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Abstract—Consider K processes, each generating a sequence of iden-
tical and independent random variables. The probability measures of
these processes have random parameters that must be estimated. Specif-
ically, they share a parameter 6 common to all probability measures.
Additionally, each process : € {1,...,K} has a private parameter c;.
The objective is to design an active sampling algorithm for sequentially
estimating these parameters in order to form reliable estimates for all
shared and private parameters with the fewest number of samples. This
sampling algorithm has three key components: (i) data-driven sampling
decisions, which dynamically over time specifies which of the K processes
should be selected for sampling; (ii) stopping time for the process,
which specifies when the accumulated data is sufficient to form reliable
estimates and terminate the sampling process; and (iii) estimators for
all shared and private parameters. Owing to the sequential estimation
being known to be analytically intractable, this paper adopts conditional
estimation cost functions, leading to a sequential estimation approach that
was recently shown to render tractable analysis. Asymptotically optimal
decision rules (sampling, stopping, and estimation) are delineated, and
numerical experiments are provided to compare the efficacy and quality
of the proposed procedure with those of the relevant approaches.

I. INTRODUCTION
A. Overview

Consider the canonical estimation problem, in which we have a
collection of probability measures P = {P(- | §) : 0 € O} defined
over a common measurable space. The nature picks 6, the statistician
draws samples from IP(- | #), and the objective is to use these samples
to estimate #. Building up on this canonical model, assume that we
have a collection of K probability measures P; = {P;(- | 6) : 0 €
©} for i € [K] £ {1,---,K?}. Similarly, the nature selects § and
the statistician is given the freedom to collect samples from any one
of the K models, and the objective is to form a reliable estimate
for 6. With the objective of estimating 6 with the fewest number of
samples, a fundamental question pertains to which model(s) are the
most reliable for estimating 6. If we can determine, a priori, which
model is expected to be the most informative about 6 in its entire
range, then the answer is clear: always sample from that model. For
instance, when K = 2 and

Pi(- | 6) ~N(6,1) and Py(-|6) ~N(6,2) , )

under the mean-squared error cost function, P; is always a more
reliable model to use. In general, however, different models can be
selectively more descriptive about 6 in different regimes. For instance,
for © € [0, 1] consider the following two models

Pi(-| 0) ~N(0,0) and Pa(-|0) ~N(0,1—0). (2)

It can be readily verified that under the mean-squared cost function,
when 6 € (0,1/2), P is the more informative model, and when
6 € (1/2,1), P, is the more informative one. Thus, without
knowing the value of 6, it is impossible to specify which model
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is more informative. In such scenarios, any sampling action that
focuses on only one model is sub-optimal. An optimal strategy will
involve alternating between models until one can be identified as
most informative with sufficient confidence. The complexity of such
decisions can be further compounded when there are more parameters
involved. As an example, consider a generalization of (2) in which
the mean values are also unknown, i.e.,

Pr(- [0, 1) ~ N(p1,0) and Pa(- | 0, p2) ~ N(p2,1—0), (3)

where 6 € (0,1) and p1, 2 € R. In these models, even when the
most informative model for € is known, we still need to draw samples
from both models in order to be able to estimate w1 and p2, since pu;
can be estimated exclusively from model ¢ € {1,2}. In this paper,
we consider a general setting of K models that can capture both
aspects discussed (i.e., shared and private parameters). The objective
is to design a sequential and data-adaptive sampling procedure such
that we can form sufficiently reliable estimates for the parameters
involved with the fewest number of samples.

The design of such a sequential procedure involves performing
three intertwined tasks dynamically over time. The first decision
pertains to forming and updating estimates about the parameters
over time. Besides the ultimate interest in the estimates, they also
guide the sampling process. The second decision specifies the next
model to be selected for sampling. These decisions at time ¢ are
formed based on the sequence of models selected up to time ¢, the
data collected, and the estimates formed. Finally, a stopping decision
has to be specified, which terminates the sampling process when
sufficient confidence about the fidelity of the estimates has been
reached. Designing such data-acquisition and inference mechanisms
is related to active (controlled) sampling for sequential design of
experiments, the foundations of which was laid out by Chernoff for
binary composite hypothesis testing [1] through incorporating a data-
acquisition process that dynamically decides about taking a finite
number of data-acquisition actions. Under the assumption of uni-
formly distinguishable hypothesis and statistically independent con-
trol actions, there exists a rich body of literature on greedy algorithms
(making decisions with best immediate return) that achieve optimality
in the asymptote of diminishing rates of erroneous decisions.

Unlike the extensive literature for detection and classification prob-
lems, active sampling is far less investigated for estimation problems.
Sequential designs of experiments for detection and estimation have
a wide range of real-world applications. In machine learning, we
are generally provided with a large dataset, from which machine
learning literature almost universally assumes selecting a subset of
samples uniformly at random, with the objective of performing var-
ious learning tasks. However, a network-guided sequential sampling
strategy is shown to provide significant improvements in terms of
sample complexity in [2]-[4]. This framework also finds strong
resemblance to that of multi-armed bandits [5], which have a broad
set of applications such as clinical drug testing and trial, brain and
behavior modelling and dynamic pricing [6], computerized adaptive
testing (CAT) [7], detecting intrusions in computer networks, [8] and
target detection in radar systems [9]. Next, we provide an overview
of the related literature on active sampling for inference problems
that are most relevant to the scope of this paper.
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B. Related Literature

Active Sampling for Detection. The notion of active sequential
detection was first studied for binary composite hypothesis testing
in [1], providing asymptotically optimal design rules for sequential
hypothesis testing under uniformly distinguishable hypotheses. This
approach and its extensions to broader settings in [2] and [10]-[24],
sequentially take control actions that greedily maximize the imme-
diate return. Specifically, the rules identify the most likely decision
at every step, and selects the action that maximally reinforces this
decision. The studies in [10] and [11] extend the results to the cases
of an infinite number of available actions, and an infinite number of
true states of nature, respectively. The studies in [12] and [25] provide
alternate sampling strategies that are empirically shown to outperform
Chernoff’s rule in the non-asymptotic regime. In a more recent study,
the assumptions of having uniformly distinguishable hypothesis is
relaxed in [14], and a modified Chernoff’s rule is designed for multi-
hypothesis testing. This approach introduces a sequence of intervals
during which actions are selected uniformly at random instead of
selecting the action that maximizes the immediate return. An exten-
sion to a stationery Markov model is investigated in [15]. Detection
of an anomalous process from a finite set of anomalous processes
has been considered in [26], where it is shown that Chernoff’s rule
is asymptotically optimal even without the assumption of uniformly
distinguishable hypotheses, or using uniform selections at certain
instants as prescribed in [14]. More applications of Chernoff’s rule
can be found in [17], [27] and [28]. Active sequential hypothesis
testing coupled with a switching cost for switching between actions
has been studied in [17]. In this study, a modification of the
Chernoft’s procedure is shown to be asymptotically optimal in the
regime of diminishing error probabilities. The study in [27] considers
the problem of active state tracking for a dynamic stochastic system
whose states are varying through a discrete time Markov chain, and
a dynamic programming-based approach is proposed for estimating
the underlying states. The problem of active classification of graphs
based on connectivity through partially observable nodes is studied
in [28]. The problem of active model selection in Markov random
fields (MRFs) is studied in [2], where data acquisition is modelled as
a sequential process. Induced by the underlying dependence structure
of an MRF, different sampling decisions over time are not necessarily
statistically independent, rendering Chernoff’s rule sub-optimal in
this setting, even in asymptotic regimes. This arises mainly due to
the fact that Chernoffs rule focuses on maximizing the immediate
return, without paying attention to the expected future return. The
approaches in [2] incorporates the effect of sampling actions on the
expected rewards from future sampling decisions. Chernoff’s test has
been extended to a distributed setup in [29], designing distributed
and consensus-based Chernoff tests for decentralized detection.

Other related literature on the sequential design of experiments
for inference include the studies presented in [30] and [31], which
propose approaches that take an initial number of samples according
to certain predesignated rule in order to guess the true state of
nature, and then select actions that maximize proper information
measures based on the predicted states. Furthermore, [32] studies
the problem of sequential design of experiments in the finite-sample
regime, and proposes a switching policy which achieves an average
sample complexity that is within a constant factor of the optimal
average sampling complexity, while being computationally simpler
than the optimal solution. The problem of multi-hypothesis testing
using multiple controls is studied in [18], which frames the problem
as a dynamic program, whose optimal solution is intractable. Thus,
two heuristic policies are proposed and analyzed in both asymptotic
and non-asymptotic regimes.
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Active Sampling for Estimation — Theoreitial Aspects. Compared
to the extensive literature on active sampling for detection and clas-
sification problems, the theoretical aspects of parameter estimation
in an active sampling setting are far less investigated. Sequential
estimation, without the additional complexity of control actions, has
a rich body of literature in statistics. Reviews of sequential point
and interval estimation can be found in [33]-[37]. Furthermore,
a representative list of active sampling for parameter estimation
includes [7], [24], and [38]-[41].

Sequential estimation from one time series is investigated in [24],
where a fixed sampling cost is charged every time a new observation
is procured, and a unified cost function aggregating the estimation
accuracy and the total cost of sampling the observations is adopted.
The stochastic unified cost function captures a trade-off between
estimation fidelity and agility of arriving at an estimate. This study
formalizes the notion of asymptotic point-wise optimality (A.P.O.)
for assessing the performance of any sequential design, and proposes
sequential procedures that are asymptotically optimal.

This study was extended in [38] to active sampling for estimation
by incorporating a set of control actions for collecting the data.
In [38], the objective is to estimate a function of an unknown
parameter underlying each control action, such that the parameters
under different control actions are different. Hence, the data collected
based on a control action does not provide any information about
the parameters associated with other actions. In [40], this drawback
is mitigated by considering the case of estimating a single shared
unknown parameter, while allowing the distributions under different
control actions to be non-identical. This study also considers esti-
mating a linear function of a set of shared unknown parameters. In
a different setting, an intertwined problem of model detection and
model probability kernel estimation is considered in [22], where
in addition to discerning the true model (detection), an unknown
probability kernel should be estimated too (estimation). Thus, the
generalized stopping rule has to cater to both the quality of estimation
and the intertwined task of detection. In all these studies, a unified
cost function involving a linear combination of the estimation cost
and the sampling cost are considered. Such approaches, in general, are
known to be analytically intractable. To address this issue, a different
approach to sequential estimation is introduced in [41], where a
single control is assumed, and the conventional average estimation
cost function is replaced by an average conditional estimation cost
function. In [41], the objective is to form a reliable estimate of an
unknown parameter using the fewest number of samples such that
a Bayes posterior risk falls below a pre-specified threshold. This
study provides an exactly optimal solution for this setting. In this
paper, we adopt the approach of [41] for the estimation cost function
in the active sampling framework. In this framework, we propose
asymptotically optimal sequential procedures, with the main emphasis
being on the design of efficient active sampling strategies.

Active Sampling for Estimation — Applied Aspects. On the applica-
tion side, one domain in which active sampling for estimation is used
is in the context of computerized adaptive testing (CAT). The goal in
this setting is to devise a sequence of sampling decisions (items) that
match the trait level of an examinee, characterized by an unknown
parameter. This general setting and objective of CAT, while relevant,
has major differences in its settings, assumptions, objective, and
performance metrics. First, CAT falls in the category of finite-horizon
settings. Since it has a fixed number of items to choose from [7],
[42]-[44] and each item can be used at most once. This enforces a
hard constraint on its stopping time. Even though some investigations
introduce an adaptive stopping time [45]-[48], the stopping time may
not exceed the number of items in the pool. In contrast, we consider
an infinite-horizon setting, in which each experiment can be sampled
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as many times as necessary. In sequential analyses, finite versus
infinite-horizon have distinct guarantees and designs. Secondly, CAT
considers binary observations from the examinees, using the item
response theory with a parameterized logistic regression model. This
is distinct from the setting in this paper, which is much more general;
essentially, we consider any model that satisfies some mild regularity
conditions. Third, the objective function optimized in CAT is different
from the one investigated in this paper. Specifically, CAT optimizes
measures associated with the sample covariance, such as the largest
eigenvalue or the trace [48]. On the contrary, we optimize the average
sample complexity with a constraint on the estimation cost. This cost
function has no precedence in the active sequential literature and has
only been considered in [41] for the case of single control action.
Finally, the key performance metrics investigated in CAT are the
properties of the estimator, such as the bias and mean squared error
reduction. In sequential statistics, the canonical performance metric
is the average sample complexity [1], [15], [49]-[52]. The results
investigated in this paper are based on characterizing the average
sample complexity for the proposed procedures and analyzing their
optimality.

C. Contributions

Our framework for active sampling for sequential parameter es-
timation consists of three intertwined decision rules: (i) a sequence
of estimators for dynamically updating the estimates of interest over
time, (ii) a sampling rule that specifies how the sampling decisions
are guided by and adapted to the data, and (iii) a stopping rule,
at which the sampling process is terminated, and the available data
is deemed sufficient for forming sufficiently reliable estimates. The
overall theoretical contribution is designing a combination of rules
that collectively admit a form of optimality, addressing a setting
for which theoretical guarantees are hitherto unknown. Besides the
theoretical guarantee, we also specify our decision rules’ relevance
(similarities and differences) to the existing ones in active sampling
and sequential estimation literature.

« Estimator. Generally, sequential estimation problems are not
as analytically tractable as their detection counterparts, often
rendering a lack of optimality guarantees. In this paper, we adopt
a new estimation cost function introduced in [41]. This cost
function focuses on the conditional estimation cost, distinct from
the conventional average estimation cost functions adopted in
sequential estimation. This choice of the cost function facilitates
tractable analysis and closed-form characterization of the deci-
sion rules that enjoy optimality guarantees. This cost function
has no precedence in the active sampling frameworks. Besides
the literature on the theoretical aspects, this cost function does
not have precedence in the relevant applied domains (e.g., CAT),
which generally focus on the conventional average estimation
cost function, distinct from the average posterior cost function
adopted in this paper.

« Sampling rule. Our setting and analysis generalize those of [41],
which focuses on a single experiment. We consider a two-fold
generalization. First, we consider multiple experiments, where
one experiment can be chosen at each instant. Secondly, each
experiment can have both shared and private parameters, each
having different guarantees on the estimation cost. Thus, the
sampling rule, at its core, has to balance between greedily
sampling the most informative experiment and ensuring that the
guarantees for the less informative experiments are satisfied. We
adopt a sampling rule that ensures an optimal trade-off between
exploiting the most informative experiment while providing
sufficient exploration for the other experiments. This is a key
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distinction from the existing theoretical investigation of active
sampling for sequential estimation [40] and their applications,
e.g., in CAT. In CAT, specifically, the active selection of the
experiments has two main differences. First, they do not have
the notion of shared versus private parameters and consequently
do not have the inherent estimation trade-off involved. Secondly,
CAT by design is a finite-horizon problem, rendering the design
of the sampling rules fundamentally a dynamic programming
problem. This is distinct from our setting, which is infinite-
horizon with a stochastic stopping time.

o Stopping rule. Finally, we propose a stopping rule that ensures
that the respective guarantees on the estimation cost for both the
shared and private parameters are satisfied while, in parallel, the
average delay is minimized. Specifically, we provide universal
lower bounds on the average delay required to achieve the guar-
antees on the estimation cost and then show that our proposed
procedures match these bounds asymptotically. Furthermore, we
show that the most relevant sampling rule in [40] is sub-optimal
in the general setting. These stopping rules, being infinite-
horizon, are quite distinct from those generally adopted in CAT.

II. ACTIVE SAMPLING MODEL

Consider a finite set of experiments {S1,---,Sk}. When ex-
periment S; for i € [K] £ {1,---,K} is selected, it generates
a random variable whose probability distribution depends on two
unknown parameters § € © C R and o; € A; C R. We call
0 the shared unknown parameter of all experiments, and call «;
the private unknown parameter of experiment ¢ € [K]. As an
example, consider a sensor network in which each sensor produces
noisy observations of a shared parameter 6 (such as the temperature
and pressure), and the task is to estimate the shared parameter
from the observations obtained from the sensors. Furthermore, the
stochastic processes corresponding to each sensor ¢ € [K] could also
have unknown private parameters «; governing the data generation,
such as the noise variance of each sensor. Our objective is to have
a sequential design of experiments such that we can estimate 6
and o £ (a1, - ,ax) with the fewest number of experiments
(samples). We denote the probability density function (pdf) of the
samples generated by experiment S; by fi(- | 6,c;), where for
simplicity of notations we are assuming that the pdfs are well-defined
without any zero over lower-dimensional manifolds. We also assume
that the samples generated by an experiment are independent and
identically distributed (i.i.d.). Our focus is on the Bayesian setting
and we denote the prior pdfs of 6 and «; by 7 and 7;, respectively.

A. Sampling Model

We consider a fully sequential data-acquisition mechanism, ac-
cording to which we are allowed to gather one sample at-a-time.
Our primary goal is to identify a sequence of experiments for
forming reliable estimates for § and o using the minimum number
of experiments on average. An optimal sampling process will require
balancing a number of competing measures in an optimal way. The
trade-offs we are facing include:

o Delay versus fidelity: Collecting more samples, when used
judiciously, results in improved estimation fidelity at the expense
of increased delay in forming estimates.

+ Model discrepancies: Not all experiments are equally informa-
tive about the shared parameter. Nevertheless, a priori, it might
not be known which experiments are the most informative about
the realization of 6. Hence, this creates a natural exploration
versus exploitation trade-off, according to which the experiments

UTC from IEEE Xplore. Restrictions apply.
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Fig. 1: Active sampling for sequential parameter estimation. f; and é&; denote the estimates of the shared and private parameters respectively,
{¥(t) : t € N} represents the sequence of selected experiments, and 7" represents the stopping time.

serve a two-fold purpose: identifying the most informative exper-
iments and using the data from these experiments to estimate 6.

« Shared versus private parameters: While for estimating the
shared parameter there is the tendency to identify the most infor-
mative experiment for 6, for estimating the private parameters
each experiment should be selected sufficiently often to render
a reliable estimate for its private parameter.

To formalize the sampling process, we need to specify three decision-
making tasks. First, we specify a sampling rule ¢ : N — [K] where
1(t) € [K] denotes the experiment to be selected at time ¢. We denote
the sample collected from the experiment Sy ;) by Y;. Accordingly,
we define the ordered sets

Yt £ {Yl7"' 7)/75} ) and ¢t £ {¢(1)7 71/J(t)} . (4)

The observed filtration induced by a sampling rule ¢ is denoted by
FP 2 o(Yt)'. We assume that ¢(t + 1) is F; -measurable. The
second decision-making task is a stopping rule that determines the
instance at which we have accumulated sufficient evidence to form
reliable estimates. Specifically, given a sampling rule 1, we define
an }'ZTp—stopping time that is a randomization 7" such that {T" = ¢} €
}'tw , for all ¢ € N. Finally, corresponding to a given sampling rule
¥, we define (Y, 4") and &;(Y",9") as the estimators for 6 and
a; respectively?. We refer to the tuple

A2 (T,y,or), )

as the collection of rules involved in active sampling for sequential
estimation, where we have defined

o 2 (Y9, (Y, 9h)). (©)

III. PROBLEM STATEMENTS

In this section, we formalize the problem of active sampling for
sequential estimation. There are two key figures of merit involved in
characterizing the performance of the active sampling framework: the
average delay (sample complexity) and the estimation costs incurred
by the final estimates. There exists a tension between these two
quantities, since improving one penalizes the other one. Specifically,
improving the estimates necessitates collecting more samples, which
in turn, penalizes the sample complexity. Capturing this trade-off,
our formulation aims to maintain the estimation cost below a target
threshold and, in parallel, minimize the average sample complexity.

'Unless otherwise stated, we use the shorthand F; for .7-';[) , where the
sampling rule 1) is clear from the context.

2Throughout the paper, sometimes we use the short-hands 6; and &1 for
G(Y'?,pt) and &; (Y, t) respectively.
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A. Estimating Shared Parameters

We start by focusing on the setting in which we have unknown
shared parameters, and the private parameters are fully known. In this
setting, we denote the pdf of the samples generated by the experiment
S; by by fi(- | 8), for i € [K]. Define £(6, 6) as a non-negative cost
function that captures the fidelity of the estimate 6 with respect to
the ground truth 6. Accordingly, E[£(6, §)] is the associated average
cost of the estimate 0, where the expectation is taken with respect to
the data and the prior distribution of 6.

The posterior distribution of # at time ¢ given the set of samples
and control actions taken up to time ¢ is given by

mo(0) ] fi(vi | 0)

icyt

0) = .
[ o) T £:04 1) aw

icypt

t
o

@)

Based on the above posterior, we define the conditional average
posterior cost for an estimate ¢; formed at time ¢ as

Cl, | ) & E[€(0:,0) | Fi] @®)

where E; denotes expectations with respect to 75. We denote the
associated average posterior cost by

Clbe) = Euf€(0,6,)) . ©)

Note that the estimation cost C(ét) depends on the choice of the
cost function £(-,-). Thus, the algorithm design and its optimality
properties depend on the choice of the cost function. In this paper,
we use the quadratic cost function for our analyses. The sequence
of conditional posterior cost functions {C(d; | F;) : t € N} and
posterior cost functions {C(6;) : ¢ € N} are F;-measurable and form
increasing sequences of o-fields. A natural approach to formulating
sequential estimation is finding a solution to:

s erlf
S.t.

where B € R4 controls the estimation quality. However, as discussed
in [41] and its references [3-6], solving (10) even in simpler settings,
e.g., K =1, in which we do not have the action sampling decisions,
is analytically intractable. In this paper, instead of (10), we adopt
the approach of [41] and in (10) replace the average posterior cost
C(0;) with the conditional average posterior cost C(6; | F;). Hence
our objective is to minimize the average sample size such that the
conditional average posterior cost falls below a prescribed threshold,
formalized as

E[T)]

P Clby) < B’

(10)
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Pig) & iI&f E[T] "
6) = st. Cllr|Fr)<p (11

where 3 € R controls the quality of the estimate br given Fr.

B. Estimating Shared and Private Parameters

Next, we consider a generalization of the framework, such that in
addition to the shared parameter, experiment .S; also has a private
statistically independent parameter «; to estimate. To formalize this,
we denote the posterior joint pdf of parameters 6 and {«; : ¢ € [K]}
conditioned on Y* and 1" by g:. By defining the space A £ [, A;
we have

76 (0) H mi(y) Hfz‘(Yi 10, cx)

Hﬂ] (uy) Hf’ Y | v,u) dvdu
12)

gt (Qa a)

fis oo™

Subsequently, the marginal posterior pdf of 6 conditioned on Y* and
1t is denoted by

w02 [ gio.v)av
veA
Furthermore, let S! £ {s € {1,--- ,t} : 1(s) = i} denote the set
of instances up to time ¢ at which experiment i € [K] is selected.
Hence, the posterior pdf of «; conditioned on #, Y* and ¢ is

71'1'(051') H fz(Ys | ai79)

5651‘

/U o) [T £i(Ys [v,0)dv

SES’

13)

hi(ai) =

(14)

Based on the above definitions, we now define the conditional
average estimation cost for estimating «; as

D(&i | Fe,00) 2 Ei[l(Gue, ) | Fe,04] (15)

where E! is the expectation with respect to hf(c;). This setting
emphasizes a hierarchy of inference objectives in which the pri-
mary objective is estimating the shared parameter 6. The estimate
of 0, subsequently, guides estimating the private parameters. By
incorporating constants that capture the fidelity of the estimates for

{a; : i € [K]}, an optimal sequential estimation procedure can be
found as the solution to:
min - E[T]
PB) =4 st ClOr|Fr)<p , (16)
and ( QT | Fr, GT) < ,Bi, Vi € [K}
where we have defined 8 2 [3, 81, , Bk], and B; € R4 controls

the estimation quality of «;.

C. Technical Assumptions

In this section, we provide the assumptions under which the
performance guarantees are established. The assumptions are mainly
necessary for the existence and consistency of the maximum likeli-
hood (ML) estimates and the existence of the Fisher information (FI)
measures of the relevant parameters. To proceed, corresponding to
the pdfs f;(z | 6) (only shared parameters) and f;(z | 0, o;) (shared
and private parameters), we define the log-likelihood functions

Xi(z | 0) £ log fi(x|0), foric[K], (17)
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Xi(z | 0,0;) = log fi(x|6,c;), foric[K]. (18)

Aq: Parameter spaces © and {A; : ¢ €
non-empty and compact.

As: We assume that the ML estimate of the parameter 6 exists, and it
is finite. Specifically, when we have only the shared parameter,
E[|Ai(z | 0)]] < +oo for all § € ©. Similarly, for the setting
with shared and private parameters, for each ¢ € [K], we assume
E[[Xi(z | 0, 05)]] < +oo for all 6 € © and «; € A,.

Ags: The log-likelihood functions {A;(z | ) : ¢ € [K]} are assumed
to be continuous and differentiable for all § € ©. The first order
derivative %)\i(x | 6) is assumed to be bounded, continuous,
and differentiable everywhere, such that the second derivative

[K]} are assumed to be

8892)\ | 0) exists and is bounded. Similarly, the second
2 2
derivatives ;’?)\i (z | 0,0;) and %/\i(m | 0, ;) are assumed

to exist and be bounded.

Ay The pdfs {fi(z | 0) : 4 € [K]} and {fi(z | 0, ;) :
are assumed to have the same support.

As: In the setting with only the shared parameter, let us denote the
FI measures under the model ¢ € [K] for the shared parameter
by

i € [K]}

19)

s o
si0) = —E\ 50

i | 9)]

Similarly, when we have shared and private parameters, let us
denote the FI measures under the model ¢ € [K] by

a 0
Ji(0) = —E[am)\i(v’ﬁ \ 97%‘)} ) (20)
a o
and _Zi(a;) = —E @/\i(aﬁw,ai) . 21)

We assume that the FI measures are bounded and continuous
functions of 8 and «;.

Ag: We assume that the log-likelihood functions under two suffi-
ciently distinguishable parameters 6 and 0 are also distinguish-
able, that is,

Eo {stgp{)\i(x [0) = Xi(z | 0) : 100 > e}}
(22)

Similarly, for the setting with shared and private parameters,
under sufficiently distinguishable parameters 6 and 6, the log-
likelihoods are also distinguishable, i.e.,

E9|:Sllp{)\i(l"0,0[)7}\1‘(37‘@,&) 2|06 > e}] <0,
g
(23)

and, for o, @ € A; we have

Ea{sqp{/\i(:ﬂ9,a)fz\¢(x|9,d) la—al > e}] < 0.

(24)

Assumptions A1, Az, As, and Ag collectively establish the existence
of the ML estimates of the shared and private parameters. Assump-
tions As and As prove the existence of the FI measures corresponding
to the shared and private parameters. Assumption A4 requires every
experiment to have the same support for the different parameters.
We note that these assumptions are satisfied by a wide range of
distributions, including continuous distributions (e.g., Gaussian and
exponential) and discrete distributions (e.g., Bernoulli).
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IV. ACTIVE SAMPLING FOR SHARED PARAMETERS

In this section, we describe the active estimation procedure that
solves the problem specified in (11) for the setting in which we only
have the shared parameter.

A. Bayesian and Maximum Likelihood Estimators

The goal of the optimal estimators is to minimize the conditional

average cost C(ﬁ} | Fr) for given choices of T and 47 captured
by Fr. For C(0r | Fr) we have
C(r | Fr) [Zz 01,0)1 =1y | ]-'t] (25)
t=0
:i]E [£00,0) | ] 1 ery (26)
> imf Bo[l(w,0) | F)lgery . QD)

The transition from (25) to (26) is due to the indicator function
1(;—7} being F:-measurable. We denote the Bayes optimal estimator
by

VE 2 arginf E, [f(u,0) | Fi] . (28)

Accordingly, we denote the conditional average cost associated with
the Bayesian estimate by

B 2 g, [@(ut, )|]-'t] . (29)
Hence, from (25)-(29), we have
Cor | Fr) > Y CF-lyrey = Cr . (30)

t=0
This indicates that for any stopping time 7', using Bayes optimal
estimator at stopping time minimizes the estimation cost. There
are several possible choices of the cost function £(-,-). We could
choose £(-, -) to be the maximum a-posteriori probability (MAP) cost
function, i.e.,

EMAP(é,Q)é{ 0, if H@*@H SC

. 31
1, if |0-0]>c ~’ Gl

and, CYP (6, | Fi) £ E.J™P(6:,0) | Fi] is the posterior cost
corresponding to the MAP cost function. As another example, (-, -)
could be chosen to be the median estimation cost, i.e.,

e (9,60) £ 16 — 6l (32)
in which case, the posterior cost function is given by
credan(g, | Fy) & B0 (6,0) | F:]. As mentioned, throughout

this paper, we consider the minimum mean squared error (MMSE)
cost function, i.e.,

00,0) 2 (0 —0)° (33)

Corresponding to this, the conditional average posterior cost
C(0: | F+) at time t is given by C(0; | Fi) 2 E.[(6: — 6)? | Fi).
The Bayesian estimator under the MMSE cost function becomes the
MMSE estimator, which we denote by

MMSE A
Vi

2 0| F]. (34)

By specializing (29) to the quadratic (MMSE) cost function and

denoting the conditional average MMSE by C}MMSE we have
Clor | Fe) > > CM™F Aoy = P, (39)
t=0
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rendering the MMSE estimate as the optimal estimate under the
quadratic cost function. Besides the MMSE estimator I/MMSE, we
also use the ML estimator for designing our algorithm. Specifically,
the MMSE and the ML estimates each serve a specific purpose.
We use the MMSE estimate for producing the final estimates for
the parameters of interest, and use the ML estimate for guiding the

sampling decisions. We denote the ML estimator of 6 by

arg max Z Xi(Yi]0).
oce eyt

(36)

ML &
Vy =

B. Chernoff-like Sampling Rule

Our sampling rule follows the spirit of the sequential experimental
design due to Chernoff [1], which addresses the problem of ac-
tive sampling for binary composite hypothesis testing. Under the
assumption of uniformly distinguishable hypothesis and a finite set
of control actions, at each round, Chernoff’s rule decides in favor
of the design that maximizes the immediate return. Such return, in
the context of hypothesis testing, is characterized by a function of
the Kullback-Leibler (KL) divergence of the models under different
hypotheses. Specifically, Chernoff’s rule determines the maximum
likelihood (ML) decision about the most likely hypothesis at each
instant, and then chooses an action that maximally reinforces this
decision.

In the context of sequential estimation, at each time step ¢ € N,
we wish to select the experiment that results in the most informative
observation, that is the one which is likely to produce the largest
reduction in the estimation cost. As a relevant measure for comparing
the informativeness of various experiments in the sequential estima-
tion framework, we adopt the FI measure. Specifically, for selecting
the experiment v (¢) € [K], we compute the ML estimate generated
by M based on the sequence of samples accumulated up to time
t — 1. We then select the experiment that maximizes the FI measure
computed at the ML estimate, i.e.,

Y(t) = argmax S (vp) , (37)

i€[K]
where a potential tie is broken by selecting one uniformly at random.
This sampling rule is greedy in the sense that it only focuses on
exploiting the most informative experiment. We will show that this
rule is optimal only for estimating the shared parameter. It loses
its optimality when we also have private parameters, for which we
provide an alternate sampling rule in Section V.

C. Stopping Rule

Finally, we specify the stopping rule that characterizes the end of
the sampling procedure. The rule is directly driven by the decision
quality constraint specified in the formulation of problem P(S)
in (11). Specifically, based on P(3), we are interested in minimizing
the number of samples such that the average posterior estimation cost
falls below the target reliability threshold /3. Thus, we set the stopping
time as the first time that the cost C(vY"M°E | Fr) falls below 3, i.e.,

T 2 inf {teN: C™F | F) < B} .

The structure of (38) is similar to that of [41], with the key difference
that the posterior variance C(v¥™E | Fr) not only depends on the
estimator, but also it depends on the sampling path 7, which does
not exist in [41].

(38)

D. Performance Guarantees

In this section, we evaluate the optimality of the active sampling
procedure for sequential estimation. First, we provide a universal
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lower bound on the average sample complexity of any procedure
that solves (11). Next, we provide a high-probability upper bound
on the sample complexity achieved by our proposed procedure for a
range of the prescribed guarantee (5. Subsequently, we remark that
the average sample complexity of our proposed procedure achieves
the lower bound in the asymptote of small values of 3. To this
end, corresponding to 6, we define Vj3(6), which is instrumental in
characterizing the sample complexity of our sequential estimation
problem:

Va(O) £ int ;( > p(z’)%(f))) SENED

i€[K]
where Qg denotes the K-dimensional probability simplex and we
have defined p £ [p1,---,px]. It can be readily verified that
under the assumptions A1-Ag, (39) can be simplified to Vz(6) =
min,e(x W. Based on this definition, we now provide a lower
bound on the average sample complexity. Note that for Theorem 1 and
all the other subsequent theorems, expectation [E and probability P
measures are with respect to the measures induced by the randomness
in the observations, the control actions, and the stochastic stopping

rule.

Theorem 1 (Converse). Under assumptions A1-As, for any sequen-
tial procedure A, and for any h > 0, there exists a constant
C(h) > 0 such that for any 8 € (0,C(h)), we have

40
3 (40)

Proof. See appendix B. |

E[T] > (we)—h)(l—h).

Theorem 2 (Achievability). Under assumptions A1-Ae, for any h >
0, there exists a constant C' (k) > 0 such that for any 8 € (0,C’(h)),
the proposed procedure achieves

41
3 (41)

Proof. See appendix C. |

IP’{T < V5(0)+h+1} =1.

Theorem 3 (Achievability). In the asymptote of 3 — 0, the proposed
procedure satisfies

lim E[T]
s—0 Vg(0)

Proof. See Appendix D. |

<1. (42)

Note that the upper bound on the average delay provided in
Theorem 3 matches the universal lower bound on the average delay
obtained in Theorem 1. Specifically, since Theorem 1 holds for any
h > 0, we can take the supremum over h, followed by the limit
with respect to (3. Thus, in the asymptote of 5 — 0, the lower-
bound on the average sample complexity specified in (40) becomes
limsupg o E[T]/V5(0) > 1, which is also the upper-bound on
the average sample complexity of the proposed procedure, specified
in (42). This establishes the optimality of the proposed procedure A,
in the asymptote of a diminishing guarantee on the estimation cost.

Furthermore, note that under the presence of a single control, when
K =1, our procedure reduces to that of [41]. We note that [41]
addresses a problem that is a special case of the problem we consider
in two ways. First, it focuses only on one data stream (experiment).
Secondly, which is also an artifact of the first point, in [41] there is
no notion of active selection of the experiments/streams. By setting
K = 1, our asymptotic bound on the average sample complexity
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provided in Theorem 3 reduces to the result of [41]. Specifically, it
can be readily verified that for the case of K = 1, we have

. E[T] 1
s <O
Although [41] does not provide any expression for the average delay,
it proves the optimality of the proposed rules (V¥MSE, T'), which are
the same estimate and stopping rule that we specified in (34) and
(38). Furthermore, for K = 1, it is shown in [41] that the proposed
procedure achieves optimality in all regimes (both asymptotic and
non-asymptotic, for all values of /). This is due to the fact that
when K = 1, the control action has only one experiment to choose
from.

(43)

V. ACTIVE SAMPLING FOR SHARED AND PRIVATE PARAMETERS

In this section, we extend the active sampling procedure and
the attendant performance guarantees to the settings in which the
experiments have both shared and private parameters.

A. Bayesian and Maximum Likelihood Estimators

Following the same line of arguments as in (25)-(35), we use the
MMSE estimator for minimizing the average posterior conditional
MMSE estimation costs C(f7 | Fr) and D(&i,r | Fr,0r) defined
in (9) and (15), respectively. Accordingly, we denote the estimators
for the parameters 6 and {«; : ¢ € [K]} by

VMMSE & (9| F] and (MME 2 Eifa; | F, oMMSF] L (44)

Furthermore, in our sampling rule, we leverage the ML estimates of
the parameters 6 and {c; : i € [K]}. For this purpose, let ¢; = [0, a]
denote the vector containing the shared and the private parameters.

Furthermore, we denote the ML estimators by

vt £ argmax Z AYi|0,a) (45)
oo

¢ & argmax Y (Ve [0, 04) (46)
i €A seypt

and ¢t £ argmax Z Xi(Ys | o), 47)
SEIOXA] St

where we have defined ! £ {t e {l,---,t} : Y@ = z} as
the ordered sequence of time instants during {1,---,t¢} at which
experiment ¢ € [K] is selected for sampling.

B. Sampling Rules

To accommodate the distinct levels of tolerance for the estimation
costs associated with the shared and the private parameters, we need
a sampling rule that is adaptive to the thresholds 3 imposed on the
cost functions. Before we formally specify our sampling rule, we
discuss an adaptation of the greedy sampling rule that we used in
Section IV-B, and show that such a greedy approach becomes sub-
optimal in this setting, caused by insufficient exploration.

1) Greedy Sampling Rule: The sampling rule described in Sec-
tion IV-B aims at selecting the experiment that maximizes the FI
measure at the current ML estimate. By generalizing this approach,
a greedy sampling strategy aims at selecting the experiment that
maximizes the FI measure for the parameter ¢; for all i € [K].
This can be formalized as:

Vi) =

arg max tr{ﬂl(qﬁw)} , (48)

i€[K]

where .%;(¢;) represents the Fisher information matrix (FIM) as-
sociated with ¢;, for ¢ € [K]. This sampling rule does not use
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the information that the guarantees required for different estimation
qualities associated with different experiments may not be the same.
This becomes problematic when the experiment that maximizes the
FI measure requires a considerably weaker guarantee (i.e., it has a
large value of tolerance) on the estimation cost. However, due to the
sampling rule being agnostic to the tolerance levels, the greedy rule
in (48) continues sampling the same experiment, even after the target
estimation quality is achieved. This renders the greedy sampling rule
prone to insufficient exploration. This is stated more formally in the
following theorem.

Theorem 4. There exists 3; > 0 for any experiment i € [K],
such that any sequence of sequential procedure A that involves a
Chernoff-based control action )°(t) defined in (48) is sub-optimal.

Proof. See Appendix H. |

This theorem shows that a greedy sampling strategy based on
selecting the most informative experiment, along with any choice
of stopping rule that satisfies the constraints in (16) at stopping,
renders an infinite average sample complexity for specific choices
of the estimation guarantees.

2) Cost-aware Sampling Rule: Next, we propose a sampling rule
that maintains a balance between exploiting the control actions that
maximize the return and exploring actions that have not yet been
sufficiently sampled. This ensures that the algorithm does not get
stuck in using only the most informative experiments. This is criti-
cally needed to avoid insufficient exploration of the less informative
experiments, since this leads to significant disparity among different
estimation qualities. The more explored experiments will be over-
sampled, achieving estimation qualities stronger than the prescribed
thresholds. This penalizes the overall sample complexity of the
sampling process. To circumvent such oversampling, we propose a
sampling rule that involves randomly sampling from the distribution

defined as
N . 1 . -1
q = argmmquK{B( > q(z)/i(l/t'v'L))
i€[K]
Aeh) - @

+ZBZ(

i€[K]

Note that g; does not necessarily place the entire mass on one of
the control actions, thus facilitating exploration. Furthermore, the
distribution g; converges to a limiting distribution in the limit of
t — oo. This is attributed to the fact that the FI measures are
computed at the ML estimates, and, by the strong consistency of
the ML estimates [53], vM" 225 6, and C 22y oy for every
i € [K]. Thus, as ¢ — oo, the ML estimates converge to the
respective ground truths 6 and {«; : ¢ € [K]}, and g converge

to its limiting distribution. We denote this limiting distribution by

q" = argmingeo, {%( > Q(Z)/1(9)>7 (50)
1€[K]
S CORACH) RCH

C. Stopping Rule

We design a stopping rule that takes into account the fidelity
guarantees on the shared parameter and the private parameters.
Specifically, at each time instant, we compute the conditional poste-
rior MMSE cost of the estimated shared parameter C(v"™°E | F)
and the private parameters {D(¢MVSF | F, v}"™5F) 1 i € [K]}. Our
proposed stopping rule 7' is glven by
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T £ inf {tEN : C(V,!\AMSE|-7‘—t) < B,
D( MMSE|]_—-t MMSE) < B, Vie [K}} . (52

Based on this, the sampling process terminates at the first instant at
which all estimation cost constraints are satisfied.

D. Performance Guarantees

In this section, we present the optimality guarantees of the pro-
posed active sampling procedure. We begin by stating a lower bound
on the average sample complexity for any algorithm that solves
P(B3), defined in (16). Next, we provide an upper bound on the
average sample complexity of the proposed sequential procedures.
Specifically, we provide a high probability upper bound on the sample
complexity as well as an asymptotic upper bound on the average
sample complexity. The average sample complexity is shown to
achieve the universal lower bound asymptotically up to a constant
term. To characterize the average sample complexity, we define

Wolte) £ e (3 q(i)/i(f)))_l

€9k f oy
> BZ( i) i) . 63)
Next, we define
i
V(o) 1( ¢ () £i(0 )) ,
i€[K
and Vi(as) 2 1<q )1,v¢e[K]. (54)

Accordingly, we define define

Vie.0) 2 max (V). Va(on). -+ Viclan))

and Viin(0, ) =

Furthermore, define Smax and fmin as the maximum and minimum
tolerance levels on the estimation costs, i.e.,

/Bmax = max{ﬁ,ﬂh e 7/81(}7 and Bmin £ min{ﬁaﬂl e

min (V(G),Vl(ozl),~~~ 7VK(04K)> . (59)

Br} .
(56)

Based on these definitions, we provide a lower bound on the average
sample complexity.

Theorem S (Converse). Under assumptions A1-Ae, for any sequen-
tial procedure A, and for any h > O there exist constants C'(h) > 0
and {D;(h) > 0 : i € [K]}, such that for any § € (0,C(h)) and

Bi € (0,D;(h)) for all i € [K], we have
Wga(0,a) — h
> 2B TR () ,
B[] > =P (1 (K + 1)) 57
Proof. See Appendix E. |

Theorem 6 (Achievability). Under assumptions A1-As, for any h >
0 there exist constants L(h) > 0 and {M;(h) > 0: i € [K]}, such
that for any 8 € (0, L(h)) and B; € (0, M;(h)) for all i € [K], the
proposed procedure comprised of the sequence of estimates in (44),
sampling rule in (49) and the stopping rule in (52) satisfies

Hﬁ(gaa)
< 877 _ .
]P’{Y S TRT + (Vmax(e,a) me(ﬁ,a))
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1 1
— h+2, =1. (58
+ (Bmin + Bmax) + } ( )

Proof. See Appendix F. ]

Theorem 7 (Achievability). In the asymptote of 3 — O, there
exists h € (0,1) such that the proposed procedure comprised of the
sequence of estimates in (44), sampling rule in (49), and the stopping
rule in (52) satisfies

. E[T] 1
1 < h . 59
A Walla) = K41 (59)
Proof. See Appendix G. |

VI. NUMERICAL EXPERIMENTS
A. Shared Parameter

Consider a network of K sensors, where K is an even number.
Sensor ¢ € [K] generates its samples according to the distribution

N(0,052(6)), where

(G—1)?
K(K—it1)

K—2i42
+ K

220, Vie{l,..., 5}

ke
L Ks2g

7

Vie {5 +1,...K}
(60)

The choice of the variance values for the Gaussian distribution
corresponding to each sensor makes them the most informative one
under a specific regime of the underlying shared parameter 6. More
specifically, note that the FI measure for the Gaussian distribution
N(0,0?%) with respect to o is Z £ 1/20*. It can be readily verified
that each sensor maximizes the FI under the following regimes of 6:
for6 € ((1 —1)/K , i/K) for i € [K], sensor 4 maximizes the FI.
In our evaluations, we set K = 4. 6 is assumed to have a uniform
prior distribution Unif[0.01,0.99]. It can be readily verified that if
the true value of 6 is less than 0.25, Sensor 1 is the most informative
sensor. Otherwise, if 0.25 < 6 < 0.5, Sensor 2 becomes the most
informative one. Similarly, for 0.5 < 6§ < 0.75 and 0.75 < 0 < 1,
Sensor 3 and Sensor 4, respectively, become the most informative
ones. Thus, an effective sampling rule is characterized by its ability
to identify and converge to the best sensor using as few samples as
possible. For our experiment, we set 6 = 0.2.

Figure 2 shows the average number of samples required E[T]
versus various levels of tolerance [, and compares them against the
following four approaches for sensor selection.

1. Random selection: Random selection forms a baseline for com-
parison. Essentially, it refers to sampling one of the sensors S1,
Sa, S3, or Sy uniformly at random. The same stopping rule
specified in (38) is used for fair comparison.

2. Genie-aided sampling: In this setting, we consider a genie-aided
scenario in which the sampling rule is informed what the most
informative sensor for estimating the unknown @ is.

3. Approach of [40]: The algorithm prescribed in [40] proposes
a different stopping rule based on a fixed cost of sampling c,
while keeping the same sensor-selection policy. The approach
trades off the estimation performance against the accumulated
cost of sampling, and thus does not have an explicit performance
guarantee on the estimation cost (or a counterpart of 3 in our
setting). For comparison, for any given (3, we find out a value
of ¢ that ensures that the estimation cost of [40] falls below £,
and use that to generate the variations of E[T] versus £3.

The performance shown in Figure 2 correspond to averaging over 100
Monte Carlo realizations. Note that in Figure 2, Chernoff-like greedy
sampling corresponds to the proposed sampling rule, which is also a
special case of the look-ahead active sampling rule proposed in (49),
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for the case that there is only the shared parameter. This figure shows
that our sampling rule outperforms the random sampling strategy, and
the procedure prescribed in [40]. Note that the genie-aided sampling
strategy uses the fewest number of samples to meet the prescribed
level 3. This is because this sampling strategy knows the most
informative sensor from ¢t = 1 and always samples from that sensor.
On the other hand, our proposed Chernoft-like greedy sampling
rule requires a few more samples to guess the most informative
sensor before it starts drawing samples from that sensor. Thus, its
sample complexity is worse than that of the genie-aided strategy
but better than those of all other strategies. Furthermore, while the
approach of [40] uses the same sampling strategy like ours, its sample
complexity suffers due to the choice of stopping rule. Specifically,
the stopping rule in [40] is designed to minimize a unified objective
comprising the estimation cost and delay, which is different from the
objective in (11). Finally, the random sampling strategy puts equal
sampling effort on each sensor, thus, requiring a more significant
average number of samples to reach the same guarantee on the
estimation cost.

Furthermore, to gain more insight regarding the scaling behavior
of the proposed algorithm with respect to the number of sensors K,
Figure 3 plots the average number of samples against K. Clearly,
as the number of sensors increases, the number of samples required
by the proposed strategy in identifying the most informative sensor
increases, thus, increasing the average sample complexity. For this
experiment, we set S = 0.005, and the other parameters remain the
same.
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Fig. 2: Average sample complexity versus prescribed tolerance (.
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Fig. 3: Average sample complexity versus varying number of sensors K.

B. Shared and Private Parameters

The second experiment showcases the performance of the active
sequential estimation algorithm proposed in Section V. We consider
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a simple network of two sensors, each generating random samples
of 6 contaminated by noise. Each sensor is subject to a different level
of noise variance. Sensors 1 and 2 have distributions A (0, a1) and
N (0, a2), respectively. We assume a uniform prior for the mean, i.e.,
for given ag, bo € R,

1
mo(0) Oﬂ{aogegbo} , bo>ap>0. 61)

bo —a
Similarly, the variance of each sensor has a uniform prior, i.e.,
1

mio) = Lia,<ai<i} 5
The posterior distributions of the unknown mean and variance are
analytically intractable and they are computed numerically. The
performance of our proposed procedure for this setup is depicted
in Fig. 4. For this experiment, we have set § = 0.25, a; = 0.25, and
a2 = 4. The corresponding priors are parameterized by ap = 0.1,
bo =4,a1 = 0.1, by = 0.7, az = 1, and by = 5. The confidence
levels on the estimates of the variance o1 and o are fixed at 51 = 0.1
and B2 = 0.05. The results show that the proposed sampling strategy
outperforms the random selection strategy, which we use as a baseline
in this case, as well as the greedy sampling strategy described in
Section V-B1. This matches our theoretical analysis, where we prove
in Appendix H that the Chernoff-based greedy sampling rule is sub-
optimal. Intuitively, it is clear from the setting that such a sampling
strategy focuses on exploiting Sensor 1 in the long run. However,
that could result in an insufficient exploration of Sensor 2, resulting
in a bad estimate of the variance of the second sensor.
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Fig. 4: Average sample complexity versus 3, 81 = 0.05, and B2 = 0.1.

C. Real-world Data

In this section, we provide an experiment on a real-world dataset,
comparing the performance of the proposed look-ahead sampling
procedure against the random selection strategy. For this purpose,
we use the Chicago beach weather station dataset, which consists
of three different weather stations recording hourly measurements
on various parameters, such as the air temperature, humidity, rain
intensity, wind direction, and wind speed. We select two of these
weather stations, namely the 63™ Street weather station and the Foster
weather station. Our goal is to estimate the average air temperature
in the month of September at 10 AM from noisy measurements of
the temperature. We set the ground truth of the air temperature to
the average temperature recorded by the two weather stations in
September at 10 AM over the years 2019, 2020, and 2021. The true
variance for each weather station is also set to the variance computed
from the data over these years. It is noteworthy that the Foster weather
station has a larger variance of 6.7975 in recorded temperatures,
compared to the 63" Street weather station, which has a variance of
4.1216. We consider the setting in which the variance of the weather
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Fig. 5: Average sample complexity versus prescribed tolerance 3.

station sensors is also unknown (in addition to the temperature that
we intend to estimate). Each station is assumed to generate noisy
measurements of the temperature, drawn from a Gaussian distribution
with mean and variance set as specified. We set the levels required
on the cost of estimating the variance for both the weather stations
to f1 = B2 = 0.1. The prior distributions of the mean values
are assumed to be Unif[10, 20], while those of the variances are
assumed to be Unif[2,8] for both the weather stations. Figure 5
demonstrates the average sample complexity against various levels
of 3. We observe that our proposed sequential procedure yields a far
superior performance compared to random sampling, thus, clearly
depicting the advantage of our proposed active sampling procedure.

VII. CONCLUSIONS

In this paper, we have investigated the problem of active sequential
estimation. Specifically, we have considered a setup in which the
problem instance may have both shared as well as private parameters,
and the goal is to estimate each of the parameters while meeting a
prescribed level of confidence on their estimation qualities. Sequential
decision rules are proposed, where the sampling rule involves max-
imizing the Fisher Information measure when the setting comprises
shared parameters only (greedy sampling rule), while in the setting
of both private and shared parameters, the rule maintains a trade-
off between exploiting the most informative action and exploring the
scarcely sampled actions in order to meet the prescribed tolerances on
the estimation quality of every parameter. The proposed decision rules
have been shown to be asymptotically optimal, and we have provided
numerical experiments to evaluate their advantage compared to the
existing strategies.

APPENDIX A
USEFUL LEMMAS

In this section, we provide a few lemmas which we will be using
throughout our analysis.

Lemma 1 (Lemma 4.1, [40]). When we have only a shared parameter
(setting of Section 1V), under assumptions A1-As, for any h > 0, there
exists t(h) € N such that for all t > t(h):

P{t-
Lemma 2 (Theorem 4.3, [40]). Under assumptions Ai-Ae, the
MMSE, which is characterized in

sequences of estimates generated by v,
Section IV-A, and sampling rules 1° specified in Section IV-B satisfy

inf C(0, | F) > ﬂVg(@)—h} >1—h. (63)

¢, Pt

t- C(r™SE | 7)) 222 BV(6) . (64)

UTC from IEEE Xplore. Restrictions apply.
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Lemma 3. When we have both shared and private parameters (the
setting in Section V), under assumptions A1-As, for any h > 0, there
exists t*(h) < +o0o such that for any t > t*(h):

P{ q)ltr,lf t{ﬁ (et‘]:t) Z Bz (O‘ztu:t)] > Wg(@,a)h}

> 1— (K +1)h.
(65)

Proof. Let us denote the number of times experiment ¢ € [K] is
selected up to time ¢t € N by

t
A
)£ Tiy=i -
s=1

From the Cramér-Rao lower bound, we obtain the following inequal-
ities.

(66)

plc@ | F) > (X Tmsa0) F =1, 67)
i€[K]
P{D(&i,t\ﬁ) > (Ti(t)/i(ai))fl} -1, Vie[K]. (68

Furthermore, let us denote the fraction of times any experiment ¢ €
[K] is selected up to time t by

1 t
=7 > Lwe=i - (69)
s=1
Subsequently, from (67) and (68), we obtain that
N —1
]P’{t~C(9t|}'t) > (Z pi(t)/i(e)) } =1, (70)
ic[K]
P{t-D@@s | F) = (n()filei)) }=1, VielK].
(71)

Using the same argument as in [40, Lemma 4.1], any measurable
control action will have a limiting distribution, or will be arbitrarily
close to a limiting distribution such that for any arbitrarily small
h > 0, there exists t(h) < +oo such that for every ¢ > t(h), from
(70) we obtain

IP’{t-C(ét | F) > (Z p(i)/i(e))il—h} > 1-h, (72)

1€[K]

where p(i) denotes the limiting distribution of p;(t). Using similar
arguments, for every ¢ € [K|] and any h > 0, there exists ¢;(h) <
+oo such that for all ¢ > ¢;(h):

P{t-D(dis | ) > (p(i)ji(ozi))_l—h} S 1—h. (73)

By defining ¢t*(h) £ max{t(h),t{(h),--- ,tk(h)}, combining (72)

and (73) and taking the infimum with respect to all control actions
and estimates, we obtain that

1

P{ inf t{ COF)+ > —D(di,t|]-})} > Wg(0,a) — h

P¢,9 B iCIK] Bi

>1—(K+1)h,
(74)

for all ¢ > t*(h), where (74) is obtained from the fact that for any
two events A and B, P(ANB) > P(A) +P(B) — 1. This completes
our proof. |

Lemma 4. When we have both shared and private parameters (the
setting in Section V), under assumptions Ai-Ag, the sequences of
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estimates characterized in Section V-A and sampling rules specified
in Section V-B satisfy

([peetm+ 3 5

t— oo

MMSE‘.Ft, MMSE):| Wg(@ a)

(75)

Proof. We denote the frequency of selecting experiment i € [K]
under the sampling rule 4" by

t
1
= ;Zﬂw:i} :

Then, as t — oo, pi(t)— G:(i) due to the law of large numbers.
Furthermore, due to the strong consistency of ML estimates, v{'"
converges to #, and CZ + converges to «a; for all ¢ € [K] [53].

Now, we will use a weak version of the Bernstein-Von-Mises
theorem to establish the asymptotic normality of vMMSE For this,
let us consider a sequence of observations Yt & {Y1,--- , Y3},
which are not necessarily i.i.d. Let € be an unknown parameter of
the underlying pdfs of the observations Y, and A(- | §) denote the
log-likelihood function corresponding to the observations. Next, we
define the Fisher Information (FI) measure as

o2 ¢
A 10)]
Furthermore define v}"™SE as the MMSE estimator of 6, and define
z 2 Vt(r)"™SE — ). By a weak version of the Bernstein-Von-Mises
theorem [54, Theorem 20.2], we have

V(2| F) 2% N(0,1/7(0)) ,

(76)

J6) & —f]E { 7)

(78)

where ¥(z | F;) represents the posterior distribution of z. The key
is to find 7 () in our case. We have,

82 t
T(0) = ~1E | 7 )Y* 10)] (79)
1 {8922)\ Yta} , (80)

where Y! £ {VY, : 4(s) =4, s € [t]} is the sequence of observations
from the experiment ¢ € [K]. Simplifying (80), we obtain

= %thi(t)/ (6) = Zpi(t)f () (81)
Thus, we have
(2| F) == N (0 pilt) Z:(0) . (82)
(e (Zroso) )

Furthermore, since p(t) [p1(t), -+ ,px(t)] converges to the
limiting distribution ¢* defined in (51), we have

o617 == x (0. (¥ q*(z’)/xe))l) |

i€[K]

(83)

Thus, from (83), we have v}"°E 25 9. Using this fact in conjunction

with the Bernstein-Von Mlses theorem, for all ¢ € [K], we have
-1
wi (wi | yMMSE ,Ft) oo, N( (q"(z)/ﬂm)) ) . (84)

where we have defined u; £ v/£(¢M*F—a;) and w; (u; | 1)™E, F)
represents the posterior distribution of w;. The limit of the sequence
of MMSE is then calculated by establishing the finiteness of the first
and second order moments of ¥(z | F;) and w;(u; | vi™SE, F,).
For ¥(z | F), this can be done following the same approach of [40,
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Lemma 7.7]. For w;(u; | F¢), this can be done following the same
approach of [24, Lemma 3.1]. This yields

t- Cly™E | F) 1222 ( > q*(i)/i(e))i ,

i€[K]
(85)
and - D(CHISE | 7, AMSE) 22 (i) /i(ai))fl Vi € [K].
(86)

Finally, combining (85) and (86), we obtain

1 oo
t BC( MMSEl]"t) Z ED(Cl\AtMSE‘f' VMMSE):| t— WB(O a)
(87)
This concludes our proof. |

APPENDIX B
PROOF OF THEOREM 1

Consider a constant L € N. Using the constraint in P(3) defined
in (11), we have

1= IP{C(@TU-'T) < /3} (88)
- P{C(éTlfT) <B,T < L}
+ ]P’{C(éﬂ]-’T) <B,T > L}. (89)

L
Define Tr(i) 2 Z Liy(s)—=iy as the number of times that

experiment ¢ € [K] is chosen up to time L. Then, we have

( S° Tr(i) 7 (0)

~ —1
Clor | Fr) > ) (90)

i€[K
1 (K] o
> 2(3 #0) O
ie[K]
-1
S 0) ©2)
i€[K]
- ow), ©93)

where the first inequality is a result of the Cramér-Rao lower
bound [55], and C(L) is a positive constant. Choosing 3 € (0,C(L))
ensures that the first term in (89) becomes ]P’{C(éT | Fr) <

B, T < L =0.Using Lemma 1, there exists ¢(h) such that
for all ¢ > t(h), we have

IP{t C: | Fr) > BVs(0 h} > 1-h. (94)

Leveraging (94), let us expand the the second term in (89). Choosing
L = t(h), we have

P{C(9T|]-'T) <B,T > t(h)}

- ]P{TC (br|Fr) < TB,T > t(h)|TC(éT|fT) > BV(6) — h}
X IP{T Clbr | Fr) > BVa(0 }

+P{TC(0r,01Fr) < TB,T > t(h)|TC(0r|Fr) < BV5(6) — h}

)~ hf

P{TC(0r|Fr) < T, TC(Or|Fr) > BVa(6) — h} +h ©6)
P{T > BVB(Z)"“”} ok,

x P{T~C(9T | Fr) < BVs(0 95)

IN

IN

o7
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where (95) follows from the law of total probability, and (97) is a
result of the stopping rule in (38). Thus, combining (89) with (97),
and due to the choice of 5 < C(h), we obtain

P{Tzﬁvﬁ(?_h}z1—h, (98)
where we have defined
-1
C(h) < PG ) : 99)
i€[K]

The result readily follows by applying Markov’s inequality to (98).

APPENDIX C
PROOF OF THEOREM 2

Using Lemma 2, we obtain that for any h > 0 there exists ¢t(h) <
+o0 such that for any ¢ > t(h), we have

P{t-Cw™*F | F) < BVa(0) + h} = (100)
Now, observe that if 7' — 1 > ¢(h),
1 =P{(T- MMSE|}"T 1) < BVa() + h} (101
< P{(T - < BVs(0) + h} (102)
_ ﬁVﬁ(GHh
- IP’{T < TH}, (103)

where (102) is a result of the stopping rule in (38). Furthermore,

]P’{T < %H}

_ IP’{T < L/ﬁ(ZHhH,T—l > t(h)}
+ ]P’{T < %+1‘T—1 < t(h)}P(T—l < t(h))

(104)

Now, P(T —1 < t(h)) = P{C(W¥MSE | Fr) < B, T < t(h) + 1}.
Following the same steps as in (90)-(93), we can show that there
exists a constant C'(h) 2 (> #(0))"'/(t(h) + 1), such that

i€[K]
P(T —1 < t(h)) =0 for any 8 € (0,C’(h)). Finally, combining
(103) and (104), we obtain that for any 3 € (0, C’(h)),

BVs(0) + h

105
3 (105)

P{Tg +1}:1.

This completes the proof.

APPENDIX D
PROOF OF THEOREM 3

Using Lemma 2, for any € > 0, there exists 7. < 400, such that
forall t > T,

tC(w"F | Fi) € [BVa(0) — €, Va(0) +¢ - (106)

Now, at the instant before stopping we have
T—1= T-1)1iro1<ry + (T —DLir_is7y (107)
§Te+%+l, (108)

where (108) follows from the definition of the stopping rule and
(106). Furthermore, note that supy-+ 4 Te < + oo owing to Lemma
2. Thus, taking average throughout (108), dividing by 1/, and taking
the limit of 8 — 0, we obtain

E[T]

PO - e
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APPENDIX E
PROOF OF THEOREM 5

Define the event
S: 2 {Cl0i | F) < B, D@t | Fr, B) < BiVi€[K]}
(110)

From the constraint in (16), for any constant L < +o0, we have

1 = P{Sr} = P{Sy, T<L}+P{Sp, T>L}. (111
By the Cramér-Rao lower bound, if 7" < L,
N 1 -1
C(br | Fr) > Z( > o) (112)
i€[K]
Similarly, for any ¢ € [K] and T' < L, we have
N A 1 N =
D(i,r | Fr, Or) > (Filai | 1) ! (113)
. 1 -1
> _ . .
> jnf — (Filei | 0))", (114)
where we have defined:
82
Ji(a; |0) £ E| 55Nz ]0,0:)] - (115)
da? ’
Define the quantities
. -1
o) £ L( > ﬂ(@) ,
i€[K]
1 -1
. L — (vs
and D;(L) = 612& 7 (/%(czZ | 6)) . (116)

Similarly to (90)-(93), choosing 5 € (0,C(L)) and §; € (0, D;(L))
for every i € [K],
P(Sr, T<L) = 0. (117)

Expanding the second term on the right hand side of (111), we obtain

P{Sr, T > L}
= P{T-C(0r | Fr) < TB,
T-D(air | Fr, 67) < TH:iVic K], T > L}

(118)
< P{T-C(0r | Fr) < TB,
T-D(OAti,Tl.FT) < TﬁiViE[K}, T>L} (119)
< P{[W+ > ROl ] < e,
p i€[K] Bi
T> L} , (120)

where (119) follows from the fact that since D(&ir | Fr, Or) <
(i at stopping, we can take an expectation over D(&;,r | Fr, 0)
with respect to E} and obtain D(d&;,r | Fr) < B, ie.,
{D(&ir | Fr, 0r) < Bi} € {D(&ir | Fr) < B}
Furthermore, for any h > 0, define the event

o ([0, 5

/B i€[K]

D(&iy | Ft)
Bi

] > Wal6,) —h}

(121)
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Next, we will use Lemma 3 and set L = ¢*(h). Expanding (120) we
have

P{ {T(:(éT | Fr)

- +Zm} < (K + 1T,

i€[K]

T>t*(h)}

_ P{ {TC(éT | Fr)

- *ZW} < (K+1)T,

i€[K]
T > t*(h), ST}
N P{ [TC(é% Fr) | 3 TD(@,; | Fr)

] < (K+1)T,
1€[K]

T > t*(h) ’&} BE)  (122)

IN

]P’{Wg(f),a)fh < (K+1)T} + (K +1)h, (123)

where (122) is a result of applying the law of total probability, and
(123) is a result of Lemma 3. Finally, (123) can be rewritten using
(111) and (117), as follows.

Wga(0,a) — h
PsT > —2———— 1—h. 124
{ = T K+1 ” (129
Subsequently, applying the Markov’s inequality yields
WB(Q, a) —h
> 2L T2 (- ,
B[] > 22 (1 (K + 1)h) (125)
APPENDIX F

PROOF OF THEOREM 6

Using Lemma 4, we have the following two convergence proper-
ties.

¢ c(utMMSE | ]-'t) AR NAON

t— oo

and ¢ - D(CMF | F, ™F) 22 BVi() - (126)

Thus, for any h > 0, there exists t(h) < 4oo such that for all
t > t(h),

P{t-C(thMSEm) < ﬁV(6)+h} =1, (127

]P’{t D(CE | Fry ™5 < BiVi(ew) + h} 1. (128
Define (T' — 7;) as the i'" time instant at which the guarantee on
one of the parameters is met. Furthermore, define S(i) € [K] as the
experiment to which the parameter belongs, in case that it is a private
parameter. Thus, 7x4+1 = 0. Furthermore, using (127) and (128), we
obtain that for any h > 0 and T — 7, — 1 > t(h),

P{TTZ.SVWS(”)JFJrl}_l, (129)
Bs (i)
or, P{T—Tigﬂv(eﬁﬂ—h—i—l} -1, (130)

depending on whether the parameter on which the tolerance guarantee
is achieved is shared or private. Combining (129) and (130), we
obtain:

pl(k+ 11 < VO R 3 BiVi(ai) + h
6 i€[K] ﬂz
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K
+ZTZ~+(K+1)} =1.
- (131)

Furthermore, define fBmin = min{B,B1, - ,Bx} and Pmax =
max{f3, 1, , Bk }. Note that using (127) and (128), along with
the definition of (¢t — 7;), for t — 7, — 1 > t(h), we have

h
+1, =1.
/Bmin }

Similarly, (126) combined with the definition of (7' — 7;) for any
experiment S(j) € [K] and for ¢t — 7; > t(h), we have

{ '}
PLT — 7 =1, (133)

P{T—n < Vinax (0, @) + (132)

5S<] Vs (asg)) —
Bs)

or, P{T—szﬁv(gﬁ)_h} =1, (134)
resulting in
h
P{T’Tj > Viin (0, @) + 3 } =1. (135)

Combining (132) and (135), we obtain that the following relationship
holds with probability 1:

1 1
7j — Ti < Vmax(0, &) — Viin (0, o) + ( + )h+1 .
Bmin ,Bmax
Combining (131) and (136), we obtain that with probability 1
W,
T<14 Yol
K+1
K 1 1
+ ——— | Vinax (6, — Viin (0, + + h+1]).
K+1 ( * ( a) ( a) (ﬂmin 6max) )

(136)

Finally, to ensure that 7' — 7, — 1 > t(h) for every parameter,
we follow the same steps as (112), (113) and (116) in order to
obtain constants L(h) and M;(h) for every i € [K], such that
B € (0, L(h)) and B; € (0, M;(h)) ensure the required conditions.
The corresponding choices of L(h) and M;(h) are given by:

w ¢ (5 )

i€[K]

Mi(h) £ jnf o </1<a1|0)> .

APPENDIX G
PROOF OF THEOREM 7

and (137)

From Lemma 4, there exists 7. < +oo such that for all ¢t > T,

( MMSE | ]_— MSE | ]:t)
t{ )y Z ,6’1 }

€ [Wﬁ(e,a) — e, Wa(0,a) +¢ . (138)

Let a € [K] be the first experiment for which the estimation
guarantee is achieved, and let (T' — 7,) denote the time instant at
which this guarantee is achieved. Then, using (138), along with the
stopping criterion in (52) we have

T — Ta — 1 = (T — Ta — 1)11{T77'a71§T€}
+ (T — Ta — 1)]1{T—TQ—I>T5} (139)
(138) Ws(6,a) +c
et 41. 140
K11 T (140)
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Hence,
Wga(0,ax) + ¢
K+1

Furthermore, using (85), there exists Tp(€) < 400 such that for all
t 2 T0(€)

T < T+ +Ta+2. (141)

tC("™ " | Fo) € [BV(0) — €, BV (0) + ] ,
where V' (0) is defined in (54). Similarly, using (86) there exists
Ti(e) < +oo for i € [K], such that for all ¢ > T;(e)

D(GHE | Fo) € [BiVilow) — € BiVi(ai) + €] (143)

where V(o) is defined in (54). Let T £ max{Ty(¢),--- , Tr(€)}.
Furthermore, let b € [K] be the experiment selected at the stopping
time. Thus, 7, = 0. Subsequently, for any € > 0, (143) yields

(142)

Bv
< T7(€) 4+ Vimax (0, a)+ﬁ—+2 (145)
b
where (144) is a result of the fact that at stopping,
D( z"\{ltMSE | "™SE F) < Bi, which implies that
D( zM MSE | Fi) < B, which is obtained by taking an expectation

over D(¢;y MMSE | MMSE,]—}) with respect to the measure E¢. Thus,
noting that 7, < 7', we have

Ta < TF 4+ Vimax(0, ) + B— +2. (146)
b
Finally, combining (141) and (146), we obtain:
* Wg(@,a) €
T < T +T, +—F~—"—~+ max (0, — +4. 14
< + + K1 + Vi (9a)—|—ﬂb+ (147)

Note that supy, ,¢ Te < +o00, and supy, 4 7¢ < +oo due to
Lemma 4. The proof is completed by taking the expectation on both
sides of (147), dividing by Wga(6, &), and taking the limit.

APPENDIX H
PROOF OF THEOREM 4

By contradiction, we prove that a purely Chernoff-based sampling
strategy is sub-optimal. We begin by assuming that the Chernoff-
based sampling strategy described in section V-B1 combined with an
almost surely finite stopping time 7° is asymptotically optimal. This
implies that every constraint given in the problem (16) is satisfied
at stopping. First, let us define the following quantities that are
instrumental for our argument:

a* £ argmax {(]1(9) —l—/i(ai)} ; (148)
i€[K]
= {{O,Qi}IOEG,QiEAiViG[K]}, (149)

U; e {9 €0, €A /1(9) + /1(041)

> 760+ Filan) Vi€ [K]\z}, (150)

where a™ represents the most informative experiment that maximizes
the overall FI, U is a set containing all possible pairs of the parameters
{6, a;} for every ¢ € [K], and U, represents a subset of U that
maximizes the FI computed for the pair {6, a;} for the experiment
1 € [K]. It can be readily verified that (6, aq=) € Ug+. Now, by the
strong consistency of the ML estimate [53], we have,

ML, Y = g as. 151)

This implies that there exists a finite m(e1, €2) € N such that, almost
surely, [uf'™ — 0] < e, and [N, — qur| < o for every t >
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m(e1, €2). We also note that the ground truth (6, ae+) is an interior
point of the set U+, since U; is an open set by definition. Thus, if
the FI measures .# () and _# (o) for every ¢ € [K] are continuous
functions of the respective parameters 6 and «;, there exists an e-ball
around the point (0, ae+), € > 0, such that any set of parameters
{0', o+ } within the e-ball also maximizes the FI. Selecting m (e1, €2)
to be sufficiently large, such that ¢ < min(eq,€2), we have that
(v, 215) € Uy~ for every t > m(e1, €2). Next, we will show that
for a range of the confidence interval 3, the optimal stopping rule uses
at least m(e1, €2) samples with a high probability. Combining the
fact that p: — p*, where p: represents the probability mass function
over the experiments ¢ € [K] due to the Chernoff-based sampling
strategy, and p* denotes the distribution which selects the experiment
a™ with probability 1, and the Bernstein-Von Mises Theorem ( [54]),
we obtain

t- C™E | Ff) 221/ far (6) (152)
where we have defined Fyf £ {Y' !} and ¢ 2

{¢°(1),--- ,¢¥°(t)}. Let 7° denote the optimal stopping rule that
minimizes (16) under 1. Using (152), there exists 7. < +oo, such
that for all ¢ > 7., we have

L= Bt COMSE | 59 > 1) 7 (6) -}

Furthermore, choosing 7* = max{7e, m(e1,€2)}, we have that for
all t > 7%,

1= ]:P{TC'C(V.,'\-/(':MSE | Fic) > 1/ Far(0) —€,7° < T*}

(153)

+ B{7S COME | F) 2 1/ e () — 7 > 7}
<P{rB > 1/ Jue@® -7 < 7}
(

+ P{TC-C(VMMSEUE:C) > 1) Jur(0) —e, 7 > T*},
(154)

where (154) holds since at the stopping time, C(vMMSE | F<.) < 8.
Selecting B < = Lo — e), we observe that P{Tcﬂ >

T\ Z©)
1/ Zax(0) — €, 7 < T*}

P{TC > T*} =1.

Finally, note that for all £ > 7" and for each experiment ¢ € [K]\a",
D(CMME| Fee, vMMSE) = D(¢MMSE| FE. vMMSE) since for all ¢ >
7*, the Chernoff-based control action selects experiment a*. Let v =

%m]r\l D(¢MMSE| Fe. yMMSE)Y "y > 0. Thus, if we choose 3; <
i€[K]\a* ’

for any ¢ € [K]\ a”, the sampling strategy forces the estimation cost
C(CMMSE|F$C, vMMSE) . 8;, hence, failing to satisfy the constraints
in 16, which is a contradiction to our initial assumption.

= 0. Thus, we have

(155)
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