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Abstract—This paper considers the problem of adaptive group
testing for isolating up to k defective items from a population of
sizen. There exist restrictions or preferences which determine how
the items can be pooled for testing. A graphical model formalizes
the pooling restrictions and preferences. Such graph-constrained
group testing is investigated in three settings: populations with
defectives, populations facing the potential presence of inhibitors,
and populations with community structures. Adaptive group test-
ing frameworks are provided for each setting. In populations
without inhibitors, existing non adaptive frameworks can isolate
the defective items perfectly with Θ(k logn/k) number of tests,
where is the β-mixing time of a random walk over the underly-
ing graph. This paper provides a two-stage framework that can
perfectly isolate up to k defective items for a regular graph using
Θ(k2 lognk + k) number of tests, thus achieving an approx-
imate gain of a factor of k over the non-adaptive frameworks.
This twostage framework’s principles are extended to community-
structured graphs and graphs with up to r inhibitor items. In par-
ticular, when inhibitors are present in the graph, a four-stage group
testing framework is proposed. The results show that in the regime
r = O(k) for a fully connected graph, Θ((k + r) logn/(k +
r) + r logn) tests are sufficient for isolating the defective items.
This matches the corresponding necessary condition on tests which
scales (k + r) logn. The adaptive graphconstrained group testing
framework is also empirically evaluated.

Index Terms—Adaptive algorithms, communities, detection,
graphical models, group testing.

I. INTRODUCTION

I
N GROUP testing, the central objective is to identify up to k
items with a property of interest (such as being defective) in

a population of size h > k. This is achieved by pooling different

subsets of the items and testing the pooled subsets individually.

Group testing approaches are effective in practice because they

provide significant savings in the number of tests required to

isolate the defectives compared with testing each item indepen-

dently. As a result, group testing algorithms have been studied in
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a wide range of domains, including healthcare [1], sensor fault

detection and diagnosis [2]–[4], diagnosis in digital circuits [5],

[6], and more recently for rapid and scalable testing for isolating

infected individuals in the COVID-19 pandemic [7]–[9]. Each

test on a pool of items indicates the presence of at least one

defective item in the pool [10].

Group testing frameworks can be classified based on their

structures in multiple dimensions. The nomenclature pertinent to

the scope of this paper revolves around non-adaptive and adap-

tive frameworks. When the tests are designed independently of

each other, the group testing framework is called non-adaptive.

In contrast, when the pools of items to be tested are determined

sequentially, the framework is called adaptive. In non-adaptive

group testing, when the items can be selected to be pooled

without any constraints, that is, any item can be pooled arbitrarily

with any subset of items, the existing results show that in the

regime k = Θ(nβ) for β < 1/3, Θ(k2 log n) pooled tests are

sufficient to isolate the defective items perfectly under a zero-

error criterion [10] and Θ(k log n) pooled tests are sufficient to

isolate the defective items under a vanishing error criterion [11].

In contrast, adaptive group testing approaches facilitate perfect

isolation of defective items by using Θ(k log n/k + k) tests

under different error criteria [12], [13] for β ∈ (0, 1).
The second related taxonomy specifies whether there exists

any constraint that limits pooling the items arbitrarily. While

in some applications there does not exist a hard constraint on

pooling and any subset of items can be randomly accessed simul-

taneously for pooled testing (such as spectrum hole search for

cognitive radios [14]–[16] or anomaly detection [17]), in some

domains there exist hard constraints or preferences that specify

that each given item can be pooled with only a pre-specified

subset of items. Such constraints are governed by underlying

relationships among the items depending on the context. Exam-

ples of such underlying relationships include proximity, access

rights, and correlation among different items. Some specific

applications characterized by such constraints include network

tomography [18] and testing for infection [19]. For network

tomography, a routing mechanism governs the host node’s in-

formation transfer to the network’s receiver node. Therefore,

the measurements are characterized by the set of nodes lying

on the information transfer path. In infection detection, there

is a preference in pooling certain items over others, such as

testing of infection in a population, where community structure

and the nature of interactions within the population may affect

individuals’ pooling.

In such settings, the relationships among the items, and subse-

quently, the constraints on pooling, can be represented by graph-

ical models [20]. In [20], a non-adaptive group testing approach

is proposed for a population of n items that form the vertices of

an underlying graphical model wherein pooling is restricted by
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the graph structure. It is shown that Θ(k2̟2 log n/k) tests can

perfectly isolate up to k defectives under the zero-error criterion,

where ̟ is the β-mixing time of the random walk over the

underlying graph [20]. In this paper, we investigate adaptive,

multi-stage group testing approaches under similar graphical

constraints on pooling. Our results show that the gain in the

number of tests over the non-adaptive approach scales with k,

mirroring the gain achieved by the adaptive approaches over

non-adaptive approaches under no constraints on pooling [13].

A. Related Literature

There exists an extensive literature on different information-

theoretic and computational aspects of group testing. In this

subsection, we provide an overview of the literature pertinent

to adaptive and constrained group testing as the two key aspects

of the framework investigated in this paper. We will also discuss

the literature on group testing in the presence of inhibitors. The

performance of a group testing framework is measured by the

number of tests required to correctly isolate the defective items

under different criteria [21] and [22]. In various regimes of the

relative number of the defectives with respect to the population

size, generally, the number of tests sufficient for recovering the

defective items scales sublinearly in the population size [10].

Adaptivity: When a sequence of tests is specified indepen-

dently of the tests’ outcomes, the testing framework is referred

to as non-adaptive [11], [23], and [24]. In contrast, when the set

of tests already performed guide the subsequent tests’ design,

the framework is referred to as adaptive [25]–[27].

The non-adaptive group testing frameworks consist of one

stage of multiple tests performed in parallel as the set of items

being tested in each test does not depend on the outcomes of the

other tests. On the other hand, incorporating limited adaptivity

by introducing multiple stages allows recovering the defective

items more efficiently and in a broader set of regimes [13], [28]–

[31]. For instance, in the two-stage approaches, the first stage

consists of a set of non-adaptive tests to reduce the search space

for defective items by culling a large fraction of the non-defective

items. The second stage depends on the outcome of the first stage

and generally consists of individually testing the items retained

by the first stage [13], [28], and [29]. The same principle can be

used to extend the two-stage frameworks to general multi-stage

ones. The tradeoffs between the number of stages and the number

of tests have been studied in [30], where different regimes of k
and n are characterized for two-, three-, and four-stage group

testing to be sufficient to isolate up to k defective items from n
total items. A computationally efficient four-stage approach that

achieves the optimal number of tests when limited errors in the

test outcomes can be tolerated has been studied in [31].

Pooling constraints: Group testing approaches under graph-

ical constraints imposed by the topology have been studied

in [4], [20], [32]–[34], and under the community structures have

been studied in [35]. The existing studies on graph-constrained

group testing are mainly focused on the non-adaptive strate-

gies [4], [20], [32], and [33]. These studies propose different

non-adaptive group testing frameworks and characterize suffi-

cient conditions (in terms of the number of tests) for isolating

defective items for different classes of graphs. Specifically,

the pool of edges, i.e., the connected subgraph to be tested,

was determined using deterministic rules in [4] and [32]. The

connected subgraphs to be tested were determined randomly

in [20] and [33]. Adaptive algorithms for community-aware

group testing have been studied in [35] where the group of

items to be tested can be divided into multiple communities. The

aforementioned graph-constrained group testing frameworks are

typically motivated by applications in network tomography,

where statistical inference is performed by observing the flow

of information over the edges or links in the network [36].

Therefore, to identify any failed links in the network in this

context, group testing strategies that employ pooled test on a

set of connected links can be leveraged. Pooling constraints are

also relevant to applications such as drug discovery and blood

screening in bioinformatics. In a broader context, the interac-

tions among different biological modules, ranging from DNAs,

genes, and proteins to complex chemical compounds such as

drugs have been modeled as networks in this domain [37].

In such networks, a strategic design of pools for testing that

accommodates various interactions (such as synergistic or an-

tagonistic) among entities overcomes the drawbacks in random

pooling, which ignores these interactions and, therefore, enables

more meaningful interpretations into the outcomes of tests [38],

[39].

Inhibitors: Testing biological samples for blood screening in

practice faces different challenges due to dilution of the testing

performance as the pool sizes increase [1] and the presence

of blockers or inhibitors in the samples that may inhibit the

detection of compounds relevant for the disease [40]. However,

in related applications such as drug discovery, it is desirable

to pool together compounds that achieve a blocking objec-

tive, for instance, a drug blocking a pathogenic protein [41].

Motivated by such scenarios, group testing approaches in the

presence of inhibitors have been studied in [13], [41]–[44].

Specifically, lower bounds on the number of tests for non-

adaptive group testing with inhibitors have been studied in [42]

and a four-stage group testing algorithm whose performance

meets the lower bounds in [42] has been proposed in [13]. A

probabilistic non-adaptive group testing framework for isolat-

ing defectives in the presence of inhibitors was characterized

in [43].

B. Contributions

While unconstrained group testing is well-investigated under

both adaptive and non-adaptive settings, the existing studies

on graph-constrained group testing are mainly limited to the

non-adaptive methods [20]. In this paper, we propose three

adaptive graph-constrained group testing frameworks . The

first framework is a two-stage approach that is characterized by

random walk based pooling of items for tests in the first stage.

The idea of random walk based pooling in this paper is similar

to the pooling strategy of [20] with the key distinction that our

group testing framework hinges on a generic (and potentially

non-uniform) random walk. We show, both theoretically and em-

pirically, that conditions on the number of tests in our two-stage

approach are less stringent compared to these for the existing

non-adaptive approaches. For a degree regular graph, the results

in [20] show thatΘ(̟2k2 log n
k ) tests are sufficient for isolating

up to k defective vertices for one-stage group testing under
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a zero-error criterion. Our two-stage group testing framework

reduces the number of tests to Θ(̟2k log n
k + k) for isolating

up to k defectives, thus showing an improvement of a factor of

k over the one-stage group testing frameworks.

Random walks over a graph with loosely connected structures

can have high mixing times. This renders pooling based on a

random walk in such graphs infeasible. Alternative approaches

for pooling, such as pooling random edges and testing the

largest connected component formed by them have been adopted

in [33]. However, applicability of such approaches is also limited

for graphs with loosely connected structures. Motivated by this,

we extend the two-stage framework and design a three-stage

group testing framework for graph models with community

structures. In contrast to [35], our framework in the context

of community-structured models is minimally adaptive, and

the performance measures are characterized by the zero-error

criterion. We also consider the problem of group testing with

graph constraints in the presence of inhibitors and extend the

principles of the two-stage group testing framework to provide

a four-stage group testing framework that requires a number of

tests that matches, up to a factor of ̟2, to the asymptotically

optimal number of tests for the corresponding scenario under

no graph constraints established in [13]. Finally, we evaluate the

theoretical results and our frameworks’ performance in a case

study motivated by the spread of infection in a population with

underlying communities.

II. PRELIMINARIES

Consider a population of n items labeled by V
△
= {1, . . . , n}.

A subset K ⊆ V of these objects are defective. We define k as

the maximum number of defective items.

Definition 1 (Defective vector): Define the binary variable

ui ∈ {0, 1} to signify the state of item i ∈ V , where ui = 1
indicates that it is defective. Accordingly, define the defective

vector as u
△
= [u1, . . . , un].

In multi-stage group testing, each stage’s design is characterized

by the number of pooled tests and the set of items pooled in each

test, which we formalize next.

Definition 2: Define T (A) as the number of pooled tests we

perform on a subset of items A ⊆ V .

Definition 3 (Test matrix): For performing T (A) pooled tests

on the items in A ⊆ V , we define X(T ) ∈ {0, 1}T (A)×|A| as

a binary matrix whose (t, i)th element, denoted by xti, is set

according to

xti(T )
△
= [X(T )]ti =

{

1 if item i ∈ A is included in test t

0 otherwise
.

(1)

In our designs, we will be controlling the number of items

pooled for each test, formalized by bounds on ‖X(T )‖∞, where

‖X(T )‖∞ is the ℓ∞-norm of X(T ), which equals the maximum

ℓ1-norm of any row of X(T ).
Definition 4 (Pooling capacity): We say that the pooling

capacity of a test is ℓ if up to ℓ items can be pooled for each

individual test. This indicates for a given test matrix X(T ) we

have ‖X(T )‖∞ ≤ ℓ.
We denote the outcome of the test t ∈ {1, . . . , T (A)} on the

items in A by yt ∈ {0, 1}. The outcome yt = 1 indicates that

the group of items pooled together in test t includes at least

one defective item, and the outcome yt = 0 indicates that

all items are deemed non-defective. Accordingly, we define

y
△
= [y1, . . . yT ].
Definition 5 (Noiseless group testing): Fix the set of items

A ⊆ V and the number of pooled tests T (A). For a given

defective vector u and a given test matrix X(T ), the outcome

of a noiseless group test is specified by

yt =
∨

i∈A
ui · xti(T ), (2)

where ∨ denotes the Boolean inclusive or.

In this paper, we focus on noiseless group testing, and we are

interested in the zero-error criterion for the exact recovery of

defective items. In unconstrained (conventional) group testing,

there is no restriction on the identities of items to be pooled in

each test. In graph-constrained group testing, in contrast, there

are two distinctions:
� Pooling restrictions: Restrictions or preferences on pool-

ing may be imposed by a pre-specified set of conditions that

characterize the environment. These restrictions specify the

set of items that a given item i ∈ V can be pooled with. We

denote the set of items that item i can be pooled with by

Ni ⊆ V . For instance, for the identification of congested

links in network tomography, end-to-end measurements

that consist of information flow between two different

points in the network are commonly leveraged. When the

points are not directly connected, the measurements must

follow a feasible path between them in the network.
� Pooling preferences: Furthermore, while item i can be

pooled with all items in V , we assume that there is a pre-

specified bias profile, according to which i will be pooled

with different items with possibly distinct likelihoods. For

instance, in network tomography, it may be logistically

easier to transmit information over certain paths in the

network, thus inducing preferences in pooling.

Another application in which pooled tests may be charac-

terized by preferences is drug discovery in bioinformat-

ics. Drug discovery typically involves identifying “lead

compounds” which are more active than other biolog-

ical compounds in biological assays [41]. Broadly, the

identities of compounds pooled together may determine

their activity (for instance, synergistic or antagonistic).

Specifically, a pool of individually inactive compounds

may give an active result when pooled together in a test.

This phenomenon is called synergism, which is crucial to

combination therapies in the pharmaceutical industry [41].

Therefore, strategic pooling determined by the topology of

molecular interaction networks is a better approach for sta-

tistical analysis in bioinformatics than random pooling [38]

and [39]. These aspects imply the alignment of the pooled

testing approaches applied in different applications in drug

discovery with the characteristics of pooling preferences

for graph-constrained group testing discussed in this paper.

However, not all applications may benefit from such pref-

erences in pooling. For instance, in the problem of isolat-

ing infection spread in a population, pooling of samples

collected from members known to have more frequent
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inter-personal interactions (such as family members, co-

workers, etc.) may be more likely over an arbitrary pooling

of samples, thus inducing a bias in group testing. If the

infection is more likely to be contagious than sporadic,

this bias in pooling may limit the advantages offered by

group testing.

We note that the pooling restrictions or preferences implicit in

a graph-constrained setting motivate our choice of the zero-error

criterion in this paper. Note that when the pooling of items is

constrained by the graph topology, the symmetry in identifying

the defective items is lost, i.e., some defective items may be

harder to identify than others. This is in contrast to unconstrained

group testing, in which different items are generally defective

with equal probabilities. Such a symmetry can be leveraged

to decrease the complexity of a non-adaptive group testing

procedure to O(k log n/k) by considering a probabilistic error

criterion as opposed to a zero-error criterion, which has com-

plexity O(k2 log n/k). However, such a probabilistic recovery

relaxation in error criterion is not as straightforward in the

context of graph-constrained group testing and the choice of

a zero-error criterion is comparatively more robust.

We formalize pooling restrictions and preferences by an undi-

rected and connected graph G
△
= (V,E), in which the vertices

represent the items, edge connections signify the restrictions,

and edge weights capture preferences. When vertices i, j ∈ V
are connected, we denote the edge connecting them by (i, j) ∈
E. Hence, given the definition of Ni, Ni specifies the set of

immediate neighbors of vertex i. The weight of the edge (i, j) is

denoted bywij . We assume that the edge weights are normalized

and fall in the range [w, 1] for somew ∈ (0, 1]. When (i, j) 	∈ E,

we set wij = 0. Accordingly, for each vertex i ∈ V we define

the weighted degree as

degw(i)
△
=

∑

j∈V
wij . (3)

The following definition formalizes the notion that pooling

designs that enable the construction of the test matrix X(T )
should conform to the structure of graph G.

Definition 6 (Graph-constrained pooling): For a given set

of items V , and an associated undirected and weighted graph

G = (V,E), we say that pooling is graph-constrained when the

items pooled in each test form an induced path or an induced

cycle in G.

In this paper, our focus will be on weight-bounded graphs.

Definition 7 ((ν, d)-regular graph): A graph is called

(ν, d)-regular if for all i ∈ V we have degw(i) ∈ [ν, d] for given

constants d ≥ ν > 0.

We remark that a fully-connected, unweighted graph is equiva-

lent to an (n, n)-regular graph with w = 1 and an unweighted,

degree regular graph with degree ν is equivalent to a (ν, ν)-
regular graph with w = 1. While we primarily focus on general

(ν, d)-regular graphical models, we will also provide results for

the special cases in which graph G includes non-overlapping

community structures, which are formalized next.

Definition 8 (Community-structured graphs): We say that

graph G consists of M communities if G is partitioned to

M disjoint subgraphs {Gm = (Vm, Em) : m ∈ {1, . . . ,M}},

such that, nm � |Vm|. The intra-community edges in Gm have

Fig. 1. A population with (n− 3) healthy and k = 3 defective items. It is
a (2w, 5)-regular graph, since 2 ≤ Ni ≤ 5 and for the weights we have w ≤
wij ≤ 1. The pooling capacity is ℓ = 2. The connectivity structure specifies the
pooling constraints. The set of items that item 1 can be pooled with, i.e., N1,
is shown in the solid shaded region. Two tests are depicted in hashed shaded
regions (Pool 1 and Pool 2). The outcome of test on Pool 1 is yt = 1 and the
outcome of the test on Pool 2 is yt = 0.

weight sm, and the inter-community edges have weight q, i.e.,

wij =

{

sm if (i, j) ∈ Em ∀m ∈ {1, . . . ,M}
q if i and j belong to different communities

. (4)

We also remark that the parameters sm and q can be selected

independently. The neighbors of vertex i ∈ Vm within the com-

munity Gm are denoted by Nm
i

△
= Vm ∩Ni. We denote the

minimum weight degree of any vertex in community Gm by νm,

where clearly, νm ≤ ν. Hence, subgraph Gm is (νm, d)-regular.

An example of a community-structured graph with k = 1 defec-

tive is illustrated in Fig. 1. In biological applications, the study of

biological compounds that “inhibit” or block the activity of other

entities is of particular interest. For instance, in drug discovery,

an example of the activity of the lead compounds is their binding

to pathogenic proteins, that eventually inhibit their activity. On

the one hand, such inhibitors block the detection of pathogenic

proteins in a population of biomolecules if their identity is

unknown. On the other hand, inhibitor compounds are crucial

in designing drugs [44]. However, not all lead compounds may

have a uniform activity profile. For instance, a lead compound

(inhibitor) may inhibit only a subset of pathogenic proteins or

a pathogenic protein may be inhibited only by a specific pool

of lead compounds. Such interactions have been modeled by

“immune-defectives” graphs in [44]. Therefore, motivated by

such biological applications, in which the presence of inhibitory

compounds may inhibit the detection of items of interest (in this

case, defective items), we also consider the setting in which the

items may consist of inhibitors, where the activity of an inhibitor

is defined next.

Definition 9 (Inhibitor): Distinct from the defective and non-

defective items, an object is called an inhibitor if its presence in

a pool renders the output of testing the pool meaningless.

Hence, under the potential presence of inhibitors among the

objects, we have ternary outputs for the tests. Specifically, the

outcome of a test t is yt ∈ {0, 1, e}, where yt = e indicates that

the objects pooled in test t contain at least one inhibitor. We

assume that there can be at most r inhibitor items among the n
items, when inhibitors are present. We denote the set of inhibitors

by J ⊂ V . In multi-stage group testing, in principle, all the test

matrices and test outputs are leveraged to form an estimate for
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K. In the group testing frameworks discussed in this paper, the

preliminary stages will be used to winnow out the non-defective

vertices of the graph, and the final decisions will be formed based

on individual tests in the last stage.

III. GRAPH-CONSTRAINED POOLING

This section provides the key ingredients of the multi-stage

graph-constrained group testing algorithms presented in Sec-

tion IV for different settings. Selecting and grouping the items

such that the selection conforms to the underlying graph is facili-

tated via a random walk discussed in Section III-A. The random

walk model is then leveraged to construct the test matrices in

Section III-B.

A. Random Walk Over the Graph

To construct the test matrices that conform to the pooling

restrictions imposed by a general (ν, d)-regular graph G, we

adopt a random walk over G. Specifically, each test is designed

independently of the rest through a random walk. The vertices

visited by the random walk represent the items to be pooled. Each

walk’s origin is selected randomly, and its length is bounded by

the pooling capacity ℓ. Each vertex may be visited more than

once, and the random walks in different tests are allowed to cross

paths. In this subsection, we formalize a generic random walk

process over a given graph G. We also provide the definitions

and notations that we will leverage in describing the algorithms

and their attendant analyses. The definitions of the random walk

described in the context of G readily extend to its connected

subgraphs as well, which we will leverage for community-aware

group testing and group testing with inhibitors.

We define Π as an n× n transition matrix that models a

sequential random walk on G. The element of Π at coordinate

(i, j) signifies the probability that a random walk moves from

vertex i to vertex j, and it is defined as the weight of edge wij

relative to the aggregate weight of the edges emitting from vertex

i, i.e.,

[Π]ij
△
=

wij
∑

j∈Ni
wij

, ∀i, j ∈ V. (5)

Denote the stationary probability distribution of the random

walk by π

△
= [π1, . . . , πn], representing the distribution of the

position in the graph if we run a random walk for an infinite

number of steps. Accordingly, define

πmax
△
= max

i∈V
πi, and πratio

△
= max

i,j∈V

πi

πj
. (6)

Corresponding to a graph G and its stationary probability dis-

tribution π, the mixing time quantifies the length of time after

which the distribution of the vertices visited by any random walk

on G becomes point-wise close to the stationary distribution

π [45], and it is formally defined next.

Definition 10 (β-mixing time): For a random walk of length

τ over G = (V,E) with the stationary probability distribution

π, define πτ
v as the position distribution when the random walk

starts at vertex v ∈ V . The β-mixing time with respect to the ℓ∞
norm is the smallest integer τ such that

‖πt
v − π‖∞ ≤ β , ∀t ≥ τ, (7)

for any v ∈ V . We denote the β-mixing time by ̟.

The definitions provided in this section readily extend to random

walks over the connected subgraphs of G too. To represent these

metrics for a subgraph F ⊆ G, we use the notations Π(F ),
πmax(F ), πratio(F ), and π(F ).

B. Test Matrix Construction

The efficiency of the group testing framework is quantified

by the number of tests required for successfully isolating the

defective items. The following two definitions play pivotal roles

in distinguishing the efficiency of different test matrices.

Definition 11 ((σ, ψ, n)-selector Matrix): A Boolean matrix

X ∈ {0, 1}T×n is (σ, ψ, n)-selector for integers 1 ≤ ψ ≤ σ <
n if any submatrix of A constructed by choosing σ columns of

A, contains at least ψ distinct rows of the identity matrix Iσ.

As established in [13], in a two-stage group testing framework,

if the test matrix of the first stage is a (2k, k + 1, n)-selector,

then it is possible to perfectly identify all the defective items in

the absence of inhibitors.

Definition 12 (k-disjunct Matrix): A matrix is said to be k-

disjunct if no set of k columns has a Boolean sum that is a

superset of any other single column.

In unconstrained testing, a test matrix X(T ) that is k-disjunct

and its respective test outcomes can be decoded using existing

algorithms for the perfect isolation of up to k defective items

in the noiseless setting [46]. This property is leveraged in [20]

to design a one-stage group testing framework with graph con-

straints. In this context, we add the following remark [47].

Remark 1: A (k + 1, k + 1, n)-selector matrix is equivalent

to a k-disjunct matrix with n columns.

We note that in unconstrained testing, the two-stage group

testing framework that leverages a (2k, k + 1, n)-selector test

matrix in the first stage to isolate a superset of defectives

followed by individual testing of the isolated items is known

to require a factor k fewer tests compared with one-stage group

testing. Specifically, in the one-stage framework in [10], it was

shown that Θ(k2 log n/k) pooled tests are sufficient to form a

k-disjunct matrix, and consequently, to perfectly isolate up to

k defective items. On the other hand, in [13] it was shown that

Θ(k log n/k) pooled tests are sufficient to form a (2k, k + 1, n)-
selector matrix, and subsequently, Θ(k log n/k + k) tests are

sufficient to perfectly isolate up to k defective items. Parallel

to these results for unconstrained group testing, we will show

that the same level of gain in the number of tests (i.e., factor k)

can also be achieved in graph-constrained group testing when

we use multi-stage group testing versus non-adaptive one-stage

group testing [20].1

IV. ALGORITHMS AND MAIN RESULTS

In this subsection, we provide multi-stage graph-constrained

group testing algorithms for (ν, d)-regular graphs. The common

1Noisy settings with up to e incorrect test outcomes can be accommodated in
the one-stage group testing framework by considering a more restrictive (k, e)-
disjunct matrix design [20, Definition 2]. We remark that noisy settings with
up to e incorrect test outcomes can similarly be accommodated in the two-stage
group testing framework by modifying Definition 11 to a more restrictive selector
matrix design, (2k, k + 1, n, e)-selector matrix. A (2k, k + 1, n, e)-selector
matrix is characterized by the property that any submatrix constructed by a
random selection of 2k columns contains at least e copies of k + 1 distinct rows
of the identity matrix I2k .
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Algorithm 1: Forming a Test Matrix X(T ) on Subgraph F .

1: input subgraph F with nF number of vertices,

pooling capacity ℓ, number of tests T
2: set matrix X(T ) = 0T×n

3: for test t ∈ {1, . . . , T} do

4: initialize vprev = 0, v = 0
5: sample vertex v from V according to π(F ) and set

[X(T )]tv = 1
6: for j ∈ {2, . . . , ℓ} do

7: set vprev = v
8: sample vertex v from the neighborhood of vprev

according to Π(F )
9: set [X(T )]tv = 1

10: end for

11: end for

12: return test matrix X(T )

Algorithm 2: Decoding X(T ) and y.

1: input test matrix X(T ), test outcomes y

2: initialize empty set H = ∅

3: for column j ∈ {1, . . . , nF } do

4: If y covers j-th column of X(T ) then

5: add j to H
6: end if

7: end for

8: return set H

theme of the algorithms in different settings is that the prelimi-

nary stages are intended to remove the non-defective vertices of

the graph, deferring the final decisions about the defective items

to the last stage. Forming the test matrices constitutes the core of

these algorithms. We start by providing two subroutines for any

subgraph F spanning nF vertices in G that are instrumental

to filtering out the non-defective vertices in F using pooled

testing. The first subroutine (Algorithm 1) provides the steps

for constructing a test matrix using graph-constrained pooling

over F . The second subroutine (Algorithm 2) provides the steps

for decoding the test outcomes and the test matrix jointly.

The decision on the item represented by j-th column in X(T )
being discarded for further decision making hinges on Step 4 in

Algorithm 2, which tests if the respective column of X(T ) is

covered by y, i.e., the positions of 1′s in j-th column of X(T )
form a subset of the positions of 1′s in y.

A. (ν, d)-Regular Graphs with no Inhibitors

We first discuss the two-stage group testing framework for

recovering K perfectly in the absence of inhibitors. The two

stages of the framework for successful recovery ofK over (ν, d)-
regular graph G are described below.

1. Filtration: We conduct TF parallel pooled tests to form

a test matrix X(TF) according to Algorithm 1 and deter-

mine the test outcome vector y. Test matrix X(TF) and

decision vector y are subsequently used by Algorithm 2

to distill the set of candidates to the set H (generated by

Algorithm 2). We are interested in identifying a superset

of K with 2k − 1 elements. It is shown in [13, Theorem

3] that if X(TF) is a (2k, k + 1, n)-selector matrix, then

the output of Algorithm 2 consists of 2k − 1 vertices that

form a superset of K. We reprise the proof of this claim

from [13] in Appendix A for completeness.

2 Isolation: Each of the vertices in Stage 1 is tested individ-

ually. This leads to identifying all defective items.

Therefore, the total number of tests performed is

Ttotal
△
= TF + |H| , (8)

and when X(TF) is a (2k, k + 1, n)-selector matrix, we

have Ttotal = TF + 2k − 1. Since the construction of X(TF)
is stochastic due to random walks involved, X(TF) being a

(2k, k + 1, n)-selector matrix is ensured only stochastically. For

this purpose, we define a Bernoulli random variable

b
△
=

{

1 X(TF) is a (2k, k + 1, n)-selector matrix

0 otherwise
. (9)

Therefore, the objective is to appropriately select TF, such

that, we have P (b = 1) ≥ 1− ǫ for some ǫ ∈ [0, 1/2). We next

formalize sufficient conditions on TF for selector matrix con-

struction and the total number of tests Ttotal for perfect isolation

of K.

Theorem 1 (Two-stage group testing): When graph G is

(ν, d)-regular and the β-mixing time constant is set to β = πmax

n ,

if ℓ and TF satisfy

ℓ = O

(

1

kπmaxπratio̟

)

, (10)

TF = Θ

(

̟2πratio

(

k log
n

k
+ log

1

ǫ

))

, (11)

then when k = O( νw
̟2πratio

) we have the following guarantees:

1) The filtration process identifies 2k − 1 elements forming

a superset of K with a probability at least 1− ǫ, i.e.,

P (K ⊂ H and |H| = 2k − 1) ≥ 1− ǫ . (12)

2) Ttotal number of tests is sufficient to perfectly recover K
with probability at least 1− ǫ, where

Ttotal = Θ

(

̟2πratio

(

k log
n

k
+ log

1

ǫ

)

+ k

)

. (13)

Proof: See Appendix B. �

From Theorem 1, we make the following observations.

Remark 2 (Optimal scaling behavior): The total number

of tests Ttotal sufficient for isolating K with high probability

scales as Θ(̟2πratiok log
n
k + k), achieving a linear scaling

behavior in k. This matches the scaling behavior of k in the

information-theoretic lower bound of k log n
k on the number of

tests for isolating k defectives from n items without constraints

on pooling [10].

Remark 3 (Tradeoff between graph sparsity and defective-

ness): There exists an inherent tradeoff between the size of

the defective set (k) and the sparsity of the graph, captured

by ν. Specifically, a larger value for ν implies that there exist

more paths that do not contain a defective node for a given

k. In adaptive pooling, in order to effectively winnow out the

non-defective items, it is desirable to have as many defective-free

pools as possible. This is, however, hindered as k increases for

a given ν, which leads to an increase in number of tests Ttotal.

It can be even observed that in certain settings, if the value of k
exceeds a certain level, perfect isolation of the defective items
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may become infeasible. For instance, consider a 10-vertex graph

in which the vertices V = {1, . . .10} are connected in a circle

(ν = 2). Assume that nodes {1, 3, 5, 7, 9} are defective. In this

example, we will never be able to isolate all defectives when

ℓ > 1 because the pooled test will always return an outcome

of one. Such an interplay between k and the pooling capacity

ℓ and graph sparsity ν is also observed in Theorem 1, where

it is shown that recovery is guaranteed only in the regime

k = O( νw
πratio̟2 ) which reflects a tradeoff between the sparsity

of the graph (captured by ν) and the feasible maximum number

of defectives k that can be successfully isolated, with an increase

in ν implying a broader set of feasible values for k.

Remark 4 (Connection to non-adaptive group testing): Com-

parison with the results for the non-adaptive graph-constrained

group testing indicates that the total number of tests in our frame-

work scales by a factor k slower than Θ(̟2πratiok
2 log n

k ) tests

sufficient in the non-adaptive framework, indicating a significant

reduction in complexity. Such a comparison can be carried

out by leveraging the tradeoff mentioned above. Specifically,

Theorem 1 considers a given graph with an arbitrary value of

ν, and imposes a condition (upper bound) on k in terms of

ν to provide sufficient conditions for recovering the defective

items. On the other hand, the analysis in [20] takes the dual

approach of letting k change freely and imposing a condition

(lower bound) on ν as a function of k. This condition of [20]

is equivalent to ν = Ω(k̟2πratio/w) in our framework. We can

re-interpret the results in [20] from the perspective of feasibility

of k for a given (ν, d)-regular graph, where both non-adaptive

and adaptive graph-constrained group testing frameworks work

for the same regimes of k.

Remark 5 (Matrix design): The conditions on the pooling

capacity (length of random walk) ℓ and the number of pooled

tests TF are the key factors influencing the design of X(TF).
The factors ̟, πmax, and πratio are indicators of the bias in the

random walk over the graph, and increasing the bias implies an

increase in all these metrics. Based on Theorem 1, we note that

TF increases with an increase in the β-mixing time ̟ and the

metrics πmax and πratio of the random walk. On the other hand,

for a fixed k, an increase in ̟ implies that the upper bound on

ℓ in (10) shrinks. Clearly, a stronger bias necessitates a larger

number of pooled tests T and a smaller pooling capacity ℓ.
Remark 6 (Mixing time): The β-mixing time ̟ significantly

influences the feasibility of group testing and is impacted by

the graph’s connectivity. Specifically, if the graph is ‘loosely’

connected, a higherβ-mixing time implies thatTF random walks

are not guaranteed to cover all vertices in the graph. There-

fore, a desirable property for the graph-constrained random

walk is the ability to mix rapidly (i.e., for instance, ̟ being

poly-logarithmic in n) to avoid bottlenecks in the coverage of

vertices [48]. We also remark that if the mixing time of a graph

is not known, it can be estimated by existing algorithms in the

literature [49].

Remark 7 (Restrictions on network access): In certain ap-

plications such as network tomography, only some parts of the

network may be accessible and only a subset of vertices can be

used as starting or ending points of the random walk. In these

applications, we can modify our analysis along similar lines as

in [20] to show that the number of tests TF increases by a factor

of ̟2, while preserving the other dependencies on k and n.

The following corollary summarizes the results for two-stage

group testing based on an unbiased random walk for a degree-

regular graph withw = 1 andd = ν. In this setting, theβ-mixing

time can be approximated by ̟ = Θ(log β log n/(1− η)) for

a degree-regular graph, where η is the eigenvalue of Π with the

second highest absolute value and (1− η) is the eigengap of the

random walk over G [45].

Corollary 1 (Degree-regular graph): When graphG is (ν, ν)-
regular with w = 1 and the β-mixing time constant is set to

β = n−2, if the parameters satisfy

ℓ = O

(

n(1− η)

k log2 n

)

, TF = Θ

(

log4 n

1− η

(

k log
n

k
+ log

1

ǫ

))

,

(14)

then when k = O( ν(1−η)2

log4 n
) we have the following guarantees:

1) The filtration process identifies 2k − 1 elements forming

a superset of K with a probability at least 1− ǫ, i.e.,

P (K ⊂ H and |H| = 2k − 1) ≥ 1− ǫ . (15)

2) Ttotal number of tests is sufficient to perfectly recover K
with probability at least 1− ǫ, where

Ttotal = Θ

((

k

1− η
log4 n log

n

k
+ log

1

ǫ

)

+ k

)

.

(16)

From Corollary 1, we note that the number of testsTtotal scales as

Θ(k log4 n log n
k ) for a degree-regular graph. We next formalize

the result for a fully-connected graph, in which case we have

πratio = 1.

Corollary 2 (Fully connected graph): For a fully connected

graph, the β-mixing time is ̟ = 1 and the total number of tests

Ttotal scales as Θ(k log n/k + k).
Note that the information-theoretic lower bound on the number

of tests for recovering k defective items out of n total number

of items scales as k log n/k [10]. Therefore, in the asymptote of

large n, when k = O(n), the number of tests for the two-stage

group testing framework has an optimal scaling behavior.

We next discuss the extension of the two-stage group testing

framework in Theorem 1 to graphs with community structures.

In practical scenarios, vertices within the same community likely

have higher affinity than the vertices in different communities,

i.e., the edge weights satisfy sm ≫ q and, therefore, the graph

G may consist of loosely-connected subgraphs. Since the β-

mixing time̟ depends on the eigengap ofΠ, it increases rapidly

for loosely-connected graphs [45]. Thus, the two-stage group

testing framework in Theorem 1 may be practically infeasible

in practice for graphs with communities. Using this motivation,

we next provide a framework graphs with community structures.

B. (ν, d)-Regular Graphs with Communities

For community-aware group testing in the absence of inhibitors,

we include an additional scanning stage prior to the filtration

step to identify the communities with at least one defective

item. In this stage, each community in the graph is treated

as an independent entity, and the test determines whether the

community consists of at least one defective vertex. We denote

the set of communities deemed to have at least one defective

vertex by the preliminary stage byM ⊆ M . The number of tests

performed in this step is denoted by Ts. The subsequent stages
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for each community in M follow similar steps as discussed in

Section IV-A for two-stage group testing.

1. Scanning: Each community m ∈ M is treated as an indi-

vidual entity. We conductTs number of tests, where in each

test, a pool of a subset of communities in M are tested for

the presence of a defective item. In this stage, we use an

existing optimal group testing method for non-adaptive

group testing based on disjunct matrix construction to

determine the set M [10].

2. Filtration: For each community m ∈ M, we conduct

TF,m parallel pooled tests, with the pooling capacity ℓm
on Gm. The test matrix X(TF,m) is formed using similar

steps as described in Algorithm 1. The outcomes of tests

and X(TF,m) are jointly decoded using similar steps as in

Algorithm 2 to a set of vertices denoted byHm. IfX(TF,m)
is a (2k, k + 1, nm)-selector matrix, then Hm consists of

2k − 1 vertices that form a superset of the defective items

in community m.

3. Isolation: Finally, each of the |Hm| selected vertices

from community m ∈ M is tested individually, and the

outcomes from all communities in M are combined to

isolate K.

Therefore, the total number of tests to isolate the defective set

K for graphs with communities is given by

Ttotal
△
= Ts +

∑

m∈M
(TF,m + |Hm|) . (17)

Successfully isolating K is predicated upon perfectly isolating

the communities M in the scanning stage, and appropriately

constructing matrices X(Ts) and X(TF,m). Determining M is a

standard group testing problem, and we use an existing optimal

strategy in the scanning stage. Subsequently, the efficiency of

community-aware group is characterized by {TF,m : m ∈ M}.

We formalize this with the help of a Bernoulli random variable

bm for community m defined as

bm
△
=

{

1 X(TF,m) is a (2k, k + 1, nm)-selector matrix

0 otherwise
.

Therefore, the objective is to determine an appropriate number

of pooled tests based on random walks for each community

m ∈ M such that we have P (bm = 1) ≥ 1− ǫ for some ǫ ∈
[0, 1/2). The following lemma characterizes the number of tests

sufficient for identifying communities with defective vertices in

the scanning stage.

Lemma 1 (Community identification): Ts tests is sufficient

for perfectly identifying the communities that have at least one

defective vertex, where Ts is defined as

Ts
△
=

{

Θ
(

k2 log M
k

)

if k ≤
√
M

M otherwise
. (18)

The proof of Lemma 1 follows directly from the classical

group testing results on disjunct matrix construction driven

non-adaptive group testing [10]. We remark that the dependence

of Ts on k in (18) can be scaled from k2 down to k by adopting

a vanishing error criterion [10]. However, to maintain consis-

tency with the subsequent stages, we have provided the results

corresponding to the zero error criterion in Lemma 1.

We next provide a sufficient condition for a community-aware

graph-constrained group testing framework to isolate the defec-

tive items from the communities in M. The following theorem

characterizes the number of tests for the test matrix X(TF,m)
being a (2k, k + 1, nm)-selector matrix and the total number of

tests required for isolating up to k defective vertices in the graph.

For this purpose, we denote the βm-mixing time for graph Gm

by ̟m.

Theorem 2 (Community-aware group testing): In community

m ∈ M, when the βm-mixing time constant for Gm is set to

βm = n−2
m , if the parameters satisfy

ℓm = O

(

1

kπmax(Gm)πratio(Gm)̟m

)

, (19)

TF,m = Θ

(

̟2
mπratio(Gm)

(

k log
nm

k
+ log

1

ǫm

))

, (20)

then when k = O( νmw
πratio(Gm)̟2

m
) we have the following guaran-

tees:

1) The filtration stage identifies 2k − 1 elements forming a

superset of Km with probability at least 1− ǫ, i.e.,

P (Km ⊂ Hm and |Hm| = 2k − 1) ≥ 1− ǫm . (21)

2) Ttotal number of tests is sufficient to perfectly recover K
with probability at least

∏

m∈M(1− ǫm), where

Ttotal = Ts +
∑

m∈M
(TF,m + 2k − 1) . (22)

The proof of Theorem 2 follows directly from the proof of

Theorem 1. From Theorem 2, we observe that the number of

tests for isolating up to k defectives from community m, TF,m

has linear dependence on k. We argue that the number of tests

for each community can be further improved by incorporating

more side information when available, such as the number of

defectives per community [35]. The conditions on TF,m and ℓm
collectively determine the design of test matrix X(TF,m) for

community m.

C. (ν, d)-Regular Graphs with Inhibitors

A four-stage framework for identifying defective items in the

presence of inhibitors is proposed in [13]. The first three stages

of the strategy in [13] employ selector matrices for filtering out

potential inhibitors, defectives, and non-defectives, respectively.

The final and fourth stage individually tests the retained items.

We extend this approach to the graph-constrained testing setting

by leveraging random walks for constructing the selector matri-

ces in the first three stages. When there are up to r inhibitors,

the different stages of a four-stage group testing framework are

formalized as follows.

1. Benchmark specification: In the first stage, our goal is to

identify a certain pool of items Abs ⊆ V that tests positive

and does not contain any inhibitor, i.e., Abs ∩ J = ∅ and

Abs ∩ K 	= ∅. In this stage, we conduct Tbs pooled tests

on graph G with pooling capacity ℓbs to form a test matrix

according to steps similar to Algorithm 1. We adopt pooled

testing to identify Abs such that it isolate as many items

as possible with a substantially smaller number of tests

compared with testing each item individually. Note that in

this stage, a pooled test has an outcome 1 if and only if the

pool of items tested has at least one defective item and no

inhibitors. IfX(Tbs) is a (k + r, r + 1, n)-selector matrix,

there exists a pool Abs, such that, |Abs| = n/(k + r) [13].
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The setAbs enables us to isolate a superset of all inhibitors

from the items V \Abs in the next stage.

2. Inhibitor detection: In this stage, our goal is to identify

a superset of the set of inhibitors J . For this purpose,

we first exclude the vertices in the set Abs and their

associated edges from the graph to focus on the subgraph

with the vertices Vid = V \Abs. The number of vertices in

the remaining graph is denoted by nid
△
= n− |Abs|. We

conduct Tid number of pooled tests with pooling capacity

ℓid on the subgraph Gid
△
= (Vid, Eid) spanned by vertices

Vid and a set of edges Eid ⊆ E that consists of all edges

(u, v) such that u, v ∈ Vid. Using steps similar to those

in Algorithm 1, the pooled tests enable us to form a test

matrix X(Tid) of dimension Tid × nid. In this stage, the

outcome yt of a pooled test is determined by coupling

the tth pool of items in X(Tid) with the pool Abs. Since

the pool Abs consists of at least one defective vertex and

no inhibitors, the outcome of a pooled test in this stage

is e if and only if the tth pool consists of at least one

inhibitor and it is 1, otherwise. By using the principles

from Section IV-A, we note that a superset of inhibitors

J can be identified by using steps similar to those in

Algorithm 2 with trivial transformation to the outcome

vector [13]. Therefore, by leveraging a test matrix X(Tid)
that is a (2r, r + 1, nid)-selector matrix, we can identify a

set of vertices Aid ⊂ V such that |Aid| = 2r − 1 and Aid

is a superset of J .

3. Filtration: In this stage, our goal is to cull the non-

defective vertices from the subgraph in G obtained by

removal of set of verticesAid. For this purpose, we exclude

the vertices in the set Aid and adopt a random walk for

collecting data from on the subgraph Gf
△
= (Vf, Ef) with

vertices Vf = V \Aid, such that the number of vertices in

Gf is given by nf
△
= n− |Aid| and the set of edges Ef ⊆ E

that consists of all edges (u, v) such that u, v ∈ Vf. We

conduct Tf number of pooled tests with pooling capacity

ℓf. The pooled tests enable us to form a test matrix X(Tf)
of dimension Tf × nf using steps similar to those in Algo-

rithm 1. We next decodeX(Tf) and its respective outcomes

using steps similar to those in Algorithm 2. Therefore,

if X(Tf) is a (2k, k + 1, nf)-selector matrix, Algorithm 2

yields an outcome Af such that |Af| = 2k − 1 and Af is a

superset of K.

4. Isolation: Finally, we individually test the vertices inAid ∪
Af isolated in stages 2 and 3.

In this context, the total number of tests sufficient for successful

isolation of defective vertices K is given by

Ttotal
△
= Tbs + Tid + Tf + |Aid|+ |Af| , (23)

where the total number of pooled tests Tbs + Tid + Tf deter-

mines the efficiency of the four-stage group testing framework.

Therefore, the numbers of pooled tests in the first three stages

must be selected such that they facilitate constructing appro-

priate selector test matrices in their respective stages with high

likelihood. This can be compactly conveyed by using Bernoulli

random variable bm for stage m defined as

bm
△
=

{

1 X(Tm) is an appropriate selector matrix for stage m
0 otherwise

,

where T1 = Tbs, T2 = Tid, and T3 = Tf. Hence, in stages 1–

3, we construct test matrices {Tbs, Tid, Tf} via random walks

by appropriately selecting the number of tests such that

P (
∑3

m=1 bm = 3) ≥ 1− ǫ for ǫ ∈ [0, 1/2). Next, we provide

sufficient conditions for perfectly recoveringK in the presence of

inhibitors J . For this purpose, we denote mixing time constants

in the first three stages by ̟bs, ̟id, and ̟f, respectively. The

following lemmas capture the design specifications for the test

matrices in different stages.

Lemma 2 (Benchmark creation): When graph G is (ν, d)-
regular and its βbs-mixing time constant is set to βbs = πmax

n , if

ℓbs and Tbs satisfy

ℓbs = O

(

1

rπmaxπratio̟bs

)

, (24)

Tbs = Θ

(

πratio̟
2
bs

(r + 1)

k

(

(k + r) log
n

k + r
+ log

1

ǫ

))

,

(25)

then when the maximum number of inhibitors satisfies r =
O( νw

̟2

bs
πratio(G)

), the test matrix X(Tbs) is a (k + r, r + 1, n)-

selector matrix with a probability at least 1− ǫ > 0.

Proof: The proof follows directly from the construction of a

(α, k + 1, n)-selector matrix in Appendix B. �

Lemma 3 (Inhibitor detection): When graph Gid is (νid, d)-

regular and its mixing time constant is set to βid = πmax(Gid)
nid

, if

ℓid and Tid satisfy

ℓid = O

(

1

r̟idπmax(Gid)πratio(Gid)

)

, (26)

Tid = Θ

(

πratio(Gid)̟
2
id

(

r log nid + log
1

ǫ

))

, (27)

then when the maximum number of inhibitors satisfies r =
O( νidw

̟2

id
πratio(Gid)

), the test matrix X(Tid) is a (2r, r + 1, nid)-

selector matrix with a probability at least 1− ǫ.
Proof: The proof follows directly from Appendix B where we

replace k with r as a parameter in the construction of selector

matrix. �

Note that Lemma 3 is equivalent to the results for the con-

struction of a (2k, k + 1, n)-selector matrix in Theorem 1 with

parameters in terms of r. Furthermore, lemmas 2 and 3 provide

distinct conditions on the number of inhibitors r for successful

construction of the respective selective matrices in stages 1 and 2.

Since νid ≤ ν, we argue that the condition in Lemma 3 is more

stringent and therefore, captures the overall condition on the

number of inhibitors.

Lemma 4 (Filtration): When graph Gf is (νf, w)-regular and

ts mixing time constant is set to βf =
πmax(Gf)

nf
, if ℓf and Tf satisfy

ℓf = O

(

1

ν̟fπmax(Gf)πratio(Gf)

)

, (28)

Tf = Θ

(

πratio(Gf)̟
2
f

(

k log
nf

2k
+ log

1

ǫ

))

, (29)

then when the maximum number of defective items satisfies

k = O( νfw
̟2

f
πratio(Gf)

), the test matrix X(Tf) is a (2k, k + 1, nf)-

selector matrix with a probability at least 1− ǫ.
The proof directly follows the proof of Theorem 3. Lemmas 2–4

collectively establish the following overall performance for the
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four-stage group testing framework. From lemmas 3–4, we note

that the number of pooled tests Tid and Tf in stages 2 and 3

depend on the properties of their respective random walks on

reduced graphs Gid and Gf, respectively.

Theorem 3 (Group testing with inhibitors): If the subgraphs

Gid andGf have connected edge structures and their mixing time

constants are set according to lemmas 2–4, the four-stage group

testing framework isolates the defective items with probability

at least (1− ǫ)3, when the pooling capacities and the number of

tests follow those specified by lemmas 2–4.

In general, it is known that the number of tests for recovering

up to k defective items and r inhibitors from a pool of n items

scales at least as fast as (k + r) log n [40]. When we have a

fully connected graph G (i.e., an (n, n)-regular graph) with an

unbiased random walk, the mixing time constants for all stages

are set as ̟bs = ̟id = ̟f = 1. In this setting, the following

theorem characterizes the scaling behavior of the number of

tests for four-stage group testing.

Theorem 4 (Fully connected graph): When graph G is fully

connected, by performing an unbiased random walk, the number

of tests sufficient for recovering up to k defective vertices in the

presence of up to r inhibitor vertices is specified as follows.
� In the regime r = O(k), Ttotal grows as

Θ

(

(k + r) log
n

k + r
+ r log n

)

.

� In the regime k = o(r), Ttotal grows as Θ(r2 log n).
Remark 8: Based on the scaling behaviors ofTtotal in different

regimes in Corollary 4, we remark that the asymptotic scaling

behaviors of Ttotal matches with those for non-adaptive group

testing in [43]. In the regime r = O(k), the number of tests for

the four-stage group testing framework scales almost linearly in

r and k. On the other hand, in the regime k = o(r), the number

of tests scales as r2.

V. NUMERICAL RESULTS

In Section V-A, we empirically evaluate the constructional

aspects of graph-constrained group testing algorithms in this

paper and compare them with those in the existing literature.

In Section V-B, we implement the algorithms presented for a

case study where various aspects are motivated by the realistic

settings of infectious diseases.

A. Selector Matrix Construction

Selector matrix construction is instrumental to the filtration

stage in group testing algorithms in Section IV-A and Sec-

tion IV-B as well as benchmark creation, inhibitor detection,

and filtration stages in the four-stage group testing algorithm

in Section IV-C. In our numerical evaluations, we assess the

construction of a (2k, k + 1, n)-selector matrix and compare

the complexity of graph-constrained construction of a (2k, k +
1, n)-selector matrix against that of a (k + 1, k + 1, n)-selector

matrix (or a k-disjunct matrix with n columns) which is relevant

to the existing one-stage frameworks.

We consider a (40, 40)-regular graph G with number of ver-

tices n = 100, minimum edge weight w = 1, and the maximum

number of defective items k = 2. In this setting, each vertex

has 40 vertices in its immediate neighborhood. We first evaluate

Fig. 2. Likelihood of forming a (k + 1, k + 1, n)-selector matrix versus
pooling capacity ℓ.

Fig. 3. Likelihood of forming a (2k, k + 1, n)-selector matrix versus pooling
capacity ℓ.

the likelihoods of successful construction of different selector

matrices versus the length of a random walk over G. Figure 2

depicts the success rate of forming a (k + 1, k + 1, n)-selector

matrix using random walk construction characterized by differ-

ent number of tests TF and pooling capacity ℓ over 1000 random

instances. Similarly, Fig. 3 depicts the success rate of forming a

(2k, k + 1, n)-selector matrix using random walk construction

over 1000 random instances. These two figures indicate that for

a smaller number of tests, the likelihood of forming the test

matrix with desired properties increases up to a certain pooling

capacity (4 in this case), followed by a sharp decline as the

length of the random walk is further increased beyond 5 for

(2k, k + 1, n)-selector matrix and a gradual decline in the case

of (k + 1, k + 1, n)-selector matrix. These observations indi-

cate that there is an upper limit on the pooling capacity beyond

which the likelihood of successful selector matrix construction

diminishes. This is consistent with the implications of Theorem 1

and the discussion in Remark 3. These experiments also indicate

that the construction of a (k + 1, k + 1, n)-selector matrix is

more robust to the variations in pooling capacity than that of a

(2k, k + 1, n)-selector matrix. Furthermore, we observe that the

number of tests required for constructing (2k, k + 1, n)-selector

matrix with a given likelihood is less and becomes closer to

half of that sufficient for the construction of a (k + 1, k + 1, n)-
selector matrix with a similar likelihood as the likelihood be-

comes closer to 1. This observation confirms what is expected

analytically, that is constructing a (2k, k + 1, n)-selector ma-

trix can be achieved by a factor of k smaller number of tests

than that for the construction of a (k + 1, k + 1, n)-selector

matrix.

We also evaluate the likelihood of constructing a (2k, k +
1, n)-selector matrix for graphs with different degreesν in Fig. 4.

For the results in this figure, we set the pooling capacity fixed as
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Fig. 4. Empirical likelihood of forming a (2k, k + 1, n)-selector matrix ver-
sus degree ν for graphs of size n = 100, number of tests, TF = 60 and pooling
capacity, ℓ = 4.

Fig. 5. Empirical likelihood of forming a (2k, k + 1, n)-selector matrix ver-
sus R for graphs of size n = 100 and number of tests, TF = 60.

ℓ = 4 and number of tests TF = 60 and vary ν. As expected

from the results in Theorem 1, we observe that the success

rate of forming the selector matrix improves with an increase

in connectivity and, therefore, a decrease in the mixing time of

the graph, as implied by increasing ν.

We next evaluate the likelihood of constructing a (2k, k +
1, n)-selector matrix for graphs with different characteristics

of random walk in Fig. 5. Specifically, we consider a graph

withM = 4 communities and set sm = s,∀m ∈ {1, 2, 3, 4}. To

reflect the bias of the random walk in the graph, we defineR � s
q .

Figure 5 illustrates the success rate for forming a selector matrix

for TF = 60 samples over 1000 random instances for different

R. Clearly, as the bias increases, the success rate drops for the

same number of samples as indicated by Theorem 1.

B. Infection Detection

In this section, we evaluate our framework in the context

of infection spread in a human population whose interac-

tions are modeled by a community-structured graph. We use

the community-aware group testing framework described in

Section IV-B for this setup. Note that this framework was

designed for noiseless testing, which is not a realistic setting

in practice. Therefore, we characterize the performance of the

pooled test adopted for group testing

1) Infection Test: We motivate the test performance by exist-

ing epidemiology studies. We note that the relative costs of false-

positive errors and false-negative errors of a test can be different

in practice. For instance, a significant number of false-negative

errors in testing a population leads to infected individuals labeled

as healthy. Therefore, tolerating a high rate of false-negatives

diminishes the test’s efficacy since it does not isolate the infected

individuals. Thus, tests are designed with a focus on minimizing

the false-negative error. However, in pooled testing strategies,

the sensitivity of the test may depend on different factors such as

the number of infected individuals in the pool [1], viral loading

in a sample collected from an individual, and the number of

tests that can be performed using one sample [50]. Motivated by

these considerations, we assume that the false-positive error rate

is 0 and use the following approximation for the success rate for

when ℓ individuals are pooled together to be tested, and the pool

consists of i number of infected individuals [1]:

P(i, ℓ)
△
= 1− α

i
ℓγ , (30)

where α and γ are context-specific parameters. For instance, for

HIV testing we have α = 0.00033 and γ = 0.179 [1]. Clearly, a

test’s error rate increases with an increase in ℓ and decreases in

the number of infected individuals i. Since collecting samples

is straightforward and less resource-intensive for mass testing

in various contexts [7], the dilution effect is compensated by

collecting enough samples that allow repeated testing of the

pooled individuals. Specifically, if p samples are available per

individual, the pooled test can be performed p times, increasing

the overall success rate to

Pp(i, ℓ)
△
= 1− α

pi
ℓγ ≥ Pp(ℓ)

△
= 1− α

p
ℓγ . (31)

Clearly, p controls the likelihood of noiseless setting being

observed in practice, and more samples per individual increases

this likelihood. In our experiments, we evaluate the testing

performance for different p.

2) Distribution of Defectives: We considered the scenarios

of independent defectives and graph-constrained defectives. We

randomly selected a set ofk vertices, denoted byH, from which a

setJ ⊆ H is infected (or turn defective). In the case of indepen-

dent defectives, we assumed that the vertices in H are selected

independently at random from the set V . For graph-constrained

defectives, we assumed that the vertices in H form a connected

subgraph. The probability associated with a set of vertices H
being exposed to the infection is given by

P (H) =
1

Zk

∑

(u,v)∈E,u∈H,v∈H
wuv , (32)

where Zk is the normalizing factor such that P (H) is a valid

probability measure. Each vertex in H can be defective with

probability 0.9, which determinesJ . In the context of infectious

disease, we are more likely to encounter graph-constrained

defectives. For comparison, we evaluated the community-aware

group testing framework over both cases of distributions of

defectives in the graph.

3) Community-Aware Group Testing: To evaluate the effi-

ciency in a population with community structures, we con-

sider a population of n = 10000 individuals scaterred in M =
5 communitys and set ν = d = 400. We assume that there

were at most k = 10 infected individuals. The intra-community

edge weight sm in community m is selected randomly from

[0.67, 1] and we set q = 1/150. We evaluate the performance for

graph-consistent infections as well as independent infections and

depict the respective performances of the group testing frame-

work in Figs. 6 and 7. For our experiments, we set the pooling ca-

pacity to ℓ = 37, which is verified to achieve maximum success

rate in the construction of selector matrices by graph-constrained

pooling on individual communities. The number of pooled tests

is set to be 1200 for each community, beyond which we did not
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Fig. 6. Likelihood of successfully isolating of infected vertices versus sensi-
tivity of the test for different number of samples per vertex. The set of infected
vertices are selected randomly according to (32).

Fig. 7. Likelihood of successfully isolating of infected vertices versus sensi-
tivity of the test for different number of samples per vertex. The infected vertices
are selected randomly and independently.

observe any noticeable improvement in the rate of forming a

selector matrix. In our experiments, we observe that collecting

up to 3 samples per individual resulted in a very high success rate

when the test had high sensitivity (greater than 0.85) for both

scenarios of the distribution of defective vertices in the graph.

Furthermore, we observe that the group testing framework has

a higher success rate for scenarios with graph-consistent defec-

tives as compared to that with independent defectives except for

the case when p = 1.

VI. CONCLUSIONS

In this paper, we have considered the problem of adaptive

group testing where pooling and testing the groups are con-

strained with pre-specified restrictions. A graphical model has

been adopted to represent the constraints. We have proposed

three group testing frameworks. First, a two-stage group testing

framework has been proposed for the perfect recovery of the

defective items. This approach has been subsequently extended

to a three-stage group-testing framework for graphical models

that are community-structured. This setting is motivated by

settings where the graphs may be loosely connected. Finally,

when the inhibitors can exist in the graph, the two-stage group

testing framework has been extended to a four-stage group

testing framework, where the additional stages are responsible

for identifying and filtering out the potential inhibitors. We have

characterized sufficient conditions for all three frameworks that

specify the number of tests sufficient for ensuring a perfect

recovery of the defectives. The graph-constrained group testing

framework has also been evaluated in a case study on infection

spread in a population with underlying communities.

APPENDIX A

PROOF OF VALIDITY OF ALGORITHM 2

In this section, we provide the proof that Algorithm 2 outputs

a set of 2k − 1 items that form a superset ofK. The proof follows

the same arguments as those in the proof of [13, Theorem 3]. Let

there be k′ ≤ k defectives in n items, such that |K| = k′. In the

noiseless setting, the outcome vector y is a Boolean sum of the

k′ columns associated with the defective set K. Therefore, we

claim that besides the columns associated with items in K, there

are at most 2k − k′ − 1 columns completely covered by y. This

can be proved by contradiction. To begin, let there be more than

2k − k′ − 1 columns besides those associated with K that are

completely covered by y. Next, consider a submatrix of X(T )
that consists of k′ columns in K and any random set of 2k − k′

additional columns that are covered by y. We denote this set of

2k − k′ columns by Z � {z1, . . . , z2k−k′}, where zi ∈ V and

Z ∩ K = ϕ. By definition of a (2k, k + 1, n)-selector matrix,

this submatrix consists of at least k + 1 rows of identity matrix

I2k. Therefore, at least one of such k + 1 rows has an entry 1 in a

column in the set Z . We denote the index of this row by x. Since

the entries in columns associated withK all have entry 0 in rowx,

this implies that the corresponding entry in y is 0. However, this

contradicts the assumption that y covers all columns in the set

Z for X(T ). Thus, we conclude that by discarding all columns

not covered by y, Algorithm 2 isolates 2k − 1 columns, k′ of

which correspond to the k′ defectives.

APPENDIX B

PROOF OF THEOREM 1

The number of testsTtotal hinges on characterizing the number

of pooled tests in the filtration stage, i.e. TF, for the construction

of a (2k, k + 1, n)-selector matrix. Therefore, in this proof, our

focus is on the design of (2k, k + 1, n)-selector matrix. From the

definition of selector matrix in Definition 11, note that a selector

matrix is characterized by the presence of rows of an identity

matrix in any submatrix formed by selecting a certain number

of columns. Therefore, we start the proof by characterizing the

probability that a random walk visits one vertex but not any

other in a given set of vertices in Lemma 5. Subsequently, we

will leverage Lemma 5 to characterize the total probability of the

events that violate the construction of a (2k, k + 1, n)-selector

matrix.

To begin the proof, we consider a random walk of length ℓ such

that the sequence of vertices visited by the random walk is given

by W = [v0, . . . , vℓ] where v0 ∈ V is a randomly initialized

state of the random walk and vi is the vertex visited by the

random walk in ith time step for vi ∈ V, ∀i ∈ {1, . . . , ℓ}. We

define χu as the probability that the random walk visits vertex

u, such that

χu � P (u ∈ {v0, . . . , vℓ} where W = [v0, . . . , vℓ]) . (33)

We also define χQ
u as the probability that the random walk visits

a vertex u but not any vertex in a given set Q ⊂ V , such that,
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|Q| ≤ k. Therefore,

χQ
u � P (u ∈ {v0, . . . , vℓ}, {v0, . . . , vℓ} ∩Q = ∅,

where W = [v0, . . . , vℓ]) . (34)

For brevity, we denote the event {{v0, . . . , vℓ} ∩Q = ∅} by

D and its complement by D̄. Then, based on the analysis of

a random walk with random initialization, we formalize the

property of χQ
u for any choice of u and Q in Lemma 5.

Lemma 5: For a node u ∈ V and a set of verticesQ ⊂ V such

that u 	∈ Q, we have

χQ
u = Ω

(

ℓminv πv

̟

)

, (35)

for the choice of pooling capacity ℓ and the regime fork specified

in Theorem 1.

Proof: See Appendix D. �

Next, to find the number of tests TF in Theorem 1, we charac-

terize the events when the matrix X(TF) is not (αk, k + 1, n)-
selector. Specifically, note that an (αk, k + 1, n)-selector matrix

is equivalent to the following definition from [29, Theorem 5]

which states that: For any two disjoint set of verticesF1 ⊂ V and

F2 ⊂ V , such that, |F1| = k and |F2| = (α− 1)k, there always

exists at least one row for which [X(TF)]iu = 1 for some col-

umn u ∈ F2 in the test matrix X(TF) and [X(TF)]ij = 0, ∀j ∈
F1 ∪ F2\{u}. In this context, using a union bound and Lemma 5,

the probability that X(TF) is not (αk, k + 1, n)-selector can be

upper bounded by

P (X(TF) is not (αk, k + 1, n)-selector)

≤
(

n− 1

αk − 1

)(

αk

k + 1

)(

1− ((α− 1)k)ℓπmax

̟

)TF

(36)

≤ exp

(

(αk − 1) log
n− 1

(αk − 1)
+ (k + 1) logα

+TF log

(

1− (α− 1)kℓπmax

̟

)

+ (α+ 1)k

)

, (37)

where (37) follows from (36) by using the upper bound

log
(

n1

n2

)

≤ n2 log
n1

n2

+ n2 for any pair of positive integersn1 ≥
n2. Then, the upper bound in (36) is strictly less than ǫ > 0 if

we have

TF ≥
(αk − 1) log n−1

αk−1 + (k + 1) logα+ (α+ 1)k − log ǫ

− log
(

1− ((α−1)k)ℓπmax

̟

)

(38)

which is further simplified by using Taylor series expansion of

log(1− x) to the condition

TF ≥ ̟

((α− 1)k)ℓπmax

(

(αk − 1) log
n− 1

αk − 1

+(k + 1) logα+ (α+ 1)k − log ǫ) . (39)

Since we have ℓ = O( 1
kπmaxπratio̟

), the condition on the number

of tests T can be further simplified to

TF = Θ

(

̟2πratio

α− 1

(

(αk − 1) log
n− 1

αk − 1

+ (k + 1) logα+ (α+ 1)k − log ǫ

))

, (40)

which completes the proof for α = 2.

APPENDIX C

AUXILIARY RESULTS

In this section, we provide two auxiliary results which are instru-

mental to the proof of Lemma 5 in Appendix B. We first establish

the following lemma which characterizes the probability that a

random walk of length ℓ visits a given node more than z times.

Lemma 6: For any instance of random walk of length ℓ, there

exists z = Θ(πratio̟), such that, the probability that the random

walk visits a vertex u more than z times is at most χu/4.

Proof: Let Ai be a Bernoulli random variable that takes the

value 1 if the random walk visits vertex u at step i ≥ 0 and 0,

otherwise. Then, for any step i ≥ ̟, we have

E[Ai] ≤ max
v∈V

πv + β , (41)

where (41) follows from the definition of β-mixing time in

Definition 10. By leveraging β = πmax/n, we simplify (41)

to E[Ai] ≤ 2maxv∈V πv . The number of times the random

walk visits vertex u between times t1 and t2 is given by

At2
t1

△
=

∑t2
i=t1

Ai and we have

E[Aℓ
̟] ≤ 2ℓmax

v∈V
πv . (42)

Therefore, by Markov’s inequality, we have

P (Aℓ
̟ ≥ ζ) <

2ℓmaxv∈V πv

ζ
. (43)

By setting ζ = Ω(πratio̟), and by leveraging (50), we get

P (Aℓ
̟ ≥ ζ) < χu

4 . Next, by setting z = ̟ + ζ, we get

P (Aℓ
0 ≥ z) ≤ P (Aℓ

̟ ≥ z −̟) <
χu

4
. (44)

�

Next, we provide Lemma 7 which characterizes the distribu-

tion of an event at current step of the random walk in a probability

space conditioned on any event that is more than ̟ steps away

from the current state of the random walk.

Lemma 7: For any i and j, such that, j ≥ i+̟, we have

P (vi=u |vj=v,Ri)− P (vi=u | vj=v)| ≤ 2β

minv πv − β
,

where Ri is any event that depends only on the states of the

random walk up to time i given by [v0, . . . , vi].
The proof of follows from (45) and [20, Proposition 23].

APPENDIX D

PROOF OF LEMMA 5

We start by characterizing the probability χu for any vertex

u ∈ V . Recall that the position distribution, i.e., the distribution

of the most recent vertex visited by the random walk at step ℓ is

given by π
ℓ
v0

. We denote the probability that the random walk

visited u at step ℓ by πℓ
v0
(u). Then, when we have ℓ ≥ ̟, it

follows from the definition of β-mixing time in Definition 10

that

‖πℓ
v0

− π‖∞ ≤ β . (45)

Next, for a random walk of length ℓ, we consider the vertices

visited by the random walk at the time steps in the set Wr
△
=

{0, ̟, 2̟, . . . , ℓ}, such that, |Wr| = ⌈ℓ/̟⌉. Let the sequence

of vertices visited by the random walk at the time steps in Wr

be given by VWr
. Therefore, probability that the vertex u is
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visited by the random walk of length ℓ is lower bounded by

the probability that the random walk visited u at time steps in

Wr, i.e., χu ≥ P (u ∈ VWr
). Note that the distribution of the

vertices visited by the random walk after ̟ steps is β-close to

the stationary distribution π. Therefore, using (45) and union

bound, we have

P (u 	∈ VWr
) ≤

(

1−min
v∈V

πv + β

)ℓ/̟

, (46)

For any β ≤ 1
2 minv∈V πv , we have

P (u 	∈ VWr
) ≤

(

1− 1

2
min
v∈V

πv

)ℓ/̟

, (47)

≤ exp

(

−ℓminv∈V πv

2̟

)

, (48)

≤ 1− Ω

(

ℓminv∈V πv

̟

)

. (49)

From (49), we directly obtain

χu = Ω

(

ℓminv∈V πv

̟

)

. (50)

The rest of the proof focuses on characterizing χQ
u , for which

we adopt the high level ideas similar to that in [20] and leverage

auxiliary results on different events associated with the random

walk in Appendix C. We note that

χQ
u ≥ P (D, u ∈ W,Yz

u) , (51)

whereYz
u represents the event that u is not visited by the random

walk in first 2̟ steps and not more than z times overall in ℓ steps.

Furthermore, from (51), we have

χQ
u ≥ P (D, u ∈ W,Yz

u) , (52)

= P (u ∈ W,Yz
u)(1− P (D̄|u ∈ W,Yz

u)) . (53)

Note that

P (u ∈ W,Yz
u) ≥ P (u ∈ W) + P (Yz

u)− P (u ∈ W ∪ Yz
u) ,

(54)

=
χu

2
. (55)

where (55) follows from (54) using (33) and Lemma 6. There-

fore, by showing that P (D̄|u ∈ W,Yz
u) is upper bounded by a

constant, the proof of claim (35) in Lemma 5 is complete. In this

context, when conditioned on Yz
u, the event u ∈ W is a union

of at most k disjoint events of the form {vi = v} for i > 2̟.

Therefore, using [20, Proposition 18], we have

P (D̄|u ∈ W,Yz
u) ≤ k max

i∈[2̟+1,ℓ]
P (D̄| vi = u,Yz

u) .

To upper bound P (D̄| vi = u,Yz
u) in (56), we will leverage

the auxiliary results in Appendix C regarding the behavior

of random walk and provide a general upper bound for any

i ∈ {2̟ + 1, . . . , ℓ}. For this purpose, we consider a random

walk which is initialized as v0 = u0 such that u0 	∈ Q and

where the vertex vi = u for some i > 2̟. Then, we select

the time points t1
△
= ̟, t2

△
= i−̟ and t3

△
= i+̟, such that,

t1 < t2 < t3 < ℓ. Next, we divide sequence of vertices W

visited by the random walk into 4 parts: Wt1
0 ,Wt2

t1+1,W
t3
t2+1,

and Wℓ
t3+1, where Wi

j denotes the set of vertices visited by

the random walk between steps j and i, for j < i. Using union

bound, we have

P (D̄|vi = u, v0 = u0) ≤ ω1 + ω2 + ω3 + ω4 , (56)

where

ω1
△
= P (Wt1

0 ∩Q 	= ∅|vi = u, v0 = u0) , (57)

ω2
△
= P (Wt2

t1+1 ∩Q 	= ∅|vi = u, v0 = u0) , (58)

ω3
△
= P (Wt3

t2+1 ∩Q 	= ∅|vi = u, v0 = u0) , (59)

ω4
△
= P (Wℓ

t3+1 ∩Q 	= ∅|vi = u, v0 = u0) . (60)

Note that the section of the random walk that spans Wℓ
t3+1 is

sufficiently far, i.e., greater than ̟ steps from time steps i and

0. Therefore, by using (45) and union bound for the number of

steps in the random walk and the number of possible vertices

that can lie in Q, we have

ω4 ≤ ℓk(max
v∈V

πv + β) . (61)

Next, note that without the conditioning on the event vi = u,

the probability of the event Wt2+1 ∩Q 	= ∅ conforms to the

statistics of the distribution which is β-close to the stationary

distribution of random walk over G. By using Lemma 7, we

note that conditioning on the event vi = u shifts the distribution

of Wt2+1 ∩Q 	= ∅ by a factor of at most ℓkβ′. Therefore, by

using (45) and (45) in Lemma 7, we get

ω2 ≤ ℓk(max
v

πv + β + β′) , (62)

where β′ � 2β
maxv πv−β is the upper bound in (45). To analyze

ω3, we note that

P (vi+1 ∈ Q|vi = u, v0 = u0) ≤ φk
max , (63)

where φk
max is the sum of the largest k transition probabilities

at any vertex in G. Equation (63) follows by noting that there

are at most k vertices that lie in the set Q in the neighborhoods

of u. Furthermore, P (vi+1 ∈ Q|vi = u, v0 = u0) = P (vi+1 ∈
Q|vi = u) because of the Markov property of random walk.

Similarly, for any time j ∈ {i+ 1, . . . , ℓ}, we have

P (vj ∈ Q|vi = u) ≤ φk
max . (64)

Note that for the (ν, d)-regular graph with weights in [w, 1], a

vertex can have a maximum degree of wd, and therefore, a max-

imum of wd vertices in its immediate neighborhood. Similarly,

if the vertex has the minimum degree of ν, it can have at least ν
vertices and at most ν/w vertices in its immediate neighborhood.

Therefore, by using these observations and leveraging (5), we

note that

φk
max ≤ k

wν
. (65)

For any time j ∈ {t2 + 1, . . . , t3}, using (45) in Lemma 7, we

have

P (vj ∈ Q|vi = u, v0 = u0) ≤ φk
max + β′ . (66)

Therefore, by union bound over the number of time steps and

using (65), we get

ω3 ≤ 2
̟k

wν
+ 2̟β′ . (67)

The probability ω1 is analyzed in a similar fashion as ω3.

Note that the Markov chain over the vertices is time reversible
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and conditioning on v0 changes the probability by at most β′.
Therefore, we have

ω1 ≤ ̟k

wν
+̟β′ (68)

By combining (61), (62), (67), and (68), we get

P (D̄|vi = u, v0 = u0) ≤ 3
̟k

wν
+ 3β′(̟ + ℓk) + 2ℓkmax

v
πv.

(69)

Next, to relax the condition on the initialization of the random

walk, we note that

P (D̄|vi = u) ≤ P (v0 ∈ Q|vi = u) + P (D̄|vi = u, v0 = u0) .
(70)

Note that the probability P (v0 ∈ Q|vi = u) ≤ P (v0 ∈ Q) +
β′ from Lemma 7 and P (v0 ∈ Q) ≤ kmaxv πv . Therefore,

from (69) and (70), we have

P (D̄|vi = u) ≤ 3
̟k

wν
+ 3β′(̟ + ℓk) + 3ℓkmax

v
πv . (71)

Next, we note that to evaluate the probability P (D̄|vi = u,Yz
u),

we shrink the probability space to that conditioned on Yz
u.

Therefore, P (D̄|vi = u,Yz
u) is not significantly larger (say by

no more than a factor of 1 + ǫ with ǫ ≪ 1) than P (D̄|vi = u)
if the event that the random walk does not visit a vertex u more

than z times is close to 1. By taking a union bound on the number

of times a random walk visits an vertex u, we get

P (D̄|vi = u,Yu
z ) ≤ (1 + ǫ)z

×
(

3
̟k

wν
+ 3β′(̟ + ℓk) + 3ℓkπmax

)

,

(72)

where by noting that z = Θ(πratio̟) from Lemma 6, we can

bound (72) by a constant if we have

νw = Ω(̟2kπratio) , ℓ = O

(

1

kπmaxπratio̟

)

, (73)

and β in Theorem 1 for sufficiently large n. By leveraging (72)

under the conditions in (73) and (53), the proof of Lemma 5 is

complete.
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