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Abstract: In statistical inference, the information-theoretic performance limits can often be expressed

in terms of a statistical divergence between the underlying statistical models (e.g., in binary hypothesis

testing, the error probability is related to the total variation distance between the statistical models).

As the data dimension grows, computing the statistics involved in decision-making and the attendant

performance limits (divergence measures) face complexity and stability challenges. Dimensionality

reduction addresses these challenges at the expense of compromising the performance (the divergence

reduces by the data-processing inequality). This paper considers linear dimensionality reduction

such that the divergence between the models is maximally preserved. Specifically, this paper focuses

on Gaussian models where we investigate discriminant analysis under five f -divergence measures

(Kullback–Leibler, symmetrized Kullback–Leibler, Hellinger, total variation, and χ2). We characterize

the optimal design of the linear transformation of the data onto a lower-dimensional subspace for

zero-mean Gaussian models and employ numerical algorithms to find the design for general Gaussian

models with non-zero means. There are two key observations for zero-mean Gaussian models. First,

projections are not necessarily along the largest modes of the covariance matrix of the data, and, in

some situations, they can even be along the smallest modes. Secondly, under specific regimes, the

optimal design of subspace projection is identical under all the f -divergence measures considered,

rendering a degree of universality to the design, independent of the inference problem of interest.

Keywords: dimensionality reduction; discriminant analysis; f -divergence; statistical inference

1. Introduction

1.1. Motivation

Consider a simple binary hypothesis testing problem in which we observe an n-
dimensional sample X and aim to discern the underlying model according to:

H0 : X ∼ P vs. H1 : X ∼ Q . (1)

The optimal decision rule (in the Neyman-Pearson sense) involves computing the likelihood
ratio dP

dQ (X) and the performance limit (sum of type I and type II errors) is related to the
total variation distance between P and Q. We emphasize that our focus is on the settings in
which the n elements of X are not statistically independent, in which case the likelihood
ratio dP

dQ (X) cannot be decomposed into the product of the coordinate-level likelihood ratios.
One of the key practical obstacles to solve such problems pertains to the computational cost
of finding and performing the statistical tests. This renders a gap between the performance
that is information-theoretically viable (unbounded complexity) versus a performance
possible under bounded computational complexity [1,2].

Dimensionality reduction techniques have become an integral part of statistical anal-
ysis in high dimensions [3–6]. In particular, linear dimensionality reduction methods
have been developed and used for over a century for various reasons, such as their low
computational complexity and simple geometric interpretation, as well as for a multitude
of applications, such as data compression, storage, and visualization, to name only a few.
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These methods linearly map the high-dimensional data to lower dimensions while ensuring
that the desired features of the data are preserved. There exist two broad sets of approaches
to linear dimensionality reduction in one dataset X, which we review next.

1.2. Related Literature

(1) Feature extraction: In one set of approaches, the objective is to select and extract
informative and non-redundant features in the dataset X. These approaches are generally
unsupervised. These widely-used approaches are principal component analysis (PCA),
and its variations [7–9], multidimensional scaling (MDS) [10–13], and sufficient dimension-
ality reduction (SDR) [14]. The objective of PCA is to retain as much variation in the data
in a lower dimension by minimizing the reconstruction error. In contrast, MDS aims to
maximize the scatter of the projection and maximizes an aggregate scatter metric. Finally,
the objective of SDR is to design an orthogonal mapping of the data that makes the data
X and the responses conditionally independent (given the projected data). There exist
extensive variations to the three approaches, and we refer the reader to Reference [6] for
more discussions.

(2) Class separation: In another set of approaches, the objective is to perform classifi-
cation in the lower dimensional space. These approaches are supervised. Depending on the
problem formulation and the underlying assumptions, the resulting decision boundaries
between the models can be linear or non-linear. One approach pertinent to this paper’s
scope is discriminant analysis (DA), that leverages the distinction between given mod-
els and designs a mapping such that its lower-dimensional output exhibits maximum
separation across different models [15–20]. In general, this approach generates two ma-
trices: within-class and between-class scatter matrices. The within-class scatter matrix
shows the scatter of the samples around their respective class means, whereas, in contrast,
the between-class scatter matrix captures the scatter of the samples around the mixture
mean of all the models. Subsequently, a univariate function of these matrices is formed such
that it increases when the between-class scatter becomes larger, or when the within-class
scatter becomes smaller. Examples of such a function of between-class and within-class
matrices is a classification index that includes the ratio of their determinants, difference of
their determinants, and ratio of their traces [17]. These approaches focus on reducing the
dimension to one and maximize separability between the two classes. There exist, however,
studies that consider reducing to dimensions higher than one and separation across more
than two classes. Finally, depending on the structure of the class-conditional densities,
the resulting shape of the decision boundaries give rise to linear and quadratic DA.

The f -divergences between a pair of probability measures quantifies the similar-
ity between them. Shannon [21] introduced the mutual information as a divergence
measure, which was later studied comprehensively by Kullback and Leibler [22] and
Kolmogorov [23], establishing the importance of such measures in information theory,
probability theory, and related disciplines. The family of f -divergences, independently
introduced by Csiszár [24], Ali and Silvey [25], and Morimoto [26], generalize the Kullback–
Leibler divergence which enable characterizing the information-theoretic performance
limits of a wide range of inference, learning, source coding, and channel coding problems.
For instance, References [27–30] consider their application to various statistical decision-
making problems [31–34]. More recent developments on the properties of f -divergence
measures can be found in Reference [31,35–37].

1.3. Contributions

The contribution of this paper has two main distinctions from the existing literature
on DA. First, DA generally focuses on the classification problem for determining the
underlying model of the data. Secondly, motivated by the complexities of finding the
optimal decision rules for classification (e.g., density estimation), the existing criteria
used for separation are selected heuristically. In this paper, we study this problem by
referring to the family of f -divergences as measures of the distinction between a pair of
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probability distributions. Such a choice has three main features: (i) it enables designing
linear mappings for a wider range of inference problems (beyond classification); (ii) it
provides the designs that are optimal for the inference problem at hand; and (iii) it enables
characterizing the information-theoretic performance limits after linear mapping. Our
analyses are focused on Gaussian models. Even though we observe that the design of the
linear mapping has differences under different f -divergence measures, we have two main
observations in the case of zero-mean Gaussian models: (i) the optimal design of the linear
mapping is not necessarily along the most dominant components of the data matrix; and
(ii) in certain regimes, irrespective of the choice of the f -divergence measure, the design
of the linear map that retains the maximal divergence between the two models is robust.
In such cases, this makes the optimal design of the linear map independent of the inference
problem at hand rendering a degree of universality (in the considered space of the Gaussian
probability measures).

The remainder of the paper is organized as follows. Section 2 provides the linear
dimensionality reduction model, and it provides an overview of the f -divergence measures
considered in this paper. Section 3 formulates the problem, and it helps to facilitate the
mathematical analysis in subsequent sections. In Section 4, we provide a motivating
operational interpretation for each f -divergence measure and then characterize an optimal
design of the linear mapping for zero-mean Gaussian models. Section 5 considers numerical
simulations for inference problems associated with the f -divergence measure of interest for
zero-mean Gaussian models. Section 6 generalizes the theory to non-zero mean Gaussian
models and discusses numerical algorithms that help characterize the design of the linear
map, and Section 7 concludes the paper. A list of abbreviations used in this paper is
provided on page 22.

2. Preliminaries

Consider a pair of n-dimensional Gaussian models:

P : N (µP, ΣP) , and Q : N (µQ, ΣQ) , (2)

where µP, µQ and ΣP, ΣQ are two distinct mean vectors and covariance matrices, respec-
tively, and P and Q denote their associated probability measures. The nature selects
one model and generates a random variable X ∈ Rn. We perform linear dimensionality
reduction on X via matrix A ∈ Rr×n, where r < n, rendering

Y
△
= A · X . (3)

After linear mapping, the two possible distributions of Y induced by matrix A are denoted
by PA and QA, where

PA : N (A · µP, A · ΣP ·A⊤)
QA : N (A · µQ, A · ΣQ ·A⊤)

. (4)

Motivated by inference problems that we discuss in Section 3, our objective is to design the
linear mapping parameterized by matrix A that ensures that the two possible distributions
of Y, i.e., PA and QA, are maximally distinguishable. That is, to design A as a function of
the statistical models (i.e., µP, µQ, ΣP and ΣQ) such that relevant notions of f -divergences
between PA and QA are maximized. We use a number of f -divergence measures for
capturing the distinction between PA and QA, each with a distinct operational meaning
under specific inference problems. For this purpose, we denote the f -divergence of QA

from PA by D f (A), where

D f (A)
△
= EPA

[

f

(

dQA

dPA

)]

. (5)
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We use the shorthand D f (A) for the canonical notation D f (QA ‖ PA) for emphasizing the
dependence on A and for the simplicity in notations. EPA

denotes the expectation with
respect to PA, and f : (0,+∞) → R is a convex function that is strictly convex at 1 and
f (1) = 0. Strict convexity at 1 ensures that the f -divergence between a pair of probability
measures is zero if and only if the probability measures are identical. Given the linear
dimensionality reduction model in (3), the objective is to solve

P : max
A∈Rr×n

D f (A) , (6)

for the following choices of the f -divergence measures.

1. Kullback–Leibler (KL) divergence for f (t) = t log t:

DKL(A)
△
= EQA

[

log
dQA

dPA

]

. (7)

We also denote the KL divergence from PA to QA by DKL(PA ‖ QA).
2. Symmetric KL divergence for f (t) = (t− 1) log t:

DSKL(A)
△
= DKL(QA ‖ PA) + DKL(PA ‖ QA) . (8)

3. Squared Hellinger distance for f (t) = (1−
√

t)2:

H
2(A)

△
=
∫

Rr

(

√

dQA −
√

dPA

)2
. (9)

4. Total variation distance for f (t) = 1
2 · |t− 1|:

dTV(A)
△
=

1

2

∫

Rr
|dQA − dPA| . (10)

5. χ2-divergence for f (t) = (t− 1)2:

χ2(A)
△
=
∫

Rr

(dQA − dPA)
2

dPA
. (11)

We also denote the χ2-divergence from PA to QA by χ2(PA ‖ QA).

3. Problem Formulation

In this section, without loss of generality, we focus on the setting where one of the
covariance matrices is the identity matrix, and the other one has a covariance matrix
Σ in order to avoid complex representations. One key observation is that the design
of A under different measures has strong similarities. We first note that, by defining

Ā
△
= A · Σ1/2

P
, µ

△
= Σ

−1/2
P

· (µQ − µP), and Σ
△
= Σ

−1/2
P

· ΣQ · Σ−1/2
P

, designing A for
maximally distinguishing

N (A · µP, A · ΣP ·A⊤) and N (A · µQ, A · ΣQ ·A⊤) (12)

is equivalent to designing Ā for maximally distinguishing

N (0, Ā · Ā⊤) and N (Ā · µ, Ā · Σ · Ā⊤) . (13)

Hence, without loss of generality, we focus on the setting where µP = 0, ΣP = In, and ΣQ =
Σ. Next, we show that determining an optimal design for A can be confined to the class of
semi-orthogonal matrices.

Theorem 1. For every A, there exists a semi-orthogonal matrix Ā such that D f (Ā) = D f (A).
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Proof. See Appendix A.

This observation indicates that we can reduce the unconstrained problem in (6) to the
following constrained problem:

Q : max
A∈Rr×n

D f (A) s.t. A ·A⊤ = Ir . (14)

We show that the design of A in the case of µ = 0, under the considered f -divergence
measures, directly relates to analyzing the eigenspace of matrix Σ. For this purpose, we
denote the non-negative eigenvalues of Σ ordered in the descending order by {λi : i ∈ [n]},
where for an integer m we have defined [m] = {1, . . . , m}. For an arbitrary permutation
function π : [n] → [n], we denote the permutation of {λi : i ∈ [n]} with respect to π by
{λπ(i) : i ∈ [n]}. We also denote the eigenvalues of A · Σ ·A⊤ ordered in the descending
order by {γi : i ∈ [r]}. Throughout the analysis, we frequently use Poincaré separation
theorem [38] for finding the row space of matrix A with respect to the eigenvalues of Σ.

Theorem 2 (Poincaré Separation Theorem). Let Σ be a real symmetric n× n matrix and A

be a semi-orthogonal r × n matrix. The eigenvalues of Σ denoted by {λi : i ∈ [n]} (sorted in
the descending order) and the eigenvalues of A · Σ ·A⊤ denoted by {γi : i ∈ [r]} (sorted in the
descending order) satisfy

λn−(r−i) ≤ γi ≤ λi , ∀i ∈ [r] . (15)

Finally, we define the following functions, which we will refer to frequently throughout
the paper:

h1(A)
△
= A · Σ ·A⊤ , (16)

h2(A)
△
= µ

⊤ ·A⊤ ·A · µ , (17)

h3(A)
△
= µ

⊤ ·A⊤ · [h1(A)]−1 ·A · µ . (18)

In the next sections, we analyze the design of A under different f -divergence measures.
In particular, in Sections 4 and 5, we focus on zero-mean Gaussian models for P and Q

where we provide an operational interpretation of the measure in the dichotomous mode
in (4). Subsequently, we will discuss the generalization to non-zero mean Gaussian models
in Section 6.

4. Main Results for Zero-Mean Gaussian Models

In this section, we analyze problem Q defined in (14) for each of the f -divergence
measures separately. Specifically, for each case, we briefly provide an inference problem
as a motivating example, in the context of which we relate the optimal performance limit
of that inference problem to the f -divergence of interest. These analyses are provided in
Sections 4.1–4.5. Subsequently, we provide the main results on the optimal design of the
linear mapping matrix A in Section 4.6.

4.1. Kullback–Leibler Divergence

4.1.1. Motivation

The KL divergence, being the expected value of the log-likelihood ratio, captures,
at least partially, the performance of a wide range of inference problems. One specific
problem whose performance is completely captured by DKL(A) is the quickest change-
point detection. Consider an observation process (time-series) {Xt : t ∈ N} in which the
observations Xt ∈ Rn are generated by a distribution with probability measure P specified
in (2). This distribution changes to Q at an unknown (random or deterministic) time κ, i.e.,

Xt ∼ P t < κ , and Xt ∼ Q t ≥ κ . (19)
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Change-point detection algorithms sample the observation process sequentially and aim
to detect the change point with the minimal delay after it occurs subject to a false alarm
constraint. Hence, the two key figures of merit capturing the performance of a sequential
change-point detection algorithm are the average detection delay (ADD) and the rate of
false alarms. Whether the change-point κ is random or deterministic gives rise to two
broad classes of quickest change-point detection problems, namely the Bayesian setting
(κ is random) and minimax setting (κ is deterministic). Irrespective of their discrepancies
in settings and the nature of performance guarantees, the ADD for the (asymptotically)
optimal algorithms are in the form [39]:

ADD ∼ c1

DKL(Q ‖ P)
. (20)

Hence, after the linear mapping induced by matrix A, for the ADD, we have

ADD ∼ c2

DKL(QA ‖ PA)
, (21)

where c1 and c2 are constants specified by the false alarm constraints. Clearly, the design
of A that minimizes the ADD will be maximizing the disparity between the pre- and
post-change distributions PA and QA, respectively.

4.1.2. Connection between DKL and A

By noting that A is a semi-orthogonal matrix and recalling that the eigenvalues of h1(A)
are denoted by {γi : i ∈ [r]}, simple algebraic manipulations simplify DKL(QA ‖ PA) to:

DKL(QA ‖ PA) =
1

2

[

log
1

|h1(A)| − r + Tr[h1(A)] + h2(A)

]

. (22)

By setting, and leveraging, Theorem 2, the problem of finding an optimal design for A that
solves (14) can be found as the solution to:

max
{γi : i∈[r]}

r

∑
i=1

gKL(γi) s.t. λn−(r−i) ≤ γi ≤ λi ∀i ∈ [r] , (23)

where we have defined

gKL(x)
△
=

1

2
(x− log x− 1) . (24)

Likewise, finding the optimal design for A that optimizes DKL(PA ‖ QA) when µ = 0 can

be found by replacing gKL(γi) by gKL

(

1
γi

)

in (23). In either case, the optimal design of A is

constructed by choosing r eigenvectors of Σ as the rows of A. The results and observations
are formalized in Section 4.6.

4.2. Symmetric KL Divergence

4.2.1. Motivation

The KL divergence discussed in Section 4.1 is an asymmetric measure of separation
between two probability measures. It is symmetrized by adding two directed diver-
gence measures in reverse directions. The symmetric KL divergence has applications in
model selection problems in which the model selection criteria is based on a measure
of disparity between the true model and the approximating models. As shown in Ref-
erence [40], using the symmetric KL divergence outperforms the individual directed KL
divergences since it better reflects the risks associated with underfitting and overfitting of
the models, respectively.
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4.2.2. Connection between DSKL and A

For a given A, the symmetric KL divergence of interest specified in (8) is given by

DSKL(A) =
1

2
·
[

Tr
(

[h1(A)]−1 + h1(A)
)

+ h2(A) + h3(A)
]

− r . (25)

By setting µ = 0, and leveraging Theorem 2, the problem of finding an optimal design for
A that solves (14) can be found as the solution to:

max
{γi : i∈[r]}

r

∑
i=1

gSKL(γi) s.t. λn−(r−i) ≤ γi ≤ λi ∀i ∈ [r] , (26)

where we have defined

gSKL(x)
△
=

1

2

(

x +
1

x
− 2

)

. (27)

4.3. Squared Hellinger Distance

4.3.1. Motivation

Squared Hellinger distance facilitates analysis in high dimensions, especially when
other measures fail to take closed-form expressions. We will discuss an important instance
of this in the next subsection in the analysis of dTV. Squared Hellinger distance is symmetric,
and it is confined in the range [0, 2].

4.3.2. Connection between H
2 and A

For a given matrix A, we have the following closed-form expression:

H
2(A) = 2− 2

|4 · h1(A)| 14
|h1(A) + Ir|

1
2

· exp

(

−µ⊤ ·A⊤ · [h1(A) + Ir]
−1 ·A · µ

4

)

. (28)

By setting µ = 0, and leveraging Theorem 2, the problem of finding an optimal design for
A that solves (14) can be found as the solution to:

max
{γi : i∈[r]}

r

∏
i=1

gH(γi) s.t. λn−(r−i) ≤ γi ≤ λi ∀i ∈ [r] , (29)

where we have defined

gH(x)
△
=

(x + 1)2

x
. (30)

4.4. Total Variation Distance

4.4.1. Motivation

The total variation distance appears as the key performance metric in binary hy-
pothesis testing and in high-dimensional inference, e.g., Le Cam’s method for the binary
quantization and testing of the individual dimensions (which is in essence binary hy-
pothesis testing). In particular, for the simple binary hypothesis testing model in (65),
the minimum total probability of error (sum of type-I and type-II error probabilities) is
related to the total variation dTV(A). Specifically, for a decision rule d : X → {H0,H1}, the
following holds:

inf
d

[PA(d = H1) +QA(d = H0)] = 1− dTV(A) . (31)

The total variation between two Gaussian distributions does not have a closed-form ex-
pression. Hence, unlike the other settings, an optimal solution to (6) in this context cannot
be obtained analytically. Alternatively, in order to gain intuition into the structure of a
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near optimal matrix A, we design A such that it optimizes known bounds on dTV(A).
In particular, we use two sets of bounds on dTV(A). One set is due to bounding it via the
Hellinger distance, and another set is due to a recent study that established upper and
lower bounds that are identical up to a constant factor [41].

4.4.2. Connection between dTV and A

(1) Bounding by Hellinger Distance: The total variation distance can be bounded by the
Hellinger distance according to

1

2
H

2(A) ≤ dTV(A) ≤ H(A)

√

1− H2(A)

4
. (32)

It can be readily verified that these bounds are monotonically increasing with H
2(A) in

the interval [0, 2]. Hence, they are maximized simultaneously by maximizing the squared
Hellinger distance as discussed in Section 4.3. We refer to this bound as the Hellinger bound.

(2) Matching Bounds up to a Constant: The second set of bounds that we used are
provided in Reference [41]. These bounds relate the total variation between two Gaus-
sian models to the Frobenius norm (FB) of a matrix related to their covariance matrices.
Specifically, these FB-based bounds on the total variation dTV(A) are given by

1

100
≤ dTV(A)

min{1,
√

∑
r
i=1 gTV(γi)}

≤ 3

2
, (33)

where we have defined

gTV(x)
△
=

(

1

x
− 1

)2

. (34)

Since the lower and upper bounds on dTV(A) are identical up to a constant, they will be
maximized by the same design of A.

4.5. χ2-Divergence

4.5.1. Motivation

χ2-divergence appears in a wide range of statistical estimation problems for the
purpose of finding a lower bound on the estimation noise variance. For instance, consider
the canonical problem of estimating a latent variable θ from the observed data X, and denote
two candidate estimates by p(X) and q(X). Define P and Q as the probability measures
of p(X) and q(X), respectively. According to the Hammersly-Chapman-Robbins (HCR)
bound on the quadratic loss function, for any estimator θ̂, we have

varθ(θ̂) ≥ sup
p 6=q

[

EQ[q(X)]−EP[p(X)]
]2

χ2(Q ‖ P) , (35)

which, for unbiased estimators p and q, simplifies to the Cramér-Rao lower bound

varθ(θ̂) ≥ sup
p 6=q

(q− p)2

χ2(Q ‖ P) , (36)

depending on P and Q through their χ2-divergence. Besides the applications to estimation
problems, χ2 is easier to compute compared to some of other f -divergence measures (e.g.,
total variation). Specifically, for product distributions χ2 tensorizes to be expressed in terms
of the one-dimensional components that are easier to compute than the KL divergence and
TV variation distance. Hence, a combination of bounding other measures with χ2 and then
analyzing χ2 appears in a wide range of inference problems.
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4.5.2. Connection between χ2 and A

By setting µ = 0, for a given matrix A, from (11), we have the following closed-form
expression:

χ2(A) =
1

|h1(A)|
√

|2(h1(A))−1 − Ir|
− 1 (37)

=
r

∏
i=1

gχ1
(γi)− 1 , (38)

where we have defined

gχ1
(x)

△
=

1
√

x(2− x)
. (39)

As we show in Appendix C, for χ2(A) to exist (i.e., be finite), all the eigenvalues {λi : i ∈ [r]}
should fall in the interval (0, 2). Subsequently, finding the optimal design for A that op-
timizes χ2(PA ‖ QA) when µ = 0 can be done by replacing gχ1

in (38) by gχ2 , which is
given by

gχ2(x)
△
=

√

x2

2x− 1
. (40)

Based on this, and by following a similar line of argument as in the case of the KL divergence,
designing an optimal A reduces to identifying a subset of the eigenvalues of Σ and assigning
their associated eigenvectors as the rows of matrix A. These observations are formalized in
Section 4.6.

4.6. Main Results

In this section, we provide analytical closed-form solutions to design optimal matrices
A for the following f -divergence measures: DKL, DSKL, H2, and χ2. The total variation
measure dTV does not admit a closed-form for Gaussian models. In this case, we provide
a design for A that optimizes the bound we have provided for dTV in Section 4.4. Due
to their structural similarities of the results, we group and treat DKL, DSKL, and dTV in
Theorem 3. Similarly, we group and treat H2 and χ2 in Theorem 4.

Theorem 3 (DKL, DSKL, dTV). For a given function g : R→ R, define the permutations:

π∗ △
= arg max

π

r

∑
i=1

g(λπ(i)) . (41)

Then, for D f (A) ∈ {DKL(A), DSKL(A), dTV(A)} and functions g f ∈ {gKL, gSKL, gTV}:
1. For maximizing D f , set g = g f and select the eigenvalues of AΣA⊤ as

γi = λπ∗(i) , for i ∈ [r] . (42)

2. Row i ∈ [r] of matrix A is the eigenvector of Σ associated with the eigenvalue γi.

Proof. See Appendix B.

By further leveraging the structures of functions gKL, gSKL, and gTV, we can simplify
approaches for designing the matrix A. Specifically, note that the functions gKL, gSKL, andgTV
are all strictly convex functions taking their global minima at x = 1. Based on this, we have
the following observations.
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Corollary 1 (DKL, DSKL, dTV). For maximizing D f (A) ∈ {DKL(A), DSKL(A), dTV(A)},
when λn ≥ 1, we have γi = λi for all i ∈ [r], and the rows of A are eigenvectors of Σ associated
with its r largest eigenvalues, i.e., {λi : i ∈ [r]}.

Corollary 2 (DKL, DSKL, dTV). For maximizing D f (A) ∈ {DKL(A), DSKL(A), dTV(A)},
when λ1 ≤ 1, we have γi = λn−r+i for all i ∈ [r], and the rows of A are eigenvectors of Σ

associated with its r smallest eigenvalues, i.e., {λi : i ∈ {n− r + 1, . . . , n}}.

Remark 1. In order to maximize D f (A) ∈ {DKL(A), DSKL(A), dTV(A)} when λn ≤ 1 ≤
λ1, finding the best permutation of eigenvalues involves sorting all the n eigenvalues λi’s and
subsequently performing r comparisons as illustrated in Algorithm 1. This amounts to O(n ·
log(n)) time complexity instead of O(n · log(r)) time complexity involved in determining the
design for A in the case of Corollaries 1 and 2, which require finding the r extreme eigenvalues in
determining the design for π∗.

Remark 2. The optimal design of A often does not involve being aligned with the largest eigenvalues
of the covariance matrix Σ, which is in contrast to some of the key approaches to linear dimensionality
reduction that generally perform linear mapping along the eigenvectors associated with the largest
eigenvalues of the covariance matrix. When the eigenvalues of Σ are all smaller than 1, in particular,
A will be designed by choosing eigenvectors associated with the smallest eigenvalues of Σ in order to
preserve largest separability.

Next, we provide the counterpart results for the H
2 and χ2-divergence measures. Their

major distinction from the previous three measures is that, for these two, D f (A) can be
decomposed into a product of individual functions of the eigenvalues {γi : i ∈ [r]}. Next,
we provide the counterparts of Theorem 3 and Corollaries 1 and 2 for H2 and χ2.

Theorem 4 (H2, χ2). For a given function g : R→ R, define the permutations:

π∗ △
= arg max

π

r

∏
i=1

g(λπ(i)) . (43)

Then, for D f (A) ∈ {H2(A), χ2(A), χ2(PA ‖ QA)} and functions g f ∈ {gH, gχ1
, gχ2}:

1. For maximizing D f , set g = g f and select the eigenvalues of AΣA⊤ as

γi = λπ∗(i) , for i ∈ [r] . (44)

2. Row i ∈ [r] of matrix A is the eigenvector of Σ associated with the eigenvalue γi.

Proof. See Appendix C.

Next, note that gH is a strictly convex function taking its global minimum at x = 1.
Furthermore, gχi

for i ∈ [2] are strictly convex over (0, 2) and take their global minimum at
x = 1.

Corollary 3 (H2, χ2). For maximizing D f (A) ∈ {H2(A), χ2(A), χ2(PA ‖ QA)}, when λn ≥ 1,
we have γi = λi for all i ∈ [r], and the rows of A are eigenvectors of Σ associated with its r largest
eigenvalues, i.e., {λi : i ∈ [r]}.

Corollary 4 (H2, χ2). For maximizing D f (A) ∈ {H2(A), χ2(A), χ2(PA ‖ QA)}, when λ1 ≤ 1,
we have γi = λn−r+i for all i ∈ [r], and the rows of A are eigenvectors of Σ associated with its r
smallest eigenvalues, i.e., {λi : i ∈ {n− r + 1, . . . , n}}.
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Algorithm 1 Optimal Permutation π∗ When λn ≤ 1 ≤ λ1

1: Initialize i← n, j← 1, pk ← λk ∀k ∈ {i, j}, π∗ ← ∅

2: Sort the eigenvalues of Σ in descending order {λk : k ∈ [n]}
3: while |π∗| 6= r do
4: if g f (pi) > g f (pj) then

5: π∗ ← π∗ ∪ {pi}
6: i← i− 1
7: else
8: π∗ ← π∗ ∪ {pj}
9: j← j + 1

10: end if
11: end while
12: return π∗

Finally, we remark that, unlike the other measures, total variation does not admit
a closed-form, and we used two sets of tractable bounds to analyze this case of total
variations. By comparing the design of A based on different bounds, we have the following
observation.

Remark 3. We note that both sets of bounds lead to the same design of A when either λ1 ≤ 1 or
λn ≥ 1. Otherwise, each will be selecting a different set of the eigenvectors of Σ to construct A

according to the functions

gH(x) =
(x + 1)2

x
versus gTV(x) =

(

1

x
− 1

)2

. (45)

5. Zero-Mean Gaussian Models–Simulations

5.1. KL Divergence

In this section, we show gains of the above analysis for the KL divergence measure
DKL(A) through simulations on a change-point detection problem. We focus on the
minimax setting in which the change-point κ is deterministic. The objective is to detect a
change in the stochastic process Xt with minimal delay after the change in the probability
measure occurs at κ and define τ ∈ N as the time that we can form a confident decision.
A canonical model to quantify the decision delay is the conditional average detection delay
(CADD) due to Pollak [42]

CADD(τ)
△
= sup

κ≥1

Eκ [τ − κ | τ ≥ κ] , (46)

where Eκ is the expectation with respect to the probability distribution when the change
happens at time κ. The objective of this formulation is to optimize the decision delay for the
worst-case realization of the random change-point κ (that is, the change-point realization
that leads to the maximum decision delay), while the constraints on the false alarm rate
are satisfied. In this formulation, this worst-case realization is κ = 1, in which case all
the data points are generated from the post-change distribution. In the minimax setting,
a reasonable measure of false alarms is the mean-time to false alarm, or its reciprocal, which
is the false alarm rate (FAR) defined as

FAR(τ)
△
=

1

E∞[τ]
, (47)

where E∞ is the expectation with respect to the distribution when a change never occurs,

i.e., κ
△
= ∞. A standard approach to balance the trade-off between decision delay and false

alarm rates involves solving [42]
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min
τ

CADD(τ) s.t. FAR(τ) ≤ α , (48)

where α ∈ R+ controls the rate of false alarms. For the quickest change-point detection
formulation in (48), the popular cumulative sum (CuSum) test generates the optimal
solutions, involving computing the following test statistic:

W[t]
△
= max

1≤k≤t+1

t

∑
i=k

log

(

dQA(Xi)

dPA(Xi)

)

. (49)

Computing W[t] follows a convenient recursion given by

W[t]
△
=

(

W[t− 1] + log

(

dQA(Xt)

dPA(Xt)

))+

, (50)

where W[0] = 0. The CuSum statistic declares a change at a stopping time τ given by

τ
△
= inf{t ≥ 1 : W[t] > C} , (51)

where C is chosen such that the constraint on FAR(τ) in (48) is satisfied.
In this setting, we consider two zero-mean Gaussian models with the following pre-

and post-linear dimensionality reduction structures:

P : N (0, In) and Q : N (0, Σ)
PA : N (0, Ir) and QA : N (0, h1(A))

, (52)

where the covariance matrix Σ is generated randomly, and its eigenvalues are sampled from
a uniform distribution. In particular, for the original data dimension n, ⌈0.9n⌉ eigenvalues
are sampled such that {λi ∼ U (0.064, 1)}, and the remaining eigenvalues are sampled
such that {λi ∼ U (1, 4.24)}. We note that this is done since the objective function lies in
the same range for the eigenvalues within the range [0.0649, 1] and [1, 4.24]. In order to
consider the worst case detection delay, we set κ = 1 and generate stochastic observations
according to the model described in (52) that follows the change-point detection model in
(19). For every random realization of covariance matrix Σ, we run the CuSum statistic (50),
where we generate A according to the following two schemes:

(1) Largest eigen modes: In this scheme, the linear map A is designed such that its rows
are eigenvectors associated with the r largest eigenvalues of Σ.

(2) Optimal design: In this scheme, the linear map A is designed such that its rows
are eigenvectors associated with r eigenvalues of Σ that maximize DKL(A) according to
Theorem 3.

In order to evaluate and compare the performance of the two schemes, we compute
the ADD obtained by running a Monte-Carlo simulation over 5000 random realizations
of the stochastic process Xt following the change-point detection model in (19) for every
random realization of Σ and for each reduced dimension 1 ≤ r ≤ 9. The detection delays
obtained are then averaged again over 100 random realizations of covariance matrices
Σ for each reduced dimension r. Figure 1 shows the plot for ADD versus r for multiple
initial data dimension n and for a fixed FAR = 1

5000 . Owing to the dependence on DKL(A)
given in (21), the delay associated with the optimal linear mapping in Theorem 3 achieves
better performance.
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Figure 1. Comparison of the average detection delay (ADD) under the optimal design and largest

eigen modes schemes for multiple reduced data dimensions r as a function of original data dimension

n for a fixed false alarm rate (FAR) which is equal to 1/5000.

5.2. Symmetric KL Divergence

In this section, we show the gains of the analysis by numerically computing DSKL(A).
We follow the pre- and post-linear dimensionality reduction structures given in (52), where
the covariance matrix Σ is randomly generated following the setup used in Section 5.1.
As plotted in Figure 2, by choosing the design scheme for DSKL(A) according to Theorem 3,
the optimal design outperforms other schemes.
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Figure 2. Comparison of the empirical average computed for the optimal design and largest eigen

modes schemes for multiple reduced data dimensions r as a function of original data dimension n.
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5.3. Squared Hellinger Distance

We consider a Bayesian hypothesis testing problem given class a priori parameters
pPA

, pQA
and Gaussian class conditional densities for the linear dimensionality reduction

model in (52). Without loss of generality, we assume a 0–1 loss function associated with
misclassification for the hypothesis test. In order to quantify the performance of the
Bayes decision rule, it is imperative to compute the associated probability of error, also
known as the Bayes error, which we denote by Pe. Since, in general, computing Pe for
the optimal decision rule for multivariate Gaussian conditional densities is intractable,
numerous techniques have been devised to bound Pe. Owing to its simplicity, one of the
most commonly employed metric is the Bhattacharyya coefficient given by

BC(A)
△
=
∫

Rr

√

dPA · dQA . (53)

The metric in (53) facilitates upper bounding the error probability as

Pe ≤ √pPA
pQA
· BC(A) , (54)

which is widely referred to as the Bhattacharrya bound. Relevant to this study is that the
squared Hellinger distance is related to the Bhattacharyya coefficient in (53) through

H
2(A) = 2− BC(A) . (55)

Hence, maximizing the Hellinger distance H
2(A) results in a tighter bound on Pe from

(54). To show the performance numerically, we compute the BC(A) via (55). For the pre-
and post-linear dimensionality reduction structures as given in (52), the covariance matrix
Σ is randomly generated following the setup used in Section 5.1. As plotted in Figure 3,
by employing the design scheme according to Theorem 4, the optimal design results in a
smaller BC(A) and, hence, a tighter upper bound on Pe in comparison to other schemes.

1 3 5 7 9

0.4

0.8

1 3 5 7 9

0.4

0.8

1 3 5 7 9

0.4

0.8

Figure 3. Comparison of the empirical average of the Bhattacharyya coefficient BC(A) under optimal

design and largest eigen modes schemes for multiple reduced data dimensions r as a function of

original data dimension n.
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5.4. Total Variation Distance

Consider a binary hypothesis test with Gaussian class conditional densities following
the model in (52) and equal class a priori probabilities, i.e., pPA

= pQA
. We define cij

as the cost associated with deciding in favor of Hi when the true hypothesis is Hj such
that 0 ≤ i, j ≤ 1, and denote the densities associated with measures PA, QA by fPA

and
fQA

, respectively. Without loss of generality, we assume a 0–1 loss function such that
cij = 1 ∀ i 6= j and cii = 0 ∀ i. The optimal Bayes decision rule that minimizes the error
probability is given by

fPA
(x)

fQA
(x)

d=H1

≶
d=H0

1 . (56)

Since the total variation distance cannot be computed in closed-form, we numerically
compute the error probability Pe under the two bounds (Hellinger-based and FB-based)
introduced in Section 4.4.2 to quantify the performance of the design of matrix A for the
underlying inference problem. The covariance matrix Σ is randomly generated following
the setup used in Section 5.1. As plotted in Figure 4, by optimizing the Hellinger-based
bound according to Theorem 4 and optimizing the FB-based bound according to Theorem 3,
the two design schemes achieve a smaller Pe. We further observe that the bounds due to
FB-based are loose in comparison to Hellinger-based bounds. Therefore, we choose not to
plot the lower bound on Pe for the FB-based bounds in Figure 4.
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Figure 4. Comparing the logarithm of the empirical average value for Pe under the two bounds on

dTV(A) (Hellinger-based and Frobenius norm (FB)-based) with the largest eigen modes scheme for

multiple projected data dimensions r as a function of initial data dimension n.

5.5. χ2-Divergence

In this section, we show the gains of the proposed analysis through numerical evalua-
tions by numerically computing χ2(A), to find a lower bound on the noise variance varθ(θ̂)
up to a constant. Following the pre- and post-linear dimensionality reduction structures
given in (52), the covariance matrix Σ is randomly generated following the setup used in
Section 5.1. As shown in Figure 5, constructing the optimal design according to Theorem 4
achieves a tighter lower bound in comparison to the other scheme.



Entropy 2022, 24, 188 16 of 26

1 3 5 7 9

0.5

1.5

2.5

1 3 5 7 9

0.5

1

1.5

1 3 5 7 9

0.4

0.8

1.2

Figure 5. Comparison of the lower bound on noise variance given by 1
χ2(A)

under the optimal and

largest eigen modes schemes for multiple reduced data dimensions r as a function of original data

dimension n.

6. General Gaussian Models

In the previous section, we focused on µ = 0. When µ 6= 0, optimizing each f -
divergence measure under the semi-orthogonality constraint does not render closed-form
expressions. Nevertheless, to provide some intuitions, we provide a numerical approach to
the optimal design of A, which might also enjoy some local optimality guarantees. To start,

note that the feasible set of solutions given byMr
n
△
= {A ∈ Rr×n : A ·A⊤ = Ir} owing to

the orthogonality constraints in Q is often referred to as the Stiefel manifold. Therefore,
solving Q requires designing algorithms that optimize the objective while preserving
manifold constraints during iterations.

We employ the method of Lagrange multipliers to formulate the Lagrangian function.
By denoting the matrix of Lagrangian multipliers by L ∈ Rr×r, the Lagrangian function of
problem (14) is given by

L(A, L) = D f (A) + 〈L, A ·A⊤ − Ir〉 . (57)

From the first order optimality condition, for any local maximizer A∗ of (14), there exists a
Lagrange multiplier L∗ such that

∇AL(A, L)
∣

∣

∣

A∗ ,L∗
= 0 , (58)

where we denote the partial derivative with respect to A by∇A. In what follows, we iterate
the design mapping A using the gradient ascent algorithm in order to find a solution for A.
As discussed in the next subsection, this solution is guaranteed to be at least locally optimal.

6.1. Optimizing via Gradient Ascent

We use an iterative gradient ascent-based algorithm to find the local maximizer of
D f (A) such that A ∈ Mr

n. The gradient ascent update at any given iteration k ∈ N is
given by

Ak+1 = Ak + α · ∇AL(A, L)
∣

∣

∣

Ak
. (59)
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Note that, following this update, since the new point Ak+1 in (59) may not satisfy the
semi-orthogonality, i.e., Ak+1 /∈ Mr

n, it is imperative to establish a relation between the
multipliers L and Ak in every iteration k to ensure a constraint-preserving update scheme.
In particular, to enforce the semi-orthogonality constraint on Ak+1, a relationship between
the multipliers and the gradients in every iteration k is derived. Following a similar line of
analysis for gradient descent in Reference [43], the relationship between multipliers and
the gradients is provided in Appendix E. More details on the analysis of the update scheme
can be found in Reference [43], and a detailed discussion on the convergence guarantees of
classical steepest descent update schemes adapted to semi-orthogonality constraints can be
found in Reference [44].

In order to simplify ∇AL(A, L) and state the relationships, we define Λ
△
= L + L⊤

and subsequently find a relationship between Λ and Ak in every iteration k. This is obtained
by right-multiplying (59) by Ak+1 and solving for Λ that enforces the semi-orthogonality
constraint on Ak+1. To simplify the analysis, we take a finite Taylor series expansion
of Λ around α = 0 and choose α such that the error in forcing the constraint is a good
approximation of the gradient of the objective subjected to A ·A⊤ = Ir. As derived in the
Appendix E, by simple algebraic manipulations, it can be shown that the matrices Λ0, Λ1,
and Λ2, for which the finite Taylor series expansion of Λ ≈ Λ0 + α ·Λ1 + α2 ·Λ2 is a good
approximation of the constraint, are given by

Λ0
△
= −1

2

[

∇AD f (A) · (A)⊤ + A · ∇AD f (A)⊤
]

, (60)

Λ1
△
= −1

2

[

(

∇AD f (A) + Λ0A
)

·
(

∇AD f (A) + Λ0A
)⊤]

, (61)

Λ2
△
= −1

2

[

Λ1 ·A · ∇AD f (A)⊤ +∇AD f (A) · (A)⊤ ·Λ1 + Λ0 ·Λ1 + Λ1 ·Λ0

]

. (62)

Additionally, we note that, since finding the global maximum is not guaranteed, it is im-
perative to initialize A0 close to the estimated maximum. In this regard, we leverage the
structure of the objective function for each f -divergence measure as given in Appendix D.
In particular, we observe that the objective of each f -divergence measure can be decom-
posed into two objectives: the first not involving µ (making this objective a convex problem
as shown in Section 4), and the second objective a function of µ. Hence, leveraging the
structure of the solution from Section 4, we initialize A0 such that it maximizes the ob-
jective in the case of zero-mean Gaussian models. We further note that, while there are
more sophisticated orthogonality constraint-preserving algorithms [45], we find that our
method adopted from Reference [43] is sufficient for our purpose, as we show next through
numerical simulations.

6.2. Results and Discussion

The design of A when µ 6= 0 is not characterized analytically. Therefore, we resort
to numerical simulations to show the gains of optimizing f -divergence measures when
µ 6= 0. In particular, we consider the linear discriminant analysis (LDA) problem where the
goal is to design a mapping A and perform classification in the lower dimensional space
(of dimension r). Without loss of generality, we assume n = 10 and consider Gaussian
densities with the following pre- and post-linear dimensionality reduction structures:

P : N (0, In) and Q : N (µ, Σ)
PA : N (0, Ir) and QA : N (A · µ, h1(A))

, (63)

where the covariance matrix Σ is generated randomly the eigenvalues of which are sampled
from a uniform distribution {λi ∼ U (0, 1)}10

i=1. For the model in (63), we consider two
kinds of performance metrics that have information-theoretic performance interpretations:
(i) the total probability of error related to the dTV(A), and (ii) the exponential decay of error
probability related to DKL(PA ‖ QA). In what follows, we demonstrate that optimizing
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appropriate f -divergence measures between PA and QA lead to better performance when
compared to the performance of the popular Fisher’s quadratic discriminant analysis (QDA)
classifier [20]. In particular, the Fisher’s approach sets r = 1 and designs A by solving

arg max
A∈R1×n

(µ ·A⊤)2

A · (In + Σ) ·A⊤ . (64)

In contrast, we design A such that the information-theoretic objective functions associated
with the total probability of error (captured by dTV(A)) and the exponential decay of error
probability (captured by DKL(PA ‖ QA)) are minimized. The structure of the objective
functions is discussed in Total probability of error and Type-II error subjected to type-I
error constraints. Both methods and Fisher’s method, after projecting the data into a lower
dimension, deploy optimal detectors to discern the true model. It is noteworthy that, in
both methods the data in the lower dimensions has a Gaussian model, and the conventional
QDA [20] classifier is the optimal detector. Hence, we emphasize that our approach aims
to have a design for A that maximizes the distance between the probability measures
after reducing the dimensions, i.e., the distance between PA and QA. Since this distance
captures the quality of the decisions, our design of A outperforms that of Fisher’s. For each
comparison, we consider various values for µ and compare the appropriate performance
metrics with that of Fisher’s QDA for each. In all cases, the data is synthetically generated,
i.e., sampled from a Gaussian distribution where we consider 2000 data points associated
with each measure P and Q.

6.2.1. Schemes for Linear Map

(1) Total Probability of Error: In this scheme, the linear map A is designed such that
dTV(A) is optimized via gradient ascent iterations until convergence. As discussed in
Section 4.4.1, since the total probability of error is the key performance metric that arises
while optimizing dTV(A), it is expected that optimizing dTV(A) will result in a smaller
total error in comparison to other schemes that optimize other objective functions (e.g.,
Fisher’s QDA). We note that, since there do not exist closed-form expressions for the total
variation distance, we maximize bounds on dTV(A) instead via the Hellinger bound in (33)
as a proxy to minimize the total probability of error. The corresponding gradient expression
to optimize H

2(A) (to perform iterative updates as in (59)) is derived in closed-form and is
given in Appendix D.

(2) Type-II Error Subjected to Type-I Error Constraints: In this scheme, the linear map
A is designed such that DKL(PA ‖ QA) is optimized via gradient ascent iterations until
convergence. In order to establish a relation, consider the following binary hypothesis test:

H0 : X ∼ PA versus H1 : X ∼ QA . (65)

When minimizing the probability of type-II error subjected to type-I error constraints,
the optimal test guarantees that the probability of type-II error decays exponentially as

lim
s→∞

− log(QA(d = H0))

s
= DKL(PA ‖ QA) , (66)

where we have define d : X → {H0,H1} as the decision rule for the hypothesis test, and
s denotes the sample size. As a result, DKL(PA ‖ QA) appears as the error exponent for
hypothesis test in (65). Hence, it is expected that optimizing DKL(PA ‖ QA) will result
in a smaller type-II error for the same type-I error when comparing with a method that
optimizes other objectives (e.g., Fisher’s QDA). The corresponding gradient expression to
optimize the DKL(PA ‖ QA) is derived in closed-form and is given in Appendix D.

For the sake of comparison and reference, we also consider schemes in which A

is designed to optimize the objectives DKL(A), the largest eigen modes (LEM), and the
smallest eigen modes (SEM), which carry no specific operational significance in the context
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of the binary classification problem. In the case of LEM and SEM schemes, the linear map
A is designed such that the rows of A are the eigenvector associated with the largest and
smallest modes of the matrix Σ, respectively. Furthermore, we define ✶ as the vector of all
those of appropriate dimension.

6.2.2. Performance Comparison

After learning the linear map A for each scheme described in Section 6.2.1, we perform
classification in the lower dimensional space of dimension r to find the type-I, type-II,
and total probability of error for each scheme. Tables 1–4 tabulate the results for various
choices of the mean parameter µ. We have the following important observations: (i) we
observe that optimizing H

2(A) results in a smaller total probability of error in comparison
to the total error obtained by optimizing the Fisher’s objective; it is important to note that
the superior performance is observed despite maximizing bounds on dTV(A) (that is sub-
optimal) and not the distance itself; and (ii) we observe that except for the case of µ = 0.8 ·✶,
optimizing DKL(PA ‖ QA) results in a smaller type-II error in comparison to that obtained
by optimizing the Fisher’s objective indicating a gain in optimizing DKL(PA ‖ QA) in
comparison to the Fisher’s objective in (64).

Table 1. µ = 0.2 · ✶, r = 1.

Fisher’s QDA DKL(PA ‖ QA) H
2(A) DKL(A) SEM LEM

PA(d = H1) 331/2000 331/2000 331/2000 331/2000 337/2000 915/2000
QA(d = H0) 1226/2000 63/2000 63/2000 63/2000 64/2000 811/2000
Total Error 1557/4000 394/4000 394/4000 394/4000 401/4000 1726/4000

Table 2. µ = 0.4 · ✶, r = 1.

Fisher’s QDA DKL(PA ‖ QA) H
2(A) DKL(A) SEM LEM

PA(d = H1) 344/2000 344/2000 344/2000 345/2000 347/2000 782/2000
QA(d = H0) 594/2000 63/2000 63/2000 63/2000 64/2000 739/2000
Total Error 938/4000 407/4000 407/4000 408/4000 411/4000 1521/4000

Table 3. µ = 0.6 · ✶, r = 1.

Fisher’s QDA DKL(PA ‖ QA) H
2(A) DKL(A) SEM LEM

PA(d = H1) 326/2000 326/2000 335/2000 318/2000 335/2000 638/2000
QA(d = H0) 137/2000 55/2000 108/2000 57/2000 61/2000 669/2000
Total Error 463/4000 381/4000 443/4000 375/4000 396/4000 1307/4000

Table 4. µ = 0.8 · ✶, r = 1.

Fisher’s QDA DKL(PA ‖ QA) H
2(A) DKL(A) SEM LEM

PA(d = H1) 264/2000 264/2000 159/2000 255/2000 307/2000 561/2000
QA(d = H0) 25/2000 53/2000 64/2000 55/2000 60/2000 580/2000
Total Error 289/4000 317/4000 214/4000 310/4000 367/4000 1141/4000

It is important to note that the convergence of the gradient ascent algorithm only
guarantees a locally optimal solution. While we have restricted the results that consider
a maximum separation of µ = 0.8 · ✶, we have performed additional simulations for
larger separation between models (greater µ > 0.8). We have the following observations:
(i) solution for the linear map A obtained through gradient ascent becomes highly sensitive
to the initialization A0; specifically, it was observed that optimizing the Fisher’s objective
outperforms optimizing H

2(A) for various initializations A0, and vice versa, for other
random initializations; and (ii) the gradient ascent solver becomes more prone to getting
stuck at the local maxima for larger separations between the models. We conjecture that
the odd observation in the case of µ = 0.8 · ✶ when optimizing DKL(PA ‖ QA) (where
optimizing the Fisher’s objective outperforms optimizing DKL(PA ‖ QA)) supports this
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observation. Furthermore, we note that, since the problem is convex for µ = 0, a deviation
from this assumption moves the problem further from being convex, making the solver
prone to getting stuck at the locally optimal solutions for larger separation between the
Gaussian models.

6.2.3. Subspace Representation

In order to gain more intuition towards the learned representations, we illustrate
the 2-dimensional projections of the original 10-dimensional data obtained after optimiz-
ing the corresponding f -divergence measures. For brevity, we only show the plots for
DKL(PA ‖ QA) and H

2(A). Figures 6 and 7 plot the two-dimensional projections of the
synthetic dataset that optimize DKL(PA ‖ QA) and H

2(A), respectively. As expected, it is ob-
served that the total probability of error is smaller when optimizing H

2(A). Figure 8 shows
the variation in the objective function as a function of gradient ascent iterations. As the
iterations grow, the objective functions eventually converges to a locally optimal solution.
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Figure 6. Two-dimensional projected data obtained by optimizing DKL(PA ‖ QA).
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Figure 7. Two-dimensional projected data obtained by optimizing H
2(A).
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Figure 8. Convergence of the gradient ascent algorithm as a result of optimizing H
2(A).

7. Conclusions

In this paper, we have considered the problem of discriminant analysis such that sepa-
ration between the classes is maximized under f -divergence measures. This approach is
motivated by dimensionality reduction for inference problems, where we have investigated
discriminant analysis under Kullback–Leibler, symmetrized Kullback–Leibler, Hellinger,
χ2, and total variation measures. We have characterized the optimal design for the linear
transformation of the data onto a lower-dimensional subspace for each in the case of zero-
mean Gaussian models and adopted numerical algorithms to find the design of the linear
transformation in the case of general Gaussian models with non-zero means. We have
shown that, in the case of zero-mean Gaussian models, the row space of the mapping matrix
lies in the eigenspace of a matrix associated with the covariance matrix of the Gaussian
models involved. While each f -divergence measure favors specific eigenvector compo-
nents, we have shown that all the designs become identical in certain regimes, making the
design of the linear mapping independent of the inference problem of interest.
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FAR False Alarm Rate

CuSum Cumulative Sum

BC Bhattacharyya Coefficient

LEM Largest Eigen Modes

SEM Smallest Eigen Modes

LDA Linear Discriminant Analysis

QDA Quadratic Discriminant Analysis

Appendix A. Proof of Theorem 1

Consider two pairs of probability measures (PA,QA) and (PĀ,QĀ) associated with
the mapping A in space X and Ā in space Y , respectively. Let g : X → Y denote any
invertible transformation. Under the invertible map, we have

dQĀ = dQA · |T |−1 , and dPĀ = dPA · |T |−1 , (A1)

where |T | denotes the determinant of the Jacobian matrix associated with g. Leveraging
(A1), the f -divergence measure D f (Ā) simplifies as follows.

D f (Ā)
△
= EPĀ

[

f

(

dQĀ

dPĀ

)]

(A2)

=
∫

Y
f

(

dQĀ

dPĀ

)

dPĀ(y) (A3)

=
∫

X
|T (x)|−1 · f

(

dQA · |T (x)|−1

dPA · |T (x)|−1

)

· |T (x)| dPA(x) (A4)

=
∫

X
f

(

dQA

dPA

)

dPA(x) (A5)

= D f (A) . (A6)

Therefore, f -divergence measures are invariant under invertible transformations (both
linear and non-linear) ensuring the existence of Ā for every A as a special case for lin-
ear transformations.

Appendix B. Proof of Theorem 3

We observe that DKL(A), DSKL(A), and the objective to be optimized through the
matching bound Section 4.4.2, Matching Bounds up to a Constant on dTV(A) can be
decomposed as the summation of strictly convex functions involving gKL(x), gSKL(x),
and gTV(x), respectively. Since the summation of strictly convex functions is strictly convex,
we conclude that each objective D f ∈ {DKL(A), DSKL(A), dTV(A)} is strictly convex.

Next, the goal is to choose {γi}r
i=1 such that D f ∈ {DKL(A), DSKL(A), dTV(A)} is

maximized subjected to spectral constraints given by λn−(r−i) ≤ γi ≤ λi. In order to choose
appropriate γi’s, we first note that the global minimizer for functions g f ∈ {gKL, gSKL, gTV}
appears at x = 1. By noting that each g f is strictly convex, it can be readily verified that
g f (x) is monotonically increasing for x > 1 and monotonically decreasing for x < 1. This
will guide selecting {γi}r

i=1, as explained next.
In the case of λn ≥ 1, i.e., when all the eigenvalues are larger than or equal to

1, the objective of maximizing each D f ∈ {DKL(A), DSKL(A), dTV(A)} boils down to
maximizing a monotonically increasing function (considering the domain). This is trivially
done by choosing γi = λi for i ∈ [r], proving Corollary 1. On the other hand, when λ1 ≤ 1,
i.e., when all the eigenvalues are smaller than or equal to 1, following the same line of
argument, the objective boils down to maximizing each D f ∈ {DKL(A), DSKL(A), dTV(A)},
where each D f is a monotonically decreasing function (considering the domain). This is
trivially done by choosing γi = λn−r+i for i ∈ [r].

When λn ≤ 1 ≤ λ1, the selection process is not trivial. Rather, an iterative algorithm
can be followed, where we start from the eigenvalues farthest away from 1 on both sides
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and, subsequently, choose the one in every iteration that achieves a higher objective. This
procedure can be repeated recursively until r eigenvalues are chosen. This procedure is
also discussed in Algorithm 1 in Section 4.6.

Finally, constructing the optimal matrix A, which maximizes D f for any data matrix Σ,
becomes equivalent to choosing eigenvectors as the rows of A associated with the chosen
permutation of eigenvalues for each of the aforementioned cases.

Appendix C. Proof for Theorem 4

We first find a closed-form expression for χ2(A) and χ2(PA ‖ QA). From the definition,
we have

χ2(A)
△
=

|Ir|
1
2

(2π)
r
2 · |h1(A)|

·
∫

Rr
exp

[

−1

2
·
(

Y⊤ ·K1 ·Y
)

]

dY− 1 , (A7)

where we defined K1
△
= 2 · h1(A)−1 − Ir. We note that K1 is a real symmetric matrix

since h1(A) is a real symmetric matrix. We denote the eigen decomposition of K1 as
K1 = U ·Θ ·U⊤, where the matrix Θ is a diagonal matrix with the eigenvalues {θi}r

i=1 as
its elements. Based on this decomposition, we have

χ2(A) =
1

(2π)
r
2 · |h1(A)|

·
∫

Rr
exp

[

−1

2

(

Y⊤ ·UΘU⊤ ·Y
)

]

dY− 1 (A8)

=
1

(2π)
r
2 · |h1(A)|

·
∫

Rr
exp

[

−1

2

(

W⊤ ·Θ ·W
)

]

dW − 1 (A9)

=
1

(2π)
r
2 · |h1(A)|

·
r

∏
i=1

∫ ∞

−∞
exp

[

−1

2

(

θi · w2
i

)

]

dwi − 1 , (A10)

where we have defined W
△
= U⊤ · Y. We note that, in order for χ2(A) to be finite, it is

required that the eigenvalues {θi}r
i=1 be non-negative. Hence, based on the definition of

K1, all the eigenvalues λi should fall in the interval (0, 2). Hence, we obtain:

χ2(A) =
1

(2π)
r
2 · |h1(A)|

·
r

∏
i=1

∫ ∞

−∞
exp

[

−1

2

(

θi · w2
i

)

]

dwi − 1 (A11)

=
1

(2π)
r
2 · |h1(A)|

·
r

∏
i=1

√

2π

θi
− 1 (A12)

=
1

|h1(A)| ·
√

1

|K1|
− 1 . (A13)

Recall that the eigenvalues of h1(A) are given by {γi}r
i=1 in the descending order. Therefore,

(A13) simplifies to:

χ2(A) =
r

∏
i=1

√

1

γi · (2− γi)
− 1 =

r

∏
i=1

gχ1
(γi)− 1 . (A14)

Hence, from (A14), maximizing χ2(A) is equivalent to choosing the eigenvalues {γi}r
i=1

such that they maximize gχ1
(x). Similarly, the closed-form expression for χ2(PA ‖ QA) can

be derived as follows:

χ2(PA ‖ QA) =
|h1(A)| 12
(2π)

r
2 · |Ir|

·
∫

Rr
exp

[

−1

2
·
(

Y⊤ ·K2 ·Y
)

]

dY− 1 , (A15)

where we defined K2
△
= 2 · Ir − h1(A)−1. We note that K2 is a real symmetric matrix

due to h1(A) being a real symmetric matrix. Hence, following a similar line of argument
as in the case of χ2(A), and as a consequence of Theorem 2, we conclude that all the
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eigenvalues λi should fall in the interval (0.5, ∞) to ensure a finite value for χ2(PA ‖ QA).
Following this requirement, since the integrands are bounded, we obtain the following
closed-form expression:

χ2(PA ‖ QA) =
|h1(A)| 12

1
·
√

1

|K2|
− 1 . (A16)

Recall that the eigenvalues of h1(A) are given by {γi}r
i=1; then, (A16) simplifies to

χ2(PA ‖ QA) =
r

∏
i=1

√

γ2
i

(2γi − 1)
− 1 =

r

∏
i=1

gχ2(γi)− 1 . (A17)

Hence, from (A17), maximizing χ2(PA ‖ QA) is equivalent to choosing the eigenvalues
{γi}r

i=1 such that they maximize gχ2(x).
We observe that H2(A), χ2(A), and χ2(PA ‖ QA) can be decomposed as the product of

r non-negative identical convex functions involving gH(x), gχ1
(x), and gχ2(x), respectively.

Hence, the goal is to choose {γi}r
i=1 such that D f ∈ {H2(A), χ2(A), χ2(PA ‖ QA)} is

maximized subjected to spectral constraints given by λn−(r−i) ≤ γi ≤ λi. In order to
choose appropriate γi’s, we first note that the global minimizer for each g f ∈ {gH, gχ1

, gχ2}
is attained at x = 1. Leveraging this observation, along with the structure that each g f

is convex, it is easy to infer that each g f (x) is monotonically increasing for x > 1 and
monotonically decreasing x < 1. From the exact same argument in Appendix B, we obtain
Corollaries 3 and 4.

Therefore, similar to Appendix B, constructing the linear map A that maximizes
D f ∈ {H2(A), χ2(A), χ2(PA ‖ QA)} for any data matrix Σ boils down to choosing eigen-
vectors as rows of A associated with the chosen permutation of eigenvalues for each of the
aforementioned cases.

Appendix D. Gradient Expressions for f -Divergence Measures

For clarity in analysis, we define the following functions:

h2(A)
△
= µ

⊤ ·A⊤ ·A · µ , (A18)

h3(A)
△
= µ

⊤ ·A⊤ · [h1(A)]−1 ·A · µ . (A19)

Based on these definitions, we have the following representations for the divergence
measures and their associated gradients:

DKL(A) =
1

2

[

log
1

|h1(A)| − r + Tr[h1(A)] + h2(A)

]

, (A20)

∇ADKL(A) = [h1(A)]−1 ·
[

Ir − [h1(A)]−1 −A · µ · µ⊤ ·A⊤ · [h1(A)]−1
]

·A · Σ
+ [h1(A)]−1 ·A · µ · µ⊤ .

DKL(PA ‖ QA) =
1

2

[

log |h1(A)| − r + Tr
[

h1(A)−1
]

+ h3(A)
]

, (A21)

∇ADKL(PA ‖ QA) =
(

Ir − [h1(A)]−1
)

·A · Σ + A · µ · µ⊤ .

DSKL(A) =
1

2
·
[

Tr
(

[h1(A)]−1 + h1(A)
)

+ h2(A) + h3(A)
]

− r , (A22)

∇ADSKL(A) =
[

Ir − [h1(A)]−2 − [h1(A)]−1 ·A · µ · µ⊤ ·A⊤ · [h1(A)]−1
]

·A · Σ

+
(

Ir + [h1(A)]−1
)

·A · µ · µ⊤ . (A23)
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H
2(A) = 2− 2

|4 · h1(A)| 14
|h1(A) + Ir|

1
2

· exp

(

−µ⊤ ·A⊤ · [h1(A) + Ir]
−1 ·A · µ

4

)

, (A24)

∇AH
2(A)

−[1−H2(A)]
=

1

2
· [h1(A)]−1 ·A · Σ + [h1(A) + Ir]

−1 ·
[

−A · [Σ + In]−
1

2
·A · µ · µ⊤

+
1

2
·A · µ · µ⊤ ·A⊤ · [h1(A) + Ir]

−1 ·A · [Σ + In]

]

.

Appendix E. Proof for Lagrange Multipliers

Denoting ∇AL by ∆̃ and ∇AD f by ∆, and further post-multiplying (59) by Ak+1,
we have:

Ak+1 · (Ak+1)⊤ = Ak · (Ak+1)⊤ + α · ∆̃ · (Ak+1)⊤ , (A25)

Ir = Ak · (Ak + α · ∆̃)⊤ + α · ∆̃ · (Ak + α · ∆̃)⊤ , (A26)

0 = Ak · ∆̃⊤ + ∆̃ · (Ak)⊤ + α · ∆̃ · ∆̃⊤ . (A27)

Substituting ∆̃ = ∆ + Λ ·A in (A27) and simplifying the expression, we obtain:

2 ·Λ + Ak · ∆⊤ + ∆ · (Ak)⊤ = −α · (∆ · ∆⊤ + ∆ · (Ak)⊤Λ + Λ ·Ak · ∆⊤ + Λ ·Λ⊤) . (A28)

By noting that Λ is symmetric, taking the Taylor series expansions of Λ around α = 0 and
equating the terms of α in both sides, we obtain the relationships in (60)–(62).
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