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Abstract— A two-user multiple access channel is considered,
in which the channels undergo slow block fading and the state
of each channel is known only to its corresponding transmitter.
This paper proposes a novel broadcast strategy for multiple
access communication in this channel. In the broadcast approach,
in principle, a transmitter with CSI uncertainty sends multiple
independent superimposed information layers where the rate of
each layer is adapted to a specific channel realization. In the exist-
ing broadcast approaches to multiuser communication, the trans-
mitters often directly adopt a single-user strategy and each
transmitter adapts its transmission to one unknown channel. The
novel aspect of the proposed strategy is that it adapts the designed
codebooks to the state of the entire network. This is motivated by
the fact that the contribution of each user to the network-wide
measures (e.g., capacity region) depends not only on the user’s
direct channel to the receiver, but also on the qualities of other
channels. Average achievable rate region and outer bounds on
the capacity region are characterized. Furthermore, the expected
capacity region is investigated, where most part of the capacity
region boundary is characterized. Finally, an asymptotic capacity
region is also characterized.

Index Terms— Broadcast, local CSIT, MAC, slow fading.

I. INTRODUCTION

W IRELESS channels are often subject to random vari-
ations resulting from the surrounding environment,

inducing uncertainties about the channel state at all transmit-
ters and receivers in the network. While receivers can estimate
the varying channel states with high fidelity, acquiring such
estimates at the transmitters via feedback from the receivers
incurs additional communication and delay costs. In certain
systems, it is not always feasible for the transmitters to acquire
the channel state information (CSI) due to, e.g., stringent delay
constraints or excessive feedback costs. Under such assump-
tions, the notion of outage analysis is useful for assessing
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the reliability of wireless networks [1] and [2]. The outage
and delay-limited capacities are studied extensively for various
channel models (c.f. [3]–[8] and references therein).

An effective approach to circumvent uncertainty about CSI
at the transmitters (CSIT) is a form of superposition coding
according to which each transmitter splits its data stream into a
number of independently-generated coded layers with different
rates. The rate of each layer is adapted to a specific channel
state. The transmitter then superimposes and transmits all the
generated layers and the receiver decodes as many layers
as the actual quality of the channel affords. The broadcast
strategy was initially motivated by the superposition coding
designed for compound broadcast channels [9]. Based on
that, a broadcast strategy was first introduced in [10] for
the Gaussian slowly-fading single-user channel in which the
transmitter sends an infinite number of superimposed coded
information layers each adapted to a different channel state,
thus creating an equivalent broadcast network. In such network
each channel state can be treated as a different receiver, and
it is considered to be degraded with respect to a subset of
the remaining states. Hence, each receiver is able to decode
its intended information layer in addition to those adapted
to all the channels with degraded states. An information-
theoretic framework for the notion of variable-to-fixed channel
capacity without feedback is studied in [11]. Further, multiple-
layer variable-rate systems under the assumption of quantized
feedback are investigated in [12].

The information-theoretic limits of the multiple access
channel (MAC) when all the transmitters and receivers have
complete CSI are well-investigated in [1], [13], and [14].
Furthermore, there exists rich literature on the information-
theoretic limits of the MAC under varying degrees of avail-
ability of instantaneous CSIT. Representative studies on the
capacity region include the impact of degraded CSIT [15],
quantized and asymmetric CSIT [16], asymmetric delayed
CSIT [17], non-causal asymmetric partial CSIT [18], and
symmetric noisy CSIT [19]. Bounds on the capacity region of
the memoryless MAC in which the CSIT is made available to a
different encoder in a causal manner are characterized in [20].
Counterpart results are characterized for the case of common
CSI at all transmitters in [21], which are also extended
in [22] to address the case in which the encoder compresses
previously transmitted symbols and the previous states. Studies
in [23] provides an inner bound on the capacity region of the
discrete and Gaussian memoryless two-user MAC in which the
CSI is made available non-causally to one of the encoders.
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An inner bound on the capacity of the Gaussian MAC is
derived in [24] when both encoders are aware of the CSI in
a strictly causal manner. The capacity region of a cooperative
MAC with partial CSIT is characterized in [25]. The capacity
region of the multi-user Gaussian MAC in which each inter-
ference state is known to only one transmitter is characterized
within a constant gap in [26]. A two-user generalized MAC
with correlated states and non-causally known CSIT is studied
in [27]. In [28] a two-user Gaussian double-dirty compound
MAC with partial CSIT is studied. The capacity regions of
a MAC with full and distributed CSIT are analyzed in [29].
A two-user cooperative MAC with correlated states and partial
CSIT is analyzed in [30]. The study in [31] characterizes inner
and upper bounds on the capacity region of a finite-state MAC
with feedback.

However, when the transmitters can only acquire the prob-
ability distribution of the fading channel state, without any
instantaneous CSIT, the performance limits are not fully
known. The broadcast approach is investigated for the two-user
MAC with no CSIT in [32]–[35]. In [32], the broadcast
approach proposed in [10] is applied to the Gaussian slowly-
fading MAC channel and average rates for the individual users
are analyzed. In [33], the single-user broadcast approach is
directly applied to the random access MAC with no CSIT,
where the each user adpats its information layers to its own
channel state. In [34] and [35], the same problem is studied,
where in contrast to [33], the information layers of each
transmitter are adapted to the combined state of the channels
of all users, rendering a significantly larger achievable rate
region. In this paper, we consider the two-user multiple access
channel in which the transmitters have local CSI. Specifically,
each channel randomly takes one of a finite number of states,
and each transmitter only knows the state of its direct channel
to the receiver perfectly, along with the probability distribution
of the state of the other transmitter’s channel. A similar
model for the two-state MAC is considered in [36], in which
a broadcast approach originally designed for the single-user
channel is directly applied to the MAC. Specifically, in [36]
each transmitter generates two coded layers, where each layer
is adapted to one of the states of the channel linking the
other transmitter to its receiver. This transmission approach is
followed by successive decoding at the receiver in which there
exists a pre-specified order of decoding of the information
layers.

In this paper we consider the same channel model as
in [36], i.e., the two-user MAC with local perfect CSIT, and
propose a transmission and receiving strategies that differ from
those of [36] in two ways. The first distinction is that we
leverage the fact that the overall performance of the MAC
is goverened by combined states of both channels. Hence,
in contrast to [36], the information layers of each transmitter
are adapted to the combined channel states (i.e., the direct as
well as the interfering channels). The second distinction is that
each transmitter, adaptively to the channel state, splits its mes-
sages to different numbers of information layers. Adaptively
changing the number of information layers avoids causing
unnecessary interference resulting from having undecoded
information layers in some of the channel state.

We start by analyzing a two-state channel, and provide
inner and outer bounds on the average capacity region of
the rates that the users can sustain simultaneously. We also
compare the resulting average achievable rate region with that
of the approach in [36] to show the improvement gained from
adapting the coded layers to the combined states of both trans-
mitters’ channels. In particular, encoding one additional infor-
mation layer as the channel state gets stronger and employing
the appropriate decoding order for each channel state results
in improvement in the average achievable rate region when
compared to that of the approach proposed in [36], in which
the number of transmitted layers along with the decoding
order are fixed and independent of the actual channel state.
Furthermore, we prove that the proposed strategy achieves
the sum-rate capacity asymptotically. We also provide the
generalization of the proposed strategy to the case of any
arbitrary finite number of channel states. Finally, the gains
in the achievable rates are illustrated numerically in various
settings. It is noteworthy that the improvement in the aver-
age achievable rate regions becomes more significant as the
number of possible channel states increases. We also remark
that our channel model subsumes the multiple access model
of [37], which investigates a multi-access communication,
in which the users get synchronized random access to the
channel. User activities are random, and the set of active users
is known only to the shared receiver. We will discuss the
relevance of our model and proposed broadcast approach to
those of [37] in details in Section IV-C.

The remainder of the paper is organized as follows. The
finite-state channel model is presented in Section II. The rate-
splitting and decoding strategy are provided in Section III for
the two-state channel model. The corresponding achievable
rate region and the outer bounds are delineated and compared
in Section IV. Generalization of the proposed strategies to
the finite-state channel is discussed in Section V, and the
average achievable rate regions are numerically evaluated in
Section VI. Section VII concludes the paper.

II. CHANNEL MODEL

Consider the two-user fading MAC in which the channel
input-output relationship is given by

Y =
√

h1X1 +
√

h2X2 + N, (1)

where Xi is the signal of transmitter i ∈ {1, 2} with an
average transmission power constraint Pi over each block,
hi is the gain of the channel linking transmitter i ∈ {1, 2}
to the receiver, Y is the received signal, and N accounts
for the additive white Gaussian noise with zero mean and
unit variance. The random channel coefficients independently
take one of � ∈ N distinct values denoted by {αm : m ∈
{1, . . . , �}}.

Transmitter i ∈ {1, 2} is assumed to know only the state
of channel hi, and the receiver is assumed to have access
to the full CSI. Depending on the actual realization of the
channel coefficients h1 and h2, the multiple access channel
can be in one of �2 possible states. By leveraging the broadcast
approach, the communication model in (1) can be equivalently
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Fig. 1. Equivalent broadcast channel for the two-user MAC.

presented by a broadcast network that has two inputs and
�2 outputs, each corresponding to one channel combination.
Figure 1 depicts the network model for � = 2. We denote
the receiver corresponding to the combination (h1, h2) =
(αm, αn) by Ymn, where

Ymn = αmX1 + αnX2 + Nmn, (2)

where Nmn is a zero-mean unit-variance Gaussian random
variable. Without loss of generality, we assume that the
channel gains {αm : m ∈ {1, . . . , �}} are ordered as 0 <
α1 < · · · < α� < +∞. We define pmn as the probability of
the state (h1, h2) = (αm, αn). Accordingly, we also define
qm

�=
∑�

n=1 pmn and pn
�=

∑�
m=1 pmn. For convenience in

notations, we will focus throughout the paper on the case of
symmetric average transmission power constraints, i.e., P1 =
P2 = P , whereas the generalization to the case of asymmetric
power constraints is straightforward. Finally, throughout the
paper we use the notation C(x, y) �= 1

2 log2(1 + x
1
P +y

).

III. RATE SPLITTING AND DECODING SCHEMES

In this section, we focus on the two-state channel (� = 2)
and we will discuss the general case of multi-state channels for
any arbitrary � ≥ 2 in Section V. In order to furnish a context
for comparisons with the existing literature, and to illustrate
the novel aspects of the proposed codebook assignment and
decoding scheme, we first summarize the broadcast approach
of [36] in Subsection III-A. Throughout this section, we refer
to channel states α1 and α2 as the weak and strong channels,
respectively.

A. Overview: Fixed Layering

According to the proposed approach in [36], in channel state
αm, transmitter i splits its message to two information layers
via two independent codebooks denoted by T i

m1 and T i
m2.

The rate of layer T i
m1 is adapted to the weak channel state

of the other user while the rate of layer T i
m2 is adapted to

the strong channel state. Thus, each transmitter encodes its
information stream by two layers and adapts the distribution
of power between them according to its own channel state.
Subsequently, the receiver implements a sequential decoding
approach according to which it decodes one layer from trans-
mitter 1 followed by one layer from transmitter 2, and then

Fig. 2. Layering and codebook assignments.

the remaining layer of transmitter 1, and finally the remaining
layer of transmitter 2. This order is pre-fixed and is used in
all channel states.

B. State-Dependent Layering

Due to both direct and interfering roles of each transmitter,
the rates of the transmitted information streams need to be
adapted to the combined state of both transmitters’ channels.
Furthermore, by leveraging the available partial CSIT, each
transmitter can opportunistically sustain higher rates by adapt-
ing its transmission layers to the instantaneous state of its own
channel.

Based on these two observations, we propose to dynam-
ically split the message of each transmitter into independent
codebooks depending on the actual state of the channel known
to the transmitter. Specifically, when transmitter i ∈ {1, 2}
is in the weak state, we encode its messaged by only one
layer denoted by U i

11. On the other hand, when transmitter
i ∈ {1, 2} is in the strong state, it splits its data stream into
two layers denoted by U i

12 and U i
22. Based on this layering

approach, codebook U i
12 (or U i

22) is adapted to the state in
which the other transmitter experiences a weak (or strong)
channel. The details of information layering and assigning
codebooks to different channel states are depicted in Fig. 2.
In this figure, the cell corresponding to the combined state
(αm, αn) for m, n ∈ {1, 2} specifies which codebook is
adapted to that state.

We remark that the hallmark of the broadcast approach is
ordering the virtual receivers corresponding to the different
combined channel states based on their relative degradedness.
Defining degradedness is straightforward for the single-user
channel (e.g., the receiver corresponding to the weak channel
is degraded with respect to the receiver corresponding to the
strong channel. In MAC, in contrast, there is no natural notion
of degradedness, and any ordering is at least partly heuristic.
In our proposed approach, the underpinning way of ordering
the receivers is as follows: when the state of either transmitter
1 or 2 changes from the weak to the strong state, the receiver
affords to decode an extra information layer. Corresponding
to each channel state, the receiver decodes all the layers
generated by transmitters 1 and 2.

C. Decoding Scheme

We propose a decoding scheme based on which the total
number of decodable codebooks increases as either one of the
channels becomes stronger. In this decoding scheme, demon-
strated in Table I, different combinations of the codebooks in
different channel states are decoded as follows.

• State (α1, α1): Both transmitters are in the weak state,
and generate codebooks {U1

11, U
2
11} according to Fig. 2.
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TABLE I

DECODING SCHEME

In this state, the baseline layers U1
11 and U2

11 are jointly
decoded.

• State (α2, α1): When only the channel of transmitter 1 is
strong, three codebooks {U1

12, U
1
22, U

2
11} are generated.

As shown in Table I, codebooks {U1
12, U

2
11}, which are

adapted to the channel state (α2, α1) are jointly decoded,
followed by decoding the remaining codebook U1

22.
• State (α1, α2): This state is similar to (α2, α1), except

that the roles of transmitters 1 and 2 are swapped.
• State (α2, α2): Finally, when both transmitters have

strong channels, four codebooks are decoded in the order
depicted in the last row of Table I. First, the baseline
layers {U1

12, U
2
12} are jointly decoded, followed by jointly

decoding {U1
22, U

2
22}.

D. Advantages of State-Dependent Layering

Compared with a similar network with no CSIT investigated
in [35], the major distinction is that the transmitters do not
have a pre-fixed layering strategy, and each transmitter selects
its layering approach dynamically, and based on the known
instantaneous channel realization. Furthermore, the major dis-
tinction with a similar network with partial CSIT investigated
in [36] is adapting the number of encoded layers proportion-
ately to the strength of combined channel state. This key differ-
ence leads to two major advantages. The first advantage is that
adapting the number of layers leads to having fewer number
of encoded layers, which in turn, leads to reduced complexity
in decoding and power allocation across different codebooks.
The second advantage pertains to providing the receiver with
the flexibility to vary the decoding order according to the
combined channel state, which in turn results in higher degrees
of freedom in optimizing power allocation, and subsequently
larger rate regions. Specifically, as shown in Theorem 2 and in
numerical evaluations, when power allocation is optimized to
achieve the maximum sum-rate capacity, the achievable rate
region of the proposed scheme subsumes that of [36], and as
the number of channel states increases, the gap becomes even
more significant. The number of codebooks required in our
approach is �(�+1)

2 , whereas [36] is �2 for the �-state channel.
Finally, depending on the actual channel state, our approach
decodes between 2 and �(�+1)

2 codebooks, whereas [36] always
decodes �2 codebooks. Even though it might intuitively seem
that the approach in [36] (using extra codebooks) is expected
to subsume our proposed scheme simply by allocating zero
power to the additional codebooks, this in fact is not the case.
The key determing factor behind this improvement in our
achievable regions, as shown through out the paper, is the

varying decoding order of the received codebooks, showing
that fixing the decoding order in all possible channel states
(as assumed in [36]) is not universally optimal.

It is noteworthy that the two-state channel model in Fig. 1
with channel states α1 = 0 and α2 = 1 reduces to the two-user
Gaussian channel with random access studied in [37]. In this
special case, it can be shown that reserving one codebook to
be decoded exclusively in each of the interference-free states,
i.e., (α1, α2) and (α2, α1), enlarges the achievable rate region.
Hence, it is beneficial in this special case to treat codebooks
(U1

22, U
2
22) as interference whenever both users are active,

i.e., channel state (α2, α2). In other words, channel state
(α2, α2) becomes degraded with respect to each of channel
states (α1, α2) and (α2, α1). Nonetheless, in general, in the
constant presence of interference, i.e., α1 > 0, reserving two
codebooks to be decoded exclusively in these two channel
states limits the average achievable rate region.

IV. INNER AND OUTER BOUNDS ON

THE CAPACITY REGION

We are interested in delineating the average capacity region,
calculated over a sufficiently large number of independent
fading blocks. In this section, we provide inner and outer
bounds on the average capacity region for the proposed
codebook assignment and decoding scheme. For this purpose,
we define Ri(h1, h2) as the rate of transmitter i for the state
pair (h1, h2). Accordingly, we define R̄i

�= Eh1,h2 [Ri(h1, h2)]
as the average rate of transmitter i, where the expected value
is with respect to the distributions of h1 and h2. Hence, the
average capacity region is the convex hull of all achievable
average rates (R̄1, R̄2).

A. Average Achievable Rate Region

We define βk
ij ∈ [0, 1] as the fraction of the total power

P assigned to information layer Uk
ij , where for every j, k ∈

{1, 2} we have
∑j

i=1 βk
ij = 1. In the next theorem, we provide

an average achievable rate region, that is an inner bound for
the average capacity region.

Theorem 1 (Average Achievable Region): For the code-
book assignment in Fig. 2, and the decoding scheme in
Table I, for any given set of power allocation factors {βk

ij},
the average achievable rate region {R̄1, R̄2} is the set of all
rates that satisfy

R̄1 ≤ q1C
(
α1, α2β

2
22

)
+ q2

(
C

(
α2β

1
12, α2β

1
22 + α2β

2
22

)
+C

(
α2β

1
22, 0

))
,

(3)

R̄2 ≤ p1C(α1, α2β
1
22)

+ p2

(
C

(
α2β

2
12, α2β

1
22 + α2β

2
22

)
+C

(
α2β

2
22, 0

))
,

(4)

R̄1+R̄2 ≤ q1p1C (2α1, 0)
+ q1p2C

(
α1 + α2β

2
12 + α2β

2
22, 0

)
+ q2p1C

(
α1 + α2β

1
12 + α2β

1
22, 0

)
+ q2p2C

(
α2β

1
12 + α2β

2
12 + α2β

1
22 + α2β

2
22, 0

)
.

(5)

Proof: See Appendix A.
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The theorem above specifies the average achievable
rate region for a specific decoding order. It is noteworthy
that by relaxing the order, we can allow the receivers to
dynamically deploy different decoding orders in the four
possible channel states. Consequently, in any given channel
state (αm, αn) for m, n ∈ {1, 2}, the set of transmitted layers
along with the receiver constitute a multiple access channel
with (m + n) virtual independent transmitters (codebooks),
in which, the vertices of the average achievable region
can be achieved by employing time-sharing among all
possible (m + n)! decoding orders. Finally, between all four
states (αm, αn) for m, n ∈ {1, 2}, the receiver can employ∏

m,n(m + n)! different possible decoding orders. Character-
izing the average rate region for any of such decoding orders
follows the same lines as in the proof of Theorem 1.

The region characterized in Theorem 1 is corresponding to
the decoding order described in Table I, according to which
the receiver decodes at most two codebooks at each stage until
all the received codebooks from both transmitters are decoded.
Despite the fact that limiting the number of jointly decoded
codebooks at each stage is expected to result in a reduced rate
region, it can be readily verified that the rate region achievable
by employing a fully joint decoding scheme can be recovered
via a time-sharing among the average achievable rates corre-
sponding to all possible decoding orders in each channel state.
This observation follows from the fact that at each state the
codebooks to be decoded, being independently generated, form
a MAC, for which it is well-understood that successive decod-
ing achieves the same region as joint decoding. By leveraging
the fact that in our proposed scheme the receiver is allowed
to vary the decoding order in each channel state, next we
show that under an appropriate decoding order, when we aim
to maximize the sum-rate, the layering scheme proposed in
Section III-B subsumes that of [36], as formalized next.

Theorem 2: For the two-user MAC channel with partial
CSIT, when power allocations are set to maximize the sum-
rate, the average rate region achievable by the layering scheme
in Fig. 2 and the appropriate decoding order subsumes the rate
region achieved in [36].
Proof: See Appendix B.

B. Outer Bounds

In this subsection, we provide two outer bounds on the aver-
age capacity region. Then, we compare the average achievable
rate region characterized in Subsection IV-A with these two
outer bounds.

1) Outer Bound 1: The first outer bound is the average
capacity region corresponding to the two-user MAC in which
the transmitters have complete access to the CSI [38]. This
region is specified by OTVYZO in Fig. 3, and the corner points
are specified in Appendix C.

2) Outer Bound 2: The second outer bound is the average
capacity region of the two-user MAC with local CSI at
transmitter 1 and full CSI at transmitter 2. Outer bound 2 is
formally characterized in Theorem 3.

Theorem 3 (Outer Bound 2): For the two-user MAC with
local CSI at transmitter 1 and full CSI at transmitter 2, the

Fig. 3. Outer bounds on the average achievable rate region.

average capacity region is the set of all average rates enclosed
by the region OTUWYZO shown in Fig. 3, where the corner
points are specified in Appendix C.
Proof: See Appendix D.

For the case of available local CSI at transmitter 1 and
full CSI at transmitter 2, it can be shown that deploying the
proposed layering scheme at transmitter 1(with local CSIT)
achieves the average sum-rate capacity of Outer bound 1. This
is formalized in the following theorem.

Theorem 4: With local CSI at transmitter 1 and full CSI
at transmitter 2, an average achievable rate region is the
region OTUXYZO shown in Fig. 3. The average capacity
region is achieved along TU and YZ, and the sum-rate
capacity is achieved on XY. The corner points are specified
in Appendix C.
Proof: See Appendix E.

In Fig. 3, the region enclosed by OTVYZO is the average
capacity region of a two-user MAC with full CSI at each
transmitter (outer bound 1), which encloses outer bound 2.
Parts of outer bound 2 described in Theorem 4, i.e., TU and
XYZ, coincide with the average capacity region of the case of
the two-user MAC with full CSIT. Specifically, along the line
XY, the average sum-rate capacity is achieved for the channel
even though one of the two transmitters has only local CSI.
It can be shown that if both transmitters possess local CSI, it is
possible to achieve an expected sum-rate that is close to outer
bound 1, and the sum-rate capacity is achieved asymptotically
for low and high power regimes. This result is formalized in
Theorem 5.

Theorem 5 (Asymptotic Average Capacity Region): By
adopting the codebook assignment presented in Section III,
and setting β1

22 = β2
22 = α1

α2
, the sum-rate capacity of a

two-user MAC with full CSIT is achievable asymptotically as
P → 0 or P → ∞.
Proof: See Appendix F.

C. Discussions on Layering

By setting (α1, α2) = (0, 1) our channel model sub-
sumes the random access model investigated in [37]. Specif-
ically, [37] considers a Gaussian multiple access channel in
which the transmitters are active with a certain probability,
and independently of each other. In the two-user channel,
this renders a setting in which each transmitter is only aware
of its binary state, where the active users can be considered
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TABLE II

SUCCESSIVE DECODING STAGES FOR �−STATE MAC WITH LOCAL CSIT

to be in the strong channel state α2 = 1 and the inactive
users be in the weak channel state α1 = 0. This study also
extends this two-state model for the transmitters to the general
multi-user case. While channel models in this special case are
the same, the encoding and decoding schemes are distinct.
Comparing the layering and encoding strategies proposed in
our paper with those of [37] sheds light on two important
issues discussed next.

1) Ordering Channels’ Degradedness: When we have
assigned only one codebook (layer) to each transmitter, clearly
the channel combination (α1, α1) is degraded with respect to
(α2, α1) and (α1, α2), where both in turn are degraded with
respect to (α2, α2). This is due to the fact that as a channel
becomes stronger the achievable sum-rate increases. On the
other hand, when we have multiple layers per transmitter (as is
the case in this paper) considering a specific degradedness not
only depends on the channels strengths, but also it depends
on the decoding scheme adopted, which specifies which layers
are discarded as noise in each channel combination. Such dis-
carded codebooks, clearly cause interference. Hence, ordering
the channel combinations based on their degradedness lies
at the core of designing a broadcast approach. The major
distinction between our proposed approach and that of [37]
boils down to how the channel combinations are ordered.
Specifically, in our approach we do not have any order of
degradedness, while in [37] channel combination (1, 1) can
be naturally considered degraded with respect to channel
combinations (0, 1) and (1, 0). This is due to the fact that
a transmitter with channel gain 0 will not be imposing any
interference on the other transmitter, while when both channels
are non-zero, the transmitters will be interfering. Hence, from
the perspectives of transmitters 1 and 2, channel (1, 1) is
degraded with respect to the channel combinations (1, 0) and
(0, 1), respectively. It is noteworthy that for the special channel
(α1, α2) = (0, 1) the approach of [37] yields a slightly higher
average sum-rate compared to our approach for this setting.
In general, however, when the weak channel is non-zero, our
approach outperforms (significantly). This is due to the fact

that the approach of [37] is adapted to the special channel
(α1, α2) = (0, 1).

2) Optimal Layering: Increasing the number of layers,
in general, is not necessarily an optimal approach. For
instance, in [37] each transmitter is active with probability
p independently of the rest. This indicates that in a large
network consisting of M transmitters, with a high probability
Mp users are active, and each transmitter knows its state.
Hence, in the asymptote of M → ∞, the network reduces to an
Mp-user MAC where each transmitter has full CSI, in which
case allocating only one layer to each transmitter is optimal.
This observation is also verified in [37] where it is shown that
one layer per transmitter is efficient in the multi-user case.

V. MULTI-STATE CHANNEL (� ≥ 2)

In this section, we generalize the encoding and decoding
strategy proposed in Section III for the case of two-state
channel to the general �-state channel, where � ∈ N. When the
channels have � possible states, each transmitter is allocated �
different sets of codebooks, one corresponding to each channel
state. Specifically, corresponding to channel state αm for
m ∈ {1, . . . , �}, transmitter i encodes its message via m infor-
mation layers generated according to independent codebooks.
This set of codebooks is denoted by Wi

m
�= {U i

1m, . . . , U i
mm}.

Table II specifies the designation of the codebooks to
different combined channel states. In this table, the chan-
nels are ordered in the ascending order. In particular, vary-
ing channels for transmitter 1, the combined channel state
(αq, αp) precedes all channel states (αk, αp) for all k > q.
Similarly, for transmitter 2 channel state (αq, αp) precedes
the channel state (αq, αk), for every k > p. Furthermore,
according to this approach, when user i’s channel becomes
stronger, it decodes additional codebooks. The sequence of
decoding the codebooks, as shown in Table II, is specified in
three steps:

1) State (α1, α1): We start by the weakest channel com-
bination (α1, α1), and reserve the baseline codebooks
U1

11, U
2
11 to be the only codebooks to be decoded in this
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Fig. 4. Average rate regions for � = 2.

state. We define V i
11

�= {U i
11} as the set of codebooks

that the receiver decodes from transmitter i when the
channel state is (α1, α1).

2) States (α1, αq) and (αq, α1): Next, we construct the
first row of the table, for this purpose we define V2

1q

as the set of the codebooks that the receiver decodes
from transmitter 2, when the channel state is (α1, αq).
Based on this, we can recursively specify the set of code-
books in each state. Specifically, in the state (α1, αq),
we decode what has been decoded in the preceding
state (α1, αq−1), i.e., the set of codebooks V2

1(q−1), plus
new codebooks {U1

1q, . . . , U
1
qq}. We construct the first

column of the table in a similar fashion, except that the
roles of transmitter 1 and 2 are swapped.

3) States (αq, αp) for p, q > 1: By defining the set of code-
books that the receiver decodes from transmitter i
in the state (αq, αp) by V i

qp, the codebooks decoded
in this state are related to the ones decoded in two
preceding states. Specifically, in state (αq, αp) we
decode codebooks V1

(p−1)q and V2
p(q−1). For example,

for � = 3, the codebooks decoded in (α2, α3) includes
those decoded for transmitter 1 in state (α2, α2) along
with those decoded for transmitter 2 in channel state
(α1, α3).

The decoding order in the general case is similar the one
used for � = 2 in Table I. In particular, in channel state
(αq, αp) the receiver successively decodes q codebooks from
transmitter 1 along with p codebooks from transmitter 2.
The set of decodable codebooks in channel state (αq, αp) is
related to set of codebooks decoded for transmitter 2 in state
(αq−1, αp) and those decoded for transmitter 1 (αq, αp−1).

The average achievable rate region for the codebook assign-
ment and decoding strategy presented in this section is
summarized in Theorem 6. Similar to the two-state channel
case, we define βi

mn ∈ [0, 1] as the fraction of power allocated
to the codebook U i

mn such that
∑n

m=1 βi
mn = 1, ∀n ∈

{1, . . . .�}.
Theorem 6 (General Rate Region): For the codebook

assignment in Section V, and the decoding scheme in
Table II, for any given set of power allocation factors {βi

mn},
the average achievable rate region {R̄1, R̄2} for the �-state
channel is the set of all rates that satisfy

R̄2 ≤ E[r1(n, m)], (6)

Fig. 5. Average rate regions for � = 3.

R̄2 ≤ E[r2(n, m)], (7)

R̄1 + R̄2 ≤ E[min{r3(n, m), r4(n, m)}], (8)

where the functions {r1(n, m), . . . , r4(n, m)}, for all m, n ∈
{1, . . . , �} are defined in Appendix G.

VI. NUMERICAL EVALUATIONS

In this section, we illustrate the gains attained by the
proposed leyring and decoding scheme through numeri-
cally evaluating the average achievable rates characterized in
sections IV and V, for the two- and three-state channel models.
We begin by evaluating the average rate region achievable by
the proposed layering scheme in figures 4 and 5. In particular,
we compare the average rate regions with the outer bounds
established in Section IV-B, i.e., outer bound 1 (full CSI at
both transmitters) and outer bound 2 (full CSI at transmitter
2 only). Furthermore, we evaluate the average achievable rate
region corresponding to the encoding and decoding approach
proposed in [36] for the same channel settings to demostarate
the gleaned gains. Finally, we illustrate the role of the partially
available CSIT incorporated in the proposed approach by
comparing the average rate regions with that of the approach
proposed in [35] for the two-user MAC with no CSIT.

For the two-state channel, Fig. 4 demonstrates the average
rate region for P1 = P2 = P = 10 dB, channel gains
α1 = 0.25, α2 = 1, and the channel probability parameters
q1 = p1 = 0.5. It is observed that the rate region achievable
by the decoding approach proposed in Section III coincides
with that achieved by full joint decoding. According to the
proposed layering scheme, each transmitter transmits three
independent codebooks compared to four codebooks in the
approach in [36]. Hence, the proposed decoding scheme gleans
higher average sum-rate with fewer number of encoded layers
which simplifies the possible search space for the appropriate
power allocation and decoding order.

Similarly, for the three-state channel, Fig. 5 demonstrates
the average rate region for channel gains α1 = 0.04,
α2 = 0.25, α3 = 1, and channel probability parameters
q1 = 0.3, q2 = 0.4 for transmitter 1, and p1 = 0.6, p2 = 0.1
for transmitter 2. We remark that for the three-state channel,
we have extended the strategy of [36], in which we get nine
codebooks per transmitter. This is different from our proposed
iterative joint decoding policy that requires only six codebooks
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Fig. 6. Average rates of transmitter 2 for � = 2.

per transmitter. Hence, by adapting the number of codebooks
as well as the decoding order to the combined channel state,
the proposed strategy achieves higher average rates, while
having lower encoding and decoding complexity.

In figures 6 and 7, we evaluate the achievable rates for
user 1 and 2 under the following setting. First, we identify
the corner point of the average achievable rate region at
which transmitter 1 achieves the maximum average rate while
the average sum-rate capacity is achieved by the two-users
(corner point D on Fig. 10 in Appendix B). At this corner
point, we evaluate the average achievable rate by user 2, R̄2,
corresponding to the maximum achievable rate R̄1 in each of
the proposed approach and the approach in [36]. Further, we
evaluate the resulting R̄2 identified by outer bounds 1 and 2
that corresponds to the same R̄1. We consider two different
settings to reflect the effect of symmetric/asymmetric average
power constraints and channel probability distirbutions among
the two users. In particular, the first setting denoted by S1,
considers equal power constariants and symmetric channel
distributions, while setting S2 considers unequal power con-
straints and asymmetric channel distribution. In Fig. 6, for
the two-state channel model and a fixed R̄1, we evaluate R̄2

achieved by our scheme, the scheme in [36], outer bound
1, and outer bound 2 for α2 = 1, P1 = P2 = 10dB, and
q1 = p1 = 0.3 in setting S1 and P1 = 10dB, P2 = 6.9dB,
q1 = 0.8, and p1 = 0.4 in S2. In Fig. 7, a similar comparison
is demonestrated for the three-state channel for α1 = 0.1,
α3 = 1, P1 = P2 = 10dB, q1 = p1 = 0.6, q2 = p2 = 0.1
in S1, and P1 = 7dB, P2 = 10dB, q1 = 0.3, p1 = 0.6, q2 =
0.3, p2 = 0.2 in S2. Figures 6 and 7 show that for various
settings, the proposed approach outperforms the approach pro-
posed in [36] while achieving outer bound 2 in certain cases.

Furthermore, we evaluate theorems 4 and 5 in
figures 8 and 9, respectively. In Fig. 8, we evaluate the
average achievable rate region OTUXYZ specified in Fig. 3
for three scenarios Ŝ1, Ŝ2, Ŝ3. In all three scenarios, we fix the
average power constraint to 10 dB, i.e. P1 = P2 = P = 10 dB,
the channel states are given by (α1, α2) = (0.3, 1). On the
other hand, we vary the channel probability distribution among
the three scenarios where we evaluate the symmetric case in
Ŝ1 with q1 = p1 = 0.5, and the asymmetric cases in Ŝ1, Ŝ2

with q1 = 0.2, p1 = 0.8 and q1 = 0.4, p1 = 0.5, respectively.
This figures verifies the statement of Theorem 4 for different

Fig. 7. Average rates of transmitter 2 for � = 3.

scenarios showing that the average capacity region of
two-user MAC with full CSIT is partially achieved through
the proposed encoding and decoding scheme when only
one user had full CSIT. Finally, Theorem 5 is evaluated in
Fig. 9 in the low and high signal-to-noise ratio regimes,
i.e., P → 0 or P → ∞. In Fig. 9, we fix the channel
probability distribution such that q1 = p1 = 0.5 while varying
the average power constraint in five different scenarios.
In particular, we set P2 = 10 dB and P1 ∈ {40, 30, 20} dB in
scenarios S̄1, S̄2, S̄3, respectively. Further, scenarios S̄4 and
S̄5 corresponds to P1 = P2 = 0.1 dB and P1 = 0.1, P2 = 10
dB, respectively. Fig. 9 confirms the statement of Theorem 5
showing that the average achievable sum-rates of the proposed
scheme approaches the sum-rate capacity in the high or low
signal-to-noise ratio regimes.

VII. CONCLUSION

In this paper, we have proposed a novel broadcast approach
for the two-user multiple access channel over a slowly-fading
channel with only local channel state information at the trans-
mitters. In particular, each transmitter is assumed to know the
complete state information of its own channel to the receiver,
while being oblivious to the state of the other channel. Existing
broadcast strategies for such a channel model adapt the number
of codebooks designed at each transmitter, as well as their
rates, to the state of its individual channel. The proposed
approach, in contrast, adapts the design of the information
layers to the combined states of the channels resulting from
all the transmitters. Average achievable rate regions for the
proposed approach have been characterized, demonstrating
that the proposed approach and its associated achievable
rate region subsume those of the existing approaches. Also,
we have established that the proposed strategy achieves the
sum-rate capacity in the asymptote of small and large trans-
mission power. Furthermore, the proposed approach has lower
encoding and decoding complexity. In addition to the attained
gains in the average achievable rates, further investigating the
delay performance of the proposed approach is an encouraging
path, where promising results have been shown in the literature
for broadcast approach in the single-user channel. Further
studies include adapting the proposed broadcast approach
to a slowly-fading channel with random multiple access as
well as extending the results to the settings in which the
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Fig. 8. Average rate regions in Theorem 4.

Fig. 9. Average sum-rates in Theorem 5.

channels follow a continuous fading model. Finally, we remark
that depending on the relative channel conditions (e.g., when
the weak channel’s is 0) it is possible to have alternative
broadcast approaches that render higher average sum-rate. This
indicates that there is room to further investigate an opti-
mized layering transmission for the model considered in this
paper.

APPENDIX A
PROOF OF THEOREM 1

It can be proved that for the successive decoding strategy
outlined in Table I, the boundaries of the region outlined in
Theorem 1 is achievable. First, we define the achievable rates
of each codebook Uk

ij as Rk
ij , for i ≤ j, j, k ∈ {1, 2}. We start

by considering the network state when both channels are weak.
Transmitted message from transmitter i consists of U i

11, for
i ∈ {1, 2}. In this state, the receiver jointly decodes all the
received information layers U1

11 and U2
11. Successful decoding

of these layers requires that individual rates and sum rates of
jointly decoded codebooks are within a region bounded by a
set of inequalities that defines the capacity region of a two-user
MAC transmitting a single layer of information per transmitter.
Channel state (α1, α1):

R1
11 ≤ C (α1, 0) �= ν11, (9)

R2
11 ≤ C (α1, 0) �= η11, (10)

R1
11 + R2

11 ≤ C (2α1, 0) �= γ11. (11)

By following the decoding order corresponding to channel
states (α1, α2), (α2, α1), and (α2, α2), we follow the same
steps to get the following set of rate constraints.
Channel state (α1, α2):

R1
11 ≤ C

(
α1, α2β

2
22

) �= ν̄11, (12)

R2
12 ≤ C

(
α2β

2
12, α2β

2
22

) �= η12, (13)

R1
11 + R2

12 ≤ C
(
α1 + α2β

2
12, α2β

2
22

) �= γ12, (14)

R2
22 ≤ C

(
α2β

2
22, 0

) �= η22. (15)

Channel state (α2, α1):

R1
12 ≤ C

(
α2β

1
12, α2β

1
22

) �= ν12, (16)

R2
11 ≤ C

(
α1, α2β

1
22

) �= η̄11, (17)

R1
12 + R2

11 ≤ C
(
α2β

1
12 + α1, α2β

1
22

) �= γ21, (18)

R1
22 ≤ C

(
α2β

1
22, 0

) �= ν22. (19)

Channel state (α2, α2):

R1
12 ≤ C

(
α2β

1
12, α2β

1
22 + α2β

2
22

) �= ν̄12, (20)

R2
12 ≤ C

(
α2β

2
12, α2β

1
22 + α2β

2
22

) �= η̄12, (21)

R1
12 + R2

12 ≤ C
(
α2β

1
12 + α2β

2
12, α2β

1
22 + α2β

2
22

)
�= γ22, (22)

R2
22 ≤ C

(
α2β

2
22, 0

) �= η̄22, (23)

R1
22 ≤ C

(
α2β

1
22, 0

) �= ν̄22, (24)

R1
22 + R2

22 ≤ C
(
α2β

1
22 + α2β

2
22, 0

) �= γ̄22. (25)

Next, we aggregate the constraints on the rates (9)-(25) to
characterize an average achievable rate region. We start by
characterizing the aggregate achievable rate region for both
transmitters in each channel state by using Fourier-Motkinz
elimination (FME) [39, Appendix D]. To this end, note that
Ri(h1, h2) denotes the rate of transmitter i for the combined
channel (h1, h2). For instance, when both channels are weak,
then Ri(h1, h2) = Ri

11. As a result, the first combined channel
state (α1, α1), is a straightforward case, in which we can
directly replace Ri

11 by Ri(α1, α1) in (9)-(11). Hence,

R1(α1, α1) ≤ ν11, R2(α1, α1) ≤ η11, (26)

R1(α1, α1) + R2(α1, α1) ≤ γ11. (27)

For channel state (α1, α2), we directly follow the FME proce-
dure to sequentially eliminate the layered random codebooks.
First, in (16)-(25), we replace R1

11 by R1(α1, α2), and replace
R2

12 by (R2(α1, α2)−R2
22). Afterwards, we have one remain-

ing variable to eliminate, i.e., R2
22, which can be achieved by

collecting all the inequalities that have the term R2
22 with a

negative sign resulting in (12) and (14). Finally, we add each
of these equations to (23) (all the inequalities that contain R2

22

with positive sign) resulting in

R1(α1, α2) ≤ ν̄11, R2(α1, α2) ≤ η12 + η22, (28)

R1(α1, α2) + R2(α1, α2) ≤ η22 + γ12. (29)

Similar elimination steps can be followed for the codebooks
decoded in channel state (α2, α1). After eliminating the auxil-
iary variables R1

12, R1
22, and R2

11 by following standard FME
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procedure, the achievable rate region for transmitters 1 and 2
in this channel state is given by

R1(α2, α1) ≤ ν12 + ν22, R2(α2, α1) ≤ η̄11, (30)

R1(α2, α1) + R1(α2, α1) ≤ γ21 + ν22. (31)

Finally, in channel state (α2, α2), the total achievable rates of
transmitters 1 and 2 are bounded as follows.

R1(α2, α2) ≤ ν̄12 + ν̄22, R2(α2, α2)≤ η̄12 + η̄12, (32)

R1(α2, α2) + R2(α2, α2)≤γ22 + γ̄22, (33)

R1(α2, α2) + R2(α2, α2)≤ ν̄12 + η̄12 + γ̄22, (34)

R1(α2, α2) + R2(α2, α2)≤γ22 + ν̄22 + η̄22, (35)

2R1(α2, α2) + R2(α2, α2)≤ ν̄12 + γ22 + γ̄22 + ν̄22. (36)

As a result, the average achievable rate of transmitter i, i.e.,

R̄i = Eh1,h2 [Ri(h1, h2)] =
∑
m,n

pmnRi(αm, αn), (37)

is bounded by the average of the corresponding bounds in
(26), (28), (30), and (32), i.e.,

R̄1 ≤ q1 min{ν11, ν̄11}+q2 min{ν12+ν22, ν̄12+ν̄22}, (38)

R̄2 ≤ p1 min{η11, η̄11}+p2 min{η12+η22, η̄12+η̄22}. (39)

Note that the min{·, ·} terms in (38) and (39) are needed to
guarantee the decodability of each codebook in two different
channel states, e.g., rate of codebook U1

11 must be achievable
in each of channel states (α1, α1) and (α1, α2), even though
it is primarily adapted to state (α1, α1). Codebooks U1

12, U1
22,

U2
11, U2

12, and U2
22 are required to satisfy similar conditions.

Similarly, by noting that given (32) and (33) the bound
in (36) is redundant, the average sum-rate is bounded by the
average of the bounds in (27), (29), (31), and (33)-(35) as
follows.

R̄1 + R̄2 ≤ p11γ11 + p12(γ12 + η22) + p21(γ21 + ν22)
+ p22 min{γ22 + γ̄22,

ν̄12 + η̄12 + γ̄22, γ22 + ν̄22 + η̄22}. (40)

Finally, we remark that by using (9), (12), (16), (20), (19),
and (24) it can be readily verified that ν̄11 ≤ ν11,
ν̄12 ≤ ν12, and ν̄22 = ν22, respectively. Similarly, by
using (10), (17), (13), (21), (19), and (23) we have η̄11 ≤ η11,
η̄12 ≤ η12, and η̄22 = η22. Additionally, according to (20)-
(25), we have γ22 ≤ ν̄12+ η̄12 and γ̄22 ≤ ν̄22+ η̄22. Therefore,
the average rate region defined by (38)- (40) can be readily
simplified to that outlined in Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

The average rate region of our approach is the convex hull
of all the average rate regions that are attained by different
decoding orders in different states. In order to show that this
region subsumes that of [36] we show the following properties:

1) Our rate region (R̄1, R̄2) subsumes the rate region
specified by OABCDEF in Fig. 10.

2) The approach of [36] has a rate region specified by
OABC’EF in Fig. 10.

Fig. 10. Rate regions OABCDEF and OABC’EF.

3) The point C’ lies on the segment CD in Fig. 10, strictly
away from the corner points.

1- (R̄1, R̄2) subsumes OABCDEF: This region can
be achieved by time-sharing among the corner points
A,B,C,D,E,F which we characterize next. Note that we follow
the same notation defined in Appendix A where the rate of
codebooks Uk

ij is denoted by Rk
ij , for i ≤ j, j, k ∈ {1, 2}.

Corner A: By setting the rate of all the codebooks corre-
sponding to transmitter 1 to 0, i.e. R1

11 = R1
12 = R1

22 = 0,
the maximum average achievable rate of transmitter 2 is given
by

R̄2 ≤ p1C (α1, 0) + p2C (α2, 0) . (41)

Corner F: Alternatively, by setting the rate of all the code-
books corresponding to transmitter 2 to 0, i.e. R2

11 = R2
12 =

R2
22 = 0, the maximum average achievable rate of transmitter

1 is given by

R̄1 ≤ q1C (α1, 0) + q2C (α2, 0) . (42)

Corner B: At this corner, for every channel state (αm, αn)
where m, n ∈ {1, 2}, all the codebooks received from
transmitter 1 are decoded and eliminated before decoding
those received from transmitter 2 resulting in the following
achievable rates for each user.
Channel state (α1, α1):

R1(α1, α1) ≤ C (α1, α1) , R2(α1, α1) ≤ C(α1, 0). (43)

Channel state (α1, α2):

R1(α1, α2) ≤ C (α1, α2) , R2(α1, α2) ≤ C(α2, 0). (44)

Channel state (α2, α1):

R1(α2, α1) ≤ C (α2, α1) , R2(α2, α1) ≤ C(α1, 0). (45)

Channel state (α2, α2):

R1(α2, α2) ≤ C (α2, α2) , R2(α2, α2) ≤ C (α2, 0). (46)

Hence, the average achievable rates for transmitters 1 and 2 at
point B are given by

R̄1 ≤ q1C (α1, α2) + q2C (α2, α2), (47)

R̄2 ≤ p1C (α1, 0) + p2C (α2, 0). (48)

Corner E: The decoding scheme of point E is similar to that
stated for point B except that the roles of transmitters 1 and 2
are swapped, resulting in

R̄2 ≤ p1C (α1, α2) + p2C (α2, α2), (49)
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TABLE III

SUCCESSIVE DECODING ORDER ACHIEVING SUM-RATE CAPACITY

R̄1 ≤ q1C (α1, 0) + q2C (α2, 0). (50)

Corner D: This corner can be achieved by following the suc-
cessive decoding order in Table III under the power allocation
β2

22 = β1
22 = α1

α2
. The achievable rates for transmitter 1 and 2

are
Channel state (α1, α1):

R2(α1, α1) = R2
11 ≤ C (α1, α1),

R1(α1, α1) = R1
11 ≤ C(α1, 0). (51)

Channel state (α2, α1):

R2(α2, α1) = R2
11 ≤ C (α1, α1) , (52)

R1(α2, α1) = R1
12 + R1

22

≤ C(α2β
1
12, α1 + α2β

1
22) + C(α2β

1
22, 0). (53)

Channel state (α1, α2):

R1(α1, α2) = R1
11 ≤ C (α1, 0), (54)

R2(α1, α2) = R2
12 + R2

22

≤ C(α2β
2
12, α1 + α2β

1
22) + C(α2β

2
22, α1). (55)

Channel state (α2, α2):

R1(α2, α2) = R1
12 + R1

22

≤ C(α2β
1
12, α2 + α2β

1
22) + C(α2β

1
22, 0), (56)

R2(α2, α2) = R2
12 + R2

22

≤ C(α2β
2
12, α1 + α2β

1
22) + C(α2β

2
22, α1). ‘(57)

Hence, by directly substituting the power allocation β2
22 =

β1
22 = α1

α2
, in (52)-(57), the average achievable rates for

transmitters 1 and 2 at point D are given by

R̄1 = C (α1, 0) + q2C(α2 − α1, α1 + α1),
R̄2 = C (α1, α1) + p2C((α2 − α1), α1 + α2). (58)

Corner C: We follow the same decoding order as in Table III
except that the roles of transmitters 1 and 2 are swapped.
Hence

R̄2 = C (α1, 0) + p2C(α2 − α1, α1 + α1),
R̄1 = C (α1, α1) + q2C((α2 − α1), α1 + α2). (59)

2- ABC’EF is the average rate region of [36]: According
to the approach presented in [36], the rate region enclosed
by the points A,B,C’,E,F are achieved by varying the power
allocation among the transmitted codebook according to the
fixed decoding order specified in IV.

3- C’ lies on CD: We first show that both our approach
and the approach of [36] achieve the sum-rate capacity,

TABLE IV

SUCCESSIVE DECODING SCHEME IN [36]

established in [29]. Then we show that the point C (D) appears
strictly on the right (left) side of of C’. For this purpose,
we first remark that [29, Theorem 13] provides a power allo-
cation algorithm according to which for any ρ ∈ [C(α1, α1),
C(α1, 0)] the average sum-rate capacity is achieved, in which
case the rates satisfy:

min{R1(α1, α1), R1(α1, α2)} = ρ, (60)

min{R2(α1, α1), R2(α2, α1)} = C(α1 + α1, 0) − ρ, (61)

min{R1(α2, α1), R1(α2, α2)} = C(α2 + α1, 0)
− min{R2(α1, α1),

R2(α2, α1)}, (62)

min{R2(α1, α2), R2(α2, α2)} = C(α2 + α2, 0)
− min{R1(α2, α1),

R1(α2, α2)}. (63)

Next, we show that all the average rates on the segment
CD achieve the average sum-rate capacity. Specifically, from
(52)-(57), the rates achievable by codebooks {U i

11, U
i
12, U

i
22}

are

R1
11 = C(α1, 0), R2

11 = C(α1, α1), (64)

R1
12 = C((α2 − α1), α1 + α1), R1

22 = C(α1, 0), (65)

R2
12 = C((α2 − α1), α1 + α2), R2

22 = C(α1, α1). (66)

It can be readily verified that the rates in (64)-(66) are the same
as those specified in (60)-(63) when we set ρ = C(α1, 0).
Similarly, the rate achieved at point C achieve the rates in
(60)-(63) for ρ = C(α1, α1).

Next, we show that there exists a point C’ which achieves
the sum-rate capacity based on the approach in [36]. To this
end, we note that according to this scheme, when transmitter i
is in state αm, it splits its message into two layers denoted by
T i

m1 and T i
m2 with power distribution factors βi

m and (1−βi
m),

respectively. At the receiver side, the scheme in [36] performs
successive decoding with the fixed order specified in Table IV.
For the power allocation β1

1 = β2
1 = 0 and β1

1 = β2
2 = 1− α1

α2
,

the rates achievable by codebooks {T i
m1, T

i
m2}, for i, m ∈

{1, 2}, are given by

R1
T11

= 0, R2
T11

=0, (67)

R1
T12

= C(α1, α1), R2
T12

=C(α1, 0), (68)

R1
T21

= C((α2 − α1), α1 + α2), R2
T21

=C((α2 − α1), 2α1),
(69)

R1
T22

= C(α1, α1), R2
T22

=C(α1, 0). (70)

The rates in (67)-(70) are the same as those specified
in (60)-(63) when we set ρ = C(α1, α1).
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Finally, we show that the corner point C’ appears strictly
on the right side of C. Note that to achievable rate at point D
maximizes the average rate of transmitter 1 over all feasible
rates allocations for transmitter 2. Therefore, according to
Table IV, power allocation according to β1

1 = 0, β1
1 = β2

2 = 1
and β1

1 = 1− α1
α2

is the only such power allocation. The rates
achievable by codebooks {T i

m1, T
i
m2}, for i, m ∈ {1, 2}, are

R1
T11

= 0, R2
T11

= C(α1, α1), (71)

R1
T12

= C(α1, 0), R2
T12

= 0, (72)

R1
T21

= C((α2 − α1), α1 + α2), R2
T21

≤ C(α1, α1), (73)

R1
T22

= C(α1, α1), R2
T22

= 0. (74)

Hence, (71)- (74) establish that the average achievable rate for
transmitter 2 at this point does not fall on line segment CD
where the average achievable rates are given by

R̄T1 = C (α1, 0) + q2C(α2 − α1, α1 + α1) = R̄1,

R̄T2 ≤ C (α1, α1) < R̄2. (75)

For any other power allocation such that β2
1 �= 1, we note that

the average achievable rate for transmitter 1 is strictly less that
that achievable at point D, Hence, for any power allocation for
the scheme in [36] achieving the sum-rate capacity falls on line
segment CD and strictly to the right of point D.

APPENDIX C
CORNER POINTS IN FIGURE 3

The coordinates of the corner points of Fig. 3 are specified
as follows

T : (0, b1), U : (b2, b1), V : (b7, b1), W : (b3, b4),
X : (f1, f2), Y : (b5, b6), Z : (b5, 0), (76)

where we have defined

b1
�= p1C(α1, 0) + p2C(α2, 0), (77)

b2
�= q1C (α1, α2) + q2C (α2, α2), (78)

b3
�= q1ρi∗ + q2ρ̂j∗ , (79)

b4
�= p1μi∗ + p2μ̂j∗ , (80)

b5
�= q1C(α1, 0) + q2C(α2, 0), (81)

b6
�= p11C (α1, α1) + p12C (α2, α1)

+ p21C (α1, α2) + p22C (α2, α2), (82)

b7
�= p11C (α1, α1) + p21C (α2, α1)

+ p12C (α1, α2) + p22C (α2, α2), (83)

f1
�= q1C (α1, 0)

+ q2

[
C

(
α2β

1
12, α1 + α2β

1
22

)
+ C(α2β

1
22, 0)

]
, (84)

f2
�= p11C(2α1, 0)

+ (p12 + p21)C(α1 + α2, 0) + p22C(2α2, 0) − f1.

(85)

and we have defined i∗ �= arg maxi μi and j∗ �= arg maxj μ̂j

for

μ1
�= p1C(α1, 0) + p2[C(α1 + α2, 2α1) + C(α1, 0)], (86)

μ2
�= p1[C(2α1, α1 + α2) + C(α2, 0)] + p2C(α2, 0), (87)

μ̂1
�= p1C(α1, 0) + p2[C(2α2, α1 + α2) + C(α1, 0)], (88)

μ̂2
�= p1[C(α1 + α2, 2α2) + C(α2, 0)] + p2C(α2, 0), (89)

ρ1
�= C(α1, α1), ρ2

�= C(α1, α2),
ρ̂1

�= C(α2, α1), ρ̂2
�= C(α2, α2). (90)

APPENDIX D
PROOF OF THEOREM 3

For characterizing OTUWYZO, we begin by characterizing
the corner points of the average capacity region when only one
transmitter is active, i.e., corner points T and Z. Then, corner
points U and Y, which are achieved when one transmitter
is decoded entirely before the other one, are characterized.
Finally, we characterize W at which the sum-capacity is
achieved. Throughout this section, we denote the rates of
transmitter 1 in the weak and strong channels by R1

w and R1
s ,

respectively. For transmitter 2, we denote the achievable rates
in the four combined states of by {R2

ww, R2
ws, R

2
sw, R2

ss}.
Corner T: By setting R̄1 = 0, R̄2 is bounded by

R̄2 ≤ p1C (α1, 0) + p2C (α2, 0) �= b1. (91)

Corner Z: Alternatively, by setting R̄2 = 0, R̄1 is bounded by

R̄1 ≤ q2C (α1, 0) + q2C (α2, 0) �= b5. (92)

Corner U: At point U, the message of transmitter 1 is decoded
and eliminated before decoding the message of transmitter 2.
In each possible combined channel state, the rates of the
decodable codebooks transmitted by transmitters 1 and 2 are
subject to the following set of inequalities.
Channel state (α1, α1):

R1
w ≤ C (α1, α1), R2

ww ≤ C(α1, 0). (93)

Channel state (α1, α2):

R1
w ≤ C (α1, α2), R2

ws ≤ C(α2, 0). (94)

Channel state (α2, α1):

R1
s ≤ C (α2, α1), R2

sw ≤ C(α1, 0). (95)

Channel state (α2, α2):

R1
s ≤ C (α2, α2), R2

ss ≤ C (α2, 0) . (96)

Hence, the average achievable rates for transmitter 1 and 2 at
point U satisfy:

R̄1 ≤ q1C (α1, α2) + q2C (α2, α2)
�= b2, (97)

R̄2 ≤ p1C (α1, 0) + p2C (α2, 0) = b1. (98)

Corner Y: At this point, transmitter 2’s message is decoded
and eliminated first. The outer bounds on the rates of different
codebooks are listed below.
Channel state (α1, α1):

R2
ww ≤ C (α1, α1), R1

w ≤ C (α1, 0). (99)

Channel state (α1, α2):

R2
ws ≤ C (α2, α1), R1

w;≤ C (α1, 0). (100)
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Channel state (α2, α1):

R2
sw ≤ C (α1, α2), R1

s ≤ C (α2, 0). (101)

Channel state (α2, α2):

R2
ss ≤ C (α2, α2), R1

s ≤ C (α2, 0). (102)

Subsequently, the average achievable rates for transmitters 1
and 2 at point Y are bounded as follows.

R̄1 ≤ q1C (α1, 0) + q2C (α2, 0) = b5, (103)

R̄2 ≤ p11C (α1, α1) + p12C (α2, α1)

+ p21C (α1, α2) + p22C (α2, α2)
�= b6. (104)

Finally, at point W transmitter 2 adapts its transmission rate
such that for any average achievable rate of transmitter 1, the
average sum-rate is achieved as follows.
Corner W:
Channel state (α1, α1):

R1
w ≤ C(α1, 0), R2

ww ≤ C (α1, 0), (105)
R1

w + R2
ww ≤ C(α1 + α1, 0). (106)

Channel state (α1, α2):

R1
w ≤ C(α1, 0), R2

ws ≤ C (α2, 0), (107)
R1

w + R2
ws ≤ C(α1 + α2, 0). (108)

Channel state (α2, α1):

R1
s ≤ C (α2, 0), R2

sw ≤ C (α1, 0), (109)
R1

s + R2
sw ≤ C (α1 + α2, 0). (110)

Channel state (α2, α2):

R1
s ≤ C (α2, 0), R2

ss ≤ C (α2, 0), (111)
R1

s + R2
ss ≤ C (2α2, 0). (112)

In order to find point W we maximize the average rate
of transmitter 2 such that the average sum rate capacity is
achieved. Consider the following possible four rate allocation
for transmitter 2

μ1
�= p1C(α1, 0) + p2[C(α1 + α2, 2α1) + C(α1, 0)], (113)

μ2
�= p1[C(2α1, α1 + α2) + C(α2, 0)] + p2C(α2, 0), (114)

μ̂1
�= p1C(α1, 0) + p2[C(2α2, α1 + α2) + C(α1, 0)], (115)

μ̂2
�= p1[C(α1 + α2, 2α2) + C(α2, 0)] + p2C(α2, 0). (116)

where i∗ = argmaxi μi and j∗ = arg maxj μ̂j . For each
possible rate allocation in (113)- (116), the corresponding rates
of transmitter 1 are identified by

ρ1
�= C(α1, α1), ρ2

�= C(α1, α2),

ρ̂1
�= C(α2, α1), ρ̂2

�= C(α2, α2). (117)

Accordingly, the average achievable rates at point W are
bounded by

R̄1 ≤ q1ρi∗ + q2ρ̂j∗
�= b3, R̄2 ≤ p1μi∗ + p2μ̂j∗

�= b4. (118)

TABLE V

SUCCESSIVE DECODING SCHEME FOR THEOREM 4

APPENDIX E
PROOF OF THEOREM 4

We show the region specified by OTUXYZO can be
achieved using the layering scheme proposed in Section III-B
at transmitter 1. On the other hand, transmitter 2 (who
has full CSI) can use four different codebooks each
with a rate adapted to a specific combined channel state,
denoted by {W 2

1 , . . . , W 2
4 }, with the corresponding rates

{R2
w1

, . . . , R2
w4

}. Note that irrespective of the layering scheme
used at transmitter 1 and 2, the corner points T, U, Y, Z of
the average capacity region are achievable as discussed in
the proof of Theorem 3 in Appendix D. Hence, we focus on
showing the achievability of point X next.
Corner X: The average rates at point X in Fig. 3 can be
achieved by implementing the decoding order presented in
Table V. In particular, corresponding to each network state,
the achievable rates for transmitters 1 and 2 are bounded as
follows.
channel state (α1, α1):

R2
w1

≤ C (α1, α1), R1
11 ≤ C(α1, 0). (119)

Channel state (α1, α2):

R2
w2

≤ C (α2, α1), R1
11 ≤ C(α1, 0). (120)

Channel state (α2, α1):

R1
12 ≤ C

(
α2β

1
12, α1 + α2β

1
22

) �= e1, (121)

R2
w3

≤ C
(
α1, α2β

1
22

) �= e2, (122)

R1
22 ≤ C(α2β

1
22, 0) �= e3. (123)

Channel state (α2, α2):

R2
w4

≤ C (α2, α2)
�= e4, (124)

R1
12 ≤ C

(
α2β

1
12, α2β

1
22

) �= e5, (125)

R1
22 ≤ C(α2β

1
22, 0) �= e3. (126)

By noting that e1 ≤ e5, the maximum achievable rate of
codebook U1

12 is bounded by e1. Therefore, setting the rate
of codebooks R2

w4
= C(α2 −α1, α2 + α1)+ C(α1, α2β

1
12) <

e1 + e3 is feasible since this rate is also less than e4.
The chosen rate of codebook W 1

4 results in average achievable
rates at point X that are bounded as follows.

R̄1 ≤ q1C (α1, 0) + q2[C
(
α2β

1
12, α1 + α2β

1
22

)
+ C(α2β

1
22, 0)] �= f1, (127)

R̄2 ≤ p11C (α1, α1) + p12C (α2, α1) + p21C
(
α1, α2β

1
22

)
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TABLE VI

SUCCESSIVE DECODING ORDER IN THEOREM 5

+ p22[C(α2 − α1, α2 + α1) + C(α1, α2β
1
12)]

�= f3.

(128)

Furthermore, the average sum-rate capacity for a MAC channel
with full CSIT at both transmitters is

R̄1 + R̄2 ≤ p11C (2α1, 0) + (p12 + p21)C (α1 + α2, 0)

+ p22C (2α2, 0) �= f4 (129)

By noting that f3 = f4−f1 = f2, equations (127)-(129) show
that implementing the decoding order specified in Table V
achieves the average sum-rate capacity at point X.

APPENDIX F
PROOF OF THEOREM 5

For this theorem, we show that by adopting the codebook
assignment in Section III, the average sum-rate capacity of
a two-user MAC with full CSIT is achievable asymptotically
under proper power allocation. For this purpose, we find a
lower bound on the average sum-rate and show that this
lower bound tends to the capacity region with the full CSIT
asymptotically. For this purpose, we adopt the fully sequen-
tial decoding order specified in Table VI. Clearly, the rate
region and the associated average sum-rate yielded by this
fully successive decoding approach is a lower bound to the
average sum-rate achieved by the decoding approach described
in Section III.

Based on the sequential decoding in Table VI, we find the
following bounds on the rates of the individual codebooks in
different channel combinations.
Channel state (α1, α1):

R2
11 ≤ 1

2
log

(
1 +

α1P2

1 + α1P1

)
�= s2

11, (130)

R1
11 ≤ 1

2
log (1 + α1P1)

�= s1
11. (131)

Channel state (α2, α1):

R1
12 ≤ 1

2
log

(
1 +

α2β
1
12P1

1 + α2(1 − β1
12)P1 + α1P2

)
�=s1

12,

(132)

R2
11 ≤ 1

2
log

(
1 +

α1P2

1 + α2(1 − β1
12)P1

)
�= t211, (133)

R1
22 ≤ 1

2
log

(
1 + α2(1 − β1

12)P1

) �= s1
22, (134)

Channel state (α1, α2):

R2
12 ≤ 1

2
log

(
1 +

α2β
2
12P2

1 + α1P1 + α2(1 − β2
12)P2

)
�=s2

12,

(135)

R2
22 ≤ 1

2
log

(
1 +

α2(1 − β2
12)P2

1 + α1P1

)
�= s2

22, (136)

R1
11 ≤ 1

2
log (1 + α1P1)

�= t111. (137)

Channel state (α2, α2):

R2
12 ≤ 1

2
log

(
1 +

α2β
2
12P2

1 + α2P1 + α2(1 − β2
12)P2

)
�= t212,

(138)

R1
12 ≤ 1

2
log

(
1 +

α2β
1
12P1

1 + α2(1 − β1
12)P1 + α2(1 − β2

12)P2

)

�= t112, (139)

R2
22 ≤ 1

2
log

(
1 +

α2(1 − β2
12)P2

1 + α2(1 − β1
12)P1

)
�= t222, (140)

R1
22 ≤ 1

2
log

(
1 + α2(1 − β1

12)P1

) �= t122. (141)

The bounds in (130)-(141) provide two bounds on the rate
of each codebook. Specifically, for each rate Ri

jk we have
Ri

jk ≤ min{si
jk, tijk}. By directly comparing (135) and (138)

we find that s2
12 > t212, since α2 > α1. For all other five rates it

can be readily verified that by setting β1
12 = β2

12 = 1− α1
α2

we
obtain Ri

jk = si
jk = tijk. Hence, by combining the sequential

decoding approach and this specific power allocation across
codebooks, where both induce sub-optimality, we find the
following lower bound, denoted by Rs,avg, on the average
sum-rate for the proposed broadcast approach.

2Rs,avg = pq(s1
11 + s2

11) + p̄q(s1
12 + s2

11 + s1
22)

+ pq̄(t212 + s2
22 + s1

11) + p̄q̄(t212 + s1
12 + s2

22 + s1
22)

(142)

= pq log (1 + α1P1 + α1P2)
+ p̄q log (1 + α2P1 + α1P2)
+ p̄q̄ log (1 + α2P1 + α2P2) + pq̄ log (1 + α1P1)

+ pq̄ log
(

1 +
(α2 − α1)P2

1 + α2P1 + α1P2

)

+ pq̄ log
(

1 +
α1P2

1 + α1P1

)
. (143)

On the other hand, the sum-rate capacity with full CSIT at
both transmitters, denoted by Cs,avg is given by

2Cs,avg = pq log (1 + α1P1 + α1P2)
+ pq̄ log (1 + α1P1 + α2P2)
+ p̄q log (1 + α2P1 + α1P2)
+ p̄q̄ log (1 + α2P1 + α2P2). (144)

Finally, let d(p, q) denote the difference between the lower
and upper bounds on the average sum-rate provided by (143)
and (144), respectively. Hence,

d(p, q) = Cs,avg − Rs,avg

=
pq̄

2
log

(
(1 + α1P1 + α2P2)(1 + α2P1 + α1P2)
(1 + α2P1 + α2P2)(1 + α1P1 + α1P2)

)
.

(145)
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By examining (145), it can be verified that the term d(p, q) is
maximized at p = 1 and q = 0, rendering

dmax
�= max

p,q
d(p, q)

=
1
2

[
log

(
(1 + α1P1 + α2P2)(1 + α2P1 + α1P2)
(1 + α2P1 + α2P2)(1 + α1P1 + α1P2)

)]
.

(146)

In the low power regime, we show that when either P1 or P2

approach 0, the term dmax also approaches 0 faster than Rs,avg

given in (143), and also faster than Cs,avg given in (144). First,
we consider the case when P1 → 0 while P2 is constant. It can
be readily verified from (143), (144), and (146) that Cs,avg is
equal to Rs,avg, where both approach a finite non-zero value
while dmax approaches 0. Specifically, we have

lim
P1→0

dmax

Rs,avg
=

0
log (1 + α2P2)

= 0. (147)

A similar behavior can be verified for the case that P2

approaches 0 and P1 remains fixed. Secondly, for the case
where both P1 and P2 approach 0 at different rates, i.e.,
P1 → 0, P2 → 0 , by applying l’Hôpital’s rule for multi-
variable functions [40] we have

lim
P1→0,P2→0

P1 �=P2

dmax

Rs,avg
=

∂dmax
∂P1

∂Rs,avg
∂P1

=
0
α1

= 0, (148)

and

lim
P1→0,P2→0

P1 �=P2

dmax

Rs,avg
=

∂dmax
∂P1

∂Cfull
s,avg

∂P1

=
0
α1

= 0. (149)

Finally, for the case of equal transmission power at both
transmitters, i.e., P1 = P2 = P we have

Rs,avg =
1
2

log
(

(1 + 2α2P )(1 + 2α1P )
(1 + (α1 + α2)P )

)
, (150)

Cs,avg =
1
2

log (1 + (α1 + α2)P ), (151)

dmax =
1
2

[
log

(
(1 + (α1 + α2)P )2

(1 + 2α2P )(1 + 2α1P )

)]
. (152)

Hence, when P → 0, it can be readily verified from
(150)-(152) that dmax, Rs,avg and Cs,avg approach 0. Hence,
by applying l’Hôpital’s rule we have

lim
P→0

dmax

Rs,avg
=

2(α1 + α2) − 2(α1 + α2)
2α2

= 0, (153)

and

lim
P→0

dmax

Cs,avg
=

2(α1 + α2) − 2(α1 + α2)
α1 + α2

= 0. (154)

As a result, from (147), (153), and (154) we conclude that
the sum-rate capacity is achieved for the proposed broadcast
strategy for sufficiently small transmission power at either
one of the transmitters or at both transmitters simultaneously.
Additionally, in the high power regime, if either P1 or P2

approach infinity, then dmax → 0 indicating that the sum-rate
capacity is achieved in the asymptote of high power.

APPENDIX G

CONSTANTS OF THEOREM 6

b1(j, m) �= C(αjβ
1
jj , αmB2(j, m)),
∀j ∈ {1, . . . , �}, m ∈ {j, . . . , �}, (155)

b2(j, i)
�= C(αjβ

2
jj , αmB1(j, m)),

∀j ∈ {1, . . . , �}, (156)

b3(j, n, m) �= C(αnβ1
jn, αnB1(j, n) + αjB2(j, j)),

∀n ∈ {j + 1, . . . , �}, m ∈ {j, . . . , �}, (157)

b4(j, n, m) �= C(αnβ2
jn, αjB1(j, m) + αnB2(j, n)),

∀n ∈ {j + 1, . . . , �}, (158)

b5(m) �= C(αmβ1
mm + αnβ2

mm),
∀m ∈ {1, . . . , �}, (159)

b6(m, n) �= C(αmβ1
mm + αnβ2

mn, αnB2(m, n)),
∀m < n, ∀n ∈ {m + 1, . . . , �}, (160)

b7(m, n) �= C(αnβ1
mn + αmβ2

mm, αnB1(m, n)),
∀m < n, ∀n ∈ {m + 1, . . . , �}, (161)

b8(k, m, n) �= C
(
αmβ1

km + αnβ2
kn,

αmB1(k, m) + αnB2(k, n)),
∀k < m, ∀n ∈ {m, . . . , �}, (162)

b9(k, m, n) �= C
(
αnβ1

kn + αmβ2
km,

αnB1(k, n) + αmB2(k, m)),
∀k < m, ∀n ∈ {m, . . . , �}, (163)

r1(n, m) �= min
m

{
�∑

j=1

b1(j, m) + b3(j, n, m)}, (164)

r2(n, m) �= min
m

{
�∑

j=1

b2(j, m) + b4(j, n, m), (165)

r3(n, m) �=
∑

∀k<m

b5(m) + b7(m, n) + b9(k, m, n), (166)

r4(n, m) �=
∑

∀k<m

b5(m) + b6(m, n) + b8(k, m, n). (167)

where B1(m, n) �= 1 − ∑m
i=1 β1

in and B2(m, n) �= 1 −∑m
i=1 β2

in, ∀m < n and n ∈ {m + 1, . . . , �}.
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