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Abstract—This paper proposes a scalable framework for the real-
time detection and localization of power line outages in transmission
networks. While localizing outages is pivotal for ensuring grid
reliability, forming such decisions faces an inherent combinatorial
complexity that grows with the grid size and becomes prohibitive
even for moderate grid sizes. Hence, designing outage detection and
localization algorithms that are amenable to real-time implementa-
tion critically hinges on circumventing the computational complex-
ity. This paper proposes a graph-guided quickest change detection
(GG-QCD) approach that leverages the grid topology and performs
quickest change detection in the spectral domain of the graph
underlying grid’s topology. The GG-QCD algorithm’s key features
are that (i) it uses a one-dimensional metric that tests the data’s
conformity to the grid topology, and (ii) it decouples the detection
and localization processes to avoid testing all the lines at all times.
Specifically, a lack of such conformity of the data to the system
model will be alarming the potential existence of an outage. Once
an outage is deemed to exist, an active graph clustering approach
will be used to localize the line in outage. The clustering approach
will also be relying on the same one-dimensional conformity metric.
Overall, this approach will be performing only one test over time
when the system is outage-free. Once an outage is detected, it will
require O(log(L)) additional tests to identify the line in outage.
This paper presents the theory for GG-QCD and algorithms for
outage detection and localization. To evaluate these algorithms’
efficiency and complexity, they are examined in the standard IEEE
30- and 118-bus systems.

Index Terms—Graph spectrum, outage detection, quickest
detection, scalable.

I. INTRODUCTION

V
ARIOUS monitoring (e.g., reliability and safety), infer-

ential (e.g., state estimation), and decision-making (e.g.,

power flow optimization) in power systems critically hinge on

accurate and real-time awareness of the systems model (e.g.,

line parameters and topology). However, network models are

prone to disruptions and variations induced by a wide range of

failures or inaccurate telemetry in the system. As a result, the

decisions predicated on an erroneous system model may lead to

hidden failures that propagate and eventually result in large-scale
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disruptions in monitoring, control, and planning. For instance,

in a report by North American Electric Reliability Corporation,

it was investigated and concluded that inadvertent tripping of a

power line lead to a series of cascading failures causing a large-

scale blackout in North America 2003 [1]. Therefore, real-time

and accurate situation awareness about network models has a

pivotal role in ensuring the reliability, stability, and efficiency of

power distribution.

Line outage events constitute a major form of disruptive model

change since they induce topology changes and force power

redistribution. Such redistribution of power translates to poten-

tially significant suboptimal power flows or even stressing more

transmission lines and leading to more line outages. There exists

a rich literature on leveraging statistical methods for agile and re-

liable detection and localization of outages as soon as they occur.

Some studies relevant to the scope of this paper include the study

in [2], [3], which proposes an exhaustive search algorithm to

detect and localize single- and double-line outages. While accu-

rate, such approaches face high computational complexities. For

addressing the computational aspect, the study in [4] proposes

modeling the collection of voltage phase angles over the grid by

a Gauss-Markov random field (GMRF), and it formulates outage

detection as an inference problem and employs hypothesis test-

ing for outage detection. Following a similar graphical model

approach, the studies in [5], [6] propose an adaptive strategy

to detect and localize outages with the fewest number of mea-

surements. Other approaches that exploit the network’s structure

include the study in [7] that assumes sparsity in the topology and

develops a factor graph representation of the grid. This model

is leveraged to employ efficient message-passing algorithms

for outage detection. The study in [8] leverages the structure

in the sparsity of anomalous events, and it formulates outage

localization as a sparse signal reconstruction objective that is

addressed by using compressive sensing for identifying multiple

line outages. Along similar lines, the studies in [9] and [10] use

optimization-based approaches, and the studies in [11] and [12]

design data-driven algorithms that are trained offline and further

employed for real-time topology identification. Outage identi-

fication has also been considered in power distribution systems

where tree topological structures are exploited. Specifically, the

study in [13] breaks down the combinatorial outage hypothesis

space into smaller areas and propose computationally efficient

algorithms for outage detection.

In another direction, close to this paper’s scope, the quickest

change detection (QCD) theory is applied to line outage de-

tection in [14]–[16]. The QCD theory aims to detect abrupt
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changes in the statistical model of time series data. Its objec-

tive is to detect the change-point with minimal delay after the

change, while in parallel, the quality of the decisions (e.g., false

alarm rates) are controlled [17]. In [14], a QCD algorithm is

proposed for the quick detection and localization of line outages

when the outages are persistent. These approaches generally use

high-dimensional measured data (e.g., voltage phase angles of

all buses in the network) and design a customized statistical

test for each transmission line, based on the line’s parameters.

These possibly different tests are performed in parallel at all

times to detect outages and localize the lines in outage, when

the outages are persistent. The studies in [15] and [16] further

extend these studies to address the transient dynamics of outage

events. QCD algorithms for line outage detection in power

distribution systems and fault detection in photovoltaic systems

are investigated in [18] and [19], respectively. These classes of

QCD algorithms rely on computing high-dimensional statistics,

and we refer to them as high-dimensional QCD (HD-QCD)

algorithms.

In this paper, we propose a scalable and computationally

tractable QCD algorithm for detecting and localizing outages

to address the computational challenges of the HD-QCD algo-

rithms. To lay context for discussions, we note that the HD-QCD

approaches face two critical computational challenges: (i) in

a system with L lines, it requires performing L parallel tests

at all times, and (ii) each of the tests involves computing an

N -dimensional likelihood ratio, which has high complexity as

N grows (see [20] for detailed discussions). The combination of

these, for even moderate network sizes, renders the tests com-

putationally prohibitive. In this paper, we propose to perform

QCD in the spectral domain of the graphical model associated

with the network’s topology and refer to it as graph-guided

QCD (GG-QCD). Specifically, due to the network structure

(topology), the data generated (e.g., voltage phase angles) has

an inherent structure that can be leveraged to test the data’s

conformity to the known network structure.

We specify metrics that quantify spectral change caused in the

event of an outage, and subsequently, provide reliable metrics

for testing the conformity of the data to the network model.

Based on these metrics, we address the two computational

complexities mentioned above. First, we note that detecting

outages (a binary decision about whether an outage exists in the

network) is far less computationally complex than line outage

localization (an L-array decision). Motivated by this, we start

with a detection stage and will not proceed to localization until

there exists sufficient evidence that an outage has occurred.

Such decoupling of detection and localization processes allows

for only one test (as opposed to L parallel tests) when the

network is outage-free, which is a significant fraction of the time.

Furthermore, this test will be using a 1-dimensional conformity

metric, which is significantly less complex than computing L-

dimensional likelihood ratios. Once there is sufficient evidence

that an outage has occurred, we initiate the localization stage.

At its core, the localization procedure recursively partitions the

topological network and concurrently employs conformity tests

to progressively eliminate regions that are deemed to behave

normally and retain the rest for more scrutiny until the line in

outage is localized. Inspired by the binary search algorithm,

such strategies obviate the requirement to carry out parallel

tests for each alternative outage possibility, reducing the order

of statistical tests to at most logL. Furthermore, similarly to

the detection stage, each of these tests will involve computing

1-dimensional statistical metrics.

The rest of the paper is organized as follows. The system

model and associated notations are presented in Section II.

Section III formalizes the graph spectrum metrics, which are also

used to formalize the outage detection and localization problems.

Algorithms for line outage detection and localization are pre-

sented in Section IV and V, respectively. Section VI illustrates

the performance of the proposed algorithm in the standard IEEE

30- and 118-bus systems, and Section VII concludes the paper.

II. PRELIMINARIES AND NOTATION

A. Power System Model

Consider a power system of N buses and L transmission lines

connecting the buses. We represent this network by a weighted

graph G △
= (V,E,B). The set of vertices V

△
= {1, . . . , N}

represent the buses. The edge set E
△
= V × V represents the

transmission lines. There is an edge between vertices i, j ∈ V ,

denoted by Eij if buses i and j are connected by a transmission

line. Matrix B ∈ R
N×N is the susceptance matrix, in which

yij
△
= [B]ij is the susceptance of the transmission line Eij .

Denote the Laplacian matrix associated with B by LB, where

[LB]ij
△
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

j∈Ni

yi,j , if i = j

−yi,j , if (i, j) ∈ E

0 , otherwise

, (1)

and Ni denotes the set of buses that are directly connected

by a transmission line to bus i. We denote the voltage phase

angle of bus i at time t by θi(t) and accordingly, define θ(t)
△
=

[θ1(t), . . . , θN (t)]⊤. Subsequently, we denote the injected real

power at bus i by Pi(t), which, in general, is a non-linear

function of θ(t). These measurements are sampled by a phasor

measurement unit (PMU) regularly at ∆t intervals (in seconds),

rendering discrete-time measurements at discrete time instants

{n∆t : n ∈ N}. We denote the discrete time measurements

associated with bus i ∈ V by θi[n]
△
= θi(n∆t) and Pi[n]

△
=

Pi(n∆t), and accordingly denote the variations in voltage phase

angles and active power injections in bus i between consec-

utive sampling instances by ∆θi[n]
△
= θi[n+ 1]− θi[n] and

∆Pi[n]
△
= Pi[n+ 1]− Pi[n]. We treat bus 1 as the reference

bus, and its voltage phase angle serves as the system’s phase

reference. Under proper decoupling1 and DC2 assumptions we

1Variations in active power injections dominantly affect voltage angles and
variations in reactive power injections primarily affect bus voltage magnitudes.

2(i) The system is lossless; (ii) voltage magnitudes are constant (1 per unit),
and (iii) at any given time, voltage phase angles between neighboring buses are
small, i.e., |θi[n]− θj [n]| ≪ 1 for all i �= j such that Eij ∈ E and at all times
n.
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have the following linear relationships [14]:

∆Pi[n] ≈
∑

j∈V,j �=1

[LB]ij ·∆θj [n] ∀i ∈ V \{1}. (2)

More compactly, we define ∆θ[n]
△
= [∆θ2[n], . . . , θN [n]] and

∆P[n]
△
= [∆P2[n], . . . , PN [n]], yielding

∆P[n] ≈ L̃B ·∆θ[n] . (3)

where, matrix L̃B is constructed by removing the rows and

columns associated with the reference bus inLB. Due to constant

load fluctuations and changes in power flow dynamics, there

exist small-scale temporal variations in ∆P[n].

B. Post-Outage Statistical Model

When a transmission line undergoes an outage, it induces

a topological change, resulting in a change in B. Specifically,

when line Euv undergoes an outage, the Laplacian matrix of

Buv , denoted by L̃uv
B , is related to L̃B via the rank-one update:

L̃uv
B = L̃B − yuv · ruv · r⊤uv (4)

where ruv ∈ R
N−1 is an all-zero vector, with the excepts that its

(u− 1)th entry is +1 and its (v − 1)th entry is −1. This renders

the post-outage model

∆P[n] ≈ L̃uv
B ·∆θ[n] . (5)

These changes, impose abrupt changes in the statistical model

associated with the vector ∆θ[n]. We define guv as the post-

change probability density function (pdf) of ∆θ[n] when Euv is

in outage. Hence, when Euv undergoes an outage at a random

time γ, we have the following pre- and post-change statistical

models

pre-change: ∆θ[n] ∼ g for n < γ

post-change: ∆θ[n] ∼ guv for n ≥ γ
. (6)

∆θ[n] is assumed to be temporally independent and identi-

cally distributed with joint pdf g : R
N → R+. This is owing

to the small variations in real power injection ∆P[n] over

short sampling time scales attributed to random fluctuations in

electricity consumption and the subsequent response of some

generators [14]. Hence, by leveraging (5), we find the statistical

model of ∆θ[n].

III. GRAPH SPECTRAL ANALYSIS OF OUTAGES

A. Motivation

Our objective is to detect and localize an outage with minimal

delay after the outage occurs, while in parallel, the rate of false

alarms is controlled to be confined below a pre-specified rate. A

direct solution explored in [14] involves designing an exclusive

test for each of the L transmission lines and running all the tests

at all times in parallel. Such an approach faces three complexity

challenges:

C1: The number of tests required scales linearly with L.

C2: All the tests run at all times. The reason is that this

approach aims to perform outage localization at the same

time that an outage is detected. This, inevitably, requires

constantly monitoring the individual line outage events.

C3: Most importantly, the complexity of each test becomes

prohibitive as L grows even beyond moderate values

(since they involve computing the values of the N -

dimensional joint pdfs).

We aim to design an approach with the following properties:

P1: By decoupling the detection and localization tasks, we

perform localization only after an outage is detected.

Hence, we can avoid running all theL tests at all times and

instead will run only one test until an outage is detected.

P2: Furthermore, when the outage is detected, the number of

tests required for localizing the line in outage scales with

O(log2(L)), as opposed to O(L).
P3: Finally, each test becomes considerably less computa-

tionally complex (to be discussed in Section VI-A).

B. Measuring Conformity of Data to Model

We use spectral graph theory to analyze the geometry of the

collected data ∆θ[n] and its conformity to the system’s inherent

structure captured by the graphical modelG. We quantify confor-

mity as the key measure for detection and localizing an outage.

This is motivated by the following simple principle: when there

is an outage in line Euv , owing to the strong inter-connectivity

in the system, it will likely render a geometric change in the

data beyond simply the data generated by the PMUs of buses u

and v. The data’s geometry is partly captured by the spectrum

of the graph G △
= (V,E,B). To formalize the framework, we

start by defining smoothness as a measure of data conforming to

the graphical model. Based on the data θ[n], we define the edge

derivative of graph signal ∆θ[n] with respect to the edge Euv

at vertex u as

∂∆θ[n]

∂Euv

∣

∣

∣

u

△
=

√
yuv(∆θv[n]−∆θu[n]). (7)

Accordingly, the graph gradient of the graph signal ∆θ[n] at

vertex u is defined as

∇u∆θ[n]
△
=

[

∂∆θ[n]

∂Euv

]

u

(8)

and the local variation of the signal at u is defined as [21]

‖∇u∆θ[n]‖2 △
=

[

∑

v:Euv∈E
yuv(∆θv[n]−∆θu[n])

2

]
1

2

. (9)

This location variation metric provides a measure of local

smoothness of ∆θ[n] around vertex u, that is a metric that

quantifies the conformity of ∆θ[n] to the structure of the graph

around vertex u. By using the local metrics, we can define a

global smoothness of ∆θ[n] with respect to graph G as

Sn(G) △
=

1

2

∑

u∈V
‖∇u∆θ[n]‖22 = ∆θ

⊤[n] · LB ·∆θ[n]. (10)

The graph signal ∆θ[n] become smoother with respect to the

graphG if the graph signal takes closer values at neighboring ver-

tices with non-zero weights. Hence, the conformity level of the

data ∆θ[n] to graph G increases as Sn(∆θ[n]) decreases [22].
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In the smoothness metric, the data ∆θ[n] is random, and LB

is known. These render Sn(G) as random variables, inheriting

their randomness from ∆θ[n]. Considering the statistical model

specified in Section II, we denote the empirical pdf of the global

smoothness metricSn(G) by f . Furthermore, when lineEuv is in

outage, the smoothness of observation vector with respect to the

altered graphGuv is given bySn(Guv) = ∆θ
⊤[n] · Luv

B ·∆θ[n].
We denote the pdfs of Sn(Guv) by fuv .

IV. GG-QCD: DETECTION VIA GLOBAL SMOOTHNESS

At an unknown time instant γ an outage occurs in an un-

known transmission line Euv ∈ E. We assume that this outage

does not cause an island in the system. Hence, the post-change

graph representing the system remains a connected graph. Our

objective is to use the smoothness metrics Sn(G) and design

an online algorithm that forms two intertwined decisions. The

first decision pertains to detecting whether an outage has oc-

curred. This is essentially a binary decision. The second decision

involves localizing the line in outage, that is, identifying the

line Euv . We focus on the detection decision in this section

and will discuss localization in Section V. The objective of

quickest detection is to detect a change with minimal delay after

the outage instance γ. Minimizing such a delay, on the other

hand, has an inherent tension with the quality of the decisions:

declaring a change-point too quickly is susceptible to raising

frequent false alarms, that is, declaring an outage while there

is no outage in the system. Hence, designing a detection rule

involves resolving a tension between the agility and quality of

the decisions.

To formalize this, we have a composite post-change model,

according to which the post-change distribution belongs to

{fuv : (u, v) ∈ E}. When an outage occurs, we denote ǫuv as

the prior probability that the line in outage is Euv . Accordingly,

we define the mixture distribution

g(Sn(G)) △
=

∑

(u,v)∈E
ǫuv · fuv(Sn(G)). (11)

We define τD ∈ N as the time that we can form a confident

detection decision. A canonical model to quantify the decision

delay is the conditional average detection delays (CADDs) due

to Pollak [23]

CADD(τD)
△
= sup

γ≥1
Eγ [τD − γ | τD ≥ γ] (12)

where Eγ is the expectation with respect to the probability

distribution when the change happens at time γ ∈ (n− 1, n].
When there is no prior assumption about when a change-point

occurs, a reasonable measure of false alarms is the mean-time

to false alarm, or it’s reciprocal, which is the false alarm rate

(FAR) defined as

FAR(τD)
△
=

1

E∞[τD]
(13)

where E∞ is the expectation with respect to the distribution

when a change never occurs, i.e., γ
△
= ∞. For the detection task,

a standard approach to balance the trade-off between decision

delay and false alarm rates are solving [23]

min
τD

CADD(τD) subject to FAR(τD) ≤ α (14)

whereα ∈ R+ controls the rate of false alarms. Once a detection

decision is formed, we also need to localize the line in outage. For

the quickest change-point detection problem with a composite

post-change model, a variant of the popular cumulative sum

(CuSum) algorithm enjoys optimality properties. The variant,

weighted cumulative sum (W-CuSum) involves calculating

Wd[n]
△
= max

1≤k≤n+1

n
∑

i=k

log

(

g(Si(G))
f(Si(G))

)

(15)

computing which follows a convenient recursion given by

Wd[n]
△
=

(

Wd[n− 1] + log

(

g(Sn(G))
f(Sn(G))

))+

(16)

where we set Wd[0] = 0. In this approach, the weighted cumu-

lative sum sequential statistic declares a line outage at a stopping

time

τD
△
= inf{n ≥ 1 : Wd[n] > Cd}. (17)

In order to satisfy the constraint on FAR(τD) in (14), we compute

the threshold Cd in (17) accordingly. In particular, we run a

Monte Carlo over multiple AC power flows under pre-outage

conditions for a range of thresholds Cd that satisfy 1
FAR(τD)

△
=

E∞(τD) ≈ α−1, where α is given by the operator, and compute

(16) for each realization until the stopping condition (17) is

satisfied.

V. GG-QCD: LOCALIZATION VIA LOCAL SMOOTHNESS

Once an outage is declared at τD, the next goal is to localize the

outage. Motivated by minimizing the delay and the complexity

of the localization routine, we devise a framework with two key

ideas:

1) Retrospective Change Detection: Note that the detection

stopping time τD is the instance at which we had sufficient confi-

dence that an outage has occurred prior to τD. This indicates that

if we can estimate the actual change-point γ, then all the samples

at n ∈ {γ, . . . , τD} are drawn from the post-change model. To

avoid further delay imposed by collecting fresh samples, we

can first re-use all the samples {∆θ[n] : n ∈ {γ, . . . , τD}}, and

only take fresh samples if these are inconclusive for localization.

To this end, a pivotal objective is estimating γ, i.e., retrospect

detection of the change-point.

2) Active Graph Clustering: A direct approach to localiza-

tion would be testing the lines individually, rendering L parallel

tests. In contrast, we perform active graph clustering to estimate

a small proximity in which the outage is deemed to lie. This is

then followed by testing only the lines contained in the estimated

outage proximity. This reduces the number of tests from L to

about log2(L). Next, we discuss each of these two steps and the

final localization rules.
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A. Retrospective Change-Point Detection (RCPD)

We start by performing retrospective change-point detection

(RCPD) to estimate γ based on the available data when it is

deemed a change has occurred. The existing approaches to

RCPD include a non-parametric approach in [24], Bayesian

approach in [25], [26], and a quasi-Bayesian formulation in [27].

Our objective involves forming two intertwined decisions. We

aim to estimate the change-point. This decision predicates on

ensuring that a change has, in fact, occurred. Hence, we face

the combined decision of detecting a change and then esti-

mating the change-point. By defining S1:τD
△
= {Sd(G) : d ∈

{1, . . . , τD}}, the combined decision is a solution to the fol-

lowing composite hypothesis testing problem:

H0 : S1:τD ∼
τD
∏

n=1

f(Sn(G))

H1 : S1:τD ∼
γ−1
∏

n=1

f(Sn(G)) ·
τD
∏

n=γ

g(Sn(G))
(18)

where H0 accounts for no change-point by τD, and H1 indicates

otherwise. When decided in favor of H1, we also estimate γ. As

established in [26], the rule for discerning H0 and H1 is

max
ζ∈{1,...,τD}

πζ

τD
∏

n=ζ

g(Sn(G))
f(Sn(G))

H0

≶
H1

λ (19)

whereπζ
△
= P (ζ | τD = d) is the prior probability of ζ being the

change-point. Furthermore, the maximum a-posteriori (MAP)

estimate of γ is given by

γ̂MAP = arg maxζ∈{1,...,τD} πζ

τD
∏

n=ζ

g(Sn(G))
f(Sn(G))

. (20)

To analyze the prior πζ , we note that (17) is satisfied prior to

the start of the localization process. In particular, since we have

high confidence that a change has occurred, it is highly likely

to be within a short interval preceding τD. Hence, we assume

the prior to be binomially distributed with parameter p, where

p can be obtained from historical data. For instance, by fitting

the expected values, p · τD (the expected value of the binomial

distribution) equals the historical average of detection delay, i.e.,

(τD − γ), yielding p = 1− γ
τD

. We define γ̂ as the estimate for

the change-point γ following.

B. Spectral Bisection Graph Partitioning

Upon estimating γ, and by using the samples {∆θ[n] : n ∈
{γ̂, . . . , τD}}, and possibly more fresh samples when deemed

necessary, we aim to localize the line in outage. For this purpose,

we take an active partitioning approach to iteratively eliminate

the parts of the graph deemed not to contain a faulty line and

progressively focus on the more promising parts. This iterative

process starts by partitioning the graph G = (V,E,B) to two

subgraphs Gr △
= (V r, Er,Br), where r ∈ {1, 2} followed by a

quickest detection approach to determine which partition is more

likely to contain the faulty line. In the next iteration, this partition

is further bisected for more scrutiny, and this process continues

until we cannot further partition the surviving subgraph into two

meaningful partitions, i.e., the surviving subgraph has no more

than four vertices.

To formalize the iterative bisection search process, we define

Gi as the subgraph survived after that ith iteration, and we set

G0 = G. In the (i+ 1)th iteration, we partition Gi into G1
i and

G2
i , and retain one of them, denoted Gi+1, for further scrutiny

in the next iteration. Based on these notations, next we discuss

how to partition Gi, and how to specify Gi+1. All these decisions

are data-driven, and our objective is to form the decision with

the fewest number of samples.

Partitioning Gi: We employ a spectral graph partitioning

algorithm for partitioning Gi
△
= (Vi, Ei,Bi). For simplicity of

notations, we assume that Ni
△
= |Vi| is even, and the odd cases

can be addressed with minor adjustments. Corresponding to the

set of nodes Vi, we define the Ni-dimensional vector pi as the

partitioning vector ifpi ∈ Pi
△
= Ci ∩ Bi, where we have defined

Ci △
=

{

pi ∈ {±1}Ni

}

, and

Bi
△
=

⎧

⎨

⎩

pi ∈ R
Ni :

Ni
∑

j=1

bi[j] = 0

⎫

⎬

⎭

.

The condition pi ∈ Ci designates a binary partition of graph Gi

such that when pi[j] = −1, the jth element of Vi will be placed

in partition G1
i , and otherwise, when pi[j] = 1, it will be placed

in G2
i . On the other hand, the condition pi ∈ Bi ensures that

the partitions are balanced with an equal number of nodes. Our

objective is to find a partition vectorpi ∈ Pi in order to partition

Gi. An optimal choice of pi that ensures maximal independence

between the two partitioned subgraphs can be found as the

solution to

p∗
i

△
= arg minpi∈Pi

∑

(u,v)∈Ei

yuv · (pi[u]− pi[v])
2 (21)

△
= arg minpi∈Pi

p⊤
i · LBi

· pi. (22)

As shown in [28] and [29], solving (22) is NP-hard. An approxi-

mate solution to (22) can be obtained by relaxing the discreteness

constraint on the set Ci rendering the modified problem:

p̃∗
i

△
= arg min

pi∈Bi, ‖pi‖22
△
=1

p⊤
i · LBi

· pi. (23)

An effective solution to p∗
i is obtained by considering p̃∗

i

△
= ei

where ei denotes the Fiedler vector (i.e., the eigenvector as-

sociated with the second smallest eigenvalue) of the Laplacian

matrix LBi
. This is because the eigenvector associated with the

smallest eigenvalue of the Laplacian matrix is a constant vector,

which if used, will not yield any partitions for graph Gi. As

established in [29], an approximate solution to p∗
i is obtained by

setting all the elements of p̃∗
i above the median of ei, denoted

by ēi, to (+1) and all the elements of p̃∗
i below ēi to (−1),

resulting in an approximation for p∗
i that belongs to Pi. By

constructing the median-cut vector p∗
i , two evenly partitioned

subgraphs are obtained by mapping each entry in p∗
i of opposite

signs to two distinct graph partitions. We note that in order to

obtain viable Laplacian matrices LB1

i

and LB2

i

we discard all
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Algorithm 1: Bisecting Graph Gi to G1
i and G2

i .

1: Input graph Gi

2: Initialize V 1
i ← ∅, V 2

i ← ∅
3: Construct Laplacian matrix LBi

of weight matrix Bi

4: Compute the Fiedler vector ei of LBi

5: for every node k in V do

6: if ei[k] ≤ ēi then

7: V 1
i ← V 1

i ∪ {k}
8: else

9: V 2
i ← V 2

i ∪ {k}
10: end if

11: end for

12: if ||V 1
i | − |V 2

i || > 1 then

13: Adjust for nodes in set V 1
i , V 2

i to make the

difference atmost 1

14: end if

15: Construct Er
i

16: return G1
i and G2

i

the inter-connected edges (tie-lines) between G1
i and G2

i in the

current iteration, and devise independent localization decision

rules for tie-lines in Section V-C. Note that the assumption of

Ni being even is made only for convenience and that a graph

can be partitioned into two approximately equal sets following

Algorithm 1.

Filtration: Given partitions G1
i and G2

i , next we decide to

discard one and retain the other for further scrutiny. We develop

a quickest change detection approach and apply it to subgraphs

G1
i and G2

i . To formalize this, upon finding G1
i and G2

i , we define

Sn(Gr
i ) as the local smoothness metric as follows:

Sn(Gr
i ) = ∆θ

r
i
⊤[n] · LBr

i
·∆θ

r
i [n] for r ∈ {1, 2} (24)

where θ
r
i [n] denotes the vector of phase angle measurements

associated with the buses in subgraph Gr
i . We denote the pre-

change empirical pdf of the local smoothness Sn(Gr
i ) by fr

i and

denote the post-outage empirical pdf ofSn(Gr
i )when lineEuv ∈

Er
i is in outage by gri,uv . When an outage occurs, we denote the

prior probability of line Euv ∈ Er
i being in outage by ǫri [u, v],

and accordingly, define the post-change mixture distribution as

g(Sn(Gr
i )) =

∑

(u,v)∈Er

i

ǫri [u, v] · gri,uv(Sn(Gr
i )). (25)

Corresponding to each of the two subgraphs, we define the

following W-CuSum statistic ∀r ∈ {1, 2} and ∀n ≥ γ̂:

W r
i [n]

△
=

(

W r
i [n− 1] + log

(

g(Sn(Gr
i ))

fr
i (Sn(Gr

i ))

))+

(26)

where the statisticsW r
i [γ̂ − 1] = 0 ∀r ∈ {1, 2}. The W-CuSum

statistic declares an outage in subgraph Gr
i at time instant τ ri

defined

τ ri
△
= inf{n ≥ γ̂ : W r

i [n] > Cr
i } (27)

where constant Cr
i controls the rate of false alarm events. The

test statistics associated with each of the two-subgraphs are run

in parallel, and the subgraph that first identifies an outage is

Algorithm 2: Bisection Search.

1: Input G, set i
△
= 1, G0

△
= G

2: Run Algorithm-1 on Gi−1 → G1
i−1,G2

i−1

3: Find τi−1
△
= min{τ1i−1, τ

2
i−1} using (27)

4: Find r∗
△
= arg min τ ri−1

5: Set Gi = Gr∗
i−1

6: if |Vi| > 4 then

7: Set i ← i+ 1 & go to 2:

8: end if

9: Output Gi

selected for more scrutiny, and the other subgraph is discarded

permanently. The details of the active bisection search are pro-

vided in Algorithm-2.

C. Terminal Decision Rule for Line Outage Localization

While the bisection search algorithm discussed in Section V-B

provides the most likely subgraph in which the outage is deemed

to lie, it does not provide the terminal decision rule δ. Moreover,

it does not incorporate the possibility of an outage in tie-lines that

were discarded to form viable Laplacian matrices. To address

these issues, we employ parallel CuSum tests customized to each

line in the resulting subgraph obtained at the end of Algorithm-2

and each tie-line obtained in the ith iteration of Algorithm-2. We

note that since the number of lines in the subgraph obtained at

the end of Algorithm-2 is guaranteed to be small in number,

running parallel tests renders minimal complexity. Similarly,

since the number of lines between two subgraphs in any iteration

of Algorithm-2 is significantly fewer in number compared to the

internal lines in the two respective subgraphs, running parallel

tests for tie-lines contributes minimally to the complexity. We

denote the set ETi
by the set of tie-lines obtained in the ith

iteration.

We define a CuSum statistic formed by a simple pre- and post-

change global smoothness models Sn(G) ∼ f , and Sn(G) ∼
fuv respectively, when line Euv ∈ E is in outage and define

Wuv
i [n]

△
=

(

Wuv
i [n− 1] + log

(

fuv(Sn(G))
f(Sn(G))

))+

∀n ≥ γ̂.

(28)

where Wuv
i [γ̂ − 1] = 0. We declare an outage for Euv at the

stopping time τuvi defined as

τuvi

△
= inf{n ≥ γ̂ : Wuv

i [n] > Cuv
i }. (29)

where Cuv
i controls the false alarm rate. We augment Algo-

rithm 2 by running the tests associated with all the tie-lines

in (28) and the two subgraphs in (26) in parallel in the ith

iteration of Algorithm-2 and subsequently declare an outage at

time instant τi given by

τi
△
= min{τ ri , τuvi : ∀r ∈ {1, 2} , ∀Euv ∈ ETi

}. (30)

Following the stopping rule (30), if a tie-line is declared to

be in outage, i.e., τi = τuvi , prior to the stopping condition of
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Algorithm 3: Algorithm for Line Outage Localization.

1: i ← 0
2: while Wd > Cd do

3: Estimate γ̂

4: procedure Binary _ Search (G)

5: i ← i+ 1
6: if |Vi| ≤ 4 then

7: for all ∀Euv ∈ Eido in parallel,

8: Compute Wuv
i [n] from (28)

9: end for

10: Compute τimax
from (31)

11: δ(τL) ← Euv

12: break;

13: else

14: Bisect Gi to obtain G1
i ,G2

i and tie-lines using

Algorithm-1

15: Run statistics (26), (28) in parallel

16: Compute τi from (30)

17: if τi
△
= τ ri then

18: procedure Binary _ Search(Gr
i )

19: else

20: τL = max(τD, τ0, . . . , τi)
21: δ(τL) ← Euv

22: end if

23: end if

24: end procedure

25: return δ

26: end while

Algorithm-2, the terminal decision rule about the line hypothe-

sized in outage is given by δ(τL)
△
= Euv and the data acquisition

process is terminated at time instant τL = max(τD, τ0, . . . , τi).
If τi = τ ri , then the subgraphGi (Step 5, Algorithm-2) is bisected

recursively. If, however, the stopping condition |Vi| ≤ 4 is real-

ized, statistics (28) associated with all the tie-lines in subgraph

Gi are run in parallel for which the stopping rule is given by

τimax

△
= min{τuvi : ∀Euv ∈ Ei} . (31)

Algorithm-3 summarizes the line outage localization algorithm.

VI. CASE STUDIES AND DISCUSSION

We illustrate the performance of the proposed line outage

detection and identification algorithm on IEEE benchmark test

cases. Specifically, we consider the 30- and 118-bus power sys-

tem test cases and employ the simulation tool MATPOWER [30]

throughout to solve for the voltage phase angles by repeatedly

solving AC power flows at each time instant n. We note that a

consequence of using MATPOWER is that a line outage causes

a step change in phase angles that is in contrast to realistic

scenarios where PMUs consist of anti-aliasing filters that only

allow for gradual changes in measurements. In this regard,

we acknowledge a requirement for pre-processing real-time

measurements in order to apply Algorithm-3 to realistic phasor

data, a topic of future work. To simulate the detection and

Fig. 1. Maximum number of statistical tests required against the number of
transmission lines in standard IEEE test cases.

localization delays, we assume a change point γ
△
= 100. Note

that we consider only line outages that do not induce islands in

the anomalous network. We assume that the power-injections

satisfy (P+∆P)[n] ∼ N (P, σ0
2I), where P is the nominal

power-injection vector, however, we note that this is not a

strict assumption and that our framework can incorporate other

correlation structures and other arbitrary pdfs for∆P as we learn

the empirical densities of the smoothness metrics from data. We

note that the decision rules for outage detection and localization

depend on the empirical statistical densities of the global and

local smoothness metrics, which we estimate from historical

data. In this paper, we assume σ0
2 = 0.5 for the IEEE-30 bus,

σ0
2 = 0.002 for the IEEE-118 bus and assume a sampling rate

of 120 samples per second.

A. Computational Complexity and Scalability

We start by assessing the computational complexity and the

scalability of the GG-QCD algorithm. While testing lines indi-

vidually in [14] is expected to have an overall lower average de-

tection delay, the complexity of that becomes quickly prohibitive

as the system’s size grows. Specifically, running individual tests

requires running L parallel tests at all times; while our approach

runs only one test when there is no outage and about log2(L)
tests when there is an outage. First, we compare the maximum

number of tests required for precisely localizing an outage event.

Figure 1 compares the maximum number of tests required versus

the number of transmission lines in the standard IEEE test cases.

We note that since in our approach, the number of statistical tests

required is a function of the geographical location of the line in

the network, we plot the number of tests required in the worst

case. From Fig. 1, it is evident that employing the proposed

approach requires a fewer number of tests. We note that, on

average, the number of tests required would be significantly

fewer than that of the worst case that is plotted in Fig. 1.

Furthermore, we show that each of the individual tests in

our approach is also less computationally complex. To quantify

the computational complexity of our proposed algorithm, we

compare the complexities of individual tests and provide running

times for the respective algorithms. Specifically, we compare the

complexities of the individual tests required for multiple IEEE

test cases. Since line outages are rare events, we compare the

algorithms’ run-times by running the respective test statistics
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TABLE I
RUN-TIMES (RTS) IN SECONDS OF ALGORITHMS UNDER PRE-OUTAGE

NETWORK CONDITIONS n = 10000 ITERATIONS FOR VARIOUS TEST CASES

under pre-change network conditions, i.e., when there is no

outage in the network for n = 10000 iterations. At each time

instant n, we compute the time it takes to update the CuSum

statistics associated with each of the algorithms. We note that

when comparing the computational time with other HD-QCD

approaches, we generate a new observation at every time instant

n from the histograms of the learnt models for both HD-QCD and

GG-QCD methods, to have a fair comparison. The histograms

of the models are generated such that the number of bins, in

every dimension of the histogram, in both methods are the same.

Table I summarizes the run-times.

It is observed that even for a small-size model, the discrepancy

in computational time is significant. Such a discrepancy grows

significantly as the size of the network increases due to the

following two underlying reasons: (i) while both the methods

compute likelihood ratios associated with each transmission line

as part of their CuSum statistic, HD-QCD methods query the

histograms in each dimension in order to compute the joint distri-

bution of ∆θ, and (ii) the global and local smoothness summary

statistic in the GG-QCD approach is always one-dimensional

irrespective of the size of the network. We note that the computa-

tional time for 30 and 118-bus models are not reported since their

respective 29 and 117 dimensional histograms impose memory

restrictions.

B. Detection and Localization Delays

Next, we assess the efficiency of detecting and localizing

outages and compare the performance against those of HD-QCD

approaches. The key observation is that the cost of a signif-

icant improvement in computational complexity is a graceful

degradation in the detection and localization delays. We note

that the localization delay is the delay associated with uniquely

localizing the line in outage, i.e., it incorporates the detection

delay. To capture the overall performance, we consider two

kinds of line outages: (i) line outages that belong to different

geographical locations (internal and tie-lines), and (ii) line that

render highest, lowest and intermediate localization delays.

First, we consider outage events based of the geographi-

cal location. Accordingly, we consider outage events for lines

E4,12, E18,19, E10,17 in the 30-bus and outage events in lines

E38,65, E65,68, and E24,70 in the 118-bus system. We note that,

in the 30- and 118-bus system, there are a total of 41 and 186

lines, respectively, out of which there exist 3 and 9 lines that

cause islands in the network. Therefore, we weight the prior

Fig. 2. Comparison of average delays versus MTFA (30-bus).

Fig. 3. Comparison of average delays versus MTFA (118-bus).

on each outage hypothesis by ǫuv
△
= 1

38 and ǫuv
△
= 1

177 for

30- and 118-bus systems, respectively, when computing test

statistics (16). Thresholds Cd specified in (17) are chosen such

that the mean-time to false alarm (MTFA) value lie in the range

[900, 3600] and [2900, 5200] in samples for the 30- and 118-bus

systems, respectively. Accordingly, thresholds Cr
i associated

with all the subgraphs Gr
i and thresholds Cuv

i associated with

all the tie-lines are computed. We run a Monte-Carlo simula-

tion on 5000 random paths to compute the average detection

and localization delay for each considered line in outage cor-

responding to the chosen thresholds. Figures 2 and 3 show

the performance curves that essentially captures the trade-off

between false alarm rate and average delay. We observe that

increasing the thresholds increases the mean-time to false alarms

while penalizes the average detection and localization delay.

We also observe a detection-localization delay gap owing to

the design of the decision rules δ discussed in Section V-C.
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TABLE II
OVERALL LOCALIZATION DELAYS (IN SECONDS) CAPTURED VIA EMPIRICAL

ALD THROUGH NUMERICAL EVALUATIONS (30-BUS)

TABLE III
OVERALL LOCALIZATION DELAYS (IN SECONDS) CAPTURED VIA EMPIRICAL

ALD THROUGH NUMERICAL EVALUATIONS (118-BUS)

In particular, we observe that internal line outages that render

very low detection delays lead to relatively higher localization

delays. This is because for such lines, there exist very few to no

past samples to re-use and therefore, further iterations of active

clustering result in the collection of fresh samples that penalizes

the localization delay every iteration. Internal lines (18,19) and

(3,4) in the 30-bus system are examples that render a relatively

large detection-localization gap despite having minimal detec-

tion delays. Localization delays for the 30-bus are also tabulated

in Table IV for further studies and comparison.

Figure 7 visually illustrates how the 30-bus system is succes-

sively bisected, resulting in a 4-node graph after three iterations

when line E10,17 undergoes an outage. The true line in outage

is identified by running (28) for lines E10,17, E10,20 and E19,20

in parallel and evaluating the decision rule that satisfies (31).

Second, we consider outage events based on the overall local-

ization delay that consists of the highest, lowest and intermediate

average localization delays (ALDs) for lines in the 30- and

118-bus system. In case of the 30-bus system, as tabulated in

Table II, we observe that outage of lines (6,9) and (3,4) lead

to the lowest and highest localization delays, respectively, and

that the outage of line (6,8) was chosen to be representative

for intermediate delay values. Similarly, Table III tabulates the

overall performance of the 118-bus system. Overall, we observe

that Algorithm-3 provides reasonable localization delays, as

desired.

Next, we compare the average localization delay of our algo-

rithm to that of a HD-QCD algorithm studied in [14]. In figures 2

and 3 we observe that the HD-QCD algorithm consistently

provides lower delays. Nevertheless, the delay gaps are rather

marginal. For instance, in the transmission line (4,12) in the

30-bus system, the delay gap varies in the range [10,15] samples

which with the assumed sampling rate, translates to less than

0.12 seconds of delay. For other lines, this difference is smaller.

We remark that this is the cost for achieving a significantly lower

computational complexity as addressed in Section VI-A.

TABLE IV
PERFORMANCE OF ALGORITHM-3 UNDER NOMINAL POWER SYSTEM

CONDITION (30-BUS)

C. Accuracy of Outage Localization

Next, we discuss the efficiency (accuracy) of the localization

Algorithm-3. To quantify the quality of the terminal decision

δ(τL), we define localization error probability (LEP) as

LEP(τL)
△
= P (δ �= Euv| outage in Euv) = Puv(δ �= Euv)

(32)

where Puv is the probability measure of the data when line Euv

is in outage. To assess the variation of LEP(τL) with the average

localization delay, we appropriately choose thresholds as dis-

cussed in Section VI-B and numerically evaluate the LEPs over

for a wide range of thresholds, thus varying the average delay,

by running a Monte-Carlo simulation on 5000 random paths.

Table IV and Fig. 6 plot the trade-off for different line outages

in the 30- and 118-bus system, respectively. It is observed that

the ALD decreases at the expense of increasing the LEP. As

observed from the plots, the LEPs are within acceptable limits

despite the relatively small range for MTFA.

D. Effect of Sudden Load and Generation Change

The line outage localization algorithm (Algorithm-3) relies on

the change in pdf of the observations∆θ. The pdfs depend on the

real-time network topology of the grid and the statistical proper-

ties of random fluctuations in real-power across the buses. While

the network topology is invariant to random load-generation

fluctuations, we test whether a large load or generator outage

results in enough movement of the detection statistic Wd prior

to triggering the binary search for localization. As discussed in

(16), Wd[n] is employed to determine the presence of a line

outage if the condition in (17) is met. In this regard, we simulate

other outage events to test its impact on Wd[n]. Specifically,

we consider the 30-bus system and simulate the following two

outage scenarios: (i) a simultaneous outage of generators at buses

2,4 and outage of loads at buses 2,7 at time instant γ
△
= 100, and

(ii) an outage of line (3,4) at time instant γ
△
= 100, for a given

MTFA. Figures 4 and 5 plot the evolution of the detection

statistic Wd[n]. We observe that there exists a movement in
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Fig. 4. A realization capturing the evolution of the detection statistic Wd[n]
for a system that has undergone generator and loads outages.

Fig. 5. A realization capturing the evolution of the detection statistic Wd[n]
for a system that has undergone a line outage.

Fig. 6. LEP versus ALD (118-bus).

Wd[n] at γ
△
= 100 in Fig 4, however, Wd[n] does not exceed

the threshold Cd. In the case of a line outage, Wd[n] crosses

the threshold as shown in Fig 5. We note that this is expected

since changes in load and generation do not alter the pdf of the

measurements ∆θ.

E. Detection and Localization Under Stressed Power System

Conditions

Line outages are more likely to be caused under stressed power

system conditions. Since Algorithm-3 was formulated consid-

ering the DC power flow model (Section II-A), it is imperative

TABLE V
PERFORMANCE OF THE ALGORITHM-3 UNDER STRESSED POWER SYSTEM

CONDITION (30-BUS)

to analyze its performance in a highly likely scenario where

the conditions are further deviated from the conventional DC

power flow assumptions. While Section VI-B and VI-C show the

performance under nominal power systems conditions, we con-

sider the evaluation of Algorithm-3 under stressed conditions.

In particular, we test the performance of our algorithm where we

scale the loads in the system such that all load buses operate at

the lowest acceptable voltage of 0.95 per unit and consider the

30-bus system. Table IV tabulates the performance metrics for

the 30-bus system under nominal power system conditions that

serves as a benchmark for comparison and Table V tabulates the

performance metrics under stressed power systems conditions.

We observe that there is a negligible difference in ALD while

an increase in the LEPs. However, the error probabilities despite

the stressed conditions are small, as desired.

F. Double Line Outage Detection and Localization for Line

Outages in Close Neighborhood

We further extend the GG-QCD framework to detect an arbi-

trary double line outage while localizing double line outages that

occur in a close neighborhood without incurring combinatorial

complexity for outage localization. Consider the outage of lines

Euv, Eab ∈ E. The equivalent mixture distribution for outage

detection, similar to that of (11), given by

g(Sn(G)) △
=

∑

(u,v),(a,b)∈E
ǫuv,ab · fuv,ab(Sn(G)) (33)

captures all possible double line outages where the post-change

pdf belongs to {fuv,ab : (u, v), (a, b) ∈ E}, making it viable to

detect such outages. We note that in order to localize an arbitrary

double line outage, it is always possible to run
(

L
2

)

test statistics

Wuv,ab[n], given by

Wuv,ab[n]
△
=

(

Wuv,ab[n− 1] + log

(

fuv,ab(Sn(G))
f(Sn(G))

))+

(34)
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Fig. 7. Successively bisecting G when E10,17 is in outage.

in parallel while following the maximum likelihood localization

decision rule given by

τuv,ab
△
= inf{n ≥ γ̂ : max

(u,v),(a,b)∈E
Wuv,ab[n] > Cuv,ab}.

(35)

However, we note that in order to leverage our framework, i.e. to

employ binary search to circumvent combinatorial complexity,

we require that line outages either occur within a cluster of

internal lines or be a tie-line connecting two clusters of internal

lines. We note that this is to ensure that the bisection search

(Algorithm-2) carried out in parallel for the two partitions

consists of post-change models associated with their respective

partitions. This, as a result, guarantees with high probability, that

the W-CuSum statistic W r
i [n] ∀r ∈ {1, 2} given by

W r
i [n]

△
=

(

W r
i [n− 1] + log

(

g(Sn(Gr
i ))

fr
i (Sn(Gr

i ))

))+

(36)

corresponding to either subgraphs satisfy the decision rule τ ri
given by

τ ri
△
= inf{n ≥ γ̂ : W r

i [n] > Cr
i } (37)

for the following modified mixture distribution

g(Sn(Gr
i )) =

∑

(u,v),(a,b)∈Er

i

ǫruv,ab · gruv,ab(Sn(Gr
i )). (38)

Therefore, when performed recursively, the search space reduces

drastically every iteration circumventing the need for
(

L
2

)

par-

allel tests. In order detect and localize tie-line outages, there

exist two possible double-line outage scenarios: (i) two tie-lines

undergo an outage, and (ii) one tie-line and one internal line

undergo an outage. In order to address (i), the statistic in (34)

for all possible two tie-line combinations, for that iteration, are

run in parallel with (36). To address (ii), we ensure that the

mixture distribution in (38) includes post-change models that

incorporates outages that share an edge with the tie-lines on

either side of the two partitions in that specific iteration. As a

result, for any given iteration that consists of T tie-lines, our

approach requires 2 +
(

T
2

)

test statistics in parallel as opposed

to
(

L
2

)

test statistics. Therefore, when the lines are localized to

a cluster of size 4 or fewer, the statistic in (34) can be employed

to uniquely localize the double line outage via the decision rule

in (35).

For simulations, we consider the 30-bus system in which we

consider double-line outages that occur in close neighborhood

to show the efficacy of the proposed approach. Specifically, we

TABLE VI
PERFORMANCE OF DOUBLE LINE OUTAGE LOCALIZATION ALGORITHM

(30-BUS)

consider three double-line outage cases: (i) lines (10,20) and

(10,17) outage, (ii) lines (1,3) and (3,4) outage, and (iii) lines

(4,12) and (4,6). In scenario (i) and (ii), we consider double-line

outages of internal lines while for scenario (iii) we consider the

outage of a tie-line and an internal line, as can be verified from

Fig. 7(a). In Table VI, the LEPs take into account for realizations

in which the true double line outage were not reported. The ADD

and ALD denote the average delay to detection and localize

the double-line outage. We observe that the delays and error

probabilities are reasonable, as desired.

G. Line Outage Detection With a Subset of Measurements

Taking into consideration the deployment cost of PMUs and

other inevitable concerns, it is not uncommon to have a partially

observable network in which only a subset of buses O ⊂ V

are monitored. We extend our framework for outage detection

under partially observable settings while providing an overview

on how outage localization can be addressed. To address out-

age detection, we exploit the smooth and low-rank structure

of real-time phasor measurements in order to reconstruct the

graph signal θ[n] from a subset of measurements which we

denote by [θ[n]]O. A consequence of such a structure in θ[n]
is that the graph frequency content, captured via the Graph

Fourier Transform (GFT), of the graph signal θ[n] resembles

a low-pass filter characteristic rendering the signal spatially

band-limited [31]. Therefore, graph signal transformations be-

tween the temporal and spatial domains results in approximately
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TABLE VII
PERFORMANCE OF ALGORITHM-3 UNDER 60% OBSERVABILITY (30-BUS)

lossless reconstruction errors. We leverage this property in our

formulation discussed next.

Typically such transformations require an orthogonal basis

which we obtain via the spectral decomposition of LB as

follows:

LB = U ·Λ ·U⊤ (39)

where Λ is a diagonal matrix consisting of eigenvalues repre-

senting the graph frequenciesλk fork ∈ [0, . . . , N − 1], ordered

λ0 = 0 ≤ λ1 ≤ · · · ≤ λN−1, on its principal diagonal and U

consists of eigenvectors associated with λk as column vectors.

Hence, projecting the graph signal θ[n] onto the K dominant

eigen-basis results in an approximately lossless transformation.

The observed measurements can alternately be represented by

[θ[n]]O = P⊤
O · θ[n]wherePO ∈ R

N×NO consists of coordinate

vectors as columns such that it chooses a bus that is observed.

As the GFT of θ[n] is given by θ̃[n]
△
= U⊤

K · θ[n], the observed

measurements satisfy

[θ[n]]O ≈ P⊤
O ·UK · θ̃[n] (40)

where UK denotes the eigenvectors corresponding to the first K
dominant graph frequencies. Following (40), the reconstructed

graph signal θ̂[n] is given by

θ̂[n] = UK · (P⊤
O ·UK)

† · [θ[n]]O. (41)

Subsequently, the reconstructed measurements θ̂[n] can be fur-

ther employed by Algorithm-3 every iteration. We note that

the necessary condition for reconstruction is that |O| ≥ |K| as

investigated in [32].

We consider the 30-bus system for our case study with 60%

observability (18 PMUs monitored). The PMU locations are se-

lected such that there exists atleast two PMUs in each 4-bus clus-

ter. This is done so that the pdfs associated with each subgraph

Gr
i closely approximates the true pdf of the subgraph, with errors

induced due insufficient coverage. The pdfs associated with pre-

and post-change smoothness metrics are re-estimated by running

multiple power flows, this time employing the reconstructed

measurements θ̂[n]. In case of detection, Table VII tabulates the

ADD and miss detection probability (MDP) for various MTFAs,

where MDPs capture the number of realizations for which the

TABLE VIII
EFFECT OF MODEL MISMATCH ON FAP FOR A MTFA = 1000 SAMPLES IN THE

30-BUS SYSTEM

detection statistic Wd[n] failed to declare an outage. We note

that in the previous case studies, the MDPs were negligible and

therefore, we did not include MDP as part of the performance

measure. However, since θ̂[n] is only an approximation of θ[n]
we observed a higher MDP for this case study.

In case of outage localization, we note that due to the added

uncertainty in the reconstructed sequence {θ̂[n]}n≥1 owing to

the lossy reconstruction, the test statistics associated with line

outages other than the true line in outage are likely to satisfy

(30). As a consequence, this significantly increases the LEPs.

Therefore, we modify the decision rule (30) to instead maintain

a ranked list of CuSum statistics consisting of the m smallest

stopping times (where (30) pertains to m = 1). In this case,

the LEPs denotes the probability of finding the true line in

outage within the m smallest stopping times. We note that while

this is not perfect localization, following such an approach can

eliminate other candidate line outages with high probability.

To localize the true line in outage, further tests can then be

applied on the remaining lines, a topic of future work. Table VII

summarizes the LEPs for the three single line outage cases.

H. Line Outage Detection and Identification Under

Model-Mismatch

In practice, it is often difficult to estimate the true parameterσ0

with 100% accuracy. In this regard, we test our algorithm when

there exists a model-mismatch between the true model and the

assumed model for∆P, which subsequently induces a mismatch

in∆θ. In particular, when the assumed model for the fluctuations

is given by ∆P ∼ N (0, σ2
1I), from (3) we observe that both

the pre- and post-change models for ∆θ alters. Therefore, the

pdfs f , fuv (from Section III-B) alter and subsequently, the pdfs

associated with the local and global smoothness metrics change.

We denote the modified pdfs, parameterized by σ1, by f̃ , f̃uv , g̃

and f̃r
i under the assumed model.

We consider a case study that empirically analyzes the effect

of varying σ1 with respect to σ0. Specifically, we consider the

30-bus system for which σ2
0 = 0.5 and vary σ2

1 over a broad

range, i.e., from {-50%−50%} · σ2
0 . In the experiments, we fix

the MTFA = 1000 samples and run a Monte-Carlo over 1000

realizations to calculate the average detection and localization

delay. In addition, we introduce a new figure of merit, i.e., the

False Alarm Probability (FAP) that keeps track of the number

of realizations for which an outage is declared prior to the true

change point γ = 100. Figure 8 and Table VIII illustrates the

effect of varying σ2
1 relative to σ2

0 . We observe that decreasing
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Fig. 8. Effect of model mismatch on average detection and localization delay
for a MTFA = 1000 samples in the 30-bus system.

σ2
1 increases the average delay while making it robust to FAP

while increasing σ2
1 decreases the average delay at the expense

of increasing the FAP.

VII. CONCLUSION

In this paper, we have considered the problem of scalable and

real-time detection and localization of transmission line out-

ages. A low-complexity and scalable algorithm is designed by

exploiting the global and local smoothness properties of phasor

measurement data. Specifically, we have proposed a data-driven

spectral graph-theoretic approach for testing the conformity of

the data to the network structure. Designing change-detection

tests based on these metrics has resulted in a significant reduction

in the number of tests and the associated complexity for each test.

The proposed framework is agnostic to the distribution of fluctu-

ations in real-power injections and can also be further extended

for detection and identification of multiple line outages without

having to suffer from combinatorial complexity. Performance

gains of the proposed approach have been compared against

the existing approaches in the standard IEEE 30- and 118-bus

systems.
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