharma and C. R. Murthy, “Group testing-based spectrum hole
search for cognitive radios,” IEEE Trans. Veh. Technol., vol. 63, no. 8,
pp. 3794-3805, Feb. 2014.

N. Michelusi and U. Mitra, “Cross-layer estimation and control for cog-
nitive radio: Exploiting sparse network dynamics,” IEEE Trans. Cogn.
Commun. Netw., vol. 1, no. 1, pp. 128-145, Mar. 2015.

A. Tajer, V. V. Veeravalli, and H. V. Poor, “Outlying sequence detection
in large datasets: A data-driven approach,” IEEE Signal Process. Mag.,
vol. 31, no. 5, pp. 44-56, Sep. 2014.

W. Xu, E. Mallada, and A. Tang, “Compressive sensing over graphs,” in
Proc. IEEE Int. Conf. Comput. Commun., 2011, pp. 2087-2095.

A. Deckert, T. Bédrnighausena, and N. N. Kyeia, “Simulation of pooled-
sample analysis strategies for COVID-19 mass testing,” Bull. World Health
Org., vol. 98, pp. 590-598, Jul. 2020.

M. Cheraghchi, A. Karbasi, S. Mohajer, and V. Saligrama, “Graph-
constrained group testing,” /IEEE Trans. Inf. Theory, vol. 58, no. 1,
pp. 248-262, Jan. 2012.

M. Aldridge, L. Baldassini, and O. Johnson, “Group testing algorithms:
Bounds and simulations,” IEEE Trans. Inf. Theory, vol. 60, no. 6,
pp. 3671-3687, Mar. 2014.

D. Du, F. K. Hwang, and F. Hwang, Combinatorial Group Testing and Its
Applications, 2nd ed. Singapore: World Scientific, 2000.

E. Porat and A. Rothschild, “Explicit nonadaptive combinatorial group
testing schemes,” IEEE Trans. Inf. Theory, vol. 57, no. 12, pp. 7982-7989,
Aug. 2011.

C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri, “Non-adaptive group
testing: Explicit bounds and novel algorithms,” IEEE Trans. Inf. Theory,
vol. 60, no. 5, pp. 3019-3035, May 2014.

J. M. Hughes-Oliver and W. H. Swallow, “A two-stage adaptive group-
testing procedure for estimating small proportions,” J. Amer. Statist. As-
soc., vol. 89, no. 427, pp. 982-993, Sep. 1994.

A. Cohen, A. Cohen, S. Jaggi, and O. Gurewitz, “Secure adaptive group
testing,” in Proc. IEEE Int. Symp. Inf. Theory, 2018, pp. 2589-2593.

P. Damaschke, “Adaptive group testing with a constrained number of
positive responses improved,” Discrete Appl. Math., vol. 205, pp. 208-212,
May 2016.

M. Mézard and C. Toninelli, “Group testing with random pools: Op-
timal two-stage algorithms,” IEEE Trans. Inf. Theory, vol. 57, no. 3,
pp. 1736-1745, Mar. 2011.

H.-L. Fu, “Group testing with multiple mutually-obscuring positives,”
Lecture Notes Comput. Sci., vol. 7777, pp. 557-568, Jan. 2013.

P. Damaschke and A. S. Muhammad, “Randomized group testing both
query-optimal and minimal adaptive,” in Proc. Int. Conf. Curr. Trends
Theory Pract. Comput. Sci., Spindleruv Mlyn, Czech Republic, 2012,
pp. 214-225.

J. Scarlett, “An efficient algorithm for capacity-approaching noisy adaptive
group testing,” in Proc. IEEE Int. Symp. Inf. Theory, Paris, France, 2019,
pp. 2679-2683.

S. Luo, Y. Matsuura, Y. Miao, and M. Shigeno, “Non-adaptive group
testing on graphs with connectivity,” J. Combinatorial Optim., vol. 38,
no. 1, pp. 278-291, Jan. 2019.

B. Spang and M. Wootters, “Unconstraining graph-constrained group
testing,” in Proc. Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2019),
Cambridge, MA, USA, vol. 145, Sep. 2019, pp. 46:1-46:20.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on September 12,2022 at 21:55:20 UTC from IEEE Xplore. Restrictions apply.



396

[34] A.Karbasi and M. Zadimoghaddam, “Sequential group testing with graph
constraints,” in Proc. IEEE Inf. Theory Workshop, Lausanne, Switzerland,
2012, pp. 292-296.

[35] P. Nikolopoulos, T. Guo, C. Fragouli, and S. Diggavi, “Community aware
group testing,” 2020, arXiv:2007.08111.

[36] R.Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network tomogra-
phy: Recent developments,” Stat. Sci., vol. 19, no. 3, pp. 499-517, 2004.

[37] M. Lotfi Shahreza, N. Ghadiri, S. R. Mousavi, J. Varshosaz, and J. R.
Green, “A review of network-based approaches to drug repositioning,”
Brief. Bioinf., vol. 19, no. 5, pp. 878-892, 2018.

[38] K. Li, D. Precup, and T. J. Perkins, “Pooled screening for synergistic
interactions subject to blocking and noise,” PLoS One, vol. 9, no. 1, 2014,
Art. no. e85864.

[39] M. Hann, B. Hudson, X. Lewell, R. Lifely, L. Miller, and N. Ramsden,
“Strategic pooling of compounds for high-throughput screening,” J. Chem.
Inf. Comput. Sci., vol. 39, no. 5, pp. 897-902, 1999.

[40] M. Farach, S. Kannan, E. Knill, and S. Muthukrishnan, “Group test-
ing problems with sequences in experimental molecular biology,”
in Proc. Compression Complexity Sequences, Salerno, Italy, 1997,
pp. 357-367.

[41] J. M. Hughes-Oliver, “Pooling experiments for blood screening and drug
discovery,” in Screening. Berlin, Germany: Springer, 2006, pp. 48—68.

[42] A. De Bonis, “New combinatorial structures with applications to efficient
group testing with inhibitors,” J. Combinatorial Optim., vol. 15, no. 1,
pp. 77-94, Jan. 2008.

[43] A. Ganesan, S. Jaggi, and V. Saligrama, “Non-adaptive group testing with
inhibitors,” in Proc. IEEE Inf. Theory Workshop, Jeju Island, Korea, 2015,
pp. 1-5.

[44] A. Ganesan, S. Jaggi, and V. Saligrama, “Learning immune-defectives
graph through group tests,” IEEE Trans. Inf. Theory, vol. 63, no. 5,
pp. 3010-3028, May 2017.

[45] D. A. Levin and Y. Peres, Markov Chains and Mixing Times, 2nd ed.
Providence, RI, USA: American Mathematical Society, 2017, vol. 107.

[46] A.J.Macula, “Error-correcting nonadaptive group testing with de-disjunct
matrices,” Discrete Appl. Math., vol. 80, no. 2-3, pp. 217-222, Dec. 1997.

[47] B. S. Chlebus and D. R. Kowalski, “Almost optimal explicit selectors,”
in Proc. Int. Symp. Fundamentals Comput. Theory. Lubeck, Germany:
Springer, 2005, pp. 270-280.

[48] V. Guruswami, “Rapidly mixing Markov chains: A comparison of tech-
niques,” 2016, arXiv:1603.01512.

[49] A. R. Molla and G. Pandurangan, “Distributed computation of mixing
time,” in Proc. Int. Conf. Dist. Comp. Netw., Hyderabad, India, 2017,
pp. 1-4.

[50] C. M. Verdun et al., “Group testing for SARS-CoV-2 allows for up to
10-fold efficiency increase across realistic scenarios and testing strate-
gies,” Frontiers in Public Health, vol. 9, Aug. 2021, Art. no. 1205,
doi: 10.3389/fpubh.2021.583377.

Saurabh Sihag (Member, IEEE) received the B.Tech. and M.Tech. degrees
in electrical engineering from the Indian Institute of Technology Kharagpur,
Kharagpur, India, in 2016, and the Ph.D. degree in electrical engineering from
Rensselaer Polytechnic Institute, Troy, NY, USA, in 2020. He was the recipient
of the 2021 Charles M. Close *62 Doctoral Prize by the Department of Electrical,
Computer and Systems Engineering at Rensselaer Polytechnic Institute. He is
currently the Clinical Research in ALS and related disorders for Therapeutic
Develoment (CReATe) Consortium Postdoctoral Research Fellow with the Uni-
versity of Pennsylvania, Philadelphia, PA, USA. His research interests include
statistical signal processing, information theory, high-dimensional statistics, and
network neuroscience.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Ali Tajer (Senior Member, IEEE) received the B.Sc. and M.Sc. degrees in
electrical engineering from the Sharif University of Technology, Tehran, Iran,
in 2002 and 2004, respectively. During 2007 and 2010, he was with Columbia
University, New York, NY, USA, where he received the M.A. degree in statistics
and the Ph.D. degree in electrical engineering, and during 2010 and 2012, he
was a Postdoctoral Research Associate with Princeton University, Princeton,
NJ, USA. He is currently an Associate Professor of Electrical, Computer, and
Systems Engineering with Rensselaer Polytechnic Institute, Troy, NY, USA. His
recent publications include an edited book Advanced Data Analytics for Power
Systems (Cambridge University Press, 2020). His research interests include
mathematical statistics, statistical signal processing, and network information
theory, with applications in wireless communications, and power grids. He was
the recipient of an NSF CAREER Award in 2016 and AFRL Faculty Fellowship
in 2019. He is currently an Associate Editor for the IEEE TRANSACTIONS ON
SIGNAL PROCESSING. He was also the Editor of the IEEE TRANSACTIONS ON
COMMUNICATIONS, Guest Editor of the IEEE Signal Processing Magazine,
Editor of the IEEE TRANSACTIONS ON SMART GRID, Editor of the /ET Transac-
tions on Smart Grid, and Guest Editor-in-Chief of the IEEE TRANSACTIONS ON
SMART GRID — special issue on Theory of Complex Systems with Applications
to Smart Grid Operations.

Urbashi Mitra (Fellow, IEEE) received the B.S. and the M.S. degrees from
the University of California, Berkeley, CA, USA, and the Ph.D. degree from
Princeton University, Princeton, NJ, USA. She is currently the Gordon S. Mar-
shall Professor in Engineering with the University of Southern California, Los
Angeles, CA. USA, with appointments in Electrical and Computer Engineering
and Computer Science. She was the Inaugural Editor-in-Chief of the IEEE
TRANSACTIONS ON MOLECULAR, BIOLOGICAL AND MULTI-SCALE COMMUNI-
CATIONS. She was a Member of the IEEE Information Theory Society’s Board
of Governors (2002-2007, 2012-2017), the IEEE Signal Processing Society’s
Technical Committee on Signal Processing for Communications and Networks
(2012-2016), the IEEE Signal Processing Society’s awards Board (2017-2018),
and the Chair/Vice-Chair of the IEEE Communication Theory Technical Com-
mittee (2017-2020). She was the recipient of the 2021 USC Viterbi School of
Engineering Senior Research Award, the 2017 IEEE Women in Communications
Engineering Technical Achievement Award, a 2015 U.K. Royal Academy
of Engineering Distinguished Visiting Professorship, a 2015 U.S. Fulbright
Scholar Award, a 2015-2016 U.K. Leverhulme Trust Visiting Professorship,
IEEE Communications Society Distinguished Lecturer, 2012 Globecom Signal
Processing for Communications Symposium Best Paper Award, 2012 U.S. Na-
tional Academy of Engineering Lillian Gilbreth Lectureship, the 2009 DCOSS
Applications & Systems Best Paper Award, 2001 Okawa Foundation Award,
2000 Ohio State University’s College of Engineering Lumley Award for Re-
search, and a 1996 National Science Foundation CAREER Award. She has been
an Associate Editor for the following IEEE publications: TRANSACTIONS ON
SIGNAL PROCESSING, TRANSACTIONS ON INFORMATION THEORY, JOURNAL OF
OCEANIC ENGINEERING, and TRANSACTIONS ON COMMUNICATIONS. Dr. Mitra
has held visiting appointments with King’s College, London, U.K., Imperial
College, London, U.K., the Delft University of Technology, Delft, the Nether-
lands, Stanford University, Stanford, CA, USA, Rice University, Houston, TX,
USA, and the Eurecom Institute, Biot, France. Her research interests include
wireless communications, structured statistical methods, communication and
sensor networks, biological communication systems, detection and estimation
and the interface of communication, sensing and control.

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on September 12,2022 at 21:55:20 UTC from IEEE Xplore. Restrictions apply.



