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Abstract—Consider K processes, each generating a sequence of iden-

tical and independent random variables. The probability measures of

these processes have random parameters that must be estimated. Specif-

ically, they share a parameter θ common to all probability measures.

Additionally, each process i ∈ {1, . . . ,K} has a private parameter αi.
The objective is to design an active sampling algorithm for sequentially

estimating these parameters in order to form reliable estimates for all

shared and private parameters with the fewest number of samples. This

sampling algorithm has three key components: (i) data-driven sampling

decisions, which dynamically over time specifies which of the K processes

should be selected for sampling; (ii) stopping time for the process,

which specifies when the accumulated data is sufficient to form reliable

estimates and terminate the sampling process; and (iii) estimators for

all shared and private parameters. Owing to the sequential estimation

being known to be analytically intractable, this paper adopts conditional

estimation cost functions, leading to a sequential estimation approach that

was recently shown to render tractable analysis. Asymptotically optimal

decision rules (sampling, stopping, and estimation) are delineated, and

numerical experiments are provided to compare the efficacy and quality

of the proposed procedure with those of the relevant approaches.

I. INTRODUCTION

A. Overview

Consider the canonical estimation problem, in which we have a

collection of probability measures P , {P(· | θ) : θ ∈ Θ} defined

over a common measurable space. The nature picks θ, the statistician

draws samples from P(· | θ), and the objective is to use these samples

to estimate θ. Building up on this canonical model, assume that we

have a collection of K probability measures Pi , {Pi(· | θ) : θ ∈
Θ} for i ∈ [K] , {1, · · · ,K}. Similarly, the nature selects θ and

the statistician is given the freedom to collect samples from any one

of the K models, and the objective is to form a reliable estimate

for θ. With the objective of estimating θ with the fewest number of

samples, a fundamental question pertains to which model(s) are the

most reliable for estimating θ. If we can determine, a priori, which

model is expected to be the most informative about θ in its entire

range, then the answer is clear: always sample from that model. For

instance, when K = 2 and

P1(· | θ) ∼ N (θ, 1) and P2(· | θ) ∼ N (θ, 2) , (1)

under the mean-squared error cost function, P1 is always a more

reliable model to use. In general, however, different models can be

selectively more descriptive about θ in different regimes. For instance,

for Θ ∈ [0, 1] consider the following two models

P1(· | θ) ∼ N (0, θ) and P2(· | θ) ∼ N (0, 1− θ) . (2)

It can be readily verified that under the mean-squared cost function,

when θ ∈ (0, 1/2), P1 is the more informative model, and when

θ ∈ (1/2, 1), P2 is the more informative one. Thus, without

knowing the value of θ, it is impossible to specify which model

A. Mukherjee and A. Tajer are with the Electrical, Computer, and Systems
Engineering Department, Rensselaer Polytechnic Institute, Troy, NY.

P.-Y. Chen and P. Das are IBM Thomas J. Watson Research Center,
Yorktown, NY.

The results were presented in part at the 2021 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing.

This research was supported in part by the U. S. National Science
Foundation under the CAREER Award ECCS-1554482 and the Rensselaer-
IBM Artificial Intelligence Research Collaboration program.

is more informative. In such scenarios, any sampling action that

focuses on only one model is sub-optimal. An optimal strategy will

involve alternating between models until one can be identified as

most informative with sufficient confidence. The complexity of such

decisions can be further compounded when there are more parameters

involved. As an example, consider a generalization of (2) in which

the mean values are also unknown, i.e.,

P1(· | θ, µ1) ∼ N (µ1, θ) and P2(· | θ, µ2) ∼ N (µ2, 1− θ) , (3)

where θ ∈ (0, 1) and µ1, µ2 ∈ R. In these models, even when the

most informative model for θ is known, we still need to draw samples

from both models in order to be able to estimate µ1 and µ2, since µi
can be estimated exclusively from model i ∈ {1, 2}. In this paper,

we consider a general setting of K models that can capture both

aspects discussed (i.e., shared and private parameters). The objective

is to design a sequential and data-adaptive sampling procedure such

that we can form sufficiently reliable estimates for the parameters

involved with the fewest number of samples.

The design of such a sequential procedure involves performing

three intertwined tasks dynamically over time. The first decision

pertains to forming and updating estimates about the parameters

over time. Besides the ultimate interest in the estimates, they also

guide the sampling process. The second decision specifies the next

model to be selected for sampling. These decisions at time t are

formed based on the sequence of models selected up to time t, the

data collected, and the estimates formed. Finally, a stopping decision

has to be specified, which terminates the sampling process when

sufficient confidence about the fidelity of the estimates has been

reached. Designing such data-acquisition and inference mechanisms

is related to active (controlled) sampling for sequential design of

experiments, the foundations of which was laid out by Chernoff for

binary composite hypothesis testing [1] through incorporating a data-

acquisition process that dynamically decides about taking a finite

number of data-acquisition actions. Under the assumption of uni-

formly distinguishable hypothesis and statistically independent con-

trol actions, there exists a rich body of literature on greedy algorithms

(making decisions with best immediate return) that achieve optimality

in the asymptote of diminishing rates of erroneous decisions.

Unlike the extensive literature for detection and classification prob-

lems, active sampling is far less investigated for estimation problems.

Sequential designs of experiments for detection and estimation have

a wide range of real-world applications. In machine learning, we

are generally provided with a large dataset, from which machine

learning literature almost universally assumes selecting a subset of

samples uniformly at random, with the objective of performing var-

ious learning tasks. However, a network-guided sequential sampling

strategy is shown to provide significant improvements in terms of

sample complexity in [2]–[4]. This framework also finds strong

resemblance to that of multi-armed bandits [5], which have a broad

set of applications such as clinical drug testing and trial, brain and

behavior modelling and dynamic pricing [6], computerized adaptive

testing (CAT) [7], detecting intrusions in computer networks, [8] and

target detection in radar systems [9]. Next, we provide an overview

of the related literature on active sampling for inference problems

that are most relevant to the scope of this paper.
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B. Related Literature

Active Sampling for Detection. The notion of active sequential

detection was first studied for binary composite hypothesis testing

in [1], providing asymptotically optimal design rules for sequential

hypothesis testing under uniformly distinguishable hypotheses. This

approach and its extensions to broader settings in [2] and [10]–[24],

sequentially take control actions that greedily maximize the imme-

diate return. Specifically, the rules identify the most likely decision

at every step, and selects the action that maximally reinforces this

decision. The studies in [10] and [11] extend the results to the cases

of an infinite number of available actions, and an infinite number of

true states of nature, respectively. The studies in [12] and [25] provide

alternate sampling strategies that are empirically shown to outperform

Chernoff’s rule in the non-asymptotic regime. In a more recent study,

the assumptions of having uniformly distinguishable hypothesis is

relaxed in [14], and a modified Chernoff’s rule is designed for multi-

hypothesis testing. This approach introduces a sequence of intervals

during which actions are selected uniformly at random instead of

selecting the action that maximizes the immediate return. An exten-

sion to a stationery Markov model is investigated in [15]. Detection

of an anomalous process from a finite set of anomalous processes

has been considered in [26], where it is shown that Chernoff’s rule

is asymptotically optimal even without the assumption of uniformly

distinguishable hypotheses, or using uniform selections at certain

instants as prescribed in [14]. More applications of Chernoff’s rule

can be found in [17], [27] and [28]. Active sequential hypothesis

testing coupled with a switching cost for switching between actions

has been studied in [17]. In this study, a modification of the

Chernoff’s procedure is shown to be asymptotically optimal in the

regime of diminishing error probabilities. The study in [27] considers

the problem of active state tracking for a dynamic stochastic system

whose states are varying through a discrete time Markov chain, and

a dynamic programming-based approach is proposed for estimating

the underlying states. The problem of active classification of graphs

based on connectivity through partially observable nodes is studied

in [28]. The problem of active model selection in Markov random

fields (MRFs) is studied in [2], where data acquisition is modelled as

a sequential process. Induced by the underlying dependence structure

of an MRF, different sampling decisions over time are not necessarily

statistically independent, rendering Chernoff’s rule sub-optimal in

this setting, even in asymptotic regimes. This arises mainly due to

the fact that Chernoffs rule focuses on maximizing the immediate

return, without paying attention to the expected future return. The

approaches in [2] incorporates the effect of sampling actions on the

expected rewards from future sampling decisions. Chernoff’s test has

been extended to a distributed setup in [29], designing distributed

and consensus-based Chernoff tests for decentralized detection.

Other related literature on the sequential design of experiments

for inference include the studies presented in [30] and [31], which

propose approaches that take an initial number of samples according

to certain predesignated rule in order to guess the true state of

nature, and then select actions that maximize proper information

measures based on the predicted states. Furthermore, [32] studies

the problem of sequential design of experiments in the finite-sample

regime, and proposes a switching policy which achieves an average

sample complexity that is within a constant factor of the optimal

average sampling complexity, while being computationally simpler

than the optimal solution. The problem of multi-hypothesis testing

using multiple controls is studied in [18], which frames the problem

as a dynamic program, whose optimal solution is intractable. Thus,

two heuristic policies are proposed and analyzed in both asymptotic

and non-asymptotic regimes.

Active Sampling for Estimation – Theoreitial Aspects. Compared

to the extensive literature on active sampling for detection and clas-

sification problems, the theoretical aspects of parameter estimation

in an active sampling setting are far less investigated. Sequential

estimation, without the additional complexity of control actions, has

a rich body of literature in statistics. Reviews of sequential point

and interval estimation can be found in [33]–[37]. Furthermore,

a representative list of active sampling for parameter estimation

includes [7], [24], and [38]–[41].

Sequential estimation from one time series is investigated in [24],

where a fixed sampling cost is charged every time a new observation

is procured, and a unified cost function aggregating the estimation

accuracy and the total cost of sampling the observations is adopted.

The stochastic unified cost function captures a trade-off between

estimation fidelity and agility of arriving at an estimate. This study

formalizes the notion of asymptotic point-wise optimality (A.P.O.)

for assessing the performance of any sequential design, and proposes

sequential procedures that are asymptotically optimal.

This study was extended in [38] to active sampling for estimation

by incorporating a set of control actions for collecting the data.

In [38], the objective is to estimate a function of an unknown

parameter underlying each control action, such that the parameters

under different control actions are different. Hence, the data collected

based on a control action does not provide any information about

the parameters associated with other actions. In [40], this drawback

is mitigated by considering the case of estimating a single shared

unknown parameter, while allowing the distributions under different

control actions to be non-identical. This study also considers esti-

mating a linear function of a set of shared unknown parameters. In

a different setting, an intertwined problem of model detection and

model probability kernel estimation is considered in [22], where

in addition to discerning the true model (detection), an unknown

probability kernel should be estimated too (estimation). Thus, the

generalized stopping rule has to cater to both the quality of estimation

and the intertwined task of detection. In all these studies, a unified

cost function involving a linear combination of the estimation cost

and the sampling cost are considered. Such approaches, in general, are

known to be analytically intractable. To address this issue, a different

approach to sequential estimation is introduced in [41], where a

single control is assumed, and the conventional average estimation

cost function is replaced by an average conditional estimation cost

function. In [41], the objective is to form a reliable estimate of an

unknown parameter using the fewest number of samples such that

a Bayes posterior risk falls below a pre-specified threshold. This

study provides an exactly optimal solution for this setting. In this

paper, we adopt the approach of [41] for the estimation cost function

in the active sampling framework. In this framework, we propose

asymptotically optimal sequential procedures, with the main emphasis

being on the design of efficient active sampling strategies.

Active Sampling for Estimation – Applied Aspects. On the applica-

tion side, one domain in which active sampling for estimation is used

is in the context of computerized adaptive testing (CAT). The goal in

this setting is to devise a sequence of sampling decisions (items) that

match the trait level of an examinee, characterized by an unknown

parameter. This general setting and objective of CAT, while relevant,

has major differences in its settings, assumptions, objective, and

performance metrics. First, CAT falls in the category of finite-horizon

settings. Since it has a fixed number of items to choose from [7],

[42]–[44] and each item can be used at most once. This enforces a

hard constraint on its stopping time. Even though some investigations

introduce an adaptive stopping time [45]–[48], the stopping time may

not exceed the number of items in the pool. In contrast, we consider

an infinite-horizon setting, in which each experiment can be sampled
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as many times as necessary. In sequential analyses, finite versus

infinite-horizon have distinct guarantees and designs. Secondly, CAT

considers binary observations from the examinees, using the item

response theory with a parameterized logistic regression model. This

is distinct from the setting in this paper, which is much more general;

essentially, we consider any model that satisfies some mild regularity

conditions. Third, the objective function optimized in CAT is different

from the one investigated in this paper. Specifically, CAT optimizes

measures associated with the sample covariance, such as the largest

eigenvalue or the trace [48]. On the contrary, we optimize the average

sample complexity with a constraint on the estimation cost. This cost

function has no precedence in the active sequential literature and has

only been considered in [41] for the case of single control action.

Finally, the key performance metrics investigated in CAT are the

properties of the estimator, such as the bias and mean squared error

reduction. In sequential statistics, the canonical performance metric

is the average sample complexity [1], [15], [49]–[52]. The results

investigated in this paper are based on characterizing the average

sample complexity for the proposed procedures and analyzing their

optimality.

C. Contributions

Our framework for active sampling for sequential parameter es-

timation consists of three intertwined decision rules: (i) a sequence

of estimators for dynamically updating the estimates of interest over

time, (ii) a sampling rule that specifies how the sampling decisions

are guided by and adapted to the data, and (iii) a stopping rule,

at which the sampling process is terminated, and the available data

is deemed sufficient for forming sufficiently reliable estimates. The

overall theoretical contribution is designing a combination of rules

that collectively admit a form of optimality, addressing a setting

for which theoretical guarantees are hitherto unknown. Besides the

theoretical guarantee, we also specify our decision rules’ relevance

(similarities and differences) to the existing ones in active sampling

and sequential estimation literature.

• Estimator. Generally, sequential estimation problems are not

as analytically tractable as their detection counterparts, often

rendering a lack of optimality guarantees. In this paper, we adopt

a new estimation cost function introduced in [41]. This cost

function focuses on the conditional estimation cost, distinct from

the conventional average estimation cost functions adopted in

sequential estimation. This choice of the cost function facilitates

tractable analysis and closed-form characterization of the deci-

sion rules that enjoy optimality guarantees. This cost function

has no precedence in the active sampling frameworks. Besides

the literature on the theoretical aspects, this cost function does

not have precedence in the relevant applied domains (e.g., CAT),

which generally focus on the conventional average estimation

cost function, distinct from the average posterior cost function

adopted in this paper.

• Sampling rule. Our setting and analysis generalize those of [41],

which focuses on a single experiment. We consider a two-fold

generalization. First, we consider multiple experiments, where

one experiment can be chosen at each instant. Secondly, each

experiment can have both shared and private parameters, each

having different guarantees on the estimation cost. Thus, the

sampling rule, at its core, has to balance between greedily

sampling the most informative experiment and ensuring that the

guarantees for the less informative experiments are satisfied. We

adopt a sampling rule that ensures an optimal trade-off between

exploiting the most informative experiment while providing

sufficient exploration for the other experiments. This is a key

distinction from the existing theoretical investigation of active

sampling for sequential estimation [40] and their applications,

e.g., in CAT. In CAT, specifically, the active selection of the

experiments has two main differences. First, they do not have

the notion of shared versus private parameters and consequently

do not have the inherent estimation trade-off involved. Secondly,

CAT by design is a finite-horizon problem, rendering the design

of the sampling rules fundamentally a dynamic programming

problem. This is distinct from our setting, which is infinite-

horizon with a stochastic stopping time.

• Stopping rule. Finally, we propose a stopping rule that ensures

that the respective guarantees on the estimation cost for both the

shared and private parameters are satisfied while, in parallel, the

average delay is minimized. Specifically, we provide universal

lower bounds on the average delay required to achieve the guar-

antees on the estimation cost and then show that our proposed

procedures match these bounds asymptotically. Furthermore, we

show that the most relevant sampling rule in [40] is sub-optimal

in the general setting. These stopping rules, being infinite-

horizon, are quite distinct from those generally adopted in CAT.

II. ACTIVE SAMPLING MODEL

Consider a finite set of experiments {S1, · · · , SK}. When ex-

periment Si for i ∈ [K] , {1, · · · ,K} is selected, it generates

a random variable whose probability distribution depends on two

unknown parameters θ ∈ Θ ⊆ R and αi ∈ Ai ⊆ R. We call

θ the shared unknown parameter of all experiments, and call αi
the private unknown parameter of experiment i ∈ [K]. As an

example, consider a sensor network in which each sensor produces

noisy observations of a shared parameter θ (such as the temperature

and pressure), and the task is to estimate the shared parameter

from the observations obtained from the sensors. Furthermore, the

stochastic processes corresponding to each sensor i ∈ [K] could also

have unknown private parameters αi governing the data generation,

such as the noise variance of each sensor. Our objective is to have

a sequential design of experiments such that we can estimate θ
and α , (α1, · · · , αK) with the fewest number of experiments

(samples). We denote the probability density function (pdf) of the

samples generated by experiment Si by fi(· | θ, αi), where for

simplicity of notations we are assuming that the pdfs are well-defined

without any zero over lower-dimensional manifolds. We also assume

that the samples generated by an experiment are independent and

identically distributed (i.i.d.). Our focus is on the Bayesian setting

and we denote the prior pdfs of θ and αi by πθ and πi, respectively.

A. Sampling Model

We consider a fully sequential data-acquisition mechanism, ac-

cording to which we are allowed to gather one sample at-a-time.

Our primary goal is to identify a sequence of experiments for

forming reliable estimates for θ and α using the minimum number

of experiments on average. An optimal sampling process will require

balancing a number of competing measures in an optimal way. The

trade-offs we are facing include:

• Delay versus fidelity: Collecting more samples, when used

judiciously, results in improved estimation fidelity at the expense

of increased delay in forming estimates.

• Model discrepancies: Not all experiments are equally informa-

tive about the shared parameter. Nevertheless, a priori, it might

not be known which experiments are the most informative about

the realization of θ. Hence, this creates a natural exploration

versus exploitation trade-off, according to which the experiments
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{ψ(t) : t ∈ N}
<latexit sha1_base64="Efn6ZHnWpcJRlDHPshQVXs33Q7g=">AAACBHicbVA9SwNBEJ2LXzF+ndoINotB0Cbc2RisAjZWEsFEIXeEvc1Gl+ztHbtzQjxS2PhXbCwUsfVH2An+GPcSC40+GHi8N8PMvCiVwqDnfTilmdm5+YXyYmVpeWV1zV3faJsk04y3WCITfRlRw6VQvIUCJb9MNadxJPlFNDgu/Isbro1I1DkOUx7G9EqJvmAUrdR1t4M8SI3Yw/0jgoFQQUzxOory01Ew6rpVr+aNQf4S/5tUG1u3n2DR7LrvQS9hWcwVMkmN6fheimFONQom+agSZIanlA3oFe9YqmjMTZiPnxiRXav0SD/RthSSsfpzIqexMcM4sp3FjWbaK8T/vE6G/XqYC5VmyBWbLOpnkmBCikRIT2jOUA4toUwLeyth11RThja3ig3Bn375L2kf1Hyv5p/ZNOowQRm2YQf2wIdDaMAJNKEFDO7gAZ7g2bl3Hp0X53XSWnK+ZzbhF5y3L5qomYc=</latexit><latexit sha1_base64="tTpdrLIrRhak6YtjKxJUD+JsM3s=">AAACBHicbVC7SgNBFJ2NryS+Vm2ENINBiE3YtTFYBW2sJIJ5QDaE2ckkGTI7u8zcFeIS0MZfsbHwga0fYSf4MU4ehSYeuHA4517uvcePBNfgOF9Waml5ZXUtncmub2xubds7uzUdxoqyKg1FqBo+0UxwyarAQbBGpBgJfMHq/uB87NdvmNI8lNcwjFgrID3Ju5wSMFLbznmJF2legKNTDB6XXkCg7/vJ5cgbte28U3QmwIvEnZF8ef/2O3P3elZp259eJ6RxwCRQQbRuuk4ErYQo4FSwUdaLNYsIHZAeaxoqScB0K5k8McKHRungbqhMScAT9fdEQgKth4FvOsc36nlvLP7nNWPolloJl1EMTNLpom4sMIR4nAjucMUoiKEhhCpubsW0TxShYHLLmhDc+ZcXSe246DpF98qkUUJTpFEOHaACctEJKqMLVEFVRNE9ekTP6MV6sJ6sN+t92pqyZjN76A+sjx+YFJsE</latexit><latexit sha1_base64="tTpdrLIrRhak6YtjKxJUD+JsM3s=">AAACBHicbVC7SgNBFJ2NryS+Vm2ENINBiE3YtTFYBW2sJIJ5QDaE2ckkGTI7u8zcFeIS0MZfsbHwga0fYSf4MU4ehSYeuHA4517uvcePBNfgOF9Waml5ZXUtncmub2xubds7uzUdxoqyKg1FqBo+0UxwyarAQbBGpBgJfMHq/uB87NdvmNI8lNcwjFgrID3Ju5wSMFLbznmJF2legKNTDB6XXkCg7/vJ5cgbte28U3QmwIvEnZF8ef/2O3P3elZp259eJ6RxwCRQQbRuuk4ErYQo4FSwUdaLNYsIHZAeaxoqScB0K5k8McKHRungbqhMScAT9fdEQgKth4FvOsc36nlvLP7nNWPolloJl1EMTNLpom4sMIR4nAjucMUoiKEhhCpubsW0TxShYHLLmhDc+ZcXSe246DpF98qkUUJTpFEOHaACctEJKqMLVEFVRNE9ekTP6MV6sJ6sN+t92pqyZjN76A+sjx+YFJsE</latexit><latexit sha1_base64="tTpdrLIrRhak6YtjKxJUD+JsM3s=">AAACBHicbVC7SgNBFJ2NryS+Vm2ENINBiE3YtTFYBW2sJIJ5QDaE2ckkGTI7u8zcFeIS0MZfsbHwga0fYSf4MU4ehSYeuHA4517uvcePBNfgOF9Waml5ZXUtncmub2xubds7uzUdxoqyKg1FqBo+0UxwyarAQbBGpBgJfMHq/uB87NdvmNI8lNcwjFgrID3Ju5wSMFLbznmJF2legKNTDB6XXkCg7/vJ5cgbte28U3QmwIvEnZF8ef/2O3P3elZp259eJ6RxwCRQQbRuuk4ErYQo4FSwUdaLNYsIHZAeaxoqScB0K5k8McKHRungbqhMScAT9fdEQgKth4FvOsc36nlvLP7nNWPolloJl1EMTNLpom4sMIR4nAjucMUoiKEhhCpubsW0TxShYHLLmhDc+ZcXSe246DpF98qkUUJTpFEOHaACctEJKqMLVEFVRNE9ekTP6MV6sJ6sN+t92pqyZjN76A+sjx+YFJsE</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="Iyo3e386YqElqnNhYJ2ZK7n2fEY=">AAAB+XicbZBLSwMxFIXv1FetVavbboJFqJsy40ZxJbhxJRXsAzpDyaRpG5rJDMkdoQyzcONfceNCEf+IO/+N6WOhrQcCH+ck5N4TJlIYdN1vp7CxubW9U9wt7ZX3Dw4rR+W2iVPNeIvFMtbdkBouheItFCh5N9GcRqHknXByM8s7j1wbEasHnCY8iOhIiaFgFK3Vr1T9zE+MqOPZFUFfKD+iOA7D7C73836l5jbcucg6eEuowVLNfuXLH8QsjbhCJqkxPc9NMMioRsEkz0t+anhC2YSOeM+iohE3QTZfIien1hmQYaztUUjm7u8XGY2MmUahvTmb0axmM/O/rJfi8DLIhEpS5IotPhqmkmBMZo2QgdCcoZxaoEwLOythY6opQ9tbyZbgra68Du3zhuc2vHsXilCFE6iDBxdwDbfQhBYweIIXeIN359l5dT4WdRWcZW/H8EfO5w/SHpZ4</latexit><latexit sha1_base64="Iyo3e386YqElqnNhYJ2ZK7n2fEY=">AAAB+XicbZBLSwMxFIXv1FetVavbboJFqJsy40ZxJbhxJRXsAzpDyaRpG5rJDMkdoQyzcONfceNCEf+IO/+N6WOhrQcCH+ck5N4TJlIYdN1vp7CxubW9U9wt7ZX3Dw4rR+W2iVPNeIvFMtbdkBouheItFCh5N9GcRqHknXByM8s7j1wbEasHnCY8iOhIiaFgFK3Vr1T9zE+MqOPZFUFfKD+iOA7D7C73836l5jbcucg6eEuowVLNfuXLH8QsjbhCJqkxPc9NMMioRsEkz0t+anhC2YSOeM+iohE3QTZfIien1hmQYaztUUjm7u8XGY2MmUahvTmb0axmM/O/rJfi8DLIhEpS5IotPhqmkmBMZo2QgdCcoZxaoEwLOythY6opQ9tbyZbgra68Du3zhuc2vHsXilCFE6iDBxdwDbfQhBYweIIXeIN359l5dT4WdRWcZW/H8EfO5w/SHpZ4</latexit><latexit sha1_base64="KTiyC5ZrGblLhH5q6hQ2K8QmU3w=">AAACBHicbVBNS8NAEN34WetX1GMvi0Wol5J4sXgqePEkFewHNKFstpt26WYTdidCCT148a948aCIV3+EN/+NmzYHbX0w8Hhvhpl5QSK4Bsf5ttbWNza3tks75d29/YND++i4o+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeYXOd+94EpzWN5D9OE+REZSR5ySsBIA7viZV6ieQ3OrzB4XHoRgXEQZLczbzawq07dmQOvErcgVVSgNbC/vGFM04hJoIJo3XedBPyMKOBUsFnZSzVLCJ2QEesbKknEtJ/Nn5jhM6MMcRgrUxLwXP09kZFI62kUmM78Rr3s5eJ/Xj+FsOFnXCYpMEkXi8JUYIhxnggecsUoiKkhhCpubsV0TBShYHIrmxDc5ZdXSeei7jp1986pNhtFHCVUQaeohlx0iZroBrVQG1H0iJ7RK3qznqwX6936WLSuWcXMCfoD6/MHVaKX2Q==</latexit><latexit sha1_base64="KTiyC5ZrGblLhH5q6hQ2K8QmU3w=">AAACBHicbVBNS8NAEN34WetX1GMvi0Wol5J4sXgqePEkFewHNKFstpt26WYTdidCCT148a948aCIV3+EN/+NmzYHbX0w8Hhvhpl5QSK4Bsf5ttbWNza3tks75d29/YND++i4o+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeYXOd+94EpzWN5D9OE+REZSR5ySsBIA7viZV6ieQ3OrzB4XHoRgXEQZLczbzawq07dmQOvErcgVVSgNbC/vGFM04hJoIJo3XedBPyMKOBUsFnZSzVLCJ2QEesbKknEtJ/Nn5jhM6MMcRgrUxLwXP09kZFI62kUmM78Rr3s5eJ/Xj+FsOFnXCYpMEkXi8JUYIhxnggecsUoiKkhhCpubsV0TBShYHIrmxDc5ZdXSeei7jp1986pNhtFHCVUQaeohlx0iZroBrVQG1H0iJ7RK3qznqwX6936WLSuWcXMCfoD6/MHVaKX2Q==</latexit><latexit sha1_base64="tTpdrLIrRhak6YtjKxJUD+JsM3s=">AAACBHicbVC7SgNBFJ2NryS+Vm2ENINBiE3YtTFYBW2sJIJ5QDaE2ckkGTI7u8zcFeIS0MZfsbHwga0fYSf4MU4ehSYeuHA4517uvcePBNfgOF9Waml5ZXUtncmub2xubds7uzUdxoqyKg1FqBo+0UxwyarAQbBGpBgJfMHq/uB87NdvmNI8lNcwjFgrID3Ju5wSMFLbznmJF2legKNTDB6XXkCg7/vJ5cgbte28U3QmwIvEnZF8ef/2O3P3elZp259eJ6RxwCRQQbRuuk4ErYQo4FSwUdaLNYsIHZAeaxoqScB0K5k8McKHRungbqhMScAT9fdEQgKth4FvOsc36nlvLP7nNWPolloJl1EMTNLpom4sMIR4nAjucMUoiKEhhCpubsW0TxShYHLLmhDc+ZcXSe246DpF98qkUUJTpFEOHaACctEJKqMLVEFVRNE9ekTP6MV6sJ6sN+t92pqyZjN76A+sjx+YFJsE</latexit><latexit sha1_base64="tTpdrLIrRhak6YtjKxJUD+JsM3s=">AAACBHicbVC7SgNBFJ2NryS+Vm2ENINBiE3YtTFYBW2sJIJ5QDaE2ckkGTI7u8zcFeIS0MZfsbHwga0fYSf4MU4ehSYeuHA4517uvcePBNfgOF9Waml5ZXUtncmub2xubds7uzUdxoqyKg1FqBo+0UxwyarAQbBGpBgJfMHq/uB87NdvmNI8lNcwjFgrID3Ju5wSMFLbznmJF2legKNTDB6XXkCg7/vJ5cgbte28U3QmwIvEnZF8ef/2O3P3elZp259eJ6RxwCRQQbRuuk4ErYQo4FSwUdaLNYsIHZAeaxoqScB0K5k8McKHRungbqhMScAT9fdEQgKth4FvOsc36nlvLP7nNWPolloJl1EMTNLpom4sMIR4nAjucMUoiKEhhCpubsW0TxShYHLLmhDc+ZcXSe246DpF98qkUUJTpFEOHaACctEJKqMLVEFVRNE9ekTP6MV6sJ6sN+t92pqyZjN76A+sjx+YFJsE</latexit><latexit sha1_base64="tTpdrLIrRhak6YtjKxJUD+JsM3s=">AAACBHicbVC7SgNBFJ2NryS+Vm2ENINBiE3YtTFYBW2sJIJ5QDaE2ckkGTI7u8zcFeIS0MZfsbHwga0fYSf4MU4ehSYeuHA4517uvcePBNfgOF9Waml5ZXUtncmub2xubds7uzUdxoqyKg1FqBo+0UxwyarAQbBGpBgJfMHq/uB87NdvmNI8lNcwjFgrID3Ju5wSMFLbznmJF2legKNTDB6XXkCg7/vJ5cgbte28U3QmwIvEnZF8ef/2O3P3elZp259eJ6RxwCRQQbRuuk4ErYQo4FSwUdaLNYsIHZAeaxoqScB0K5k8McKHRungbqhMScAT9fdEQgKth4FvOsc36nlvLP7nNWPolloJl1EMTNLpom4sMIR4nAjucMUoiKEhhCpubsW0TxShYHLLmhDc+ZcXSe246DpF98qkUUJTpFEOHaACctEJKqMLVEFVRNE9ekTP6MV6sJ6sN+t92pqyZjN76A+sjx+YFJsE</latexit><latexit sha1_base64="tTpdrLIrRhak6YtjKxJUD+JsM3s=">AAACBHicbVC7SgNBFJ2NryS+Vm2ENINBiE3YtTFYBW2sJIJ5QDaE2ckkGTI7u8zcFeIS0MZfsbHwga0fYSf4MU4ehSYeuHA4517uvcePBNfgOF9Waml5ZXUtncmub2xubds7uzUdxoqyKg1FqBo+0UxwyarAQbBGpBgJfMHq/uB87NdvmNI8lNcwjFgrID3Ju5wSMFLbznmJF2legKNTDB6XXkCg7/vJ5cgbte28U3QmwIvEnZF8ef/2O3P3elZp259eJ6RxwCRQQbRuuk4ErYQo4FSwUdaLNYsIHZAeaxoqScB0K5k8McKHRungbqhMScAT9fdEQgKth4FvOsc36nlvLP7nNWPolloJl1EMTNLpom4sMIR4nAjucMUoiKEhhCpubsW0TxShYHLLmhDc+ZcXSe246DpF98qkUUJTpFEOHaACctEJKqMLVEFVRNE9ekTP6MV6sJ6sN+t92pqyZjN76A+sjx+YFJsE</latexit><latexit sha1_base64="KTiyC5ZrGblLhH5q6hQ2K8QmU3w=">AAACBHicbVBNS8NAEN34WetX1GMvi0Wol5J4sXgqePEkFewHNKFstpt26WYTdidCCT148a948aCIV3+EN/+NmzYHbX0w8Hhvhpl5QSK4Bsf5ttbWNza3tks75d29/YND++i4o+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeYXOd+94EpzWN5D9OE+REZSR5ySsBIA7viZV6ieQ3OrzB4XHoRgXEQZLczbzawq07dmQOvErcgVVSgNbC/vGFM04hJoIJo3XedBPyMKOBUsFnZSzVLCJ2QEesbKknEtJ/Nn5jhM6MMcRgrUxLwXP09kZFI62kUmM78Rr3s5eJ/Xj+FsOFnXCYpMEkXi8JUYIhxnggecsUoiKkhhCpubsV0TBShYHIrmxDc5ZdXSeei7jp1986pNhtFHCVUQaeohlx0iZroBrVQG1H0iJ7RK3qznqwX6936WLSuWcXMCfoD6/MHVaKX2Q==</latexit>

estimates θ̂t and α̂t
<latexit sha1_base64="rRzQJeJ4TALKPG7/Ah3FDxbdojw=">AAACJ3icbVBNS8NAEN34bf2qevSyWAVPJfGiJxG8eFSwrdCUMtlMzOJmE3YnQgn9N178K14EFdGj/8Ttx8GvgWUf780w815UKGnJ9z+8mdm5+YXFpeXayura+kZ9c6tt89IIbIlc5eY6AotKamyRJIXXhUHIIoWd6PZspHfu0FiZ6ysaFNjL4EbLRAogR/XrJ6FNOFqSGRBavhemQCGlSNCnPQ46nlBVGOUqtoPMfVUIqkhhOHQd/XrDb/rj4n9BMAUNNq2Lfv05jHNRZqhJKLC2G/gF9SowJIXCYS0sLRYgbuEGuw5qyND2qrHPId93TMyT3LiniY/Z7xMVZHZ0o+t0dlL7WxuR/2ndkpLjXiV1URJqMVmUlIpTzkeh8VgaFKQGDoAw0t3KRQoGBLloay6E4Lflv6B92Az8ZnB52Dg9nsaxxHbYLjtgATtip+ycXbAWE+yePbIX9uo9eE/em/c+aZ3xpjPb7Ed5n1/RbKaB</latexit><latexit sha1_base64="rRzQJeJ4TALKPG7/Ah3FDxbdojw=">AAACJ3icbVBNS8NAEN34bf2qevSyWAVPJfGiJxG8eFSwrdCUMtlMzOJmE3YnQgn9N178K14EFdGj/8Ttx8GvgWUf780w815UKGnJ9z+8mdm5+YXFpeXayura+kZ9c6tt89IIbIlc5eY6AotKamyRJIXXhUHIIoWd6PZspHfu0FiZ6ysaFNjL4EbLRAogR/XrJ6FNOFqSGRBavhemQCGlSNCnPQ46nlBVGOUqtoPMfVUIqkhhOHQd/XrDb/rj4n9BMAUNNq2Lfv05jHNRZqhJKLC2G/gF9SowJIXCYS0sLRYgbuEGuw5qyND2qrHPId93TMyT3LiniY/Z7xMVZHZ0o+t0dlL7WxuR/2ndkpLjXiV1URJqMVmUlIpTzkeh8VgaFKQGDoAw0t3KRQoGBLloay6E4Lflv6B92Az8ZnB52Dg9nsaxxHbYLjtgATtip+ycXbAWE+yePbIX9uo9eE/em/c+aZ3xpjPb7Ed5n1/RbKaB</latexit><latexit sha1_base64="rRzQJeJ4TALKPG7/Ah3FDxbdojw=">AAACJ3icbVBNS8NAEN34bf2qevSyWAVPJfGiJxG8eFSwrdCUMtlMzOJmE3YnQgn9N178K14EFdGj/8Ttx8GvgWUf780w815UKGnJ9z+8mdm5+YXFpeXayura+kZ9c6tt89IIbIlc5eY6AotKamyRJIXXhUHIIoWd6PZspHfu0FiZ6ysaFNjL4EbLRAogR/XrJ6FNOFqSGRBavhemQCGlSNCnPQ46nlBVGOUqtoPMfVUIqkhhOHQd/XrDb/rj4n9BMAUNNq2Lfv05jHNRZqhJKLC2G/gF9SowJIXCYS0sLRYgbuEGuw5qyND2qrHPId93TMyT3LiniY/Z7xMVZHZ0o+t0dlL7WxuR/2ndkpLjXiV1URJqMVmUlIpTzkeh8VgaFKQGDoAw0t3KRQoGBLloay6E4Lflv6B92Az8ZnB52Dg9nsaxxHbYLjtgATtip+ycXbAWE+yePbIX9uo9eE/em/c+aZ3xpjPb7Ed5n1/RbKaB</latexit><latexit sha1_base64="rRzQJeJ4TALKPG7/Ah3FDxbdojw=">AAACJ3icbVBNS8NAEN34bf2qevSyWAVPJfGiJxG8eFSwrdCUMtlMzOJmE3YnQgn9N178K14EFdGj/8Ttx8GvgWUf780w815UKGnJ9z+8mdm5+YXFpeXayura+kZ9c6tt89IIbIlc5eY6AotKamyRJIXXhUHIIoWd6PZspHfu0FiZ6ysaFNjL4EbLRAogR/XrJ6FNOFqSGRBavhemQCGlSNCnPQ46nlBVGOUqtoPMfVUIqkhhOHQd/XrDb/rj4n9BMAUNNq2Lfv05jHNRZqhJKLC2G/gF9SowJIXCYS0sLRYgbuEGuw5qyND2qrHPId93TMyT3LiniY/Z7xMVZHZ0o+t0dlL7WxuR/2ndkpLjXiV1URJqMVmUlIpTzkeh8VgaFKQGDoAw0t3KRQoGBLloay6E4Lflv6B92Az8ZnB52Dg9nsaxxHbYLjtgATtip+ycXbAWE+yePbIX9uo9eE/em/c+aZ3xpjPb7Ed5n1/RbKaB</latexit><latexit sha1_base64="rRzQJeJ4TALKPG7/Ah3FDxbdojw=">AAACJ3icbVBNS8NAEN34bf2qevSyWAVPJfGiJxG8eFSwrdCUMtlMzOJmE3YnQgn9N178K14EFdGj/8Ttx8GvgWUf780w815UKGnJ9z+8mdm5+YXFpeXayura+kZ9c6tt89IIbIlc5eY6AotKamyRJIXXhUHIIoWd6PZspHfu0FiZ6ysaFNjL4EbLRAogR/XrJ6FNOFqSGRBavhemQCGlSNCnPQ46nlBVGOUqtoPMfVUIqkhhOHQd/XrDb/rj4n9BMAUNNq2Lfv05jHNRZqhJKLC2G/gF9SowJIXCYS0sLRYgbuEGuw5qyND2qrHPId93TMyT3LiniY/Z7xMVZHZ0o+t0dlL7WxuR/2ndkpLjXiV1URJqMVmUlIpTzkeh8VgaFKQGDoAw0t3KRQoGBLloay6E4Lflv6B92Az8ZnB52Dg9nsaxxHbYLjtgATtip+ycXbAWE+yePbIX9uo9eE/em/c+aZ3xpjPb7Ed5n1/RbKaB</latexit>

estimates θ̂T and α̂T
<latexit sha1_base64="aA2Yxoluqn/c3bKs43840LGnsvk=">AAACJ3icbVBNS8NAEN34bf2qevSyWAVPJfGiJxG8eFRoq9CUMtlMzOJmE3YnQgn9N178K14EFdGj/8Ttx8GvgWUf780w815UKGnJ9z+8mdm5+YXFpeXayura+kZ9c6tj89IIbItc5eY6AotKamyTJIXXhUHIIoVX0e3ZSL+6Q2Nlrls0KLCXwY2WiRRAjurXT0KbcLQkMyC0fC9MgUJKkaDf2uOg4wlVhVGuYjvI3FeFoIoUhkPX0a83/KY/Lv4XBFPQYNO66NefwzgXZYaahAJru4FfUK8CQ1IoHNbC0mIB4hZusOughgxtrxr7HPJ9x8Q8yY17mviY/T5RQWZHN7pOZye1v7UR+Z/WLSk57lVSFyWhFpNFSak45XwUGo+lQUFq4AAII92tXKRgQJCLtuZCCH5b/gs6h83AbwaXh43T42kcS2yH7bIDFrAjdsrO2QVrM8Hu2SN7Ya/eg/fkvXnvk9YZbzqzzX6U9/kFa+ymQQ==</latexit><latexit sha1_base64="aA2Yxoluqn/c3bKs43840LGnsvk=">AAACJ3icbVBNS8NAEN34bf2qevSyWAVPJfGiJxG8eFRoq9CUMtlMzOJmE3YnQgn9N178K14EFdGj/8Ttx8GvgWUf780w815UKGnJ9z+8mdm5+YXFpeXayura+kZ9c6tj89IIbItc5eY6AotKamyTJIXXhUHIIoVX0e3ZSL+6Q2Nlrls0KLCXwY2WiRRAjurXT0KbcLQkMyC0fC9MgUJKkaDf2uOg4wlVhVGuYjvI3FeFoIoUhkPX0a83/KY/Lv4XBFPQYNO66NefwzgXZYaahAJru4FfUK8CQ1IoHNbC0mIB4hZusOughgxtrxr7HPJ9x8Q8yY17mviY/T5RQWZHN7pOZye1v7UR+Z/WLSk57lVSFyWhFpNFSak45XwUGo+lQUFq4AAII92tXKRgQJCLtuZCCH5b/gs6h83AbwaXh43T42kcS2yH7bIDFrAjdsrO2QVrM8Hu2SN7Ya/eg/fkvXnvk9YZbzqzzX6U9/kFa+ymQQ==</latexit><latexit sha1_base64="aA2Yxoluqn/c3bKs43840LGnsvk=">AAACJ3icbVBNS8NAEN34bf2qevSyWAVPJfGiJxG8eFRoq9CUMtlMzOJmE3YnQgn9N178K14EFdGj/8Ttx8GvgWUf780w815UKGnJ9z+8mdm5+YXFpeXayura+kZ9c6tj89IIbItc5eY6AotKamyTJIXXhUHIIoVX0e3ZSL+6Q2Nlrls0KLCXwY2WiRRAjurXT0KbcLQkMyC0fC9MgUJKkaDf2uOg4wlVhVGuYjvI3FeFoIoUhkPX0a83/KY/Lv4XBFPQYNO66NefwzgXZYaahAJru4FfUK8CQ1IoHNbC0mIB4hZusOughgxtrxr7HPJ9x8Q8yY17mviY/T5RQWZHN7pOZye1v7UR+Z/WLSk57lVSFyWhFpNFSak45XwUGo+lQUFq4AAII92tXKRgQJCLtuZCCH5b/gs6h83AbwaXh43T42kcS2yH7bIDFrAjdsrO2QVrM8Hu2SN7Ya/eg/fkvXnvk9YZbzqzzX6U9/kFa+ymQQ==</latexit><latexit sha1_base64="aA2Yxoluqn/c3bKs43840LGnsvk=">AAACJ3icbVBNS8NAEN34bf2qevSyWAVPJfGiJxG8eFRoq9CUMtlMzOJmE3YnQgn9N178K14EFdGj/8Ttx8GvgWUf780w815UKGnJ9z+8mdm5+YXFpeXayura+kZ9c6tj89IIbItc5eY6AotKamyTJIXXhUHIIoVX0e3ZSL+6Q2Nlrls0KLCXwY2WiRRAjurXT0KbcLQkMyC0fC9MgUJKkaDf2uOg4wlVhVGuYjvI3FeFoIoUhkPX0a83/KY/Lv4XBFPQYNO66NefwzgXZYaahAJru4FfUK8CQ1IoHNbC0mIB4hZusOughgxtrxr7HPJ9x8Q8yY17mviY/T5RQWZHN7pOZye1v7UR+Z/WLSk57lVSFyWhFpNFSak45XwUGo+lQUFq4AAII92tXKRgQJCLtuZCCH5b/gs6h83AbwaXh43T42kcS2yH7bIDFrAjdsrO2QVrM8Hu2SN7Ya/eg/fkvXnvk9YZbzqzzX6U9/kFa+ymQQ==</latexit><latexit sha1_base64="aA2Yxoluqn/c3bKs43840LGnsvk=">AAACJ3icbVBNS8NAEN34bf2qevSyWAVPJfGiJxG8eFRoq9CUMtlMzOJmE3YnQgn9N178K14EFdGj/8Ttx8GvgWUf780w815UKGnJ9z+8mdm5+YXFpeXayura+kZ9c6tj89IIbItc5eY6AotKamyTJIXXhUHIIoVX0e3ZSL+6Q2Nlrls0KLCXwY2WiRRAjurXT0KbcLQkMyC0fC9MgUJKkaDf2uOg4wlVhVGuYjvI3FeFoIoUhkPX0a83/KY/Lv4XBFPQYNO66NefwzgXZYaahAJru4FfUK8CQ1IoHNbC0mIB4hZusOughgxtrxr7HPJ9x8Q8yY17mviY/T5RQWZHN7pOZye1v7UR+Z/WLSk57lVSFyWhFpNFSak45XwUGo+lQUFq4AAII92tXKRgQJCLtuZCCH5b/gs6h83AbwaXh43T42kcS2yH7bIDFrAjdsrO2QVrM8Hu2SN7Ya/eg/fkvXnvk9YZbzqzzX6U9/kFa+ymQQ==</latexit>

T = t
<latexit sha1_base64="dygnnybTeojLYyM6Kwr6LNWtXtk=">AAAB6nicbZC7SgNBFIbPeo3xFrW0GQyCVdi1MY0YsLGMmhskS5idzCZDZmeXmbNCWPIINhaK2PoQVj6EnW/j5FJo4g8DH/9/DnPOCRIpDLrut7Oyura+sZnbym/v7O7tFw4OGyZONeN1FstYtwJquBSK11Gg5K1EcxoFkjeD4fUkbz5wbUSsajhKuB/RvhKhYBStdV+7xG6h6JbcqcgyeHMoXn1+3IFVtVv46vRilkZcIZPUmLbnJuhnVKNgko/zndTwhLIh7fO2RUUjbvxsOuqYnFqnR8JY26eQTN3fHRmNjBlFga2MKA7MYjYx/8vaKYZlPxMqSZErNvsoTCXBmEz2Jj2hOUM5skCZFnZWwgZUU4b2Onl7BG9x5WVonJc8t+TdusVKGWbKwTGcwBl4cAEVuIEq1IFBHx7hGV4c6Tw5r87brHTFmfccwR857z/A9o+W</latexit><latexit sha1_base64="P1G/ICwUq0wzorhdu/Xihs+8SMI=">AAAB6nicbZC7SgNBFIbPeo3xFrUUZDEIVmHXxjRiwMYywdwgWcLsZDYZMju7zJwVwpLS0sZCEVsfIpUPYecz+BJOLoUm/jDw8f/nMOccPxZco+N8WSura+sbm5mt7PbO7t5+7uCwrqNEUVajkYhU0yeaCS5ZDTkK1owVI6EvWMMf3Ezyxj1TmkeyisOYeSHpSR5wStBYd9Ur7OTyTsGZyl4Gdw75649x5fvhZFzu5D7b3YgmIZNIBdG65ToxeilRyKlgo2w70SwmdEB6rGVQkpBpL52OOrLPjNO1g0iZJ9Geur87UhJqPQx9UxkS7OvFbGL+l7USDIpeymWcIJN09lGQCBsje7K33eWKURRDA4Qqbma1aZ8oQtFcJ2uO4C6uvAz1i4LrFNyKky8VYaYMHMMpnIMLl1CCWyhDDSj04BGe4cUS1pP1ar3NSlesec8R/JH1/gPK8ZHb</latexit><latexit sha1_base64="P1G/ICwUq0wzorhdu/Xihs+8SMI=">AAAB6nicbZC7SgNBFIbPeo3xFrUUZDEIVmHXxjRiwMYywdwgWcLsZDYZMju7zJwVwpLS0sZCEVsfIpUPYecz+BJOLoUm/jDw8f/nMOccPxZco+N8WSura+sbm5mt7PbO7t5+7uCwrqNEUVajkYhU0yeaCS5ZDTkK1owVI6EvWMMf3Ezyxj1TmkeyisOYeSHpSR5wStBYd9Ur7OTyTsGZyl4Gdw75649x5fvhZFzu5D7b3YgmIZNIBdG65ToxeilRyKlgo2w70SwmdEB6rGVQkpBpL52OOrLPjNO1g0iZJ9Geur87UhJqPQx9UxkS7OvFbGL+l7USDIpeymWcIJN09lGQCBsje7K33eWKURRDA4Qqbma1aZ8oQtFcJ2uO4C6uvAz1i4LrFNyKky8VYaYMHMMpnIMLl1CCWyhDDSj04BGe4cUS1pP1ar3NSlesec8R/JH1/gPK8ZHb</latexit><latexit sha1_base64="P1G/ICwUq0wzorhdu/Xihs+8SMI=">AAAB6nicbZC7SgNBFIbPeo3xFrUUZDEIVmHXxjRiwMYywdwgWcLsZDYZMju7zJwVwpLS0sZCEVsfIpUPYecz+BJOLoUm/jDw8f/nMOccPxZco+N8WSura+sbm5mt7PbO7t5+7uCwrqNEUVajkYhU0yeaCS5ZDTkK1owVI6EvWMMf3Ezyxj1TmkeyisOYeSHpSR5wStBYd9Ur7OTyTsGZyl4Gdw75649x5fvhZFzu5D7b3YgmIZNIBdG65ToxeilRyKlgo2w70SwmdEB6rGVQkpBpL52OOrLPjNO1g0iZJ9Geur87UhJqPQx9UxkS7OvFbGL+l7USDIpeymWcIJN09lGQCBsje7K33eWKURRDA4Qqbma1aZ8oQtFcJ2uO4C6uvAz1i4LrFNyKky8VYaYMHMMpnIMLl1CCWyhDDSj04BGe4cUS1pP1ar3NSlesec8R/JH1/gPK8ZHb</latexit><latexit sha1_base64="yMYwsL/KM7DU5G8/0k5Ob5UGRhk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5sTBMI2FhGzBckR9jb7CVL9vaO3TkhHPkJNhaK2PqL7Pw3bpIrNPHBwOO9GWbmBYkUBl332ylsbe/s7hX3SweHR8cn5dOzjolTzXibxTLWvYAaLoXibRQoeS/RnEaB5N1gerfwu09cGxGrFs4S7kd0rEQoGEUrPbbqOCxX3Kq7BNkkXk4qkKM5LH8NRjFLI66QSWpM33MT9DOqUTDJ56VBanhC2ZSOed9SRSNu/Gx56pxcWWVEwljbUkiW6u+JjEbGzKLAdkYUJ2bdW4j/ef0Uw5qfCZWkyBVbLQpTSTAmi7/JSGjOUM4soUwLeythE6opQ5tOyYbgrb+8STo3Vc+teg9upVHL4yjCBVzCNXhwCw24hya0gcEYnuEV3hzpvDjvzseqteDkM+fwB87nDwJ4jY8=</latexit>

ψ(t) = i
<latexit sha1_base64="xdv4H9UFYdpUSE5zlL8MBR/8Lr4=">AAAB8HicbVDLSgNBEOz1GeMr6kXwshiEeAm7XsxFCHjxGME8JFnC7GQ2GTIzu8z0CnHJV3jxoIhXP8eb4Mc4eRw0saChqOqmuytMBDfoeV/Oyura+sZmbiu/vbO7t184OGyYONWU1WksYt0KiWGCK1ZHjoK1Es2IDAVrhsPrid98YNrwWN3hKGGBJH3FI04JWum+kxhewvMr3i0UvbI3hbtM/DkpVo8fv8Gi1i18dnoxTSVTSAUxpu17CQYZ0cipYON8JzUsIXRI+qxtqSKSmSCbHjx2z6zSc6NY21LoTtXfExmRxoxkaDslwYFZ9Cbif147xagSZFwlKTJFZ4uiVLgYu5Pv3R7XjKIYWUKo5vZWlw6IJhRtRnkbgr/48jJpXJR9r+zf2jQqMEMOTuAUSuDDJVThBmpQBwoSnuAFXh3tPDtvzvusdcWZzxzBHzgfP07VkYc=</latexit><latexit sha1_base64="ACgN7rW8hTVjl+A5YMVBU/A8aTc=">AAAB8HicbVC7SgNBFL3rM4mvqI1gMxiE2IRdG9MIQRvLCOYhyRJmJ7PJkJnZZWZWiEvAf7CxUMTW0k+xE/wYJ49CEw9cOJxzL/feE8ScaeO6X87S8srq2nomm9vY3Nreye/u1XWUKEJrJOKRagZYU84krRlmOG3GimIRcNoIBpdjv3FHlWaRvDHDmPoC9yQLGcHGSrftWLOiOTlnnXzBLbkToEXizUihcnD/nX34uKh28p/tbkQSQaUhHGvd8tzY+ClWhhFOR7l2ommMyQD3aMtSiQXVfjo5eISOrdJFYaRsSYMm6u+JFAuthyKwnQKbvp73xuJ/XisxYdlPmYwTQyWZLgoTjkyExt+jLlOUGD60BBPF7K2I9LHCxNiMcjYEb/7lRVI/LXluybu2aZRhigwcwhEUwYMzqMAVVKEGBAQ8wjO8OMp5cl6dt2nrkjOb2Yc/cN5/AExBkwQ=</latexit><latexit sha1_base64="ACgN7rW8hTVjl+A5YMVBU/A8aTc=">AAAB8HicbVC7SgNBFL3rM4mvqI1gMxiE2IRdG9MIQRvLCOYhyRJmJ7PJkJnZZWZWiEvAf7CxUMTW0k+xE/wYJ49CEw9cOJxzL/feE8ScaeO6X87S8srq2nomm9vY3Nreye/u1XWUKEJrJOKRagZYU84krRlmOG3GimIRcNoIBpdjv3FHlWaRvDHDmPoC9yQLGcHGSrftWLOiOTlnnXzBLbkToEXizUihcnD/nX34uKh28p/tbkQSQaUhHGvd8tzY+ClWhhFOR7l2ommMyQD3aMtSiQXVfjo5eISOrdJFYaRsSYMm6u+JFAuthyKwnQKbvp73xuJ/XisxYdlPmYwTQyWZLgoTjkyExt+jLlOUGD60BBPF7K2I9LHCxNiMcjYEb/7lRVI/LXluybu2aZRhigwcwhEUwYMzqMAVVKEGBAQ8wjO8OMp5cl6dt2nrkjOb2Yc/cN5/AExBkwQ=</latexit><latexit sha1_base64="ACgN7rW8hTVjl+A5YMVBU/A8aTc=">AAAB8HicbVC7SgNBFL3rM4mvqI1gMxiE2IRdG9MIQRvLCOYhyRJmJ7PJkJnZZWZWiEvAf7CxUMTW0k+xE/wYJ49CEw9cOJxzL/feE8ScaeO6X87S8srq2nomm9vY3Nreye/u1XWUKEJrJOKRagZYU84krRlmOG3GimIRcNoIBpdjv3FHlWaRvDHDmPoC9yQLGcHGSrftWLOiOTlnnXzBLbkToEXizUihcnD/nX34uKh28p/tbkQSQaUhHGvd8tzY+ClWhhFOR7l2ommMyQD3aMtSiQXVfjo5eISOrdJFYaRsSYMm6u+JFAuthyKwnQKbvp73xuJ/XisxYdlPmYwTQyWZLgoTjkyExt+jLlOUGD60BBPF7K2I9LHCxNiMcjYEb/7lRVI/LXluybu2aZRhigwcwhEUwYMzqMAVVKEGBAQ8wjO8OMp5cl6dt2nrkjOb2Yc/cN5/AExBkwQ=</latexit><latexit sha1_base64="izyD5bVGKG6yoIZqfb9HtI34pGc=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoMQm3BnYxohYGMZwXxIcoS9zV6yZPfu2J0TwpFfYWOhiK0/x85/4ya5QhMfDDzem2FmXpBIYdB1v53CxubW9k5xt7S3f3B4VD4+aZs41Yy3WCxj3Q2o4VJEvIUCJe8mmlMVSN4JJrdzv/PEtRFx9IDThPuKjiIRCkbRSo/9xIgqXt6IQbni1twFyDrxclKBHM1B+as/jFmqeIRMUmN6npugn1GNgkk+K/VTwxPKJnTEe5ZGVHHjZ4uDZ+TCKkMSxtpWhGSh/p7IqDJmqgLbqSiOzao3F//zeimGdT8TUZIij9hyUZhKgjGZf0+GQnOGcmoJZVrYWwkbU00Z2oxKNgRv9eV10r6qeW7Nu3crjXoeRxHO4Byq4ME1NOAOmtACBgqe4RXeHO28OO/Ox7K14OQzp/AHzucPCc+P2Q==</latexit>

Yt ∼ fi(· | θ,αi)
<latexit sha1_base64="6ATxosCaHkjk7rphbWUOo+J1ClI=">AAACF3icbZDJSgNBEIZrXGPcol4EL41BUJAw48WAF8GLRwVjIpkw1HR6TGPPQneNEGPewouv4sWDIl71JvgwdpaD2w8NP19VUV1/mClpyHU/nInJqemZ2cJccX5hcWm5tLJ6btJcc1HjqUp1I0QjlExEjSQp0ci0wDhUoh5eHQ3q9WuhjUyTM+pmohXjZSIjyZEsCkqVi4CYf+AbGfsHLArkNvN5Ox2wWwt86gjCXR9V1sFA7gSlsltxh2J/jTc25cP1m0+wOglK73475XksEuIKjWl6bkatHmqSXIl+0c+NyJBf4aVoWptgLEyrN7yrz7YsabMo1fYlxIb0+0QPY2O6cWg7Y6SO+V0bwP9qzZyiaqsnkywnkfDRoihXjFI2CIm1pRacVNca5FravzLeQY2cbJRFG4L3++S/5nyv4rkV79SmUYWRCrABm7ANHuzDIRzDCdSAwx08wBM8O/fOo/PivI5aJ5zxzBr8kPP2BWoQn60=</latexit><latexit sha1_base64="QLxZQ4VvFAsftGJQ2r3Ci7wN3Yc="></latexit><latexit sha1_base64="QLxZQ4VvFAsftGJQ2r3Ci7wN3Yc="></latexit><latexit sha1_base64="QLxZQ4VvFAsftGJQ2r3Ci7wN3Yc=">AAACF3icbZC7SgNBFIZnvSfeVm0Em0ERFCTs2hhIE7SxVDBRyYbl7GQ2GZy9MHNWiDHgQ9j4GpY2ForYaif4ME4uhSb+MPDznXM4c/4glUKj43xZE5NT0zOzc7n8/MLi0rK9slrVSaYYr7BEJuoiAM2liHkFBUp+kSoOUSD5eXB11KufX3OlRRKfYTvl9QiasQgFAzTItwuXPlKv5GkReSUa+mKHeqyR9NitAR62OMKeBzJtgS92fXvLKTh90XHjDs1Wef3mO3f3eHji259eI2FZxGNkErSuuU6K9Q4oFEzybt7LNE+BXUGT14yNIeK63unf1aXbhjRomCjzYqR9+nuiA5HW7SgwnRFgS4/WevC/Wi3DsFjviDjNkMdssCjMJMWE9kKiDaE4Q9k2BpgS5q+UtUABQxNl3oTgjp48bqr7BdcpuKcmjSIZaI5skE2yQ1xyQMrkmJyQCmHknjyRF/JqPVjP1pv1PmidsIYza+SPrI8fZ3yhKg==</latexit><latexit sha1_base64="GZmMQNquXWEVMoGp7md2Nyfz75Y=">AAACF3icbZC7SgNBFIZnvcZ4i1raDAYhgoRdGwNpAjaWEcxFsmE5O5lNhsxemDkrhJi3sPFVbCwUsdXOt3E2SaGJPwz8fOcczpzfT6TQaNvf1srq2vrGZm4rv72zu7dfODhs6jhVjDdYLGPV9kFzKSLeQIGStxPFIfQlb/nDq6zeuudKizi6xVHCuyH0IxEIBmiQVyjfeUjdqqtF6FZp4IkSdVkvztiDAS4OOMK5CzIZgCfOvELRLttT0WXjzE2RzFX3Cl9uL2ZpyCNkErTuOHaC3TEoFEzySd5NNU+ADaHPO8ZGEHLdHU/vmtBTQ3o0iJV5EdIp/T0xhlDrUeibzhBwoBdrGfyv1kkxqHTHIkpS5BGbLQpSSTGmWUi0JxRnKEfGAFPC/JWyAShgaKLMmxCcxZOXTfOi7Nhl58Yu1irzOHLkmJyQEnHIJamRa1InDcLII3kmr+TNerJerHfrY9a6Ys1njsgfWZ8/JQqd/w==</latexit>

sample at time t:
<latexit sha1_base64="BoHQ+X7PO5Xvh1nJP71NK3dwwK0=">AAACAXicbVA9SwNBEN3zM8avqI1gs5gIVuEujcEqYGMZwXxAcoS9zVyyZPfu2J0TQoiNf8XGQhFb/4Wd/8ZNcoUmPhh4vDfDzLwgkcKg6347a+sbm1vbuZ387t7+wWHh6Lhp4lRzaPBYxrodMANSRNBAgRLaiQamAgmtYHQz81sPoI2Io3scJ+ArNohEKDhDK/UKp10TUsNUIoEypCgU0BKWrmmvUHTL7hx0lXgZKZIM9V7hq9uPeaogQi6ZMR3PTdCfMI2CS5jmu6mBhPERG0DH0ogpMP5k/sGUXlilT8NY24qQztXfExOmjBmrwHYqhkOz7M3E/7xOimHVn4goSREivlgUppJiTGdx0L7QwFGOLWFcC3sr5UOmGUcbWt6G4C2/vEqalbLnlr27SrFWzeLIkTNyTi6JR65IjdySOmkQTh7JM3klb86T8+K8Ox+L1jUnmzkhf+B8/gA0TpVg</latexit><latexit sha1_base64="BoHQ+X7PO5Xvh1nJP71NK3dwwK0=">AAACAXicbVA9SwNBEN3zM8avqI1gs5gIVuEujcEqYGMZwXxAcoS9zVyyZPfu2J0TQoiNf8XGQhFb/4Wd/8ZNcoUmPhh4vDfDzLwgkcKg6347a+sbm1vbuZ387t7+wWHh6Lhp4lRzaPBYxrodMANSRNBAgRLaiQamAgmtYHQz81sPoI2Io3scJ+ArNohEKDhDK/UKp10TUsNUIoEypCgU0BKWrmmvUHTL7hx0lXgZKZIM9V7hq9uPeaogQi6ZMR3PTdCfMI2CS5jmu6mBhPERG0DH0ogpMP5k/sGUXlilT8NY24qQztXfExOmjBmrwHYqhkOz7M3E/7xOimHVn4goSREivlgUppJiTGdx0L7QwFGOLWFcC3sr5UOmGUcbWt6G4C2/vEqalbLnlr27SrFWzeLIkTNyTi6JR65IjdySOmkQTh7JM3klb86T8+K8Ox+L1jUnmzkhf+B8/gA0TpVg</latexit><latexit sha1_base64="BoHQ+X7PO5Xvh1nJP71NK3dwwK0=">AAACAXicbVA9SwNBEN3zM8avqI1gs5gIVuEujcEqYGMZwXxAcoS9zVyyZPfu2J0TQoiNf8XGQhFb/4Wd/8ZNcoUmPhh4vDfDzLwgkcKg6347a+sbm1vbuZ387t7+wWHh6Lhp4lRzaPBYxrodMANSRNBAgRLaiQamAgmtYHQz81sPoI2Io3scJ+ArNohEKDhDK/UKp10TUsNUIoEypCgU0BKWrmmvUHTL7hx0lXgZKZIM9V7hq9uPeaogQi6ZMR3PTdCfMI2CS5jmu6mBhPERG0DH0ogpMP5k/sGUXlilT8NY24qQztXfExOmjBmrwHYqhkOz7M3E/7xOimHVn4goSREivlgUppJiTGdx0L7QwFGOLWFcC3sr5UOmGUcbWt6G4C2/vEqalbLnlr27SrFWzeLIkTNyTi6JR65IjdySOmkQTh7JM3klb86T8+K8Ox+L1jUnmzkhf+B8/gA0TpVg</latexit><latexit sha1_base64="BoHQ+X7PO5Xvh1nJP71NK3dwwK0=">AAACAXicbVA9SwNBEN3zM8avqI1gs5gIVuEujcEqYGMZwXxAcoS9zVyyZPfu2J0TQoiNf8XGQhFb/4Wd/8ZNcoUmPhh4vDfDzLwgkcKg6347a+sbm1vbuZ387t7+wWHh6Lhp4lRzaPBYxrodMANSRNBAgRLaiQamAgmtYHQz81sPoI2Io3scJ+ArNohEKDhDK/UKp10TUsNUIoEypCgU0BKWrmmvUHTL7hx0lXgZKZIM9V7hq9uPeaogQi6ZMR3PTdCfMI2CS5jmu6mBhPERG0DH0ogpMP5k/sGUXlilT8NY24qQztXfExOmjBmrwHYqhkOz7M3E/7xOimHVn4goSREivlgUppJiTGdx0L7QwFGOLWFcC3sr5UOmGUcbWt6G4C2/vEqalbLnlr27SrFWzeLIkTNyTi6JR65IjdySOmkQTh7JM3klb86T8+K8Ox+L1jUnmzkhf+B8/gA0TpVg</latexit><latexit sha1_base64="BoHQ+X7PO5Xvh1nJP71NK3dwwK0=">AAACAXicbVA9SwNBEN3zM8avqI1gs5gIVuEujcEqYGMZwXxAcoS9zVyyZPfu2J0TQoiNf8XGQhFb/4Wd/8ZNcoUmPhh4vDfDzLwgkcKg6347a+sbm1vbuZ387t7+wWHh6Lhp4lRzaPBYxrodMANSRNBAgRLaiQamAgmtYHQz81sPoI2Io3scJ+ArNohEKDhDK/UKp10TUsNUIoEypCgU0BKWrmmvUHTL7hx0lXgZKZIM9V7hq9uPeaogQi6ZMR3PTdCfMI2CS5jmu6mBhPERG0DH0ogpMP5k/sGUXlilT8NY24qQztXfExOmjBmrwHYqhkOz7M3E/7xOimHVn4goSREivlgUppJiTGdx0L7QwFGOLWFcC3sr5UOmGUcbWt6G4C2/vEqalbLnlr27SrFWzeLIkTNyTi6JR65IjdySOmkQTh7JM3klb86T8+K8Ox+L1jUnmzkhf+B8/gA0TpVg</latexit>

Active Sampling Decisions
<latexit sha1_base64="uYQ87ikU/0QVgs5Iws0WK/uhDmY=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiTd2GVFFy4r2ge0oUymN+3QySTMTAoldOXGX3HjQhG3foM7/8ZJm4W2Hhg4nHMPd+7xY86Udpxvq7C2vrG5Vdwu7ezu7R/Yh0ctFSWSQpNGPJIdnyjgTEBTM82hE0sgoc+h7Y+vM789AalYJB70NAYvJEPBAkaJNlLfPu2pAF9RzSaA70loVoohvgHKsoTq22Wn4syBV4mbkzLK0ejbX71BRJMQhKacKNV1nVh7KZGaUQ6zUi9REBM6JkPoGipICMpL52fM8LlRBjiIpHlC47n6O5GSUKlp6JvJkOiRWvYy8T+vm+ig5qVMxIkGQReLgoRjHeGsEzxgEqjmU0MIlcz8FdMRkYRq01zJlOAun7xKWtWK61Tcu2q5XsvrKKITdIYukIsuUR3dogZqIooe0TN6RW/Wk/VivVsfi9GClWeO0R9Ynz+kGpiO</latexit><latexit sha1_base64="uYQ87ikU/0QVgs5Iws0WK/uhDmY=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiTd2GVFFy4r2ge0oUymN+3QySTMTAoldOXGX3HjQhG3foM7/8ZJm4W2Hhg4nHMPd+7xY86Udpxvq7C2vrG5Vdwu7ezu7R/Yh0ctFSWSQpNGPJIdnyjgTEBTM82hE0sgoc+h7Y+vM789AalYJB70NAYvJEPBAkaJNlLfPu2pAF9RzSaA70loVoohvgHKsoTq22Wn4syBV4mbkzLK0ejbX71BRJMQhKacKNV1nVh7KZGaUQ6zUi9REBM6JkPoGipICMpL52fM8LlRBjiIpHlC47n6O5GSUKlp6JvJkOiRWvYy8T+vm+ig5qVMxIkGQReLgoRjHeGsEzxgEqjmU0MIlcz8FdMRkYRq01zJlOAun7xKWtWK61Tcu2q5XsvrKKITdIYukIsuUR3dogZqIooe0TN6RW/Wk/VivVsfi9GClWeO0R9Ynz+kGpiO</latexit><latexit sha1_base64="uYQ87ikU/0QVgs5Iws0WK/uhDmY=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiTd2GVFFy4r2ge0oUymN+3QySTMTAoldOXGX3HjQhG3foM7/8ZJm4W2Hhg4nHMPd+7xY86Udpxvq7C2vrG5Vdwu7ezu7R/Yh0ctFSWSQpNGPJIdnyjgTEBTM82hE0sgoc+h7Y+vM789AalYJB70NAYvJEPBAkaJNlLfPu2pAF9RzSaA70loVoohvgHKsoTq22Wn4syBV4mbkzLK0ejbX71BRJMQhKacKNV1nVh7KZGaUQ6zUi9REBM6JkPoGipICMpL52fM8LlRBjiIpHlC47n6O5GSUKlp6JvJkOiRWvYy8T+vm+ig5qVMxIkGQReLgoRjHeGsEzxgEqjmU0MIlcz8FdMRkYRq01zJlOAun7xKWtWK61Tcu2q5XsvrKKITdIYukIsuUR3dogZqIooe0TN6RW/Wk/VivVsfi9GClWeO0R9Ynz+kGpiO</latexit><latexit sha1_base64="uYQ87ikU/0QVgs5Iws0WK/uhDmY=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiTd2GVFFy4r2ge0oUymN+3QySTMTAoldOXGX3HjQhG3foM7/8ZJm4W2Hhg4nHMPd+7xY86Udpxvq7C2vrG5Vdwu7ezu7R/Yh0ctFSWSQpNGPJIdnyjgTEBTM82hE0sgoc+h7Y+vM789AalYJB70NAYvJEPBAkaJNlLfPu2pAF9RzSaA70loVoohvgHKsoTq22Wn4syBV4mbkzLK0ejbX71BRJMQhKacKNV1nVh7KZGaUQ6zUi9REBM6JkPoGipICMpL52fM8LlRBjiIpHlC47n6O5GSUKlp6JvJkOiRWvYy8T+vm+ig5qVMxIkGQReLgoRjHeGsEzxgEqjmU0MIlcz8FdMRkYRq01zJlOAun7xKWtWK61Tcu2q5XsvrKKITdIYukIsuUR3dogZqIooe0TN6RW/Wk/VivVsfi9GClWeO0R9Ynz+kGpiO</latexit><latexit sha1_base64="uYQ87ikU/0QVgs5Iws0WK/uhDmY=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiTd2GVFFy4r2ge0oUymN+3QySTMTAoldOXGX3HjQhG3foM7/8ZJm4W2Hhg4nHMPd+7xY86Udpxvq7C2vrG5Vdwu7ezu7R/Yh0ctFSWSQpNGPJIdnyjgTEBTM82hE0sgoc+h7Y+vM789AalYJB70NAYvJEPBAkaJNlLfPu2pAF9RzSaA70loVoohvgHKsoTq22Wn4syBV4mbkzLK0ejbX71BRJMQhKacKNV1nVh7KZGaUQ6zUi9REBM6JkPoGipICMpL52fM8LlRBjiIpHlC47n6O5GSUKlp6JvJkOiRWvYy8T+vm+ig5qVMxIkGQReLgoRjHeGsEzxgEqjmU0MIlcz8FdMRkYRq01zJlOAun7xKWtWK61Tcu2q5XsvrKKITdIYukIsuUR3dogZqIooe0TN6RW/Wk/VivVsfi9GClWeO0R9Ynz+kGpiO</latexit>

Estimator
<latexit sha1_base64="XlpXJGFuc3dO6cDaD+mbKCS9MWA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsx0Y5cFEVxWsA9ox5JJM21oJjMkd5RS+h9uXCji1n9x59+YaWehrQcCh3Pu5Z6cIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMrjO/88i1EbG6x2nC/YiOlAgFo2ilh74JyY1BEVGMdWlQrrhVdwGyTrycVCBHc1D+6g9jlkZcIZPUmJ7nJujPqEbBJJ+X+qnhCWUTOuI9SxWNuPFni9RzcmGVIQljbZ9CslB/b8xoZMw0CuykjTc2q14m/uf1Ugzr/kyoJEWu2PJQmEqCMckqIEOhOUM5tYQyLWxWwsZUU4a2qKwEb/XL66Rdq3pu1burVRr1vI4inME5XIIHV9CAW2hCCxhoeIZXeHOenBfn3flYjhacfOcU/sD5/AHl9JIR</latexit><latexit sha1_base64="XlpXJGFuc3dO6cDaD+mbKCS9MWA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsx0Y5cFEVxWsA9ox5JJM21oJjMkd5RS+h9uXCji1n9x59+YaWehrQcCh3Pu5Z6cIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMrjO/88i1EbG6x2nC/YiOlAgFo2ilh74JyY1BEVGMdWlQrrhVdwGyTrycVCBHc1D+6g9jlkZcIZPUmJ7nJujPqEbBJJ+X+qnhCWUTOuI9SxWNuPFni9RzcmGVIQljbZ9CslB/b8xoZMw0CuykjTc2q14m/uf1Ugzr/kyoJEWu2PJQmEqCMckqIEOhOUM5tYQyLWxWwsZUU4a2qKwEb/XL66Rdq3pu1burVRr1vI4inME5XIIHV9CAW2hCCxhoeIZXeHOenBfn3flYjhacfOcU/sD5/AHl9JIR</latexit><latexit sha1_base64="XlpXJGFuc3dO6cDaD+mbKCS9MWA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsx0Y5cFEVxWsA9ox5JJM21oJjMkd5RS+h9uXCji1n9x59+YaWehrQcCh3Pu5Z6cIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMrjO/88i1EbG6x2nC/YiOlAgFo2ilh74JyY1BEVGMdWlQrrhVdwGyTrycVCBHc1D+6g9jlkZcIZPUmJ7nJujPqEbBJJ+X+qnhCWUTOuI9SxWNuPFni9RzcmGVIQljbZ9CslB/b8xoZMw0CuykjTc2q14m/uf1Ugzr/kyoJEWu2PJQmEqCMckqIEOhOUM5tYQyLWxWwsZUU4a2qKwEb/XL66Rdq3pu1burVRr1vI4inME5XIIHV9CAW2hCCxhoeIZXeHOenBfn3flYjhacfOcU/sD5/AHl9JIR</latexit><latexit sha1_base64="XlpXJGFuc3dO6cDaD+mbKCS9MWA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsx0Y5cFEVxWsA9ox5JJM21oJjMkd5RS+h9uXCji1n9x59+YaWehrQcCh3Pu5Z6cIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMrjO/88i1EbG6x2nC/YiOlAgFo2ilh74JyY1BEVGMdWlQrrhVdwGyTrycVCBHc1D+6g9jlkZcIZPUmJ7nJujPqEbBJJ+X+qnhCWUTOuI9SxWNuPFni9RzcmGVIQljbZ9CslB/b8xoZMw0CuykjTc2q14m/uf1Ugzr/kyoJEWu2PJQmEqCMckqIEOhOUM5tYQyLWxWwsZUU4a2qKwEb/XL66Rdq3pu1burVRr1vI4inME5XIIHV9CAW2hCCxhoeIZXeHOenBfn3flYjhacfOcU/sD5/AHl9JIR</latexit><latexit sha1_base64="XlpXJGFuc3dO6cDaD+mbKCS9MWA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsx0Y5cFEVxWsA9ox5JJM21oJjMkd5RS+h9uXCji1n9x59+YaWehrQcCh3Pu5Z6cIJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMrjO/88i1EbG6x2nC/YiOlAgFo2ilh74JyY1BEVGMdWlQrrhVdwGyTrycVCBHc1D+6g9jlkZcIZPUmJ7nJujPqEbBJJ+X+qnhCWUTOuI9SxWNuPFni9RzcmGVIQljbZ9CslB/b8xoZMw0CuykjTc2q14m/uf1Ugzr/kyoJEWu2PJQmEqCMckqIEOhOUM5tYQyLWxWwsZUU4a2qKwEb/XL66Rdq3pu1burVRr1vI4inME5XIIHV9CAW2hCCxhoeIZXeHOenBfn3flYjhacfOcU/sD5/AHl9JIR</latexit>

Stop
<latexit sha1_base64="TYUKPdiMQmAA7Onn5u8W/bKi5Z4=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd1czDHgxWNE85BkCbOT2WTIPJaZWSEs+QovHhTx6ud482+cTfagiQUNRVU33V1Rwpmxvv/tbWxube/slvbK+weHR8eVk9OOUakmtE0UV7oXYUM5k7RtmeW0l2iKRcRpN5re5H73iWrDlHyws4SGAo8lixnB1kmPAxOje6uS8rBS9Wv+AmidBAWpQoHWsPI1GCmSCiot4diYfuAnNsywtoxwOi8PUkMTTKZ4TPuOSiyoCbPFwXN06ZQRipV2JS1aqL8nMiyMmYnIdQpsJ2bVy8X/vH5q40aYMZmklkqyXBSnHFmF8u/RiGlKLJ85golm7lZEJlhjYl1GeQjB6svrpFOvBX4tuKtXm40ijhKcwwVcQQDX0IRbaEEbCAh4hld487T34r17H8vWDa+YOYM/8D5/APTtj80=</latexit><latexit sha1_base64="TYUKPdiMQmAA7Onn5u8W/bKi5Z4=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd1czDHgxWNE85BkCbOT2WTIPJaZWSEs+QovHhTx6ud482+cTfagiQUNRVU33V1Rwpmxvv/tbWxube/slvbK+weHR8eVk9OOUakmtE0UV7oXYUM5k7RtmeW0l2iKRcRpN5re5H73iWrDlHyws4SGAo8lixnB1kmPAxOje6uS8rBS9Wv+AmidBAWpQoHWsPI1GCmSCiot4diYfuAnNsywtoxwOi8PUkMTTKZ4TPuOSiyoCbPFwXN06ZQRipV2JS1aqL8nMiyMmYnIdQpsJ2bVy8X/vH5q40aYMZmklkqyXBSnHFmF8u/RiGlKLJ85golm7lZEJlhjYl1GeQjB6svrpFOvBX4tuKtXm40ijhKcwwVcQQDX0IRbaEEbCAh4hld487T34r17H8vWDa+YOYM/8D5/APTtj80=</latexit><latexit sha1_base64="TYUKPdiMQmAA7Onn5u8W/bKi5Z4=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd1czDHgxWNE85BkCbOT2WTIPJaZWSEs+QovHhTx6ud482+cTfagiQUNRVU33V1Rwpmxvv/tbWxube/slvbK+weHR8eVk9OOUakmtE0UV7oXYUM5k7RtmeW0l2iKRcRpN5re5H73iWrDlHyws4SGAo8lixnB1kmPAxOje6uS8rBS9Wv+AmidBAWpQoHWsPI1GCmSCiot4diYfuAnNsywtoxwOi8PUkMTTKZ4TPuOSiyoCbPFwXN06ZQRipV2JS1aqL8nMiyMmYnIdQpsJ2bVy8X/vH5q40aYMZmklkqyXBSnHFmF8u/RiGlKLJ85golm7lZEJlhjYl1GeQjB6svrpFOvBX4tuKtXm40ijhKcwwVcQQDX0IRbaEEbCAh4hld487T34r17H8vWDa+YOYM/8D5/APTtj80=</latexit><latexit sha1_base64="TYUKPdiMQmAA7Onn5u8W/bKi5Z4=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd1czDHgxWNE85BkCbOT2WTIPJaZWSEs+QovHhTx6ud482+cTfagiQUNRVU33V1Rwpmxvv/tbWxube/slvbK+weHR8eVk9OOUakmtE0UV7oXYUM5k7RtmeW0l2iKRcRpN5re5H73iWrDlHyws4SGAo8lixnB1kmPAxOje6uS8rBS9Wv+AmidBAWpQoHWsPI1GCmSCiot4diYfuAnNsywtoxwOi8PUkMTTKZ4TPuOSiyoCbPFwXN06ZQRipV2JS1aqL8nMiyMmYnIdQpsJ2bVy8X/vH5q40aYMZmklkqyXBSnHFmF8u/RiGlKLJ85golm7lZEJlhjYl1GeQjB6svrpFOvBX4tuKtXm40ijhKcwwVcQQDX0IRbaEEbCAh4hld487T34r17H8vWDa+YOYM/8D5/APTtj80=</latexit><latexit sha1_base64="TYUKPdiMQmAA7Onn5u8W/bKi5Z4=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd1czDHgxWNE85BkCbOT2WTIPJaZWSEs+QovHhTx6ud482+cTfagiQUNRVU33V1Rwpmxvv/tbWxube/slvbK+weHR8eVk9OOUakmtE0UV7oXYUM5k7RtmeW0l2iKRcRpN5re5H73iWrDlHyws4SGAo8lixnB1kmPAxOje6uS8rBS9Wv+AmidBAWpQoHWsPI1GCmSCiot4diYfuAnNsywtoxwOi8PUkMTTKZ4TPuOSiyoCbPFwXN06ZQRipV2JS1aqL8nMiyMmYnIdQpsJ2bVy8X/vH5q40aYMZmklkqyXBSnHFmF8u/RiGlKLJ85golm7lZEJlhjYl1GeQjB6svrpFOvBX4tuKtXm40ijhKcwwVcQQDX0IRbaEEbCAh4hld487T34r17H8vWDa+YOYM/8D5/APTtj80=</latexit>

No
<latexit sha1_base64="b9np9EsNpyCOpvCln1H0R87WDcQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKezmYo4BL54kgnlAsoTZyWwyZB7LzKwQlnyEFw+KePV7vPk3ziZ70MSChqKqm+6uKOHMWN//9kpb2zu7e+X9ysHh0fFJ9fSsa1SqCe0QxZXuR9hQziTtWGY57SeaYhFx2otmt7nfe6LaMCUf7TyhocATyWJGsHVSb2hidK8qo2rNr/tLoE0SFKQGBdqj6tdwrEgqqLSEY2MGgZ/YMMPaMsLpojJMDU0wmeEJHTgqsaAmzJbnLtCVU8YoVtqVtGip/p7IsDBmLiLXKbCdmnUvF//zBqmNm2HGZJJaKslqUZxyZBXKf0djpimxfO4IJpq5WxGZYo2JdQnlIQTrL2+SbqMe+PXgoVFrNYs4ynABl3ANAdxAC+6gDR0gMINneIU3L/FevHfvY9Va8oqZc/gD7/MHREOO0A==</latexit><latexit sha1_base64="b9np9EsNpyCOpvCln1H0R87WDcQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKezmYo4BL54kgnlAsoTZyWwyZB7LzKwQlnyEFw+KePV7vPk3ziZ70MSChqKqm+6uKOHMWN//9kpb2zu7e+X9ysHh0fFJ9fSsa1SqCe0QxZXuR9hQziTtWGY57SeaYhFx2otmt7nfe6LaMCUf7TyhocATyWJGsHVSb2hidK8qo2rNr/tLoE0SFKQGBdqj6tdwrEgqqLSEY2MGgZ/YMMPaMsLpojJMDU0wmeEJHTgqsaAmzJbnLtCVU8YoVtqVtGip/p7IsDBmLiLXKbCdmnUvF//zBqmNm2HGZJJaKslqUZxyZBXKf0djpimxfO4IJpq5WxGZYo2JdQnlIQTrL2+SbqMe+PXgoVFrNYs4ynABl3ANAdxAC+6gDR0gMINneIU3L/FevHfvY9Va8oqZc/gD7/MHREOO0A==</latexit><latexit sha1_base64="b9np9EsNpyCOpvCln1H0R87WDcQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKezmYo4BL54kgnlAsoTZyWwyZB7LzKwQlnyEFw+KePV7vPk3ziZ70MSChqKqm+6uKOHMWN//9kpb2zu7e+X9ysHh0fFJ9fSsa1SqCe0QxZXuR9hQziTtWGY57SeaYhFx2otmt7nfe6LaMCUf7TyhocATyWJGsHVSb2hidK8qo2rNr/tLoE0SFKQGBdqj6tdwrEgqqLSEY2MGgZ/YMMPaMsLpojJMDU0wmeEJHTgqsaAmzJbnLtCVU8YoVtqVtGip/p7IsDBmLiLXKbCdmnUvF//zBqmNm2HGZJJaKslqUZxyZBXKf0djpimxfO4IJpq5WxGZYo2JdQnlIQTrL2+SbqMe+PXgoVFrNYs4ynABl3ANAdxAC+6gDR0gMINneIU3L/FevHfvY9Va8oqZc/gD7/MHREOO0A==</latexit><latexit sha1_base64="b9np9EsNpyCOpvCln1H0R87WDcQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKezmYo4BL54kgnlAsoTZyWwyZB7LzKwQlnyEFw+KePV7vPk3ziZ70MSChqKqm+6uKOHMWN//9kpb2zu7e+X9ysHh0fFJ9fSsa1SqCe0QxZXuR9hQziTtWGY57SeaYhFx2otmt7nfe6LaMCUf7TyhocATyWJGsHVSb2hidK8qo2rNr/tLoE0SFKQGBdqj6tdwrEgqqLSEY2MGgZ/YMMPaMsLpojJMDU0wmeEJHTgqsaAmzJbnLtCVU8YoVtqVtGip/p7IsDBmLiLXKbCdmnUvF//zBqmNm2HGZJJaKslqUZxyZBXKf0djpimxfO4IJpq5WxGZYo2JdQnlIQTrL2+SbqMe+PXgoVFrNYs4ynABl3ANAdxAC+6gDR0gMINneIU3L/FevHfvY9Va8oqZc/gD7/MHREOO0A==</latexit><latexit sha1_base64="b9np9EsNpyCOpvCln1H0R87WDcQ=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKezmYo4BL54kgnlAsoTZyWwyZB7LzKwQlnyEFw+KePV7vPk3ziZ70MSChqKqm+6uKOHMWN//9kpb2zu7e+X9ysHh0fFJ9fSsa1SqCe0QxZXuR9hQziTtWGY57SeaYhFx2otmt7nfe6LaMCUf7TyhocATyWJGsHVSb2hidK8qo2rNr/tLoE0SFKQGBdqj6tdwrEgqqLSEY2MGgZ/YMMPaMsLpojJMDU0wmeEJHTgqsaAmzJbnLtCVU8YoVtqVtGip/p7IsDBmLiLXKbCdmnUvF//zBqmNm2HGZJJaKslqUZxyZBXKf0djpimxfO4IJpq5WxGZYo2JdQnlIQTrL2+SbqMe+PXgoVFrNYs4ynABl3ANAdxAC+6gDR0gMINneIU3L/FevHfvY9Va8oqZc/gD7/MHREOO0A==</latexit>

Yes
<latexit sha1_base64="t1O2Yj92fIDJ9dzxaVUxXJjzq/w=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4Kkkv9ljw4rGC/ZA2lM120i7dbOLuRiihf8KLB0W8+ne8+W/ctDlo64OBx3szzMwLEsG1cd1vZ2Nza3tnt7RX3j84PDqunJx2dJwqhm0Wi1j1AqpRcIltw43AXqKQRoHAbjC9yf3uEyrNY3lvZgn6ER1LHnJGjZV6Ax2SB9TlYaXq1twFyDrxClKFAq1h5WswilkaoTRMUK37npsYP6PKcCZwXh6kGhPKpnSMfUsljVD72eLeObm0yoiEsbIlDVmovycyGmk9iwLbGVEz0ateLv7n9VMTNvyMyyQ1KNlyUZgKYmKSP09GXCEzYmYJZYrbWwmbUEWZsRHlIXirL6+TTr3muTXvrl5tNoo4SnAOF3AFHlxDE26hBW1gIOAZXuHNeXRenHfnY9m64RQzZ/AHzucPG6SPTg==</latexit><latexit sha1_base64="t1O2Yj92fIDJ9dzxaVUxXJjzq/w=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4Kkkv9ljw4rGC/ZA2lM120i7dbOLuRiihf8KLB0W8+ne8+W/ctDlo64OBx3szzMwLEsG1cd1vZ2Nza3tnt7RX3j84PDqunJx2dJwqhm0Wi1j1AqpRcIltw43AXqKQRoHAbjC9yf3uEyrNY3lvZgn6ER1LHnJGjZV6Ax2SB9TlYaXq1twFyDrxClKFAq1h5WswilkaoTRMUK37npsYP6PKcCZwXh6kGhPKpnSMfUsljVD72eLeObm0yoiEsbIlDVmovycyGmk9iwLbGVEz0ateLv7n9VMTNvyMyyQ1KNlyUZgKYmKSP09GXCEzYmYJZYrbWwmbUEWZsRHlIXirL6+TTr3muTXvrl5tNoo4SnAOF3AFHlxDE26hBW1gIOAZXuHNeXRenHfnY9m64RQzZ/AHzucPG6SPTg==</latexit><latexit sha1_base64="t1O2Yj92fIDJ9dzxaVUxXJjzq/w=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4Kkkv9ljw4rGC/ZA2lM120i7dbOLuRiihf8KLB0W8+ne8+W/ctDlo64OBx3szzMwLEsG1cd1vZ2Nza3tnt7RX3j84PDqunJx2dJwqhm0Wi1j1AqpRcIltw43AXqKQRoHAbjC9yf3uEyrNY3lvZgn6ER1LHnJGjZV6Ax2SB9TlYaXq1twFyDrxClKFAq1h5WswilkaoTRMUK37npsYP6PKcCZwXh6kGhPKpnSMfUsljVD72eLeObm0yoiEsbIlDVmovycyGmk9iwLbGVEz0ateLv7n9VMTNvyMyyQ1KNlyUZgKYmKSP09GXCEzYmYJZYrbWwmbUEWZsRHlIXirL6+TTr3muTXvrl5tNoo4SnAOF3AFHlxDE26hBW1gIOAZXuHNeXRenHfnY9m64RQzZ/AHzucPG6SPTg==</latexit><latexit sha1_base64="t1O2Yj92fIDJ9dzxaVUxXJjzq/w=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4Kkkv9ljw4rGC/ZA2lM120i7dbOLuRiihf8KLB0W8+ne8+W/ctDlo64OBx3szzMwLEsG1cd1vZ2Nza3tnt7RX3j84PDqunJx2dJwqhm0Wi1j1AqpRcIltw43AXqKQRoHAbjC9yf3uEyrNY3lvZgn6ER1LHnJGjZV6Ax2SB9TlYaXq1twFyDrxClKFAq1h5WswilkaoTRMUK37npsYP6PKcCZwXh6kGhPKpnSMfUsljVD72eLeObm0yoiEsbIlDVmovycyGmk9iwLbGVEz0ateLv7n9VMTNvyMyyQ1KNlyUZgKYmKSP09GXCEzYmYJZYrbWwmbUEWZsRHlIXirL6+TTr3muTXvrl5tNoo4SnAOF3AFHlxDE26hBW1gIOAZXuHNeXRenHfnY9m64RQzZ/AHzucPG6SPTg==</latexit><latexit sha1_base64="t1O2Yj92fIDJ9dzxaVUxXJjzq/w=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4Kkkv9ljw4rGC/ZA2lM120i7dbOLuRiihf8KLB0W8+ne8+W/ctDlo64OBx3szzMwLEsG1cd1vZ2Nza3tnt7RX3j84PDqunJx2dJwqhm0Wi1j1AqpRcIltw43AXqKQRoHAbjC9yf3uEyrNY3lvZgn6ER1LHnJGjZV6Ax2SB9TlYaXq1twFyDrxClKFAq1h5WswilkaoTRMUK37npsYP6PKcCZwXh6kGhPKpnSMfUsljVD72eLeObm0yoiEsbIlDVmovycyGmk9iwLbGVEz0ateLv7n9VMTNvyMyyQ1KNlyUZgKYmKSP09GXCEzYmYJZYrbWwmbUEWZsRHlIXirL6+TTr3muTXvrl5tNoo4SnAOF3AFHlxDE26hBW1gIOAZXuHNeXRenHfnY9m64RQzZ/AHzucPG6SPTg==</latexit>

S1
<latexit sha1_base64="0H7Q6pY9Ag6aMhT0Sy7jihmMbIE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4rtR/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzSxBP6JjyUPOqLFSqzX0huWKW3WXIJvEy0kFcjSH5a/BKGZphNIwQbXue25i/Iwqw5nAeWmQakwom9Ix9i2VNELtZ8tT5+TKKiMSxsqWNGSp/p7IaKT1LApsZ0TNRK97C/E/r5+asO5nXCapQclWi8JUEBOTxd9kxBUyI2aWUKa4vZWwCVWUGZtOyYbgrb+8STo3Vc+teg+3lUY9j6MIF3AJ1+BBDRpwD01oA4MxPMMrvDnCeXHenY9Va8HJZ87hD5zPH9BBjXE=</latexit><latexit sha1_base64="0H7Q6pY9Ag6aMhT0Sy7jihmMbIE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4rtR/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzSxBP6JjyUPOqLFSqzX0huWKW3WXIJvEy0kFcjSH5a/BKGZphNIwQbXue25i/Iwqw5nAeWmQakwom9Ix9i2VNELtZ8tT5+TKKiMSxsqWNGSp/p7IaKT1LApsZ0TNRK97C/E/r5+asO5nXCapQclWi8JUEBOTxd9kxBUyI2aWUKa4vZWwCVWUGZtOyYbgrb+8STo3Vc+teg+3lUY9j6MIF3AJ1+BBDRpwD01oA4MxPMMrvDnCeXHenY9Va8HJZ87hD5zPH9BBjXE=</latexit><latexit sha1_base64="0H7Q6pY9Ag6aMhT0Sy7jihmMbIE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4rtR/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzSxBP6JjyUPOqLFSqzX0huWKW3WXIJvEy0kFcjSH5a/BKGZphNIwQbXue25i/Iwqw5nAeWmQakwom9Ix9i2VNELtZ8tT5+TKKiMSxsqWNGSp/p7IaKT1LApsZ0TNRK97C/E/r5+asO5nXCapQclWi8JUEBOTxd9kxBUyI2aWUKa4vZWwCVWUGZtOyYbgrb+8STo3Vc+teg+3lUY9j6MIF3AJ1+BBDRpwD01oA4MxPMMrvDnCeXHenY9Va8HJZ87hD5zPH9BBjXE=</latexit><latexit sha1_base64="0H7Q6pY9Ag6aMhT0Sy7jihmMbIE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4rtR/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzSxBP6JjyUPOqLFSqzX0huWKW3WXIJvEy0kFcjSH5a/BKGZphNIwQbXue25i/Iwqw5nAeWmQakwom9Ix9i2VNELtZ8tT5+TKKiMSxsqWNGSp/p7IaKT1LApsZ0TNRK97C/E/r5+asO5nXCapQclWi8JUEBOTxd9kxBUyI2aWUKa4vZWwCVWUGZtOyYbgrb+8STo3Vc+teg+3lUY9j6MIF3AJ1+BBDRpwD01oA4MxPMMrvDnCeXHenY9Va8HJZ87hD5zPH9BBjXE=</latexit><latexit sha1_base64="0H7Q6pY9Ag6aMhT0Sy7jihmMbIE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4rtR/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzSxBP6JjyUPOqLFSqzX0huWKW3WXIJvEy0kFcjSH5a/BKGZphNIwQbXue25i/Iwqw5nAeWmQakwom9Ix9i2VNELtZ8tT5+TKKiMSxsqWNGSp/p7IaKT1LApsZ0TNRK97C/E/r5+asO5nXCapQclWi8JUEBOTxd9kxBUyI2aWUKa4vZWwCVWUGZtOyYbgrb+8STo3Vc+teg+3lUY9j6MIF3AJ1+BBDRpwD01oA4MxPMMrvDnCeXHenY9Va8HJZ87hD5zPH9BBjXE=</latexit>

Si
<latexit sha1_base64="Wl9YUkUjDpUuQyQ+aUzqSUtn19o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4rtR/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVWq2hGJYrbtVdgmwSLycVyNEclr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6KYd3PhEpS5IqtFoWpJBiTxd9kJDRnKGeWUKaFvZWwCdWUoU2nZEPw1l/eJJ2bqudWvYfbSqOex1GEC7iEa/CgBg24hya0gcEYnuEV3hzpvDjvzseqteDkM+fwB87nDyUwjak=</latexit><latexit sha1_base64="Wl9YUkUjDpUuQyQ+aUzqSUtn19o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4rtR/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVWq2hGJYrbtVdgmwSLycVyNEclr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6KYd3PhEpS5IqtFoWpJBiTxd9kJDRnKGeWUKaFvZWwCdWUoU2nZEPw1l/eJJ2bqudWvYfbSqOex1GEC7iEa/CgBg24hya0gcEYnuEV3hzpvDjvzseqteDkM+fwB87nDyUwjak=</latexit><latexit sha1_base64="Wl9YUkUjDpUuQyQ+aUzqSUtn19o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4rtR/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVWq2hGJYrbtVdgmwSLycVyNEclr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6KYd3PhEpS5IqtFoWpJBiTxd9kJDRnKGeWUKaFvZWwCdWUoU2nZEPw1l/eJJ2bqudWvYfbSqOex1GEC7iEa/CgBg24hya0gcEYnuEV3hzpvDjvzseqteDkM+fwB87nDyUwjak=</latexit><latexit sha1_base64="Wl9YUkUjDpUuQyQ+aUzqSUtn19o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4rtR/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVWq2hGJYrbtVdgmwSLycVyNEclr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6KYd3PhEpS5IqtFoWpJBiTxd9kJDRnKGeWUKaFvZWwCdWUoU2nZEPw1l/eJJ2bqudWvYfbSqOex1GEC7iEa/CgBg24hya0gcEYnuEV3hzpvDjvzseqteDkM+fwB87nDyUwjak=</latexit><latexit sha1_base64="Wl9YUkUjDpUuQyQ+aUzqSUtn19o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4rtR/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVWq2hGJYrbtVdgmwSLycVyNEclr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6KYd3PhEpS5IqtFoWpJBiTxd9kJDRnKGeWUKaFvZWwCdWUoU2nZEPw1l/eJJ2bqudWvYfbSqOex1GEC7iEa/CgBg24hya0gcEYnuEV3hzpvDjvzseqteDkM+fwB87nDyUwjak=</latexit>

SK
<latexit sha1_base64="UsYohe2Ri6Y5n8ZA3lRT3MB2eU0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF8FLpfYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lo5km6Ed0JHnIGTVWajYH94Nyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFqTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxvMuQKmRFTSyhT3N5K2JgqyoxNp2RD8FZfXiftq6rnVr2H60q9lsdRhDM4h0vw4AbqcAcNaAGDETzDK7w5wnlx3p2PZWvByWdO4Q+czx/3qY2L</latexit><latexit sha1_base64="UsYohe2Ri6Y5n8ZA3lRT3MB2eU0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF8FLpfYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lo5km6Ed0JHnIGTVWajYH94Nyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFqTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxvMuQKmRFTSyhT3N5K2JgqyoxNp2RD8FZfXiftq6rnVr2H60q9lsdRhDM4h0vw4AbqcAcNaAGDETzDK7w5wnlx3p2PZWvByWdO4Q+czx/3qY2L</latexit><latexit sha1_base64="UsYohe2Ri6Y5n8ZA3lRT3MB2eU0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF8FLpfYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lo5km6Ed0JHnIGTVWajYH94Nyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFqTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxvMuQKmRFTSyhT3N5K2JgqyoxNp2RD8FZfXiftq6rnVr2H60q9lsdRhDM4h0vw4AbqcAcNaAGDETzDK7w5wnlx3p2PZWvByWdO4Q+czx/3qY2L</latexit><latexit sha1_base64="UsYohe2Ri6Y5n8ZA3lRT3MB2eU0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF8FLpfYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lo5km6Ed0JHnIGTVWajYH94Nyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFqTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxvMuQKmRFTSyhT3N5K2JgqyoxNp2RD8FZfXiftq6rnVr2H60q9lsdRhDM4h0vw4AbqcAcNaAGDETzDK7w5wnlx3p2PZWvByWdO4Q+czx/3qY2L</latexit><latexit sha1_base64="UsYohe2Ri6Y5n8ZA3lRT3MB2eU0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF8FLpfYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lo5km6Ed0JHnIGTVWajYH94Nyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFqTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxvMuQKmRFTSyhT3N5K2JgqyoxNp2RD8FZfXiftq6rnVr2H60q9lsdRhDM4h0vw4AbqcAcNaAGDETzDK7w5wnlx3p2PZWvByWdO4Q+czx/3qY2L</latexit>

.

.

.<latexit sha1_base64="N3MuOAhneXA5a9+H5/p7qNNrEoU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m067dZMPupFBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4bu53JlwboZJHnKbcj+kwEZFgFK3U7k9ChWZQqbo1dwGyTryCVKFAc1D56oeKZTFPkElqTM9zU/RzqlEwyWflfmZ4StmYDnnP0oTG3Pj54toZubRKSCKlbSVIFurviZzGxkzjwHbGFEdm1ZuL/3m9DKO6n4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYSOqKUMbUNmG4K2+vE7a1zXPrXkPN9VGvYijBOdwAVfgwS004B6a0AIGT/AMr/DmKOfFeXc+lq0bTjFzBn/gfP4AyG2POA==</latexit><latexit sha1_base64="N3MuOAhneXA5a9+H5/p7qNNrEoU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m067dZMPupFBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4bu53JlwboZJHnKbcj+kwEZFgFK3U7k9ChWZQqbo1dwGyTryCVKFAc1D56oeKZTFPkElqTM9zU/RzqlEwyWflfmZ4StmYDnnP0oTG3Pj54toZubRKSCKlbSVIFurviZzGxkzjwHbGFEdm1ZuL/3m9DKO6n4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYSOqKUMbUNmG4K2+vE7a1zXPrXkPN9VGvYijBOdwAVfgwS004B6a0AIGT/AMr/DmKOfFeXc+lq0bTjFzBn/gfP4AyG2POA==</latexit><latexit sha1_base64="N3MuOAhneXA5a9+H5/p7qNNrEoU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m067dZMPupFBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4bu53JlwboZJHnKbcj+kwEZFgFK3U7k9ChWZQqbo1dwGyTryCVKFAc1D56oeKZTFPkElqTM9zU/RzqlEwyWflfmZ4StmYDnnP0oTG3Pj54toZubRKSCKlbSVIFurviZzGxkzjwHbGFEdm1ZuL/3m9DKO6n4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYSOqKUMbUNmG4K2+vE7a1zXPrXkPN9VGvYijBOdwAVfgwS004B6a0AIGT/AMr/DmKOfFeXc+lq0bTjFzBn/gfP4AyG2POA==</latexit><latexit sha1_base64="N3MuOAhneXA5a9+H5/p7qNNrEoU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m067dZMPupFBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4bu53JlwboZJHnKbcj+kwEZFgFK3U7k9ChWZQqbo1dwGyTryCVKFAc1D56oeKZTFPkElqTM9zU/RzqlEwyWflfmZ4StmYDnnP0oTG3Pj54toZubRKSCKlbSVIFurviZzGxkzjwHbGFEdm1ZuL/3m9DKO6n4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYSOqKUMbUNmG4K2+vE7a1zXPrXkPN9VGvYijBOdwAVfgwS004B6a0AIGT/AMr/DmKOfFeXc+lq0bTjFzBn/gfP4AyG2POA==</latexit><latexit sha1_base64="N3MuOAhneXA5a9+H5/p7qNNrEoU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m067dZMPupFBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4bu53JlwboZJHnKbcj+kwEZFgFK3U7k9ChWZQqbo1dwGyTryCVKFAc1D56oeKZTFPkElqTM9zU/RzqlEwyWflfmZ4StmYDnnP0oTG3Pj54toZubRKSCKlbSVIFurviZzGxkzjwHbGFEdm1ZuL/3m9DKO6n4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYSOqKUMbUNmG4K2+vE7a1zXPrXkPN9VGvYijBOdwAVfgwS004B6a0AIGT/AMr/DmKOfFeXc+lq0bTjFzBn/gfP4AyG2POA==</latexit>

.

.

.<latexit sha1_base64="N3MuOAhneXA5a9+H5/p7qNNrEoU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m067dZMPupFBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4bu53JlwboZJHnKbcj+kwEZFgFK3U7k9ChWZQqbo1dwGyTryCVKFAc1D56oeKZTFPkElqTM9zU/RzqlEwyWflfmZ4StmYDnnP0oTG3Pj54toZubRKSCKlbSVIFurviZzGxkzjwHbGFEdm1ZuL/3m9DKO6n4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYSOqKUMbUNmG4K2+vE7a1zXPrXkPN9VGvYijBOdwAVfgwS004B6a0AIGT/AMr/DmKOfFeXc+lq0bTjFzBn/gfP4AyG2POA==</latexit><latexit sha1_base64="N3MuOAhneXA5a9+H5/p7qNNrEoU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m067dZMPupFBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4bu53JlwboZJHnKbcj+kwEZFgFK3U7k9ChWZQqbo1dwGyTryCVKFAc1D56oeKZTFPkElqTM9zU/RzqlEwyWflfmZ4StmYDnnP0oTG3Pj54toZubRKSCKlbSVIFurviZzGxkzjwHbGFEdm1ZuL/3m9DKO6n4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYSOqKUMbUNmG4K2+vE7a1zXPrXkPN9VGvYijBOdwAVfgwS004B6a0AIGT/AMr/DmKOfFeXc+lq0bTjFzBn/gfP4AyG2POA==</latexit><latexit sha1_base64="N3MuOAhneXA5a9+H5/p7qNNrEoU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m067dZMPupFBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4bu53JlwboZJHnKbcj+kwEZFgFK3U7k9ChWZQqbo1dwGyTryCVKFAc1D56oeKZTFPkElqTM9zU/RzqlEwyWflfmZ4StmYDnnP0oTG3Pj54toZubRKSCKlbSVIFurviZzGxkzjwHbGFEdm1ZuL/3m9DKO6n4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYSOqKUMbUNmG4K2+vE7a1zXPrXkPN9VGvYijBOdwAVfgwS004B6a0AIGT/AMr/DmKOfFeXc+lq0bTjFzBn/gfP4AyG2POA==</latexit><latexit sha1_base64="N3MuOAhneXA5a9+H5/p7qNNrEoU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m067dZMPupFBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4bu53JlwboZJHnKbcj+kwEZFgFK3U7k9ChWZQqbo1dwGyTryCVKFAc1D56oeKZTFPkElqTM9zU/RzqlEwyWflfmZ4StmYDnnP0oTG3Pj54toZubRKSCKlbSVIFurviZzGxkzjwHbGFEdm1ZuL/3m9DKO6n4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYSOqKUMbUNmG4K2+vE7a1zXPrXkPN9VGvYijBOdwAVfgwS004B6a0AIGT/AMr/DmKOfFeXc+lq0bTjFzBn/gfP4AyG2POA==</latexit><latexit sha1_base64="N3MuOAhneXA5a9+H5/p7qNNrEoU=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m067dZMPupFBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXpFIYdN1vZ2Nza3tnt7RX3j84PDqunJy2jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4bu53JlwboZJHnKbcj+kwEZFgFK3U7k9ChWZQqbo1dwGyTryCVKFAc1D56oeKZTFPkElqTM9zU/RzqlEwyWflfmZ4StmYDnnP0oTG3Pj54toZubRKSCKlbSVIFurviZzGxkzjwHbGFEdm1ZuL/3m9DKO6n4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYSOqKUMbUNmG4K2+vE7a1zXPrXkPN9VGvYijBOdwAVfgwS004B6a0AIGT/AMr/DmKOfFeXc+lq0bTjFzBn/gfP4AyG2POA==</latexit>

public
<latexit sha1_base64="WzWL4baeTTcSa4P796DlqRtHzLw=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0duF3n1BpHssHM0vQj+hY8pAzaqz0ONAhSdJAcDas1ty6m4OsE68gNSjQGla/BqOYpRFKwwTVuu+5ifEzqgxnAueVQaoxoWxKx9i3VNIItZ/lF8/JhVVGJIyVLWlIrv6eyGik9SwKbGdEzUSvegvxP6+fmrDhZ1wmqUHJlovCVBATk8X7ZMQVMiNmllCmuL2VsAlVlBkbUsWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGEp7hFd4c7bw4787HsrXkFDOn8AfO5w9YJZCo</latexit><latexit sha1_base64="WzWL4baeTTcSa4P796DlqRtHzLw=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0duF3n1BpHssHM0vQj+hY8pAzaqz0ONAhSdJAcDas1ty6m4OsE68gNSjQGla/BqOYpRFKwwTVuu+5ifEzqgxnAueVQaoxoWxKx9i3VNIItZ/lF8/JhVVGJIyVLWlIrv6eyGik9SwKbGdEzUSvegvxP6+fmrDhZ1wmqUHJlovCVBATk8X7ZMQVMiNmllCmuL2VsAlVlBkbUsWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGEp7hFd4c7bw4787HsrXkFDOn8AfO5w9YJZCo</latexit><latexit sha1_base64="WzWL4baeTTcSa4P796DlqRtHzLw=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0duF3n1BpHssHM0vQj+hY8pAzaqz0ONAhSdJAcDas1ty6m4OsE68gNSjQGla/BqOYpRFKwwTVuu+5ifEzqgxnAueVQaoxoWxKx9i3VNIItZ/lF8/JhVVGJIyVLWlIrv6eyGik9SwKbGdEzUSvegvxP6+fmrDhZ1wmqUHJlovCVBATk8X7ZMQVMiNmllCmuL2VsAlVlBkbUsWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGEp7hFd4c7bw4787HsrXkFDOn8AfO5w9YJZCo</latexit><latexit sha1_base64="WzWL4baeTTcSa4P796DlqRtHzLw=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0duF3n1BpHssHM0vQj+hY8pAzaqz0ONAhSdJAcDas1ty6m4OsE68gNSjQGla/BqOYpRFKwwTVuu+5ifEzqgxnAueVQaoxoWxKx9i3VNIItZ/lF8/JhVVGJIyVLWlIrv6eyGik9SwKbGdEzUSvegvxP6+fmrDhZ1wmqUHJlovCVBATk8X7ZMQVMiNmllCmuL2VsAlVlBkbUsWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGEp7hFd4c7bw4787HsrXkFDOn8AfO5w9YJZCo</latexit><latexit sha1_base64="WzWL4baeTTcSa4P796DlqRtHzLw=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jNs1BWx8MPN6bYWZekAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0duF3n1BpHssHM0vQj+hY8pAzaqz0ONAhSdJAcDas1ty6m4OsE68gNSjQGla/BqOYpRFKwwTVuu+5ifEzqgxnAueVQaoxoWxKx9i3VNIItZ/lF8/JhVVGJIyVLWlIrv6eyGik9SwKbGdEzUSvegvxP6+fmrDhZ1wmqUHJlovCVBATk8X7ZMQVMiNmllCmuL2VsAlVlBkbUsWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGEp7hFd4c7bw4787HsrXkFDOn8AfO5w9YJZCo</latexit>

private
<latexit sha1_base64="YgLHmw63JSXhE+WaigF9hRzawUI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7AekoWy2m3bpZhN2J4US+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MJXCoOt+O6Wt7Z3dvfJ+5eDw6PikenrWMUmmGW+zRCa6F1LDpVC8jQIl76Wa0ziUvBtO7hd+d8q1EYl6wlnKg5iOlIgEo2glv28ikmoxpcgH1Zpbd5cgm8QrSA0KtAbVr/4wYVnMFTJJjfE9N8UgpxoFk3xe6WeGp5RN6Ij7lioacxPky5Pn5MoqQxIl2pZCslR/T+Q0NmYWh7Yzpjg2695C/M/zM4waQS5UmiFXbLUoyiTBhCz+J0OhOUM5s4QyLeythI2ppgxtShUbgrf+8ibp3NQ9t+493taajSKOMlzAJVyDB3fQhAdoQRsYJPAMr/DmoPPivDsfq9aSU8ycwx84nz89GpEu</latexit><latexit sha1_base64="YgLHmw63JSXhE+WaigF9hRzawUI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7AekoWy2m3bpZhN2J4US+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MJXCoOt+O6Wt7Z3dvfJ+5eDw6PikenrWMUmmGW+zRCa6F1LDpVC8jQIl76Wa0ziUvBtO7hd+d8q1EYl6wlnKg5iOlIgEo2glv28ikmoxpcgH1Zpbd5cgm8QrSA0KtAbVr/4wYVnMFTJJjfE9N8UgpxoFk3xe6WeGp5RN6Ij7lioacxPky5Pn5MoqQxIl2pZCslR/T+Q0NmYWh7Yzpjg2695C/M/zM4waQS5UmiFXbLUoyiTBhCz+J0OhOUM5s4QyLeythI2ppgxtShUbgrf+8ibp3NQ9t+493taajSKOMlzAJVyDB3fQhAdoQRsYJPAMr/DmoPPivDsfq9aSU8ycwx84nz89GpEu</latexit><latexit sha1_base64="YgLHmw63JSXhE+WaigF9hRzawUI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7AekoWy2m3bpZhN2J4US+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MJXCoOt+O6Wt7Z3dvfJ+5eDw6PikenrWMUmmGW+zRCa6F1LDpVC8jQIl76Wa0ziUvBtO7hd+d8q1EYl6wlnKg5iOlIgEo2glv28ikmoxpcgH1Zpbd5cgm8QrSA0KtAbVr/4wYVnMFTJJjfE9N8UgpxoFk3xe6WeGp5RN6Ij7lioacxPky5Pn5MoqQxIl2pZCslR/T+Q0NmYWh7Yzpjg2695C/M/zM4waQS5UmiFXbLUoyiTBhCz+J0OhOUM5s4QyLeythI2ppgxtShUbgrf+8ibp3NQ9t+493taajSKOMlzAJVyDB3fQhAdoQRsYJPAMr/DmoPPivDsfq9aSU8ycwx84nz89GpEu</latexit><latexit sha1_base64="YgLHmw63JSXhE+WaigF9hRzawUI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7AekoWy2m3bpZhN2J4US+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MJXCoOt+O6Wt7Z3dvfJ+5eDw6PikenrWMUmmGW+zRCa6F1LDpVC8jQIl76Wa0ziUvBtO7hd+d8q1EYl6wlnKg5iOlIgEo2glv28ikmoxpcgH1Zpbd5cgm8QrSA0KtAbVr/4wYVnMFTJJjfE9N8UgpxoFk3xe6WeGp5RN6Ij7lioacxPky5Pn5MoqQxIl2pZCslR/T+Q0NmYWh7Yzpjg2695C/M/zM4waQS5UmiFXbLUoyiTBhCz+J0OhOUM5s4QyLeythI2ppgxtShUbgrf+8ibp3NQ9t+493taajSKOMlzAJVyDB3fQhAdoQRsYJPAMr/DmoPPivDsfq9aSU8ycwx84nz89GpEu</latexit><latexit sha1_base64="YgLHmw63JSXhE+WaigF9hRzawUI=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7AekoWy2m3bpZhN2J4US+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8MJXCoOt+O6Wt7Z3dvfJ+5eDw6PikenrWMUmmGW+zRCa6F1LDpVC8jQIl76Wa0ziUvBtO7hd+d8q1EYl6wlnKg5iOlIgEo2glv28ikmoxpcgH1Zpbd5cgm8QrSA0KtAbVr/4wYVnMFTJJjfE9N8UgpxoFk3xe6WeGp5RN6Ij7lioacxPky5Pn5MoqQxIl2pZCslR/T+Q0NmYWh7Yzpjg2695C/M/zM4waQS5UmiFXbLUoyiTBhCz+J0OhOUM5s4QyLeythI2ppgxtShUbgrf+8ibp3NQ9t+493taajSKOMlzAJVyDB3fQhAdoQRsYJPAMr/DmoPPivDsfq9aSU8ycwx84nz89GpEu</latexit>

decisions
<latexit sha1_base64="mOkjD/QY6hMuJ4H6YF14KX4w8k8=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m0i7dbOLuplBKf4cXD4p49cd489+4aXPQ1gcDj/dmmJkXpIJr47rfzsbm1vbObmmvvH9weHRcOTlt6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8l/udCSrNE/lopin6MR1KHnFGjZX8vo5IiIznvh5Uqm7NXYCsE68gVSjQHFS++mHCshilYYJq3fPc1PgzqgxnAuflfqYxpWxMh9izVNIYtT9bHD0nl1YJSZQoW9KQhfp7YkZjradxYDtjakZ61cvF/7xeZqK6P+MyzQxKtlwUZYKYhOQJkJArZEZMLaFMcXsrYSOqKDM2p7INwVt9eZ20r2ueW/MebqqNehFHCc7hAq7Ag1towD00oQUMnuAZXuHNmTgvzrvzsWzdcIqZM/gD5/MHu1ySCA==</latexit><latexit sha1_base64="mOkjD/QY6hMuJ4H6YF14KX4w8k8=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m0i7dbOLuplBKf4cXD4p49cd489+4aXPQ1gcDj/dmmJkXpIJr47rfzsbm1vbObmmvvH9weHRcOTlt6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8l/udCSrNE/lopin6MR1KHnFGjZX8vo5IiIznvh5Uqm7NXYCsE68gVSjQHFS++mHCshilYYJq3fPc1PgzqgxnAuflfqYxpWxMh9izVNIYtT9bHD0nl1YJSZQoW9KQhfp7YkZjradxYDtjakZ61cvF/7xeZqK6P+MyzQxKtlwUZYKYhOQJkJArZEZMLaFMcXsrYSOqKDM2p7INwVt9eZ20r2ueW/MebqqNehFHCc7hAq7Ag1towD00oQUMnuAZXuHNmTgvzrvzsWzdcIqZM/gD5/MHu1ySCA==</latexit><latexit sha1_base64="mOkjD/QY6hMuJ4H6YF14KX4w8k8=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m0i7dbOLuplBKf4cXD4p49cd489+4aXPQ1gcDj/dmmJkXpIJr47rfzsbm1vbObmmvvH9weHRcOTlt6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8l/udCSrNE/lopin6MR1KHnFGjZX8vo5IiIznvh5Uqm7NXYCsE68gVSjQHFS++mHCshilYYJq3fPc1PgzqgxnAuflfqYxpWxMh9izVNIYtT9bHD0nl1YJSZQoW9KQhfp7YkZjradxYDtjakZ61cvF/7xeZqK6P+MyzQxKtlwUZYKYhOQJkJArZEZMLaFMcXsrYSOqKDM2p7INwVt9eZ20r2ueW/MebqqNehFHCc7hAq7Ag1towD00oQUMnuAZXuHNmTgvzrvzsWzdcIqZM/gD5/MHu1ySCA==</latexit><latexit sha1_base64="mOkjD/QY6hMuJ4H6YF14KX4w8k8=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m0i7dbOLuplBKf4cXD4p49cd489+4aXPQ1gcDj/dmmJkXpIJr47rfzsbm1vbObmmvvH9weHRcOTlt6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8l/udCSrNE/lopin6MR1KHnFGjZX8vo5IiIznvh5Uqm7NXYCsE68gVSjQHFS++mHCshilYYJq3fPc1PgzqgxnAuflfqYxpWxMh9izVNIYtT9bHD0nl1YJSZQoW9KQhfp7YkZjradxYDtjakZ61cvF/7xeZqK6P+MyzQxKtlwUZYKYhOQJkJArZEZMLaFMcXsrYSOqKDM2p7INwVt9eZ20r2ueW/MebqqNehFHCc7hAq7Ag1towD00oQUMnuAZXuHNmTgvzrvzsWzdcIqZM/gD5/MHu1ySCA==</latexit><latexit sha1_base64="mOkjD/QY6hMuJ4H6YF14KX4w8k8=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rGC/YA2lM1m0i7dbOLuplBKf4cXD4p49cd489+4aXPQ1gcDj/dmmJkXpIJr47rfzsbm1vbObmmvvH9weHRcOTlt6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8l/udCSrNE/lopin6MR1KHnFGjZX8vo5IiIznvh5Uqm7NXYCsE68gVSjQHFS++mHCshilYYJq3fPc1PgzqgxnAuflfqYxpWxMh9izVNIYtT9bHD0nl1YJSZQoW9KQhfp7YkZjradxYDtjakZ61cvF/7xeZqK6P+MyzQxKtlwUZYKYhOQJkJArZEZMLaFMcXsrYSOqKDM2p7INwVt9eZ20r2ueW/MebqqNehFHCc7hAq7Ag1towD00oQUMnuAZXuHNmTgvzrvzsWzdcIqZM/gD5/MHu1ySCA==</latexit>

samples
<latexit sha1_base64="9366ea/xMC7k7OnbtXWSoGdRKqw=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8hV0RzDHgxWME84BkCbOT2WTIzOwy0yuEJZ/hxYMiXv0ab/6Nk2QPmljQUFR1090VpVJY9P1vb2Nza3tnt7RX3j84PDqunJy2bZIZxlsskYnpRtRyKTRvoUDJu6nhVEWSd6LJ3dzvPHFjRaIfcZryUNGRFrFgFJ3U69uYWKpSye2gUvVr/gJknQQFqUKB5qDy1R8mLFNcI5PU2l7gpxjm1KBgks/K/czylLIJHfGeo5oqbsN8cfKMXDplSOLEuNJIFurviZwqa6cqcp2K4tiuenPxP6+XYVwPc6HTDLlmy0VxJgkmZP4/GQrDGcqpI5QZ4W4lbEwNZehSKrsQgtWX10n7uhb4teDhptqoF3GU4Bwu4AoCuIUG3EMTWsAggWd4hTcPvRfv3ftYtm54xcwZ/IH3+QMzxJEo</latexit><latexit sha1_base64="9366ea/xMC7k7OnbtXWSoGdRKqw=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8hV0RzDHgxWME84BkCbOT2WTIzOwy0yuEJZ/hxYMiXv0ab/6Nk2QPmljQUFR1090VpVJY9P1vb2Nza3tnt7RX3j84PDqunJy2bZIZxlsskYnpRtRyKTRvoUDJu6nhVEWSd6LJ3dzvPHFjRaIfcZryUNGRFrFgFJ3U69uYWKpSye2gUvVr/gJknQQFqUKB5qDy1R8mLFNcI5PU2l7gpxjm1KBgks/K/czylLIJHfGeo5oqbsN8cfKMXDplSOLEuNJIFurviZwqa6cqcp2K4tiuenPxP6+XYVwPc6HTDLlmy0VxJgkmZP4/GQrDGcqpI5QZ4W4lbEwNZehSKrsQgtWX10n7uhb4teDhptqoF3GU4Bwu4AoCuIUG3EMTWsAggWd4hTcPvRfv3ftYtm54xcwZ/IH3+QMzxJEo</latexit><latexit sha1_base64="9366ea/xMC7k7OnbtXWSoGdRKqw=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8hV0RzDHgxWME84BkCbOT2WTIzOwy0yuEJZ/hxYMiXv0ab/6Nk2QPmljQUFR1090VpVJY9P1vb2Nza3tnt7RX3j84PDqunJy2bZIZxlsskYnpRtRyKTRvoUDJu6nhVEWSd6LJ3dzvPHFjRaIfcZryUNGRFrFgFJ3U69uYWKpSye2gUvVr/gJknQQFqUKB5qDy1R8mLFNcI5PU2l7gpxjm1KBgks/K/czylLIJHfGeo5oqbsN8cfKMXDplSOLEuNJIFurviZwqa6cqcp2K4tiuenPxP6+XYVwPc6HTDLlmy0VxJgkmZP4/GQrDGcqpI5QZ4W4lbEwNZehSKrsQgtWX10n7uhb4teDhptqoF3GU4Bwu4AoCuIUG3EMTWsAggWd4hTcPvRfv3ftYtm54xcwZ/IH3+QMzxJEo</latexit><latexit sha1_base64="9366ea/xMC7k7OnbtXWSoGdRKqw=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8hV0RzDHgxWME84BkCbOT2WTIzOwy0yuEJZ/hxYMiXv0ab/6Nk2QPmljQUFR1090VpVJY9P1vb2Nza3tnt7RX3j84PDqunJy2bZIZxlsskYnpRtRyKTRvoUDJu6nhVEWSd6LJ3dzvPHFjRaIfcZryUNGRFrFgFJ3U69uYWKpSye2gUvVr/gJknQQFqUKB5qDy1R8mLFNcI5PU2l7gpxjm1KBgks/K/czylLIJHfGeo5oqbsN8cfKMXDplSOLEuNJIFurviZwqa6cqcp2K4tiuenPxP6+XYVwPc6HTDLlmy0VxJgkmZP4/GQrDGcqpI5QZ4W4lbEwNZehSKrsQgtWX10n7uhb4teDhptqoF3GU4Bwu4AoCuIUG3EMTWsAggWd4hTcPvRfv3ftYtm54xcwZ/IH3+QMzxJEo</latexit><latexit sha1_base64="9366ea/xMC7k7OnbtXWSoGdRKqw=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBA8hV0RzDHgxWME84BkCbOT2WTIzOwy0yuEJZ/hxYMiXv0ab/6Nk2QPmljQUFR1090VpVJY9P1vb2Nza3tnt7RX3j84PDqunJy2bZIZxlsskYnpRtRyKTRvoUDJu6nhVEWSd6LJ3dzvPHFjRaIfcZryUNGRFrFgFJ3U69uYWKpSye2gUvVr/gJknQQFqUKB5qDy1R8mLFNcI5PU2l7gpxjm1KBgks/K/czylLIJHfGeo5oqbsN8cfKMXDplSOLEuNJIFurviZwqa6cqcp2K4tiuenPxP6+XYVwPc6HTDLlmy0VxJgkmZP4/GQrDGcqpI5QZ4W4lbEwNZehSKrsQgtWX10n7uhb4teDhptqoF3GU4Bwu4AoCuIUG3EMTWsAggWd4hTcPvRfv3ftYtm54xcwZ/IH3+QMzxJEo</latexit>

Fig. 1: Active sampling for sequential parameter estimation. θ̂t and α̂t denote the estimates of the shared and private parameters respectively,

{ψ(t) : t ∈ N} represents the sequence of selected experiments, and T represents the stopping time.

serve a two-fold purpose: identifying the most informative exper-

iments and using the data from these experiments to estimate θ.

• Shared versus private parameters: While for estimating the

shared parameter there is the tendency to identify the most infor-

mative experiment for θ, for estimating the private parameters

each experiment should be selected sufficiently often to render

a reliable estimate for its private parameter.

To formalize the sampling process, we need to specify three decision-

making tasks. First, we specify a sampling rule ψ : N → [K] where

ψ(t) ∈ [K] denotes the experiment to be selected at time t. We denote

the sample collected from the experiment Sψ(t) by Yt. Accordingly,

we define the ordered sets

Y t ,
{

Y1, · · · , Yt
}

, and ψt ,
{

ψ(1), · · · , ψ(t)
}

. (4)

The observed filtration induced by a sampling rule ψ is denoted by

Fψ
t , σ(Y t, ψt)1. We assume that ψ(t+1) is Fψ

t -measurable. The

second decision-making task is a stopping rule that determines the

instance at which we have accumulated sufficient evidence to form

reliable estimates. Specifically, given a sampling rule ψ, we define

an Fψ
T -stopping time that is a randomization T such that {T = t} ∈

Fψ
t , for all t ∈ N. Finally, corresponding to a given sampling rule

ψ, we define θ̂(Y t, ψt) and α̂i(Y
t, ψt) as the estimators for θ and

αi respectively2. We refer to the tuple

∆ , (T, ψ,ΦT ) , (5)

as the collection of rules involved in active sampling for sequential

estimation, where we have defined

Φt , (θ̂(Y t, ψt), α̂(Y t, ψt)) . (6)

III. PROBLEM STATEMENTS

In this section, we formalize the problem of active sampling for

sequential estimation. There are two key figures of merit involved in

characterizing the performance of the active sampling framework: the

average delay (sample complexity) and the estimation costs incurred

by the final estimates. There exists a tension between these two

quantities, since improving one penalizes the other one. Specifically,

improving the estimates necessitates collecting more samples, which

in turn, penalizes the sample complexity. Capturing this trade-off,

our formulation aims to maintain the estimation cost below a target

threshold and, in parallel, minimize the average sample complexity.

1Unless otherwise stated, we use the shorthand Ft for Fψt , where the
sampling rule ψ is clear from the context.

2Throughout the paper, sometimes we use the short-hands θ̂t and α̂i,t for

θ̂(Y t, ψt) and α̂i,t(Y
t, ψt) respectively.

A. Estimating Shared Parameters

We start by focusing on the setting in which we have unknown

shared parameters, and the private parameters are fully known. In this

setting, we denote the pdf of the samples generated by the experiment

Si by by fi(· | θ), for i ∈ [K]. Define ℓ(θ, θ̂) as a non-negative cost

function that captures the fidelity of the estimate θ̂ with respect to

the ground truth θ. Accordingly, E[ℓ(θ̂, θ)] is the associated average

cost of the estimate θ̂, where the expectation is taken with respect to

the data and the prior distribution of θ.

The posterior distribution of θ at time t given the set of samples

and control actions taken up to time t is given by

πtθ(θ) =

πθ(θ)
∏

i∈ψt

fi(Yi | θ)
∫

v∈Θ

πθ(v)
∏

i∈ψt

fi(Yi | v) dv

. (7)

Based on the above posterior, we define the conditional average

posterior cost for an estimate θ̂t formed at time t as

C(θ̂t | Ft) , Et

[

ℓ(θ̂t, θ) | Ft
]

, (8)

where Et denotes expectations with respect to πtθ . We denote the

associated average posterior cost by

C(θ̂t) = Et[ℓ(θ, θ̂t)] . (9)

Note that the estimation cost C(θ̂t) depends on the choice of the

cost function ℓ(·, ·). Thus, the algorithm design and its optimality

properties depend on the choice of the cost function. In this paper,

we use the quadratic cost function for our analyses. The sequence

of conditional posterior cost functions {C(θ̂t | Ft) : t ∈ N} and

posterior cost functions {C(θ̂t) : t ∈ N} are Ft-measurable and form

increasing sequences of σ-fields. A natural approach to formulating

sequential estimation is finding a solution to:

P̃(β̃) ,

{

inf
∆

E[T ]

s.t. C(θ̂t) ≤ β̃
, (10)

where β̃ ∈ R+ controls the estimation quality. However, as discussed

in [41] and its references [3-6], solving (10) even in simpler settings,

e.g., K = 1, in which we do not have the action sampling decisions,

is analytically intractable. In this paper, instead of (10), we adopt

the approach of [41] and in (10) replace the average posterior cost

C(θ̂t) with the conditional average posterior cost C(θ̂t | Ft). Hence

our objective is to minimize the average sample size such that the

conditional average posterior cost falls below a prescribed threshold,

formalized as
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P(β) ,

{

inf
∆

E[T ]

s.t. C(θ̂T | FT ) ≤ β
, (11)

where β ∈ R+ controls the quality of the estimate θ̂T given FT .

B. Estimating Shared and Private Parameters

Next, we consider a generalization of the framework, such that in

addition to the shared parameter, experiment Si also has a private

statistically independent parameter αi to estimate. To formalize this,

we denote the posterior joint pdf of parameters θ and {αi : i ∈ [K]}
conditioned on Y t and ψt by gt. By defining the space A ,

∏K

i=1 Ai

we have

gt(θ,α) =

πθ(θ)

K
∏

j=1

πi(αj)

t
∏

i=1

fi(Yi | θ,α)

∫

u∈A

∫

v∈Θ

πθ(v)

K
∏

j=1

πj(uj)

t
∏

i=1

fi(Yi | v, u) dv du

.

(12)

Subsequently, the marginal posterior pdf of θ conditioned on Y t and

ψt is denoted by

πtθ(θ) ,

∫

v∈A

gt(θ,v) dv . (13)

Furthermore, let Sti , {s ∈ {1, · · · , t} : ψ(s) = i} denote the set

of instances up to time t at which experiment i ∈ [K] is selected.

Hence, the posterior pdf of αi conditioned on θ, Y t and ψt is

hti(αi) =

πi(αi)
∏

s∈St

i

fi(Ys | αi, θ)

∫

v∈Ai

πi(v)
∏

s∈St

i

fi(Ys | v, θ) dv
. (14)

Based on the above definitions, we now define the conditional

average estimation cost for estimating αi as

D(α̂i,t | Ft, θ̂t) , E
i
t

[

ℓ(α̂i,t, αi) | Ft, θ̂t
]

, (15)

where E
i
t is the expectation with respect to hti(αi). This setting

emphasizes a hierarchy of inference objectives in which the pri-

mary objective is estimating the shared parameter θ. The estimate

of θ, subsequently, guides estimating the private parameters. By

incorporating constants that capture the fidelity of the estimates for

{αi : i ∈ [K]}, an optimal sequential estimation procedure can be

found as the solution to:

P(β) ,











min
∆

E[T ]

s.t. C(θ̂T | FT ) ≤ β

and D(α̂i,T | FT , θ̂T ) ≤ βi, ∀i ∈ [K]

, (16)

where we have defined β , [β, β1, · · · , βK ], and βi ∈ R+ controls

the estimation quality of αi.

C. Technical Assumptions

In this section, we provide the assumptions under which the

performance guarantees are established. The assumptions are mainly

necessary for the existence and consistency of the maximum likeli-

hood (ML) estimates and the existence of the Fisher information (FI)

measures of the relevant parameters. To proceed, corresponding to

the pdfs fi(x | θ) (only shared parameters) and fi(x | θ, αi) (shared

and private parameters), we define the log-likelihood functions

λi(x | θ) , log fi(x | θ) , for i ∈ [K] , (17)

λi(x | θ, αi) , log fi(x | θ, αi) , for i ∈ [K] . (18)

A1: Parameter spaces Θ and {Ai : i ∈ [K]} are assumed to be

non-empty and compact.

A2: We assume that the ML estimate of the parameter θ exists, and it

is finite. Specifically, when we have only the shared parameter,

E[|λi(x | θ)|] < +∞ for all θ ∈ Θ. Similarly, for the setting

with shared and private parameters, for each i ∈ [K], we assume

E[|λi(x | θ, αi)|] < +∞ for all θ ∈ Θ and αi ∈ Ai.

A3: The log-likelihood functions {λi(x | θ) : i ∈ [K]} are assumed

to be continuous and differentiable for all θ ∈ Θ. The first order

derivative ∂
∂θ
λi(x | θ) is assumed to be bounded, continuous,

and differentiable everywhere, such that the second derivative
∂2

∂θ2
λi(x | θ) exists and is bounded. Similarly, the second

derivatives ∂2

∂θ2
λi(x | θ, αi) and ∂2

∂α2

i

λi(x | θ, αi) are assumed

to exist and be bounded.

A4: The pdfs {fi(x | θ) : i ∈ [K]} and {fi(x | θ, αi) : i ∈ [K]}
are assumed to have the same support.

A5: In the setting with only the shared parameter, let us denote the

FI measures under the model i ∈ [K] for the shared parameter

by

Ii(θ) , −E

[

∂2

∂θ2
λi(x | θ)

]

. (19)

Similarly, when we have shared and private parameters, let us

denote the FI measures under the model i ∈ [K] by

Ji(θ) , −E

[

∂2

∂θ2
λi(x | θ, αi)

]

, (20)

and Ji(αi) , −E

[

∂2

∂α2
i

λi(x | θ, αi)
]

. (21)

We assume that the FI measures are bounded and continuous

functions of θ and αi.
A6: We assume that the log-likelihood functions under two suffi-

ciently distinguishable parameters θ and θ̄ are also distinguish-

able, that is,

Eθ

[

sup
θ̄

{λi(x | θ)− λi(x | θ̄) : |θ − θ̄| > ǫ}
]

< 0 .

(22)

Similarly, for the setting with shared and private parameters,

under sufficiently distinguishable parameters θ and θ̄, the log-

likelihoods are also distinguishable, i.e.,

Eθ

[

sup
θ̄

{λi(x | θ, α)− λi(x | θ̄, α) : |θ − θ̄| > ǫ}
]

< 0 ,

(23)

and, for α, ᾱ ∈ Ai we have

Eα

[

sup
ᾱ

{λi(x | θ, α)− λi(x | θ, ᾱ) : |α− ᾱ| > ǫ}
]

< 0 .

(24)

Assumptions A1, A2, A3, and A6 collectively establish the existence

of the ML estimates of the shared and private parameters. Assump-

tions A3 and A5 prove the existence of the FI measures corresponding

to the shared and private parameters. Assumption A4 requires every

experiment to have the same support for the different parameters.

We note that these assumptions are satisfied by a wide range of

distributions, including continuous distributions (e.g., Gaussian and

exponential) and discrete distributions (e.g., Bernoulli).
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IV. ACTIVE SAMPLING FOR SHARED PARAMETERS

In this section, we describe the active estimation procedure that

solves the problem specified in (11) for the setting in which we only

have the shared parameter.

A. Bayesian and Maximum Likelihood Estimators

The goal of the optimal estimators is to minimize the conditional

average cost C(θ̂T | FT ) for given choices of T and ψT captured

by FT . For C(θ̂T | FT ) we have

C(θ̂T | FT ) = Et

[

∞
∑

t=0

ℓ(θ̂t, θ)1{t=T} | Ft
]

(25)

=

∞
∑

t=0

Et

[

ℓ(θ̂t, θ) | Ft
]

1{t=T} (26)

≥
∞
∑

t=0

inf
u

Et [ℓ(u, θ) | Ft]1{t=T} . (27)

The transition from (25) to (26) is due to the indicator function

1{t=T} being Ft-measurable. We denote the Bayes optimal estimator

by

νBt , arg inf
u

Et [ℓ(u, θ) | Ft] . (28)

Accordingly, we denote the conditional average cost associated with

the Bayesian estimate by

C
B

t , Et

[

ℓ(νBt , θ) | Ft
]

. (29)

Hence, from (25)-(29), we have

C(θ̂T | FT ) ≥
∞
∑

t=0

C
B

t · 1{T=t} = C
B

T . (30)

This indicates that for any stopping time T , using Bayes optimal

estimator at stopping time minimizes the estimation cost. There

are several possible choices of the cost function ℓ(·, ·). We could

choose ℓ(·, ·) to be the maximum a-posteriori probability (MAP) cost

function, i.e.,

ℓMAP(θ̂, θ) ,

{

0 , if ‖θ̂ − θ‖ ≤ c

1 , if ‖θ̂ − θ‖ > c
, (31)

and, C
MAP
t (θ̂t | Ft) , Et[ℓ

MAP(θ̂t, θ) | Ft] is the posterior cost

corresponding to the MAP cost function. As another example, ℓ(·, ·)
could be chosen to be the median estimation cost, i.e.,

ℓmedian(θ̂, θ) , ‖θ̂ − θ‖1 , (32)

in which case, the posterior cost function is given by

C
median
t (θ̂t | Ft) , Et[ℓ

median(θ̂tθ) | Ft]. As mentioned, throughout

this paper, we consider the minimum mean squared error (MMSE)

cost function, i.e.,

ℓ(θ̂, θ) , (θ̂ − θ)2 . (33)

Corresponding to this, the conditional average posterior cost

C(θ̂t | Ft) at time t is given by C(θ̂t | Ft) , Et[(θ̂t − θ)2 | Ft].
The Bayesian estimator under the MMSE cost function becomes the

MMSE estimator, which we denote by

νMMSE

t , Et

[

θ | Ft
]

. (34)

By specializing (29) to the quadratic (MMSE) cost function and

denoting the conditional average MMSE by C
MMSE
t we have

C(θ̂T | Ft) ≥
∞
∑

t=0

C
MMSE

t · 1{T=t} = C
MMSE

T , (35)

rendering the MMSE estimate as the optimal estimate under the

quadratic cost function. Besides the MMSE estimator νMMSE
t , we

also use the ML estimator for designing our algorithm. Specifically,

the MMSE and the ML estimates each serve a specific purpose.

We use the MMSE estimate for producing the final estimates for

the parameters of interest, and use the ML estimate for guiding the

sampling decisions. We denote the ML estimator of θ by

νML

t , argmax
θ∈Θ

∑

i∈ψt

λi(Yi | θ) . (36)

B. Chernoff-like Sampling Rule

Our sampling rule follows the spirit of the sequential experimental

design due to Chernoff [1], which addresses the problem of ac-

tive sampling for binary composite hypothesis testing. Under the

assumption of uniformly distinguishable hypothesis and a finite set

of control actions, at each round, Chernoff’s rule decides in favor

of the design that maximizes the immediate return. Such return, in

the context of hypothesis testing, is characterized by a function of

the Kullback-Leibler (KL) divergence of the models under different

hypotheses. Specifically, Chernoff’s rule determines the maximum

likelihood (ML) decision about the most likely hypothesis at each

instant, and then chooses an action that maximally reinforces this

decision.

In the context of sequential estimation, at each time step t ∈ N,

we wish to select the experiment that results in the most informative

observation, that is the one which is likely to produce the largest

reduction in the estimation cost. As a relevant measure for comparing

the informativeness of various experiments in the sequential estima-

tion framework, we adopt the FI measure. Specifically, for selecting

the experiment ψ(t) ∈ [K], we compute the ML estimate generated

by νML
t−1 based on the sequence of samples accumulated up to time

t− 1. We then select the experiment that maximizes the FI measure

computed at the ML estimate, i.e.,

ψ(t) = argmax
i∈[K]

Ii(ν
ML

t−1) , (37)

where a potential tie is broken by selecting one uniformly at random.

This sampling rule is greedy in the sense that it only focuses on

exploiting the most informative experiment. We will show that this

rule is optimal only for estimating the shared parameter. It loses

its optimality when we also have private parameters, for which we

provide an alternate sampling rule in Section V.

C. Stopping Rule

Finally, we specify the stopping rule that characterizes the end of

the sampling procedure. The rule is directly driven by the decision

quality constraint specified in the formulation of problem P(β)
in (11). Specifically, based on P(β), we are interested in minimizing

the number of samples such that the average posterior estimation cost

falls below the target reliability threshold β. Thus, we set the stopping

time as the first time that the cost C(νMMSE

T | FT ) falls below β, i.e.,

T , inf
{

t ∈ N : C(νMMSE

t | Ft) ≤ β
}

. (38)

The structure of (38) is similar to that of [41], with the key difference

that the posterior variance C(νMMSE

T | FT ) not only depends on the

estimator, but also it depends on the sampling path ψT , which does

not exist in [41].

D. Performance Guarantees

In this section, we evaluate the optimality of the active sampling

procedure for sequential estimation. First, we provide a universal
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lower bound on the average sample complexity of any procedure

that solves (11). Next, we provide a high-probability upper bound

on the sample complexity achieved by our proposed procedure for a

range of the prescribed guarantee β. Subsequently, we remark that

the average sample complexity of our proposed procedure achieves

the lower bound in the asymptote of small values of β. To this

end, corresponding to θ, we define Vβ(θ), which is instrumental in

characterizing the sample complexity of our sequential estimation

problem:

Vβ(θ) , inf
p∈QK

1

β

(

∑

i∈[K]

p(i)Ii(θ)

)−1

, (39)

where QK denotes the K-dimensional probability simplex and we

have defined p , [p1, · · · , pK ]. It can be readily verified that

under the assumptions A1-A6, (39) can be simplified to Vβ(θ) =
mini∈[K]

1
βIi(θ)

. Based on this definition, we now provide a lower

bound on the average sample complexity. Note that for Theorem 1 and

all the other subsequent theorems, expectation E and probability P

measures are with respect to the measures induced by the randomness

in the observations, the control actions, and the stochastic stopping

rule.

Theorem 1 (Converse). Under assumptions A1-A6, for any sequen-

tial procedure ∆, and for any h > 0, there exists a constant

C(h) > 0 such that for any β ∈ (0, C(h)), we have

E[T ] ≥
(

Vβ(θ)− h

β

)

(1− h) . (40)

Proof. See appendix B. �

Theorem 2 (Achievability). Under assumptions A1-A6, for any h >
0, there exists a constant C′(h) > 0 such that for any β ∈ (0, C′(h)),
the proposed procedure achieves

P

{

T ≤ Vβ(θ) +
h

β
+ 1

}

= 1 . (41)

Proof. See appendix C. �

Theorem 3 (Achievability). In the asymptote of β → 0, the proposed

procedure satisfies

lim
β→0

E[T ]

Vβ(θ)
≤ 1 . (42)

Proof. See Appendix D. �

Note that the upper bound on the average delay provided in

Theorem 3 matches the universal lower bound on the average delay

obtained in Theorem 1. Specifically, since Theorem 1 holds for any

h > 0, we can take the supremum over h, followed by the limit

with respect to β. Thus, in the asymptote of β → 0, the lower-

bound on the average sample complexity specified in (40) becomes

lim supβ→0 E[T ]/Vβ(θ) ≥ 1, which is also the upper-bound on

the average sample complexity of the proposed procedure, specified

in (42). This establishes the optimality of the proposed procedure ∆,

in the asymptote of a diminishing guarantee on the estimation cost.

Furthermore, note that under the presence of a single control, when

K = 1, our procedure reduces to that of [41]. We note that [41]

addresses a problem that is a special case of the problem we consider

in two ways. First, it focuses only on one data stream (experiment).

Secondly, which is also an artifact of the first point, in [41] there is

no notion of active selection of the experiments/streams. By setting

K = 1, our asymptotic bound on the average sample complexity

provided in Theorem 3 reduces to the result of [41]. Specifically, it

can be readily verified that for the case of K = 1, we have

lim
β→0

E[T ]

(1/β)
≤ J (θ)−1 . (43)

Although [41] does not provide any expression for the average delay,

it proves the optimality of the proposed rules (νMMSE

T , T ), which are

the same estimate and stopping rule that we specified in (34) and

(38). Furthermore, for K = 1, it is shown in [41] that the proposed

procedure achieves optimality in all regimes (both asymptotic and

non-asymptotic, for all values of β). This is due to the fact that

when K = 1, the control action has only one experiment to choose

from.

V. ACTIVE SAMPLING FOR SHARED AND PRIVATE PARAMETERS

In this section, we extend the active sampling procedure and

the attendant performance guarantees to the settings in which the

experiments have both shared and private parameters.

A. Bayesian and Maximum Likelihood Estimators

Following the same line of arguments as in (25)-(35), we use the

MMSE estimator for minimizing the average posterior conditional

MMSE estimation costs C(θ̂T | FT ) and D(α̂i,T | FT , θ̂T ) defined

in (9) and (15), respectively. Accordingly, we denote the estimators

for the parameters θ and {αi : i ∈ [K]} by

νMMSE

t , Et

[

θ | Ft
]

, and ζMMSE

i,t , E
i
t

[

αi | Ft, νMMSE

t

]

. (44)

Furthermore, in our sampling rule, we leverage the ML estimates of

the parameters θ and {αi : i ∈ [K]}. For this purpose, let φi , [θ, αi]
denote the vector containing the shared and the private parameters.

Furthermore, we denote the ML estimators by

νML

t , argmax
θ∈Θ

∑

i∈ψt

λi(Yi | θ,α) , (45)

ζML

i,t , argmax
αi∈Ai

∑

s∈ψt

i

λi(Ys | θ, αi) , (46)

and φML

i,t , argmax
φ∈[θ×Ai]

∑

s∈ψt

i

λi(Ys | φ) , (47)

where we have defined ψti ,
{

t ∈ {1, · · · , t} : ψ(t) = i
}

as

the ordered sequence of time instants during {1, · · · , t} at which

experiment i ∈ [K] is selected for sampling.

B. Sampling Rules

To accommodate the distinct levels of tolerance for the estimation

costs associated with the shared and the private parameters, we need

a sampling rule that is adaptive to the thresholds β imposed on the

cost functions. Before we formally specify our sampling rule, we

discuss an adaptation of the greedy sampling rule that we used in

Section IV-B, and show that such a greedy approach becomes sub-

optimal in this setting, caused by insufficient exploration.

1) Greedy Sampling Rule: The sampling rule described in Sec-

tion IV-B aims at selecting the experiment that maximizes the FI

measure at the current ML estimate. By generalizing this approach,

a greedy sampling strategy aims at selecting the experiment that

maximizes the FI measure for the parameter φi for all i ∈ [K].
This can be formalized as:

ψc(t) , argmax
i∈[K]

tr

{

Ii(φ
ML

i,t )

}

, (48)

where Ii(φi) represents the Fisher information matrix (FIM) as-

sociated with φi, for i ∈ [K]. This sampling rule does not use
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the information that the guarantees required for different estimation

qualities associated with different experiments may not be the same.

This becomes problematic when the experiment that maximizes the

FI measure requires a considerably weaker guarantee (i.e., it has a

large value of tolerance) on the estimation cost. However, due to the

sampling rule being agnostic to the tolerance levels, the greedy rule

in (48) continues sampling the same experiment, even after the target

estimation quality is achieved. This renders the greedy sampling rule

prone to insufficient exploration. This is stated more formally in the

following theorem.

Theorem 4. There exists βi > 0 for any experiment i ∈ [K],
such that any sequence of sequential procedure ∆c that involves a

Chernoff-based control action ψc(t) defined in (48) is sub-optimal.

Proof. See Appendix H. �

This theorem shows that a greedy sampling strategy based on

selecting the most informative experiment, along with any choice

of stopping rule that satisfies the constraints in (16) at stopping,

renders an infinite average sample complexity for specific choices

of the estimation guarantees.

2) Cost-aware Sampling Rule: Next, we propose a sampling rule

that maintains a balance between exploiting the control actions that

maximize the return and exploring actions that have not yet been

sufficiently sampled. This ensures that the algorithm does not get

stuck in using only the most informative experiments. This is criti-

cally needed to avoid insufficient exploration of the less informative

experiments, since this leads to significant disparity among different

estimation qualities. The more explored experiments will be over-

sampled, achieving estimation qualities stronger than the prescribed

thresholds. This penalizes the overall sample complexity of the

sampling process. To circumvent such oversampling, we propose a

sampling rule that involves randomly sampling from the distribution

defined as

q̄t , argminq∈QK

{

1

β

(

∑

i∈[K]

q(i)Ji(ν
ML

t )
)−1

+
∑

i∈[K]

1

βi

(

q(i)Ji(ζ
ML

i,t )
)−1

}

. (49)

Note that q̄t does not necessarily place the entire mass on one of

the control actions, thus facilitating exploration. Furthermore, the

distribution q̄t converges to a limiting distribution in the limit of

t → ∞. This is attributed to the fact that the FI measures are

computed at the ML estimates, and, by the strong consistency of

the ML estimates [53], νML
t

a.s.−−→ θ, and ζML
i,t

a.s.−−→ αi for every

i ∈ [K]. Thus, as t → ∞, the ML estimates converge to the

respective ground truths θ and {αi : i ∈ [K]}, and q̄t converge

to its limiting distribution. We denote this limiting distribution by

q∗ , argminq∈QK

{

1

β

(

∑

i∈[K]

q(i)Ji(θ)
)−1

(50)

+
∑

i∈[K]

1

βi

(

q(i)Ji(αi)
)−1

. (51)

C. Stopping Rule

We design a stopping rule that takes into account the fidelity

guarantees on the shared parameter and the private parameters.

Specifically, at each time instant, we compute the conditional poste-

rior MMSE cost of the estimated shared parameter C(νMMSE
t | Ft)

and the private parameters {D(ζMMSE
i,t | Ft, νMMSE

t ) : i ∈ [K]}. Our

proposed stopping rule T is given by

T , inf
{

t ∈ N : C(νMMSE

t | Ft) ≤ β,

D(ζMMSE

i,t | Ft, νMMSE

t ) ≤ βi, ∀ i ∈ [K]
}

. (52)

Based on this, the sampling process terminates at the first instant at

which all estimation cost constraints are satisfied.

D. Performance Guarantees

In this section, we present the optimality guarantees of the pro-

posed active sampling procedure. We begin by stating a lower bound

on the average sample complexity for any algorithm that solves

P(β), defined in (16). Next, we provide an upper bound on the

average sample complexity of the proposed sequential procedures.

Specifically, we provide a high probability upper bound on the sample

complexity as well as an asymptotic upper bound on the average

sample complexity. The average sample complexity is shown to

achieve the universal lower bound asymptotically up to a constant

term. To characterize the average sample complexity, we define

Wβ(θ,α) , inf
q∈QK

1

β

(

∑

i∈[K]

q(i)Ji(θ)

)−1

+
∑

i∈[K]

1

βi

(

q(i)Ji(αi)
)−1

. (53)

Next, we define

V (θ) ,
1

β

(

∑

i∈[K]

q∗(i)Ji(θ)

)−1

,

and Vi(αi) ,
1

βi

(

q∗(i)Ji(αi)

)−1

, ∀ i ∈ [K] . (54)

Accordingly, we define define

Vmax(θ,α) , max

(

V (θ), V1(α1), · · · , VK(αK)

)

,

and Vmin(θ,α) , min

(

V (θ), V1(α1), · · · , VK(αK)

)

. (55)

Furthermore, define βmax and βmin as the maximum and minimum

tolerance levels on the estimation costs, i.e.,

βmax , max{β, β1, · · · , βK}, and βmin , min{β, β1 · · · , βK} .
(56)

Based on these definitions, we provide a lower bound on the average

sample complexity.

Theorem 5 (Converse). Under assumptions A1-A6, for any sequen-

tial procedure ∆, and for any h > 0 there exist constants C(h) > 0
and {Di(h) > 0 : i ∈ [K]}, such that for any β ∈ (0, C(h)) and

βi ∈ (0, Di(h)) for all i ∈ [K], we have

E[T ] ≥ Wβ(θ,α)− h

K + 1
·
(

1− (K + 1)h
)

. (57)

Proof. See Appendix E. �

Theorem 6 (Achievability). Under assumptions A1-A6, for any h >
0 there exist constants L(h) > 0 and {Mi(h) > 0 : i ∈ [K]}, such

that for any β ∈ (0, L(h)) and βi ∈ (0,Mi(h)) for all i ∈ [K], the

proposed procedure comprised of the sequence of estimates in (44),

sampling rule in (49) and the stopping rule in (52) satisfies

P

{

T ≤ Wβ(θ,α)

K + 1
+
(

Vmax(θ,α)− Vmin(θ,α)
)
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+

(

1

βmin
+

1

βmax

)

h+ 2

}

= 1 . (58)

Proof. See Appendix F. �

Theorem 7 (Achievability). In the asymptote of β → 0, there

exists h ∈ (0, 1) such that the proposed procedure comprised of the

sequence of estimates in (44), sampling rule in (49), and the stopping

rule in (52) satisfies

lim
β→0

E[T ]

Wβ(θ,α)
≤ 1

K + 1
+ h . (59)

Proof. See Appendix G. �

VI. NUMERICAL EXPERIMENTS

A. Shared Parameter

Consider a network of K sensors, where K is an even number.

Sensor i ∈ [K] generates its samples according to the distribution

N (0, σ2
i (θ)), where

σ2
i (θ) ,











(i−1)2

K(K−i+1)
+ K−2i+2

K−i+1
· θ , ∀i ∈

{

1, . . . , K
2

}

i
K

+ K−2i
i

· θ , ∀i ∈
{

K
2
+ 1, . . .K

}

.

(60)

The choice of the variance values for the Gaussian distribution

corresponding to each sensor makes them the most informative one

under a specific regime of the underlying shared parameter θ. More

specifically, note that the FI measure for the Gaussian distribution

N (0, σ2) with respect to σ is I , 1/2σ4. It can be readily verified

that each sensor maximizes the FI under the following regimes of θ:

for θ ∈ ((i− 1)/K , i/K) for i ∈ [K], sensor i maximizes the FI.

In our evaluations, we set K = 4. θ is assumed to have a uniform

prior distribution Unif[0.01, 0.99]. It can be readily verified that if

the true value of θ is less than 0.25, Sensor 1 is the most informative

sensor. Otherwise, if 0.25 < θ < 0.5, Sensor 2 becomes the most

informative one. Similarly, for 0.5 < θ < 0.75 and 0.75 < θ < 1,

Sensor 3 and Sensor 4, respectively, become the most informative

ones. Thus, an effective sampling rule is characterized by its ability

to identify and converge to the best sensor using as few samples as

possible. For our experiment, we set θ = 0.2.

Figure 2 shows the average number of samples required E[T ]
versus various levels of tolerance β, and compares them against the

following four approaches for sensor selection.

1. Random selection: Random selection forms a baseline for com-

parison. Essentially, it refers to sampling one of the sensors S1,

S2, S3, or S4 uniformly at random. The same stopping rule

specified in (38) is used for fair comparison.

2. Genie-aided sampling: In this setting, we consider a genie-aided

scenario in which the sampling rule is informed what the most

informative sensor for estimating the unknown θ is.

3. Approach of [40]: The algorithm prescribed in [40] proposes

a different stopping rule based on a fixed cost of sampling c,
while keeping the same sensor-selection policy. The approach

trades off the estimation performance against the accumulated

cost of sampling, and thus does not have an explicit performance

guarantee on the estimation cost (or a counterpart of β in our

setting). For comparison, for any given β, we find out a value

of c that ensures that the estimation cost of [40] falls below β,

and use that to generate the variations of E[T ] versus β.

The performance shown in Figure 2 correspond to averaging over 100
Monte Carlo realizations. Note that in Figure 2, Chernoff-like greedy

sampling corresponds to the proposed sampling rule, which is also a

special case of the look-ahead active sampling rule proposed in (49),

for the case that there is only the shared parameter. This figure shows

that our sampling rule outperforms the random sampling strategy, and

the procedure prescribed in [40]. Note that the genie-aided sampling

strategy uses the fewest number of samples to meet the prescribed

level β. This is because this sampling strategy knows the most

informative sensor from t = 1 and always samples from that sensor.

On the other hand, our proposed Chernoff-like greedy sampling

rule requires a few more samples to guess the most informative

sensor before it starts drawing samples from that sensor. Thus, its

sample complexity is worse than that of the genie-aided strategy

but better than those of all other strategies. Furthermore, while the

approach of [40] uses the same sampling strategy like ours, its sample

complexity suffers due to the choice of stopping rule. Specifically,

the stopping rule in [40] is designed to minimize a unified objective

comprising the estimation cost and delay, which is different from the

objective in (11). Finally, the random sampling strategy puts equal

sampling effort on each sensor, thus, requiring a more significant

average number of samples to reach the same guarantee on the

estimation cost.

Furthermore, to gain more insight regarding the scaling behavior

of the proposed algorithm with respect to the number of sensors K,

Figure 3 plots the average number of samples against K. Clearly,

as the number of sensors increases, the number of samples required

by the proposed strategy in identifying the most informative sensor

increases, thus, increasing the average sample complexity. For this

experiment, we set β = 0.005, and the other parameters remain the

same.
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Fig. 2: Average sample complexity versus prescribed tolerance β.
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Fig. 3: Average sample complexity versus varying number of sensors K.

B. Shared and Private Parameters

The second experiment showcases the performance of the active

sequential estimation algorithm proposed in Section V. We consider
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a simple network of two sensors, each generating random samples

of θ contaminated by noise. Each sensor is subject to a different level

of noise variance. Sensors 1 and 2 have distributions N (θ, α1) and

N (θ, α2), respectively. We assume a uniform prior for the mean, i.e.,

for given a0, b0 ∈ R,

πθ(θ) =
1

b0 − a0
1{a0≤θ≤b0} , b0 > a0 > 0 . (61)

Similarly, the variance of each sensor has a uniform prior, i.e.,

πi(αi) =
1

bi − ai
1{ai≤αi≤bi} , bi > ai > 0 , i ∈ {1, 2} . (62)

The posterior distributions of the unknown mean and variance are

analytically intractable and they are computed numerically. The

performance of our proposed procedure for this setup is depicted

in Fig. 4. For this experiment, we have set θ = 0.25, α1 = 0.25, and

α2 = 4. The corresponding priors are parameterized by a0 = 0.1,

b0 = 4, a1 = 0.1, b1 = 0.7, a2 = 1, and b2 = 5. The confidence

levels on the estimates of the variance α1 and α2 are fixed at β1 = 0.1
and β2 = 0.05. The results show that the proposed sampling strategy

outperforms the random selection strategy, which we use as a baseline

in this case, as well as the greedy sampling strategy described in

Section V-B1. This matches our theoretical analysis, where we prove

in Appendix H that the Chernoff-based greedy sampling rule is sub-

optimal. Intuitively, it is clear from the setting that such a sampling

strategy focuses on exploiting Sensor 1 in the long run. However,

that could result in an insufficient exploration of Sensor 2, resulting

in a bad estimate of the variance of the second sensor.
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Fig. 4: Average sample complexity versus β, β1 = 0.05, and β2 = 0.1.

C. Real-world Data

In this section, we provide an experiment on a real-world dataset,

comparing the performance of the proposed look-ahead sampling

procedure against the random selection strategy. For this purpose,

we use the Chicago beach weather station dataset, which consists

of three different weather stations recording hourly measurements

on various parameters, such as the air temperature, humidity, rain

intensity, wind direction, and wind speed. We select two of these

weather stations, namely the 63rd Street weather station and the Foster

weather station. Our goal is to estimate the average air temperature

in the month of September at 10 AM from noisy measurements of

the temperature. We set the ground truth of the air temperature to

the average temperature recorded by the two weather stations in

September at 10 AM over the years 2019, 2020, and 2021. The true

variance for each weather station is also set to the variance computed

from the data over these years. It is noteworthy that the Foster weather

station has a larger variance of 6.7975 in recorded temperatures,

compared to the 63rd Street weather station, which has a variance of

4.1216. We consider the setting in which the variance of the weather
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Fig. 5: Average sample complexity versus prescribed tolerance β.

station sensors is also unknown (in addition to the temperature that

we intend to estimate). Each station is assumed to generate noisy

measurements of the temperature, drawn from a Gaussian distribution

with mean and variance set as specified. We set the levels required

on the cost of estimating the variance for both the weather stations

to β1 = β2 = 0.1. The prior distributions of the mean values

are assumed to be Unif[10, 20], while those of the variances are

assumed to be Unif[2, 8] for both the weather stations. Figure 5

demonstrates the average sample complexity against various levels

of β. We observe that our proposed sequential procedure yields a far

superior performance compared to random sampling, thus, clearly

depicting the advantage of our proposed active sampling procedure.

VII. CONCLUSIONS

In this paper, we have investigated the problem of active sequential

estimation. Specifically, we have considered a setup in which the

problem instance may have both shared as well as private parameters,

and the goal is to estimate each of the parameters while meeting a

prescribed level of confidence on their estimation qualities. Sequential

decision rules are proposed, where the sampling rule involves max-

imizing the Fisher Information measure when the setting comprises

shared parameters only (greedy sampling rule), while in the setting

of both private and shared parameters, the rule maintains a trade-

off between exploiting the most informative action and exploring the

scarcely sampled actions in order to meet the prescribed tolerances on

the estimation quality of every parameter. The proposed decision rules

have been shown to be asymptotically optimal, and we have provided

numerical experiments to evaluate their advantage compared to the

existing strategies.

APPENDIX A

USEFUL LEMMAS

In this section, we provide a few lemmas which we will be using

throughout our analysis.

Lemma 1 (Lemma 4.1, [40]). When we have only a shared parameter

(setting of Section IV), under assumptions A1-A6, for any h > 0, there

exists t(h) ∈ N such that for all t > t(h):

P

{

t · inf
θ̂t, ψt

C(θ̂t | Ft) ≥ βVβ(θ)− h
}

> 1− h . (63)

Lemma 2 (Theorem 4.3, [40]). Under assumptions A1-A6, the

sequences of estimates generated by νMMSE
t , which is characterized in

Section IV-A, and sampling rules ψt specified in Section IV-B satisfy

t · C(νMMSE

t | Ft) t→∞−−−→ βVβ(θ) . (64)
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Lemma 3. When we have both shared and private parameters (the

setting in Section V), under assumptions A1-A6, for any h > 0, there

exists t∗(h) < +∞ such that for any t > t∗(h):

P

{

inf
Φt,ψt

t

[

1

β
C(θ̂t|Ft) +

∑

i∈[K]

1

βi
D(α̂i,t|Ft)

]

≥ Wβ(θ,α)− h

}

> 1− (K + 1)h .
(65)

Proof. Let us denote the number of times experiment i ∈ [K] is

selected up to time t ∈ N by

Ti(t) ,

t
∑

s=1

1{ψ(s)=i} . (66)

From the Cramér-Rao lower bound, we obtain the following inequal-

ities.

P

{

C(θ̂t | Ft) ≥
(

∑

i∈[K]

Ti(t)Ji(θ)
)−1}

= 1 , (67)

P

{

D(α̂i,t | Ft) ≥
(

Ti(t)Ji(αi)
)−1}

= 1, ∀i ∈ [K] . (68)

Furthermore, let us denote the fraction of times any experiment i ∈
[K] is selected up to time t by

pi(t) ,
1

t

t
∑

s=1

1{ψ(s)=i} . (69)

Subsequently, from (67) and (68), we obtain that

P

{

t · C(θ̂t | Ft) ≥
(

∑

i∈[K]

pi(t)Ji(θ)
)−1}

= 1 , (70)

P

{

t · D(α̂i,t | Ft) ≥
(

pi(t)Ji(αi)
)−1}

= 1, ∀i ∈ [K] .

(71)

Using the same argument as in [40, Lemma 4.1], any measurable

control action will have a limiting distribution, or will be arbitrarily

close to a limiting distribution such that for any arbitrarily small

h > 0, there exists t(h) < +∞ such that for every t > t(h), from

(70) we obtain

P

{

t · C(θ̂t | Ft) ≥
(

∑

i∈[K]

p(i)Ji(θ)
)−1

− h
}

> 1− h , (72)

where p(i) denotes the limiting distribution of pi(t). Using similar

arguments, for every i ∈ [K] and any h > 0, there exists t′i(h) <
+∞ such that for all t ≥ t′i(h):

P

{

t · D(α̂i,t | Ft) ≥
(

p(i)Ji(αi)
)−1

− h
}

> 1− h . (73)

By defining t∗(h) , max{t(h), t′1(h), · · · , t′K(h)}, combining (72)

and (73) and taking the infimum with respect to all control actions

and estimates, we obtain that

P

{

inf
Φt,ψt

t

[

1

β
C(θ̂t|Ft) +

∑

i∈[K]

1

βi
D(α̂i,t|Ft)

]

≥Wβ(θ,α)− h

}

> 1− (K + 1)h ,
(74)

for all t > t∗(h), where (74) is obtained from the fact that for any

two events A and B, P(A∩B) ≥ P(A)+P(B)−1. This completes

our proof. �

Lemma 4. When we have both shared and private parameters (the

setting in Section V), under assumptions A1-A6, the sequences of

estimates characterized in Section V-A and sampling rules specified

in Section V-B satisfy

t

[

1

β
C(νMMSE

t |Ft) +
∑

i∈[K]

1

βi
D(ζMMSE

i,t |Ft, νMMSE

t )

]

t→∞−−−→Wβ(θ,α).

(75)

Proof. We denote the frequency of selecting experiment i ∈ [K]
under the sampling rule ψt by

pi(t) ,
1

t

t
∑

s=1

1{ψ(s) = i} . (76)

Then, as t → ∞, pi(t)→ q̄t(i) due to the law of large numbers.

Furthermore, due to the strong consistency of ML estimates, νML
t

converges to θ, and ζML
i,t converges to αi for all i ∈ [K] [53].

Now, we will use a weak version of the Bernstein-Von-Mises

theorem to establish the asymptotic normality of νMMSE
t . For this,

let us consider a sequence of observations Yt , {Y1, · · · , Yt},

which are not necessarily i.i.d. Let θ be an unknown parameter of

the underlying pdfs of the observations Yt, and λ(· | θ) denote the

log-likelihood function corresponding to the observations. Next, we

define the Fisher Information (FI) measure as

J (θ) , −1

t
E

[

∂2

∂θ2
λ(Yt | θ)

]

. (77)

Furthermore, define νMMSE
t as the MMSE estimator of θ, and define

z ,
√
t(νMMSE

t − θ). By a weak version of the Bernstein-Von-Mises

theorem [54, Theorem 20.2], we have

ϑ (z | Ft) t→∞−−−→ N (0, 1/J (θ)) , (78)

where ϑ(z | Ft) represents the posterior distribution of z. The key

is to find J (θ) in our case. We have,

J (θ) = −1

t
E

[

∂2

∂θ2
λ(Yt | θ)

]

(79)

= −1

t
E

[

∂2

∂θ2

K
∑

i=1

λi(Y
t
i | θ)

]

, (80)

where Yt
i , {Ys : ψ(s) = i, s ∈ [t]} is the sequence of observations

from the experiment i ∈ [K]. Simplifying (80), we obtain

J (θ) =
1

t

K
∑

i=1

tpi(t)Ji(θ) =
K
∑

i=1

pi(t)Ji(θ) . (81)

Thus, we have

ϑ
(

z|Ft
) t→∞−−−→ N

(

0,

(

∑

i∈[K]

pi(t)Ji(θ)

)−1)

. (82)

Furthermore, since p(t) , [p1(t), · · · , pK(t)] converges to the

limiting distribution q∗ defined in (51), we have

ϑ
(

z|Ft
) t→∞−−−→ N

(

0,

(

∑

i∈[K]

q∗(i)Ji(θ)

)−1)

. (83)

Thus, from (83), we have νMMSE
t

p−→ θ. Using this fact in conjunction

with the Bernstein-Von Mises theorem, for all i ∈ [K], we have

ωi
(

ui | νMMSE

t ,Ft
) t→∞−−−→ N

(

0,

(

q∗(i)Ji(αi)

)−1)

, (84)

where we have defined ui ,
√
t(ζMMSE

i,t −αi) and ωi(ui | νMMSE
t ,Ft)

represents the posterior distribution of ui. The limit of the sequence

of MMSE is then calculated by establishing the finiteness of the first

and second order moments of ϑ(z | Ft) and ωi(ui | νMMSE
t ,Ft).

For ϑ(z | Ft), this can be done following the same approach of [40,
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Lemma 7.7]. For ωi(ui | Ft), this can be done following the same

approach of [24, Lemma 3.1]. This yields

t · C(νMMSE

t | Ft) t→∞−−−→
(

∑

i∈[K]

q∗(i)Ji(θ)

)−1

,

(85)

and t · D(ζMMSE

i,t | Ft, νMMSE

t )
t→∞−−−→

(

q∗(i)Ji(αi)
)−1

∀i ∈ [K].

(86)

Finally, combining (85) and (86), we obtain

t

[

1

β
C(νMMSE

t |Ft) +
∑

i∈[K]

1

βi
D(ζMMSE

i,t |Ft, νMMSE

t )

]

t→∞−−−→Wβ(θ,α).

(87)

This concludes our proof. �

APPENDIX B

PROOF OF THEOREM 1

Consider a constant L ∈ N. Using the constraint in P(β) defined

in (11), we have

1 = P

{

C(θ̂T | FT ) ≤ β
}

(88)

= P

{

C(θ̂T | FT ) ≤ β , T ≤ L
}

+ P

{

C(θ̂T | FT ) ≤ β , T > L
}

. (89)

Define TL(i) ,
L
∑

s=1

1{ψ(s)=i} as the number of times that

experiment i ∈ [K] is chosen up to time L. Then, we have

C(θ̂T | FT ) ≥
(

∑

i∈[K]

TT (i)Ii(θ)
)−1

(90)

≥ 1

T

(

∑

i∈[K]

Ii(θ)
)−1

(91)

≥ 1

L

(

∑

i∈[K]

Ii(θ)
)−1

(92)

= C(L) , (93)

where the first inequality is a result of the Cramér-Rao lower

bound [55], and C(L) is a positive constant. Choosing β ∈ (0, C(L))

ensures that the first term in (89) becomes P

{

C(θ̂T | FT ) ≤
β , T ≤ L

}

= 0. Using Lemma 1, there exists t(h) such that

for all t > t(h), we have

P

{

t · C(θ̂t | Ft) ≥ βVβ(θ)− h
}

> 1− h . (94)

Leveraging (94), let us expand the the second term in (89). Choosing

L = t(h), we have

P

{

C(θ̂T | FT ) ≤ β , T > t(h)
}

= P

{

TC(θ̂T |FT ) ≤ Tβ, T > t(h)|TC(θ̂T |FT ) ≥ βVβ(θ)− h
}

× P

{

T · C(θ̂T | FT ) ≥ βVβ(θ)− h
}

+ P

{

TC(θ̂T , θ|FT ) ≤ Tβ, T > t(h)|TC(θ̂T |FT ) < βVβ(θ)− h
}

× P

{

T · C(θ̂T | FT ) < βVβ(θ)− h
}

(95)

≤ P

{

TC(θ̂T |FT ) ≤ Tβ, TC(θ̂T |FT ) ≥ βVβ(θ)− h
}

+ h (96)

≤ P

{

T ≥ βVβ(θ)− h

β

}

+ h , (97)

where (95) follows from the law of total probability, and (97) is a

result of the stopping rule in (38). Thus, combining (89) with (97),

and due to the choice of β < C(h), we obtain

P

{

T ≥ βVβ(θ)− h

β

}

≥ 1 − h , (98)

where we have defined

C(h) ,
1

t(h)

(

∑

i∈[K]

Ii(θ)

)−1

. (99)

The result readily follows by applying Markov’s inequality to (98).

APPENDIX C

PROOF OF THEOREM 2

Using Lemma 2, we obtain that for any h > 0 there exists t(h) <
+∞ such that for any t > t(h), we have

P
{

t · C(νMMSE

t | Ft) ≤ βVβ(θ) + h
}

= 1 . (100)

Now, observe that if T − 1 > t(h),

1 = P
{

(T − 1) · C(νMMSE

T−1 | FT−1) ≤ βVβ(θ) + h
}

(101)

≤ P
{

(T − 1)β ≤ βVβ(θ) + h
}

(102)

= P

{

T ≤ βVβ(θ) + h

β
+ 1
}

, (103)

where (102) is a result of the stopping rule in (38). Furthermore,

P

{

T ≤ βVβ(θ) + h

β
+ 1
}

= P

{

T ≤ βVβ(θ) + h

β
+ 1, T − 1 > t(h)

}

+ P

{

T ≤ βVβ(θ) + h

β
+ 1

∣

∣

∣
T − 1 ≤ t(h)

}

P
(

T − 1 ≤ t(h)
)

(104)

Now, P(T − 1 ≤ t(h)) = P{C(νMMSE

T | FT ) ≤ β, T ≤ t(h) + 1}.

Following the same steps as in (90)-(93), we can show that there

exists a constant C′(h) , (
∑

i∈[K]

Ii(θ))
−1/(t(h) + 1), such that

P(T − 1 ≤ t(h)) = 0 for any β ∈ (0, C′(h)). Finally, combining

(103) and (104), we obtain that for any β ∈ (0, C′(h)),

P

{

T ≤ βVβ(θ) + h

β
+ 1
}

= 1 . (105)

This completes the proof.

APPENDIX D

PROOF OF THEOREM 3

Using Lemma 2, for any ǫ > 0, there exists Tǫ < +∞, such that

for all t ≥ Tǫ,

tC(νMMSE

t | Ft) ∈ [βVβ(θ)− ǫ, βVβ(θ) + ǫ] . (106)

Now, at the instant before stopping we have

T − 1 = (T − 1)1{T−1≤Tǫ} + (T − 1)1{T−1>Tǫ} (107)

≤ Tǫ +
βVβ(θ) + ǫ

β
+ 1 , (108)

where (108) follows from the definition of the stopping rule and

(106). Furthermore, note that supY t,ψt Tǫ < + ∞ owing to Lemma

2. Thus, taking average throughout (108), dividing by 1/β, and taking

the limit of β → 0, we obtain

lim
β→0

E[T ]

Vβ(θ)
≤ 1 . (109)
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APPENDIX E

PROOF OF THEOREM 5

Define the event

St ,

{

C(θ̂t | Ft) ≤ β, D(α̂i,t | Ft, θ̂t) ≤ βi ∀ i ∈ [K]
}

.

(110)

From the constraint in (16), for any constant L < +∞, we have

1 = P{ST } = P{ST , T ≤ L}+ P{ST , T > L} . (111)

By the Cramér-Rao lower bound, if T ≤ L,

C(θ̂T | FT ) ≥ 1

L

(

∑

i∈[K]

Ji(θ)
)−1

. (112)

Similarly, for any i ∈ [K] and T ≤ L, we have

D(α̂i,T | FT , θ̂T ) ≥ 1

L

(

Ji(αi | θ̂T )
)−1

(113)

≥ inf
θ∈Θ

1

L

(

Ji(αi | θ)
)−1

, (114)

where we have defined:

Ji(αi | θ) , E

[

∂2

∂α2
i

λi(x | θ, αi)
]

. (115)

Define the quantities

C(L) ,
1

L

(

∑

i∈[K]

Ji(θ)

)−1

,

and Di(L) , inf
θ∈Θ

1

L

(

Ji(αi | θ)
)−1

. (116)

Similarly to (90)-(93), choosing β ∈ (0, C(L)) and βi ∈ (0, Di(L))
for every i ∈ [K],

P
(

ST , T ≤ L
)

= 0 . (117)

Expanding the second term on the right hand side of (111), we obtain

P{ST , T > L}
= P{T · C(θ̂T | FT ) ≤ Tβ,

T · D(α̂i,T | FT , θ̂T ) ≤ Tβi ∀ i ∈ [K], T > L}
(118)

≤ P{T · C(θ̂T | FT ) ≤ Tβ,

T · D(α̂i,T | FT ) ≤ Tβi ∀ i ∈ [K], T > L} (119)

≤ P

{

[

TC(θ̂T | FT )
β

+
∑

i∈[K]

TD(α̂i,T | FT )
βi

]

≤ (K + 1)T,

T > L

}

, (120)

where (119) follows from the fact that since D(α̂i,T | FT , θ̂T ) ≤
βi at stopping, we can take an expectation over D(α̂i,T | FT , θ)
with respect to Et and obtain D(α̂i,T | FT ) ≤ βi, i.e.,

{D(α̂i,T | FT , θ̂T ) ≤ βi} ⊆ {D(α̂i,T | FT ) ≤ βi}.

Furthermore, for any h > 0, define the event

Et ,

{

t

[

C(θ̂t | Ft)
β

+
∑

i∈[K]

D(α̂i,t | Ft)
βi

]

≥ Wβ(θ,α)− h

}

(121)

Next, we will use Lemma 3 and set L = t∗(h). Expanding (120) we

have

P

{

[

TC(θ̂T | FT )
β

+
∑

i∈[K]

TD(α̂i,T | FT )
βi

]

≤ (K + 1)T,

T > t∗(h)

}

= P

{

[

TC(θ̂T | FT )
β

+
∑

i∈[K]

TD(α̂i,T | FT )
βi

]

≤ (K + 1)T,

T > t∗(h), ET
}

+ P

{

[

TC(θ̂T | FT )
β

+
∑

i∈[K]

TD(α̂i,T | FT )
βi

]

≤ (K + 1)T,

T > t∗(h)

∣

∣

∣

∣

ET
}

· P
(

ET
)

(122)

≤ P

{

Wβ(θ,α)− h ≤ (K + 1)T
}

+ (K + 1)h , (123)

where (122) is a result of applying the law of total probability, and

(123) is a result of Lemma 3. Finally, (123) can be rewritten using

(111) and (117), as follows.

P

{

T ≥ Wβ(θ,α)− h

K + 1

}

> 1− h . (124)

Subsequently, applying the Markov’s inequality yields

E[T ] ≥ Wβ(θ,α)− h

K + 1
·
(

1− (K + 1)h
)

. (125)

APPENDIX F

PROOF OF THEOREM 6

Using Lemma 4, we have the following two convergence proper-

ties.

t · C
(

νMMSE

t | Ft
)

t→∞−−−→ βV (θ) ,

and t · D(ζMMSE

i,t | Ft, νMMSE

t )
t→∞−−−→ βiVi(αi) . (126)

Thus, for any h > 0, there exists t(h) < +∞ such that for all

t > t(h),

P

{

t · C(νMMSE

t | Ft) ≤ βV (θ) + h

}

= 1 , (127)

P

{

t · D(ζMMSE

i,t | Ft, νMMSE

t ) ≤ βiVi(αi) + h

}

= 1 . (128)

Define (T − τi) as the ith time instant at which the guarantee on

one of the parameters is met. Furthermore, define S(i) ∈ [K] as the

experiment to which the parameter belongs, in case that it is a private

parameter. Thus, τK+1 = 0. Furthermore, using (127) and (128), we

obtain that for any h > 0 and T − τi − 1 ≥ t(h),

P

{

T − τi ≤
VS(i)(αS(i)) + h

βS(i)
+ 1

}

= 1 , (129)

or, P

{

T − τi ≤ βV (θ) + h

β
+ 1

}

= 1 , (130)

depending on whether the parameter on which the tolerance guarantee

is achieved is shared or private. Combining (129) and (130), we

obtain:

P

{

(K + 1)T ≤ βV (θ) + h

β
+
∑

i∈[K]

βiVi(αi) + h

βi
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+
K
∑

i=1

τi + (K + 1)

}

= 1 .

(131)

Furthermore, define βmin , min{β, β1, · · · , βK} and βmax ,

max{β, β1, · · · , βK}. Note that using (127) and (128), along with

the definition of (t− τi), for t− τi − 1 > t(h), we have

P

{

T − τi ≤ Vmax(θ,α) +
h

βmin
+ 1

}

= 1 . (132)

Similarly, (126) combined with the definition of (T − τj) for any

experiment S(j) ∈ [K] and for t− τj > t(h), we have

P

{

T − τj ≥
βS(j)VS(j)(αS(j))− h

βS(j)

}

= 1 , (133)

or, P

{

T − τj ≥ βV (θ)− h

β

}

= 1 , (134)

resulting in

P

{

T − τj ≥ Vmin(θ,α) +
h

βmax

}

= 1 . (135)

Combining (132) and (135), we obtain that the following relationship
holds with probability 1:

τj − τi ≤ Vmax(θ,α)− Vmin(θ,α) +

(

1

βmin
+

1

βmax

)

h+ 1 .

Combining (131) and (136), we obtain that with probability 1

T ≤ 1 +
Wβ(θ,α)

K + 1

+
K

K + 1

(

Vmax(θ,α)− Vmin(θ,α) +

(

1

βmin
+

1

βmax

)

h+ 1

)

.

(136)

Finally, to ensure that T − τi − 1 > t(h) for every parameter,

we follow the same steps as (112), (113) and (116) in order to

obtain constants L(h) and Mi(h) for every i ∈ [K], such that

β ∈ (0, L(h)) and βi ∈ (0,Mi(h)) ensure the required conditions.

The corresponding choices of L(h) and Mi(h) are given by:

L(h) ,
1

t(h)

(

∑

i∈[K]

Ji(θ)

)−1

,

and Mi(h) , inf
θ∈Θ

1

t(h)

(

Ji(αi | θ)
)−1

. (137)

APPENDIX G

PROOF OF THEOREM 7

From Lemma 4, there exists Tǫ < +∞ such that for all t ≥ Tǫ,

t

{

C(νMMSE
t | Ft)
β

+
∑

i∈[K]

D(ζMMSE
i,t | Ft)
βi

}

∈ [Wβ(θ,α)− ǫ,Wβ(θ,α) + ǫ] . (138)

Let a ∈ [K] be the first experiment for which the estimation

guarantee is achieved, and let (T − τa) denote the time instant at

which this guarantee is achieved. Then, using (138), along with the

stopping criterion in (52) we have

T − τa − 1 = (T − τa − 1)1{T−τa−1≤Tǫ}

+ (T − τa − 1)1{T−τa−1>Tǫ} (139)

(138)

≤ Tǫ +
Wβ(θ,α) + ǫ

K + 1
+ 1 . (140)

Hence,

T ≤ Tǫ +
Wβ(θ,α) + ǫ

K + 1
+ τa + 2 . (141)

Furthermore, using (85), there exists T0(ǫ) < +∞ such that for all

t ≥ T0(ǫ)

tC(νMMSE

t | Ft) ∈ [βV (θ)− ǫ, βV (θ) + ǫ] , (142)

where V (θ) is defined in (54). Similarly, using (86) there exists

Ti(ǫ) < +∞ for i ∈ [K], such that for all t ≥ Ti(ǫ)

tD(ζMMSE

i,t | Ft) ∈ [βiVi(αi)− ǫ, βiVi(αi) + ǫ] , (143)

where Vi(αi) is defined in (54). Let T ∗
ǫ , max{T0(ǫ), · · · , TK(ǫ)}.

Furthermore, let b ∈ [K] be the experiment selected at the stopping

time. Thus, τb = 0. Subsequently, for any ǫ > 0, (143) yields

T ≤ T ∗(ǫ) +
Vb(αb) + ǫ

βb
+ 2 (144)

≤ T ∗(ǫ) + Vmax(θ,α) +
ǫ

βb
+ 2 , (145)

where (144) is a result of the fact that at stopping,

D(ζMMSE
i,t | νMMSE

t ,Ft) ≤ βi, which implies that

D(ζMMSE
i,t | Ft) ≤ βi, which is obtained by taking an expectation

over D(ζMMSE
i,t | νMMSE

t ,Ft) with respect to the measure E
i
t. Thus,

noting that τa ≤ T , we have

τa ≤ T ∗
ǫ + Vmax(θ,α) +

ǫ

βb
+ 2 . (146)

Finally, combining (141) and (146), we obtain:

T ≤ Tǫ + T ∗
ǫ +

Wβ(θ,α)

K + 1
+ Vmax(θ,α) +

ǫ

βb
+ 4 . (147)

Note that supYt,ψt Tǫ < +∞, and supYt,ψt T ∗
ǫ < +∞ due to

Lemma 4. The proof is completed by taking the expectation on both

sides of (147), dividing by Wβ(θ,α), and taking the limit.

APPENDIX H

PROOF OF THEOREM 4

By contradiction, we prove that a purely Chernoff-based sampling

strategy is sub-optimal. We begin by assuming that the Chernoff-

based sampling strategy described in section V-B1 combined with an

almost surely finite stopping time τ c is asymptotically optimal. This

implies that every constraint given in the problem (16) is satisfied

at stopping. First, let us define the following quantities that are

instrumental for our argument:

a∗ , argmax
i∈[K]

{

Ji(θ) + Ji(αi)

}

, (148)

U ,
{

{θ, αi} : θ ∈ Θ, αi ∈ Ai ∀i ∈ [K]
}

, (149)

Ui ,

{

θ ∈ Θ, αi ∈ Ai : Ji(θ) + Ji(αi)

> Jj(θ) + Jj(αi) ∀ j ∈ [K] \ i
}

, (150)

where a∗ represents the most informative experiment that maximizes

the overall FI, U is a set containing all possible pairs of the parameters

{θ, αi} for every i ∈ [K], and Ui represents a subset of U that

maximizes the FI computed for the pair {θ, αi} for the experiment

i ∈ [K]. It can be readily verified that (θ, αa∗) ∈ Ua∗ . Now, by the

strong consistency of the ML estimate [53], we have,

νML

t → θ, ζML

a∗,t → αa∗ a.s. (151)

This implies that there exists a finite m(ǫ1, ǫ2) ∈ N such that, almost

surely, |νML
t − θ| < ǫ1, and |ζML

a∗,t − αa∗ | < ǫ2 for every t ≥
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m(ǫ1, ǫ2). We also note that the ground truth (θ, αa∗) is an interior

point of the set Ua∗ , since Ui is an open set by definition. Thus, if

the FI measures I (θ) and J (αi) for every i ∈ [K] are continuous

functions of the respective parameters θ and αi, there exists an ǫ-ball

around the point (θ, αa∗), ǫ > 0, such that any set of parameters

{θ′, α′
a∗} within the ǫ-ball also maximizes the FI. Selecting m(ǫ1, ǫ2)

to be sufficiently large, such that ǫ < min(ǫ1, ǫ2), we have that

(νML
t , ζML

a∗,t) ∈ Ua∗ for every t ≥ m(ǫ1, ǫ2). Next, we will show that

for a range of the confidence interval β, the optimal stopping rule uses

at least m(ǫ1, ǫ2) samples with a high probability. Combining the

fact that p̄t → p∗, where p̄t represents the probability mass function

over the experiments i ∈ [K] due to the Chernoff-based sampling

strategy, and p∗ denotes the distribution which selects the experiment

a∗ with probability 1, and the Bernstein-Von Mises Theorem ( [54]),

we obtain

t · C(νMMSE

t | F c

t )
t→∞−−−→ 1/Ja∗(θ) , (152)

where we have defined F c
t , {Y t, ψtc} and ψtc ,

{ψc(1), · · · , ψc(t)}. Let τ c denote the optimal stopping rule that

minimizes (16) under ψtc . Using (152), there exists τǫ < +∞, such

that for all t ≥ τǫ, we have

1 = P

{

t · C(νMMSE

t | F c

t ) ≥ 1/Ja∗(θ)− ǫ
}

. (153)

Furthermore, choosing τ∗ = max{τǫ,m(ǫ1, ǫ2)}, we have that for

all t ≥ τ∗,

1 = P

{

τ c · C(νMMSE

τc | F c

τc) ≥ 1/Ja∗(θ)− ǫ, τ c ≤ τ∗
}

+ P

{

τ c · C(νMMSE

τc | F c

τc) ≥ 1/Ja∗(θ)− ǫ, τ c > τ∗
}

≤ P

{

τ cβ ≥ 1/Ja∗(θ)− ǫ, τ c ≤ τ∗
}

+ P

{

τ c · C(νMMSE

τc | F c

τc) ≥ 1/Ja∗(θ)− ǫ, τ c > τ∗
}

,

(154)

where (154) holds since at the stopping time, C(νMMSE
τc | F c

τc) ≤ β.

Selecting β < 1
τ∗

(

1
J (θ)

− ǫ
)

, we observe that P

{

τ cβ ≥
1/Ja∗(θ)− ǫ, τ c ≤ τ∗

}

= 0. Thus, we have

P

{

τ c > τ∗
}

= 1 . (155)

Finally, note that for all t > τ∗ and for each experiment i ∈ [K]\a∗,

D(ζMMSE
i,τc |F c

τc , ν
MMSE
τc ) = D(ζMMSE

i,τ∗ |F c

τ∗ , ν
MMSE

τ∗ ), since for all t ≥
τ∗, the Chernoff-based control action selects experiment a∗. Let γ ,

min
i∈[K]\a∗

D(ζMMSE
i,τc |F c

τc , ν
MMSE
τc ), γ > 0. Thus, if we choose βi < γ

for any i ∈ [K]\a∗, the sampling strategy forces the estimation cost

C(ζMMSE
i,τc |F c

τc , ν
MMSE
τc ) > βi, hence, failing to satisfy the constraints

in 16, which is a contradiction to our initial assumption.
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