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Abstract—This paper proposes ascalable framework for the real-
time detection and localization of power line outages in transmission
networks. While localizing outages is pivotal for ensuring grid
reliability, forming such decisions faces an inherent combinatorial
complexity that grows with the grid size and becomes prohibitive
even for moderate grid sizes. Hence, designing outage detection and
localization algorithms that are amenable to real-time implementa-
tion critically hinges on circumventing the computational complex-
ity. This paper proposes a graph-guided quickest change detection
(GG-QCD) approach that leverages the grid topology and performs
quickest change detection in the spectral domain of the graph
underlying grid’s topology. The GG-QCD algorithm’s key features
are that (i) it uses a one-dimensional metric that tests the data’s
conformity to the grid topology, and (ii) it decouples the detection
and localization processes to avoid testing all the lines at all times.
Specifically, a lack of such conformity of the data to the system
model will be alarming the potential existence of an outage. Once
an outage is deemed to exist, an active graph clustering approach
will be used to localize the line in outage. The clustering approach
will also be relying on the same one-dimensional conformity metric.
Overall, this approach will be performing only one test over time
when the system is outage-free. Once an outage is detected, it will
require O (log(L)) additional tests to identify the line in outage.
This paper presents the theory for GG-QCD and algorithms for
outage detection and localization. To evaluate these algorithms’
efficiency and complexity, they are examined in the standard IEEE
30- and 118-bus systems.

Index Terms—Graph spectrum, outage detection, quickest
detection, scalable.

I. INTRODUCTION

ential (e.g., state estimation), and decision-making (e.g.,
power flow optimization) in power systems critically hinge on
accurate and real-time awareness of the systems model (e.g.,
line parameters and topology). However, network models are
prone to disruptions and variations induced by a wide range of
failures or inaccurate telemetry in the system. As a result, the
decisions predicated on an erroneous system model may lead to
hidden failures that propagate and eventually resultin large-scale

V ARIOUS monitoring (e.g., reliability and safety), infer-
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disruptions in monitoring, control, and planning. For instance,
in a report by North American Electric Reliability Corporation,
it was investigated and concluded that inadvertent tripping of a
power line lead to a series of cascading failures causing a large-
scale blackout in North America 2003 [1]. Therefore, real-time
and accurate situation awareness about network models has a
pivotal role in ensuring the reliability, stability, and efficiency of
power distribution.

Line outage events constitute a major form of disruptive model
change since they induce topology changes and force power
redistribution. Such redistribution of power translates to poten-
tially significant suboptimal power flows or even stressing more
transmission lines and leading to more line outages. There exists
arich literature on leveraging statistical methods for agile and re-
liable detection and localization of outages as soon as they occur.
Some studies relevant to the scope of this paper include the study
in [2], [3], which proposes an exhaustive search algorithm to
detect and localize single- and double-line outages. While accu-
rate, such approaches face high computational complexities. For
addressing the computational aspect, the study in [4] proposes
modeling the collection of voltage phase angles over the grid by
a Gauss-Markov random field (GMRF), and it formulates outage
detection as an inference problem and employs hypothesis test-
ing for outage detection. Following a similar graphical model
approach, the studies in [5], [6] propose an adaptive strategy
to detect and localize outages with the fewest number of mea-
surements. Other approaches that exploit the network’s structure
include the study in [7] that assumes sparsity in the topology and
develops a factor graph representation of the grid. This model
is leveraged to employ efficient message-passing algorithms
for outage detection. The study in [8] leverages the structure
in the sparsity of anomalous events, and it formulates outage
localization as a sparse signal reconstruction objective that is
addressed by using compressive sensing for identifying multiple
line outages. Along similar lines, the studies in [9] and [10] use
optimization-based approaches, and the studies in [11] and [12]
design data-driven algorithms that are trained offline and further
employed for real-time topology identification. Outage identi-
fication has also been considered in power distribution systems
where tree topological structures are exploited. Specifically, the
study in [13] breaks down the combinatorial outage hypothesis
space into smaller areas and propose computationally efficient
algorithms for outage detection.

In another direction, close to this paper’s scope, the quickest
change detection (QCD) theory is applied to line outage de-
tection in [14]-[16]. The QCD theory aims to detect abrupt
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changes in the statistical model of time series data. Its objec-
tive is to detect the change-point with minimal delay after the
change, while in parallel, the quality of the decisions (e.g., false
alarm rates) are controlled [17]. In [14], a QCD algorithm is
proposed for the quick detection and localization of line outages
when the outages are persistent. These approaches generally use
high-dimensional measured data (e.g., voltage phase angles of
all buses in the network) and design a customized statistical
test for each transmission line, based on the line’s parameters.
These possibly different tests are performed in parallel at all
times to detect outages and localize the lines in outage, when
the outages are persistent. The studies in [15] and [16] further
extend these studies to address the transient dynamics of outage
events. QCD algorithms for line outage detection in power
distribution systems and fault detection in photovoltaic systems
are investigated in [18] and [19], respectively. These classes of
QCD algorithms rely on computing high-dimensional statistics,
and we refer to them as high-dimensional QCD (HD-QCD)
algorithms.

In this paper, we propose a scalable and computationally
tractable QCD algorithm for detecting and localizing outages
to address the computational challenges of the HD-QCD algo-
rithms. To lay context for discussions, we note that the HD-QCD
approaches face two critical computational challenges: (i) in
a system with L lines, it requires performing L parallel tests
at all times, and (ii) each of the tests involves computing an
N-dimensional likelihood ratio, which has high complexity as
N grows (see [20] for detailed discussions). The combination of
these, for even moderate network sizes, renders the tests com-
putationally prohibitive. In this paper, we propose to perform
QCD in the spectral domain of the graphical model associated
with the network’s topology and refer to it as graph-guided
QCD (GG-QCD). Specifically, due to the network structure
(topology), the data generated (e.g., voltage phase angles) has
an inherent structure that can be leveraged to test the data’s
conformity to the known network structure.

We specify metrics that quantify spectral change caused in the
event of an outage, and subsequently, provide reliable metrics
for testing the conformity of the data to the network model.
Based on these metrics, we address the two computational
complexities mentioned above. First, we note that detecting
outages (a binary decision about whether an outage exists in the
network) is far less computationally complex than line outage
localization (an L-array decision). Motivated by this, we start
with a detection stage and will not proceed to localization until
there exists sufficient evidence that an outage has occurred.
Such decoupling of detection and localization processes allows
for only one test (as opposed to L parallel tests) when the
network is outage-free, which is a significant fraction of the time.
Furthermore, this test will be using a 1-dimensional conformity
metric, which is significantly less complex than computing L-
dimensional likelihood ratios. Once there is sufficient evidence
that an outage has occurred, we initiate the localization stage.
At its core, the localization procedure recursively partitions the
topological network and concurrently employs conformity tests
to progressively eliminate regions that are deemed to behave
normally and retain the rest for more scrutiny until the line in

outage is localized. Inspired by the binary search algorithm,
such strategies obviate the requirement to carry out parallel
tests for each alternative outage possibility, reducing the order
of statistical tests to at most log L. Furthermore, similarly to
the detection stage, each of these tests will involve computing
1-dimensional statistical metrics.

The rest of the paper is organized as follows. The system
model and associated notations are presented in Section II.
Section III formalizes the graph spectrum metrics, which are also
used to formalize the outage detection and localization problems.
Algorithms for line outage detection and localization are pre-
sented in Section IV and V, respectively. Section VI illustrates
the performance of the proposed algorithm in the standard IEEE
30- and 118-bus systems, and Section VII concludes the paper.

II. PRELIMINARIES AND NOTATION
A. Power System Model

Consider a power system of IV buses and L transmission lines
connecting the buses. We represent this network by a weighted
graph G = (V, E,B). The set of vertices V = {1,...,N}
represent the buses. The edge set SV XV represents the
transmission lines. There is an edge between vertices 7,7 € V,
denoted by I;; if buses 7 and j are connected by a transmission
line. Matrix B € RV*V is the susceptance matrix, in which
yi; = [BJi; is the susceptance of the transmission line F;.
Denote the Laplacian matrix associated with B by Ly, where

> iy, ifi=j
A ) JEN;
Coly =4y, G er @

0, otherwise

and N; denotes the set of buses that are directly connected
by a transmission line to bus i. We denote the voltage phase
angle of bus i at time ¢ by 6, (¢) and accordingly, define O(t) =
[01(¢),...,0n(t)]". Subsequently, we denote the injected real
power at bus i by P;(t), which, in general, is a non-linear
function of 8(t). These measurements are sampled by a phasor
measurement unit (PMU) regularly at At intervals (in seconds),
rendering discrete-time measurements at discrete time instants
{nAt:n € N}. We denote the discrete time measurements
associated with bus i € V by 6;[n] = 6;(nAt) and P;[n] =
P;(nAt), and accordingly denote the variations in voltage phase
angles and active power injections in bus 7 between consec-
utive sampling instances by A#;[n] = 6;[n + 1] — 6;[n] and
AP;[n] = Pi[n+ 1] — P;[n]. We treat bus 1 as the reference
bus, and its voltage phase angle serves as the system’s phase
reference. Under proper decoupling! and DC? assumptions we

!'Variations in active power injections dominantly affect voltage angles and
variations in reactive power injections primarily affect bus voltage magnitudes.

2(i) The system is lossless; (ii) voltage magnitudes are constant (1 per unit),
and (iii) at any given time, voltage phase angles between neighboring buses are
small, i.e., |6;[n] — 6;[n]| < 1foralli # j suchthat E;; € E and at all times
n.
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have the following linear relationships [14]:

JeV,j#l
More compactly, we define A@[n] = [Afy[n],...,0n[n]] and
AP[n] = [APy[n], ..., Py[n]], yielding
AP[n] ~ Lp - AB[n] . 3)

where, matrix £p is constructed by removing the rows and
columns associated with the reference bus in £g. Due to constant
load fluctuations and changes in power flow dynamics, there
exist small-scale temporal variations in AP [n)].

B. Post-Outage Statistical Model

When a transmission line undergoes an outage, it induces
a topological change, resulting in a change in B. Specifically,
when line F,, undergoes an outage, the Laplacian matrix of
B, denoted by /j“”, is related to £~B via the rank-one update:

E%’U - ZiB — Yuv " Tyo * r;;; (4)

where r,,,, € RV~ is an all-zero vector, with the excepts that its
(u — 1)™ entry is +1 and its (v — 1)*™® entry is —1. This renders
the post-outage model

AP[n] ~ L& - AG[n] . o)

These changes, impose abrupt changes in the statistical model
associated with the vector A@[n]. We define g, as the post-
change probability density function (pdf) of A@[n] when E,,,, is
in outage. Hence, when FE,,, undergoes an outage at a random
time v, we have the following pre- and post-change statistical
models

pre-change: Af[n] ~g¢g for n <v

post-change: Af[n] ~ g, for n >~ ©

A@[n] is assumed to be temporally independent and identi-
cally distributed with joint pdf g : R — R, . This is owing
to the small variations in real power injection AP[n] over
short sampling time scales attributed to random fluctuations in
electricity consumption and the subsequent response of some
generators [14]. Hence, by leveraging (5), we find the statistical
model of AB[n].

III. GRAPH SPECTRAL ANALYSIS OF OUTAGES
A. Motivation

Our objective is to detect and localize an outage with minimal
delay after the outage occurs, while in parallel, the rate of false
alarms is controlled to be confined below a pre-specified rate. A
direct solution explored in [14] involves designing an exclusive
test for each of the L transmission lines and running all the tests
at all times in parallel. Such an approach faces three complexity
challenges:

C1: The number of tests required scales linearly with L.

Csy: All the tests run at all times. The reason is that this

approach aims to perform outage localization at the same
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time that an outage is detected. This, inevitably, requires
constantly monitoring the individual line outage events.

Cs: Most importantly, the complexity of each test becomes
prohibitive as L grows even beyond moderate values
(since they involve computing the values of the N-
dimensional joint pdfs).

We aim to design an approach with the following properties:

P1: By decoupling the detection and localization tasks, we
perform localization only after an outage is detected.
Hence, we can avoid running all the L tests at all times and
instead will run only one test until an outage is detected.

P,: Furthermore, when the outage is detected, the number of
tests required for localizing the line in outage scales with
O(logy(L)), as opposed to O(L).

P3: Finally, each test becomes considerably less computa-
tionally complex (to be discussed in Section VI-A).

B. Measuring Conformity of Data to Model

We use spectral graph theory to analyze the geometry of the
collected data A@[n] and its conformity to the system’s inherent
structure captured by the graphical model G. We quantify confor-
mity as the key measure for detection and localizing an outage.
This is motivated by the following simple principle: when there
is an outage in line F,,,, owing to the strong inter-connectivity
in the system, it will likely render a geometric change in the
data beyond simply the data generated by the PMUs of buses u
and v. The data’s geometry is partly captured by the spectrum
of the graph G = (V, E, B). To formalize the framework, we
start by defining smoothness as a measure of data conforming to
the graphical model. Based on the data 8[n], we define the edge
derivative of graph signal A@[n] with respect to the edge E,
at vertex u as

aA[n]
9E,,

Accordingly, the graph gradient of the graph signal A@[n] at
vertex u is defined as

V.A6[n] £ Pﬁ ]g [”]] @)

and the local variation of the signal at u is defined as [21]

A

= /Yuo (A8, [n] — AB,[n]). (N

u

A

1V, A60[] |2 :[ ) ywmev[m—mu[nﬂ e

B, €E

This location variation metric provides a measure of local
smoothness of A@[n] around vertex u, that is a metric that
quantifies the conformity of A@[n] to the structure of the graph
around vertex u. By using the local metrics, we can define a
global smoothness of Af[n] with respect to graph G as

A 1
Sn(@) =5 > IVL A8} = A8 [n] - L - AB[n]. (10)

ueV

The graph signal A@[n] become smoother with respect to the
graph G if the graph signal takes closer values at neighboring ver-
tices with non-zero weights. Hence, the conformity level of the
data A@[n] to graph G increases as S,,(A8[n]) decreases [22].
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In the smoothness metric, the data A@[n] is random, and Lg
is known. These render S,,(G) as random variables, inheriting
their randomness from A@[n|. Considering the statistical model
specified in Section II, we denote the empirical pdf of the global
smoothness metric S,,(G) by f. Furthermore, when line E,,,, is in
outage, the smoothness of observation vector with respect to the
altered graph G,,., is given by S,,(G,,,) = A8 [n] - L& - A8[n).
We denote the pdfs of S,,(Guw) by fue-

IV. GG-QCD: DETECTION VIA GLOBAL SMOOTHNESS

At an unknown time instant y an outage occurs in an un-
known transmission line E,,,, € /. We assume that this outage
does not cause an island in the system. Hence, the post-change
graph representing the system remains a connected graph. Our
objective is to use the smoothness metrics 5,,(G) and design
an online algorithm that forms two intertwined decisions. The
first decision pertains to detecting whether an outage has oc-
curred. This is essentially a binary decision. The second decision
involves localizing the line in outage, that is, identifying the
line F,,. We focus on the detection decision in this section
and will discuss localization in Section V. The objective of
quickest detection is to detect a change with minimal delay after
the outage instance . Minimizing such a delay, on the other
hand, has an inherent tension with the quality of the decisions:
declaring a change-point too quickly is susceptible to raising
frequent false alarms, that is, declaring an outage while there
is no outage in the system. Hence, designing a detection rule
involves resolving a tension between the agility and quality of
the decisions.

To formalize this, we have a composite post-change model,
according to which the post-change distribution belongs to
{fuv : (u,v) € E}. When an outage occurs, we denote €,,, as
the prior probability that the line in outage is E,,,,. Accordingly,
we define the mixture distribution

9(Sn(9) = Y w fun(Sa(9)).

(u,v)eE

(1)

We define 7 € N as the time that we can form a confident
detection decision. A canonical model to quantify the decision
delay is the conditional average detection delays (CADDs) due
to Pollak [23]

CADD(mp) = sup E, [/ — 7| ™ >1] (12)
vz

where . is the expectation with respect to the probability

distribution when the change happens at time v € (n — 1,n].

When there is no prior assumption about when a change-point

occurs, a reasonable measure of false alarms is the mean-time

to false alarm, or it’s reciprocal, which is the false alarm rate
(FAR) defined as

é 1
EOQ[TD]

where E ., is the expectation with respect to the distribution

FAR(TD)

(13)

when a change never occurs, i.e., 7y £ 0. For the detection task,
a standard approach to balance the trade-off between decision

delay and false alarm rates are solving [23]

min CADD(7p)  subjectto  FAR(7p) < « (14)
™™D

where oo € R controls the rate of false alarms. Once a detection

decision is formed, we also need to localize the line in outage. For

the quickest change-point detection problem with a composite

post-change model, a variant of the popular cumulative sum

(CuSum) algorithm enjoys optimality properties. The variant,

weighted cumulative sum (W-CuSum) involves calculating

A - 9(Si(9))

= 1 EASSAS VA
1&%1; o8 ( £(S8:(9))

computing which follows a convenient recursion given by

Waln] = (Wd[n —1] +log <m>>+ (16)

where we set W,;[0] = 0. In this approach, the weighted cumu-
lative sum sequential statistic declares a line outage at a stopping
time

Waln] 15)

™ =inf{n >1: Wy[n] > Cy4}. (17)
In order to satisfy the constraint on FAR(7p ) in (14), we compute
the threshold Cy in (17) accordingly. In particular, we run a

Monte Carlo over multiple AC power flows under pre-outage

A

conditions for a range of thresholds C; that satisfy ﬁ(m) =

E.(mp) ~ a~!, where « is given by the operator, and compute
(16) for each realization until the stopping condition (17) is
satisfied.

V. GG-QCD: LOCALIZATION VIA LOCAL SMOOTHNESS

Once an outage is declared at p, the next goal is to localize the
outage. Motivated by minimizing the delay and the complexity
of the localization routine, we devise a framework with two key
ideas:

1) Retrospective Change Detection: Note that the detection
stopping time 7p is the instance at which we had sufficient confi-
dence that an outage has occurred prior to 7p. This indicates that
if we can estimate the actual change-point -, then all the samples
atn € {v,...,7p} are drawn from the post-change model. To
avoid further delay imposed by collecting fresh samples, we
can first re-use all the samples {A@[n] : n € {v,...,7p}}, and
only take fresh samples if these are inconclusive for localization.
To this end, a pivotal objective is estimating -, i.e., retrospect
detection of the change-point.

2) Active Graph Clustering: A direct approach to localiza-
tion would be testing the lines individually, rendering L parallel
tests. In contrast, we perform active graph clustering to estimate
a small proximity in which the outage is deemed to lie. This is
then followed by testing only the lines contained in the estimated
outage proximity. This reduces the number of tests from L to
about log, (L). Next, we discuss each of these two steps and the
final localization rules.
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A. Retrospective Change-Point Detection (RCPD)

We start by performing retrospective change-point detection
(RCPD) to estimate y based on the available data when it is
deemed a change has occurred. The existing approaches to
RCPD include a non-parametric approach in [24], Bayesian
approach in [25], [26], and a quasi-Bayesian formulation in [27].
Our objective involves forming two intertwined decisions. We
aim to estimate the change-point. This decision predicates on
ensuring that a change has, in fact, occurred. Hence, we face
the combined decision of detecting a change and then esti-
mating the change-point. By defining Sy.-, = {84(G) : d €
{1,...,7p}}, the combined decision is a solution to the fol-
lowing composite hypothesis testing problem:

Ho : Stirp ~ H f(S
- (18)
: Sty H £(S8n(@) - [T 9(Sn(9))
n=y

where H accounts for no change-point by mp, and 7{; indicates
otherwise. When decided in favor of 1, we also estimate . As
established in [26], the rule for discerning H( and H1 is

1 ggsniggi 5

max
7D} iy f Sn g Ha

(19)

¢e{1,...
where = P({ | 7 = d) is the prior probability of  being the
change-point. Furthermore, the maximum a-posteriori (MAP)
estimate of y is given by

. T 9(8.(9))
AMAP = Arg MaXcqy o1 T };[C oG (20)
To analyze the prior ¢, we note that (17) is satisfied prior to
the start of the localization process. In particular, since we have
high confidence that a change has occurred, it is highly likely
to be within a short interval preceding . Hence, we assume
the prior to be binomially distributed with parameter p, where
p can be obtained from historical data. For instance, by fitting
the expected values, p - Tp (the expected value of the binomial
distribution) equals the historical average of detection delay, i.e.,
(tp — ), yielding p = 1 — —=. We define # as the estimate for
the change-point ~ f0110w1ng

B. Spectral Bisection Graph Partitioning

Upon estimating 7, and by using the samples {Af[n] : n €
{#,...,7>}}, and possibly more fresh samples when deemed
necessary, we aim to localize the line in outage. For this purpose,
we take an active partitioning approach to iteratively eliminate
the parts of the graph deemed not to contain a faulty line and
progressively focus on the more promising parts. This iterative
process starts by partitioning the graph G = (V| E,B) to two
subgraphs G = (V" E”,B"), where r € {1,2} followed by a
quickest detection approach to determine which partition is more
likely to contain the faulty line. In the next iteration, this partition
is further bisected for more scrutiny, and this process continues

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 37, NO. 1, JANUARY 2022

until we cannot further partition the surviving subgraph into two
meaningful partitions, i.e., the surviving subgraph has no more
than four vertices.

To formalize the iterative bisection search process, we define
G; as the subgraph survived after that 7*" iteration, and we set
Go = G. In the (i + 1) iteration, we partition G; into Qil and
gf, and retain one of them, denoted G, 1, for further scrutiny
in the next iteration. Based on these notations, next we discuss
how to partition G;, and how to specify G, 1. All these decisions
are data-driven, and our objective is to form the decision with
the fewest number of samples.

Partitioning G,: We employ a spectral graph partitioning
algorithm for partitioning G; = (V;, E;, B;). For simplicity of
notations, we assume that [V; =1 |V;| is even, and the odd cases
can be addressed with minor adjustments. Corresponding to the
set of nodes V;, we define the IV;-dimensional vector p; as the
partitioning vectorif p; € P; £ C; N B;, where we have defined

Ci = {pie{£1}™}, and
N;

Bi = {pi € RV : > " by[j] =0
j=1

The condition p; € C; designates a binary partition of graph G;
such that when p;[j] = —1, the j'" element of V; will be placed
in partition G}, and otherwise, when p;[j] = 1, it will be placed
in gf. On the other hand, the condition p; € B; ensures that
the partitions are balanced with an equal number of nodes. Our
objective is to find a partition vector p; € P; in order to partition
G;. An optimal choice of p; that ensures maximal independence
between the two partitioned subgraphs can be found as the
solution to

p; Sargming cp Y Yuo - (Pilu] —pilt])? 21
(u,v)eE;
£ arg min, .» P; ‘LB, * Pi- (22)

As shown in [28] and [29], solving (22) is NP-hard. An approxi-
mate solution to (22) can be obtained by relaxing the discreteness
constraint on the set C; rendering the modified problem:

~x A . T
; = arg min i LB, Pi- 23
pl g pi€B;, leug élpz »CB, Pi ( )
An effective solution to p; is obtained by considering p; Ze;

where e; denotes the Fiedler vector (i.e., the eigenvector as-
sociated with the second smallest eigenvalue) of the Laplacian
matrix L£g,. This is because the eigenvector associated with the
smallest eigenvalue of the Laplacian matrix is a constant vector,
which if used, will not yield any partitions for graph G;. As
established in [29], an approximate solution to p; is obtained by
setting all the elements of p; above the median of e;, denoted
by €;, to (+1) and all the elements of p} below €; to (—1),
resulting in an approximation for p; that belongs to P;. By
constructing the median-cut vector p;, two evenly partitioned
subgraphs are obtained by mapping each entry in p; of opposite
signs to two distinct graph partitions. We note that in order to
obtain viable Laplacian matrices £g1 and Lg2 we discard all
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Algorithm 1: Bisecting Graph G; to G} and G?.
1:  Input graph G;

2: Initialize V! < 0, V2 <0
3:  Construct Laplacian matrix £g, of weight matrix B,
4: Compute the Fiedler vector e; of Lp,
5: for every node k in V do
6: if €e; [k} <e; then
7: Vi VIu{k}
8: else
9: V2« V2ul{k}
10: end if
11:  end for

12: i ||V;'| — |V;?|| > 1 then

13:  Adjust for nodes in set V;!, V;? to make the
difference atmost 1

14:  endif

15:  Construct £}

16: return G} and G?

the inter-connected edges (tie-lines) between g} and gf in the
current iteration, and devise independent localization decision
rules for tie-lines in Section V-C. Note that the assumption of
N, being even is made only for convenience and that a graph
can be partitioned into two approximately equal sets following
Algorithm 1.

Filtration: Given partitions g} and gf, next we decide to
discard one and retain the other for further scrutiny. We develop
a quickest change detection approach and apply it to subgraphs
G} and G2. To formalize this, upon finding G} and G2, we define
S, (Gr) as the local smoothness metric as follows:

Sn(GF) = A6} "[n] - Ly - AB][n] for 7€ {1,2}

where 6 [n] denotes the vector of phase angle measurements
associated with the buses in subgraph G;. We denote the pre-
change empirical pdf of the local smoothness S,,(G]') by f7 and
denote the post-outage empirical pdf of S,,(G!') when line E,,,, €
ET is in outage by ¢, ,,,,- When an outage occurs, we denote the
prior probability of line E,, € E! being in outage by €/ [u, v],
and accordingly, define the post-change mixture distribution as

9(Sn(@D)) = > €lu,v] gl 4 (Sn(G))-

(u,w)eET

(24)

(25)

Corresponding to each of the two subgraphs, we define the
following W-CuSum statistic Vr € {1,2} and Vn > #4:

Win] = (W [n — 1] + log (W)Y (26)

where the statistics W[ — 1] = 0 Vr € {1, 2}. The W-CuSum

statistic declares an outage in subgraph G at time instant 7;°
defined

7 =inf{n >4 : W/[n] > CI'}

7

27

where constant C; controls the rate of false alarm events. The
test statistics associated with each of the two-subgraphs are run
in parallel, and the subgraph that first identifies an outage is

Algorithm 2: Bisection Search.

1: InputG,seti =1,Gy =G

2: Run Algorithm-1on G; 1 — G} ;,G2
3: Find 7, ; = min{r}, 7%} using (27)
4: Find r* = arg min T

5: SetG;, =G,

6: if |V;| > 4 then

7: Set: <7+ 1 & goto 2:

8: endif

9:  Output G;

selected for more scrutiny, and the other subgraph is discarded
permanently. The details of the active bisection search are pro-
vided in Algorithm-2.

C. Terminal Decision Rule for Line Outage Localization

While the bisection search algorithm discussed in Section V-B
provides the most likely subgraph in which the outage is deemed
to lie, it does not provide the terminal decision rule §. Moreover,
itdoes not incorporate the possibility of an outage in tie-lines that
were discarded to form viable Laplacian matrices. To address
these issues, we employ parallel CuSum tests customized to each
line in the resulting subgraph obtained at the end of Algorithm-2
and each tie-line obtained in the i*" iteration of Algorithm-2. We
note that since the number of lines in the subgraph obtained at
the end of Algorithm-2 is guaranteed to be small in number,
running parallel tests renders minimal complexity. Similarly,
since the number of lines between two subgraphs in any iteration
of Algorithm-2 is significantly fewer in number compared to the
internal lines in the two respective subgraphs, running parallel
tests for tie-lines contributes minimally to the complexity. We
denote the set E7, by the set of tie-lines obtained in the ‘!
iteration.

We define a CuSum statistic formed by a simple pre- and post-
change global smoothness models S,,(G) ~ f, and S,,(G) ~
fuw respectively, when line F,,, € FE is in outage and define

= (w14 vop (LSO Ty

wilnl F(5.(0))
(28)

where W*¥[§ — 1] = 0. We declare an outage for E,, at the
stopping time 7;** defined as

T Zinf{n >4 : W n] > ). (29)

where C}* controls the false alarm rate. We augment Algo-
rithm 2 by running the tests associated with all the tie-lines
in (28) and the two subgraphs in (26) in parallel in the ‘"
iteration of Algorithm-2 and subsequently declare an outage at

time instant 7; given by
7, =min{r}, 7" :Vr € {1,2} ,VE. € Ex,}.  (30)

Following the stopping rule (30), if a tie-line is declared to
be in outage, i.e., 7; = 7;**, prior to the stopping condition of
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Algorithm 3: Algorithm for Line Outage Localization.
I: i+0

2: while W; > C,; do
3: Estimate ~
4: procedure Binary _ Search (G)
5: 141+ 1
6: if |V;| < 4 then
7 for all VE,,,, € F;do in parallel,
8: Compute W [n] from (28)
9: end for
10: Compute 7;, . from (31)
11: (5(’7’]_) — Euu
12: break;
13: else
14: Bisect G; to obtain G}, G? and tie-lines using
Algorithm-1
15: Run statistics (26), (28) in parallel
16: Compute 7; from (30)
17: if 7; = 7/ then
18: procedure Binary _ Search(G))
19: else
20: 71, = max(Tp, 7o, - - - T4)
21: 0(mL)  Eup
22: end if
23: end if
24: end procedure
25: return ¢

26: end while

Algorithm-2, the terminal decision rule about the line hypothe-
sized in outage is givenby 0(7,) = E,, and the data acquisition
process is terminated at time instant 7, = max(mp, 79, . - . , 77 )-
If 7; = 7], then the subgraph G; (Step 5, Algorithm-2) is bisected
recursively. If, however, the stopping condition |V;| < 4 is real-
ized, statistics (28) associated with all the tie-lines in subgraph
G, are run in parallel for which the stopping rule is given by

Timex = min{r" : VE,, € E;} . 31)

Algorithm-3 summarizes the line outage localization algorithm.

VI. CASE STUDIES AND DISCUSSION

We illustrate the performance of the proposed line outage
detection and identification algorithm on IEEE benchmark test
cases. Specifically, we consider the 30- and 118-bus power sys-
tem test cases and employ the simulation tool MATPOWER [30]
throughout to solve for the voltage phase angles by repeatedly
solving AC power flows at each time instant n. We note that a
consequence of using MATPOWER is that a line outage causes
a step change in phase angles that is in contrast to realistic
scenarios where PMUs consist of anti-aliasing filters that only
allow for gradual changes in measurements. In this regard,
we acknowledge a requirement for pre-processing real-time
measurements in order to apply Algorithm-3 to realistic phasor
data, a topic of future work. To simulate the detection and
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450 T

-B-HD-QCD
400 [ -0-GG-QCD

Maximum Number of Tests

Fig. 1. Maximum number of statistical tests required against the number of
transmission lines in standard IEEE test cases.

localization delays, we assume a change point vy = 100. Note
that we consider only line outages that do not induce islands in
the anomalous network. We assume that the power-injections
satisfy (P + AP)[n] ~ N(P,0¢’I), where P is the nominal
power-injection vector, however, we note that this is not a
strict assumption and that our framework can incorporate other
correlation structures and other arbitrary pdfs for AP as we learn
the empirical densities of the smoothness metrics from data. We
note that the decision rules for outage detection and localization
depend on the empirical statistical densities of the global and
local smoothness metrics, which we estimate from historical
data. In this paper, we assume o2 = 0.5 for the IEEE-30 bus,
09? = 0.002 for the IEEE-118 bus and assume a sampling rate
of 120 samples per second.

A. Computational Complexity and Scalability

We start by assessing the computational complexity and the
scalability of the GG-QCD algorithm. While testing lines indi-
vidually in [14] is expected to have an overall lower average de-
tection delay, the complexity of that becomes quickly prohibitive
as the system’s size grows. Specifically, running individual tests
requires running L parallel tests at all times; while our approach
runs only one test when there is no outage and about log, (L)
tests when there is an outage. First, we compare the maximum
number of tests required for precisely localizing an outage event.
Figure 1 compares the maximum number of tests required versus
the number of transmission lines in the standard IEEE test cases.
We note that since in our approach, the number of statistical tests
required is a function of the geographical location of the line in
the network, we plot the number of tests required in the worst
case. From Fig. 1, it is evident that employing the proposed
approach requires a fewer number of tests. We note that, on
average, the number of tests required would be significantly
fewer than that of the worst case that is plotted in Fig. 1.

Furthermore, we show that each of the individual tests in
our approach is also less computationally complex. To quantify
the computational complexity of our proposed algorithm, we
compare the complexities of individual tests and provide running
times for the respective algorithms. Specifically, we compare the
complexities of the individual tests required for multiple IEEE
test cases. Since line outages are rare events, we compare the
algorithms’ run-times by running the respective test statistics
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TABLE I
RUN-TIMES (RTS) IN SECONDS OF ALGORITHMS UNDER PRE-OUTAGE
NETWORK CONDITIONS 1 = 10000 ITERATIONS FOR VARIOUS TEST CASES

H IEEE test case | Run-time (GG-QCD) | Run-time (HD-QCD) H

3-bus 0.11 0.29

5-bus 0.23 1.01

6-bus 0.44 2.23
30-bus 1.52 —
118-bus 7.61 —

under pre-change network conditions, i.e., when there is no
outage in the network for n = 10000 iterations. At each time
instant n, we compute the time it takes to update the CuSum
statistics associated with each of the algorithms. We note that
when comparing the computational time with other HD-QCD
approaches, we generate a new observation at every time instant
n from the histograms of the learnt models for both HD-QCD and
GG-QCD methods, to have a fair comparison. The histograms
of the models are generated such that the number of bins, in
every dimension of the histogram, in both methods are the same.
Table I summarizes the run-times.

Itis observed that even for a small-size model, the discrepancy
in computational time is significant. Such a discrepancy grows
significantly as the size of the network increases due to the
following two underlying reasons: (i) while both the methods
compute likelihood ratios associated with each transmission line
as part of their CuSum statistic, HD-QCD methods query the
histograms in each dimension in order to compute the joint distri-
bution of A, and (ii) the global and local smoothness summary
statistic in the GG-QCD approach is always one-dimensional
irrespective of the size of the network. We note that the computa-
tional time for 30 and 118-bus models are not reported since their
respective 29 and 117 dimensional histograms impose memory
restrictions.

B. Detection and Localization Delays

Next, we assess the efficiency of detecting and localizing
outages and compare the performance against those of HD-QCD
approaches. The key observation is that the cost of a signif-
icant improvement in computational complexity is a graceful
degradation in the detection and localization delays. We note
that the localization delay is the delay associated with uniquely
localizing the line in outage, i.e., it incorporates the detection
delay. To capture the overall performance, we consider two
kinds of line outages: (i) line outages that belong to different
geographical locations (internal and tie-lines), and (ii) line that
render highest, lowest and intermediate localization delays.

First, we consider outage events based of the geographi-
cal location. Accordingly, we consider outage events for lines
E4 12, F13.19, E10,17 in the 30-bus and outage events in lines
E33.65, 65,68, and Foy 7o in the 118-bus system. We note that,
in the 30- and 118-bus system, there are a total of 41 and 186
lines, respectively, out of which there exist 3 and 9 lines that
cause islands in the network. Therefore, we weight the prior

Line (4,12) in outage
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Fig. 2. Comparison of average delays versus MTFA (30-bus).
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Fig. 3. Comparison of average delays versus MTFA (118-bus).
. A1 Y
on each outage hypothesis by €y, = 55 and €, = 77 for

30- and 118-bus systems, respectively, when computing test
statistics (16). Thresholds Cy specified in (17) are chosen such
that the mean-time to false alarm (MTFA) value lie in the range
[900, 3600] and [2900, 5200] in samples for the 30- and 118-bus
systems, respectively. Accordingly, thresholds C] associated
with all the subgraphs G; and thresholds C}*V associated with
all the tie-lines are computed. We run a Monte-Carlo simula-
tion on 5000 random paths to compute the average detection
and localization delay for each considered line in outage cor-
responding to the chosen thresholds. Figures 2 and 3 show
the performance curves that essentially captures the trade-off
between false alarm rate and average delay. We observe that
increasing the thresholds increases the mean-time to false alarms
while penalizes the average detection and localization delay.
We also observe a detection-localization delay gap owing to
the design of the decision rules § discussed in Section V-C.
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TABLE II
OVERALL LOCALIZATION DELAYS (IN SECONDS) CAPTURED VIA EMPIRICAL
ALD THROUGH NUMERICAL EVALUATIONS (30-BUS)

H MTF (Samples) ‘ 1,000 ‘ 1,600 ‘ 2,600 ‘ 3,600 H

Line (6,9) outage | 0.076 | 0.078 | 0.081 | 0.082

Line (6,8) outage | 0.143 | 0.149 | 0.161 | 0.185

Line (3,4) outage | 0.310 | 0.321 | 0.328 | 0.335
TABLE III

OVERALL LOCALIZATION DELAYS (IN SECONDS) CAPTURED VIA EMPIRICAL
ALD THROUGH NUMERICAL EVALUATIONS (118-BUS)

H MTF (Samples) ‘ 1,000 ‘ 1,600 ‘ 2,600 ‘ 3,600 H

Line (24,72) outage | 0.042 | 0.043 | 0.044 | 0.046
Line (55,56) outage | 0.451 | 0.462 | 0.467 | 0.476
Line (34,37) outage | 2.512 | 2.561 | 2.578 | 2.593

In particular, we observe that internal line outages that render
very low detection delays lead to relatively higher localization
delays. This is because for such lines, there exist very few to no
past samples to re-use and therefore, further iterations of active
clustering result in the collection of fresh samples that penalizes
the localization delay every iteration. Internal lines (18,19) and
(3.,4) in the 30-bus system are examples that render a relatively
large detection-localization gap despite having minimal detec-
tion delays. Localization delays for the 30-bus are also tabulated
in Table IV for further studies and comparison.

Figure 7 visually illustrates how the 30-bus system is succes-
sively bisected, resulting in a 4-node graph after three iterations
when line I19 17 undergoes an outage. The true line in outage
is identified by running (28) for lines F1¢, 17, F10,20 and E1g 29
in parallel and evaluating the decision rule that satisfies (31).

Second, we consider outage events based on the overall local-
ization delay that consists of the highest, lowest and intermediate
average localization delays (ALDs) for lines in the 30- and
118-bus system. In case of the 30-bus system, as tabulated in
Table II, we observe that outage of lines (6,9) and (3,4) lead
to the lowest and highest localization delays, respectively, and
that the outage of line (6,8) was chosen to be representative
for intermediate delay values. Similarly, Table III tabulates the
overall performance of the 118-bus system. Overall, we observe
that Algorithm-3 provides reasonable localization delays, as
desired.

Next, we compare the average localization delay of our algo-
rithm to that of a HD-QCD algorithm studied in [14]. In figures 2
and 3 we observe that the HD-QCD algorithm consistently
provides lower delays. Nevertheless, the delay gaps are rather
marginal. For instance, in the transmission line (4,12) in the
30-bus system, the delay gap varies in the range [10,15] samples
which with the assumed sampling rate, translates to less than
0.12 seconds of delay. For other lines, this difference is smaller.
We remark that this is the cost for achieving a significantly lower
computational complexity as addressed in Section VI-A.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 37, NO. 1, JANUARY 2022

TABLE IV
PERFORMANCE OF ALGORITHM-3 UNDER NOMINAL POWER SYSTEM
CONDITION (30-BUS)

H MTF (Samples) ‘ 1,000 ‘ 1,600 ‘ 2,600 ‘ 3,600 H

Line (4,12) outage
LEP 0.014 | 0.008 | 0.004 | 0.002
ALD (sec) 0.135 | 0.147 | 0.160 | 0.178
Line (18,19) outage
LEP 0.020 | 0.007 | 0.004 | 0.002
ALD (sec) 0.095 | 0.121 | 0.141 | 0.171
Line (10,17) outage
LEP 0.008 | 0.006 | 0.004 | 0.002
ALD (sec) 0.096 | 0.109 | 0.118 | 0.126
Line (3,4) outage
LEP 0.021 | 0.015 | 0.009 | 0.003
ALD (sec) 0.310 | 0.321 | 0.328 | 0.335

C. Accuracy of Outage Localization

Next, we discuss the efficiency (accuracy) of the localization
Algorithm-3. To quantify the quality of the terminal decision
0(71,), we define localization error probability (LEP) as

LEP(71,) = P(6 # E,,| outage in Ey,) = Puo(d # Eyu)
(32)

where P, is the probability measure of the data when line E,,,
is in outage. To assess the variation of LEP(71,) with the average
localization delay, we appropriately choose thresholds as dis-
cussed in Section VI-B and numerically evaluate the LEPs over
for a wide range of thresholds, thus varying the average delay,
by running a Monte-Carlo simulation on 5000 random paths.
Table IV and Fig. 6 plot the trade-off for different line outages
in the 30- and 118-bus system, respectively. It is observed that
the ALD decreases at the expense of increasing the LEP. As
observed from the plots, the LEPs are within acceptable limits
despite the relatively small range for MTFA.

D. Effect of Sudden Load and Generation Change

The line outage localization algorithm (Algorithm-3) relies on
the change in pdf of the observations Af. The pdfs depend on the
real-time network topology of the grid and the statistical proper-
ties of random fluctuations in real-power across the buses. While
the network topology is invariant to random load-generation
fluctuations, we test whether a large load or generator outage
results in enough movement of the detection statistic Wy prior
to triggering the binary search for localization. As discussed in
(16), Wy|n] is employed to determine the presence of a line
outage if the condition in (17) is met. In this regard, we simulate
other outage events to test its impact on Wy[n]. Specifically,
we consider the 30-bus system and simulate the following two
outage scenarios: (i) a simultaneous outage of generators at buses
2,4 and outage of loads at buses 2,7 at time instant y £ 100, and
(ii) an outage of line (3,4) at time instant y £ 100, for a given
MTFA. Figures 4 and 5 plot the evolution of the detection
statistic Wy[n|. We observe that there exists a movement in
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Fig. 4. A realization capturing the evolution of the detection statistic Wy[n]
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Fig. 5. A realization capturing the evolution of the detection statistic W [n]
for a system that has undergone a line outage.
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Fig. 6. LEP versus ALD (118-bus).

Waln] at v = 100 in Fig 4, however, Wy[n] does not exceed
the threshold Cj. In the case of a line outage, Wy[n| crosses
the threshold as shown in Fig 5. We note that this is expected
since changes in load and generation do not alter the pdf of the
measurements A6.

E. Detection and Localization Under Stressed Power System
Conditions

Line outages are more likely to be caused under stressed power
system conditions. Since Algorithm-3 was formulated consid-
ering the DC power flow model (Section II-A), it is imperative

TABLE V
PERFORMANCE OF THE ALGORITHM-3 UNDER STRESSED POWER SYSTEM
CONDITION (30-BUS)

H MTF (Samples) ‘ 1,000 ‘ 1,600 ‘ 2,600 ‘ 3,600 H

Line (4,12) outage
LEP 0.07 0.06 0.02 0.018
ALD (sec) 0.142 | 0.150 | 0.171 | 0.186
Line (18,19) outage
LEP 0.04 0.03 0.02 0.02
ALD (sec) 0.123 | 0.144 | 0.160 | 0.184
Line (10,17) outage
LEP 0.03 0.02 | 0.012 0
ALD (sec) 0.113 | 0.118 | 0.126 | 0.136
Line (3,4) outage
LEP 0.30 0.278 0.23 0.21
ALD (sec) 0.376 | 0.389 | 0.394 | 0.402

to analyze its performance in a highly likely scenario where
the conditions are further deviated from the conventional DC
power flow assumptions. While Section VI-B and VI-C show the
performance under nominal power systems conditions, we con-
sider the evaluation of Algorithm-3 under stressed conditions.
In particular, we test the performance of our algorithm where we
scale the loads in the system such that all load buses operate at
the lowest acceptable voltage of 0.95 per unit and consider the
30-bus system. Table IV tabulates the performance metrics for
the 30-bus system under nominal power system conditions that
serves as a benchmark for comparison and Table V tabulates the
performance metrics under stressed power systems conditions.
We observe that there is a negligible difference in ALD while
an increase in the LEPs. However, the error probabilities despite
the stressed conditions are small, as desired.

E. Double Line Outage Detection and Localization for Line
Outages in Close Neighborhood

We further extend the GG-QCD framework to detect an arbi-
trary double line outage while localizing double line outages that
occur in a close neighborhood without incurring combinatorial
complexity for outage localization. Consider the outage of lines
FE.v, Eqp € E. The equivalent mixture distribution for outage
detection, similar to that of (11), given by

>

(u,v),(a,b)eE

g(Sn(g)) é 6uv,ab : fuv,ab(Sn(g)) (33)

captures all possible double line outages where the post-change
pdf belongs to { fuv.ab : (u,v), (a,b) € E'}, making it viable to
detect such outages. We note that in order to localize an arbitrary
double line outage, it is always possible to run (é ) test statistics
Wuvabn], given by

I (S S CXCINS
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Fig. 7. Successively bisecting G when E1,17 is in outage.

in parallel while following the maximum likelihood localization
decision rule given by

max

uv,ab 2 o
@Y =inf{n >4 :
! infin =4 (u,v),(a,b)EE

Wuv,ab [TL} > Cuv,ab}.
(35)

However, we note that in order to leverage our framework, i.e. to
employ binary search to circumvent combinatorial complexity,
we require that line outages either occur within a cluster of
internal lines or be a tie-line connecting two clusters of internal
lines. We note that this is to ensure that the bisection search
(Algorithm-2) carried out in parallel for the two partitions
consists of post-change models associated with their respective
partitions. This, as aresult, guarantees with high probability, that
the W-CuSum statistic W/ [n] Vr € {1, 2} given by

Wiln] = (W;[n — 1] + log (%)Y (36)

corresponding to either subgraphs satisfy the decision rule 7,
given by

7 =inf{n >4 : W/[n] > CI'} (37
for the following modified mixture distribution
g(Sn(QZT)) = Z 6Zv,ab : g;’w,ab(sn(gz,)) (38)

(u,v),(a,b)GE;

Therefore, when performed recursively, the search space reduces
drastically every iteration circumventing the need for (S ) par-
allel tests. In order detect and localize tie-line outages, there
exist two possible double-line outage scenarios: (i) two tie-lines
undergo an outage, and (ii) one tie-line and one internal line
undergo an outage. In order to address (i), the statistic in (34)
for all possible two tie-line combinations, for that iteration, are
run in parallel with (36). To address (ii), we ensure that the
mixture distribution in (38) includes post-change models that
incorporates outages that share an edge with the tie-lines on
either side of the two partitions in that specific iteration. As a
result, for any given iteration that consists of 7" tie-lines, our
approach requires 2 + (2) test statistics in parallel as opposed
to (5) test statistics. Therefore, when the lines are localized to
a cluster of size 4 or fewer, the statistic in (34) can be employed
to uniquely localize the double line outage via the decision rule
in (35).

For simulations, we consider the 30-bus system in which we
consider double-line outages that occur in close neighborhood
to show the efficacy of the proposed approach. Specifically, we
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(c) Iteration 3: G3 and G2 (d) Iteration 4: Internal lines

TABLE VI
PERFORMANCE OF DOUBLE LINE OUTAGE LOCALIZATION ALGORITHM
(30-Bus)

H MTF (Samples) ‘ 1,000 ‘ 1,600

2,600 ‘ 3,600 H

Line (10,20) and (10,17) outage
LEP 0.09 0.09 0.04 0.032
ADD (sec) 0.047 | 0.051 | 0.057 | 0.061
ALD (sec) 0.081 | 0.083 | 0.087 | 0.091
Line (1,3) and (3,4) outage
LEP 0.10 | 0.096 0.09 0.03
ADD (sec) 0.011 | 0.013 | 0.015 | 0.016
ALD (sec) 0.271 | 0.282 | 0.287 | 0.295
Line (4,12) and (4,6) outage
LEP 0.12 0.09 0.076 | 0.063
ADD (sec) 0.029 | 0.030 | 0.032 | 0.035
ALD (sec) 0.126 | 0.131 | 0.134 | 0.142

consider three double-line outage cases: (i) lines (10,20) and
(10,17) outage, (ii) lines (1,3) and (3,4) outage, and (iii) lines
(4,12) and (4,6). In scenario (i) and (ii), we consider double-line
outages of internal lines while for scenario (iii) we consider the
outage of a tie-line and an internal line, as can be verified from
Fig. 7(a). In Table VI, the LEPs take into account for realizations
in which the true double line outage were not reported. The ADD
and ALD denote the average delay to detection and localize
the double-line outage. We observe that the delays and error
probabilities are reasonable, as desired.

G. Line Outage Detection With a Subset of Measurements

Taking into consideration the deployment cost of PMUs and
other inevitable concerns, it is not uncommon to have a partially
observable network in which only a subset of buses O C V
are monitored. We extend our framework for outage detection
under partially observable settings while providing an overview
on how outage localization can be addressed. To address out-
age detection, we exploit the smooth and low-rank structure
of real-time phasor measurements in order to reconstruct the
graph signal @[n] from a subset of measurements which we
denote by [O[n]]p. A consequence of such a structure in 0[n]
is that the graph frequency content, captured via the Graph
Fourier Transform (GFT), of the graph signal 8[n] resembles
a low-pass filter characteristic rendering the signal spatially
band-limited [31]. Therefore, graph signal transformations be-
tween the temporal and spatial domains results in approximately
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TABLE VII
PERFORMANCE OF ALGORITHM-3 UNDER 60% OBSERVABILITY (30-BUS)

H MTF (Samples) ‘ 1,000 ‘ 1,600 ‘ 2,600 ‘ 3,600 H

Line (4,12) outage
ADD (sec) 0.083 | 0.085 | 0.098 0.14
MDP 0.06 0.08 0.13 0.15
LEP (m = 3) 0.34 0.34 0.29 0.28
Line (6,9) outage
ADD (sec) 0.091 | 0.096 0.12 0.15
MDP 0.08 0.08 0.11 0.10
LEP (m = 3) 0.30 0.31 0.29 0.29
Line (22,24) outage
ADD (sec) 0.089 | 0.098 0.13 0.16
MDP 0.03 0.11 0.13 0.13
LEP (m = 3) 0.23 0.21 0.17 0.12

lossless reconstruction errors. We leverage this property in our
formulation discussed next.

Typically such transformations require an orthogonal basis
which we obtain via the spectral decomposition of Lg as
follows:

Lg=U-A-U' (39)

where A is a diagonal matrix consisting of eigenvalues repre-
senting the graph frequencies A, fork € [0, ..., N — 1], ordered
A =0< X <--- < Ay_1, on its principal diagonal and U
consists of eigenvectors associated with Aj as column vectors.
Hence, projecting the graph signal 8[n] onto the K dominant
eigen-basis results in an approximately lossless transformation.
The observed measurements can alternately be represented by
[0[n]lo = PJ - 8[n] where Po € RY*No consists of coordinate
vectors as columns such that it chooses a bus that is observed.
As the GFT of 8[n] is given by 8[n] = U} - 8[n], the observed
measurements satisfy

[0[n]]o ~ P - U - é[n] (40)

where Uy denotes the eigenvectors corresponding to the first /C
dominant graph frequencies. Following (40), the reconstructed
graph signal 8[n] is given by

8[n] = Uk - (P - Ux)' - [8[n]]o- (41)

Subsequently, the reconstructed measurements é[n] can be fur-
ther employed by Algorithm-3 every iteration. We note that
the necessary condition for reconstruction is that |O| > |K| as
investigated in [32].

We consider the 30-bus system for our case study with 60%
observability (18 PMUs monitored). The PMU locations are se-
lected such that there exists atleast two PMUs in each 4-bus clus-
ter. This is done so that the pdfs associated with each subgraph
G/ closely approximates the true pdf of the subgraph, with errors
induced due insufficient coverage. The pdfs associated with pre-
and post-change smoothness metrics are re-estimated by running
multiple power flows, this time employing the reconstructed
measurements 6 [n]. In case of detection, Table VII tabulates the
ADD and miss detection probability (MDP) for various MTFAs,
where MDPs capture the number of realizations for which the

TABLE VIII
EFFECT OF MODEL MISMATCH ON FAP FOR A MTFA = 1000 SAMPLES IN THE
30-BUS SYSTEM

2
—4 x 100

4 50%—0% | 5% | 10% | 20% | 50%
0
Line (4,12) outage
[§) 10 271 112 879
‘ FAP ‘ 1000 ‘ 1000 ‘ 1000 ‘ 1000 ‘ 1000 ‘
Line (6,9) outage
0 10 23 132 87T
\ FAP \ 1000 1000 m\m\m\
Line (22,24) outage
[§) 10 12 84 859
‘ FAP ‘ 1000 ‘ 1000 ‘ 1000 ‘ 1000 ‘ 10000 ‘

detection statistic Wy([n] failed to declare an outage. We note
that in the previous case studies, the MDPs were negligible and
therefore, we did not include MDP as part of the performance
measure. However, since @|n] is only an approximation of 0[r]
we observed a higher MDP for this case study.

In case of outage localization, we note that due to the added
uncertainty in the reconstructed sequence {0[n]},>1 owing to
the lossy reconstruction, the test statistics associated with line
outages other than the true line in outage are likely to satisfy
(30). As a consequence, this significantly increases the LEPs.
Therefore, we modify the decision rule (30) to instead maintain
a ranked list of CuSum statistics consisting of the m smallest
stopping times (where (30) pertains to m = 1). In this case,
the LEPs denotes the probability of finding the true line in
outage within the m smallest stopping times. We note that while
this is not perfect localization, following such an approach can
eliminate other candidate line outages with high probability.
To localize the true line in outage, further tests can then be
applied on the remaining lines, a topic of future work. Table VII
summarizes the LEPs for the three single line outage cases.

H. Line Outage Detection and Identification Under
Model-Mismatch

In practice, itis often difficult to estimate the true parameter o
with 100% accuracy. In this regard, we test our algorithm when
there exists a model-mismatch between the true model and the
assumed model for AP, which subsequently induces a mismatch
in A@. In particular, when the assumed model for the fluctuations
is given by AP ~ N(0,021), from (3) we observe that both
the pre- and post-change models for A@ alters. Therefore, the
pdfs f, fu, (from Section I1I-B) alter and subsequently, the pdfs
associated with the local and global smoothness metrics change.
We denote the modified pdfs, parameterized by o1, by f , fuv, g
and f7 under the assumed model.

We consider a case study that empirically analyzes the effect
of varying o; with respect to 0. Specifically, we consider the
30-bus system for which o2 = 0.5 and vary 0% over a broad
range, i.e., from {-50%—50%} - 08. In the experiments, we fix
the MTFA = 1000 samples and run a Monte-Carlo over 1000
realizations to calculate the average detection and localization
delay. In addition, we introduce a new figure of merit, i.e., the
False Alarm Probability (FAP) that keeps track of the number
of realizations for which an outage is declared prior to the true
change point v = 100. Figure 8 and Table VIII illustrates the
effect of varying o7 relative to o3. We observe that decreasing
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Fig. 8.  Effect of model mismatch on average detection and localization delay
for a MTFA = 1000 samples in the 30-bus system.

o? increases the average delay while making it robust to FAP
while increasing o decreases the average delay at the expense
of increasing the FAP.

VII. CONCLUSION

In this paper, we have considered the problem of scalable and
real-time detection and localization of transmission line out-
ages. A low-complexity and scalable algorithm is designed by
exploiting the global and local smoothness properties of phasor
measurement data. Specifically, we have proposed a data-driven
spectral graph-theoretic approach for testing the conformity of
the data to the network structure. Designing change-detection
tests based on these metrics has resulted in a significant reduction
in the number of tests and the associated complexity for each test.
The proposed framework is agnostic to the distribution of fluctu-
ations in real-power injections and can also be further extended
for detection and identification of multiple line outages without
having to suffer from combinatorial complexity. Performance
gains of the proposed approach have been compared against
the existing approaches in the standard IEEE 30- and 118-bus
systems.
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