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Abstract The problems of recovering the state of power

systems and detecting the instances of bad data have been

widely studied in literature. Nevertheless, these two oper-

ations have been designed and optimized for the most part

in isolation. Specifically, state estimators are optimized

based on the minimum mean-square error criteria, which is

only optimal when the source of distortions in the data is

Gaussian random noise. Hence, the state estimators fail to

perform optimality when the data is further contaminated

by bad data, which cannot necessarily be modeled by

additive Gaussian terms. The problem of power state

estimation has been studied extensively. But the funda-

mental performance limits and the attendant decision rules

are unknown when the data is potentially compromised by

random bad data (due to sensor failures) or structured bad

data (due to cyber attacks, which are also referred to false

data injection attacks). This paper provides a general

framework that formalizes the underlying connection

between state estimation and bad data detection routines.

We aim to carry out the combined tasks of detecting the

presence of random and structured bad data, and form

accurate estimations for the state of power grid. This paper

characterizes the optimal detectors and estimators. Fur-

thermore, the gains with respect to the existing state esti-

mators and bad data detectors are established through

numerical evaluations.

Keywords State estimation, Power system security, Bad

data detection, Data injection attack

1 Introduction

1.1 Motivation

Estimating the state of power grid, i.e., recovering bus

voltages and phase angles, was initially formalized in the

1970s. State estimation involves designing algorithms that

leverage the data collected by various measurement units

across the grid as well as other information about power

grid (e.g., topology and dynamics) in order to form an

estimation for the state of power grid [1]. These state

estimations serve multiple purposes including informing

control actions, predicting loads, updating pricing policies

and identifying abnormalities in power grid. In support of

these tasks, various types of measurements are collected

and transmitted to a control center via remote terminal

units. Therefore, intelligent electronic devices and state

estimation algorithms are key to build a real-time network

model within the energy management system (EMS) [2, 3].

Traditional state estimation approaches, which are con-

ducted centrally in power grid control center, perform three

main routines [4].
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1) Observability analysis: its role is to determine whether

a unique state estimation can be characterized for the

state of the system. Observability analysis is generally

performed prior to state estimation.

2) State estimation: it is responsible for characterizing an

optimal estimation for the complex voltages at differ-

ent buses by leveraging the real-time measurements.

3) Bad data detection: the estimations formed are used in

order to determine whether the measurements bear any

errors, identify them when they are deemed to exist,

and eliminate them in order to enhance state estima-

tion fidelity.

There exists a rich literature of various approaches to

bad data detection under different assumptions on the data

model or network topology. The existing design principles

for bad data detection often use gross measurement errors,

that is the difference between the measurements and the

estimations of measurements, which is found by using the

state estimation. When such gross measurement errors are

small enough, the estimation is deemed reliable, and when

the errors are large enough, the measurements are consid-

ered to contain bad data [4]. Such bad detector approaches

are effective against the bad data that has a random cause

(e.g., failure in power grid). Nevertheless, when the

disruptions are structured (not random), there exists a high

likelihood that the bad data can bypass the bad data

detectors. For instance, when the disruptions affect the

measurements in a way that they conform to the physical

laws and the topology of power grid, they can appear as

legitimate measurements [5]. Such a possibility raises

concerns about security vulnerabilities that state estimation

faces, which can be capitalized by the adversaries to launch

attacks. Such attack, for instance, can contaminate the

measurements without being detected, while misleading

the state estimators, rendering wrong estimations for the

system. The possibility of such attacks is especially

strenuous as more advanced measurement units are incor-

porated into EMS.

The effectiveness of cyber attacks for contaminating the

measurements and misleading the state estimators, while

remaining hidden from bad data detector strongly hinges

on the extent of information that the attackers possess on

power grid. The two extreme cases in which the attackers

either have full and perfect information about power grid,

or have no information extensively studied in the literature.

When the attacker has no information, all it can do is to

produce random bad data. Such bad data can be efficiently

detected by using the traditional bad data detectors [4],

even though the existing approaches, as we will discuss

later are not optimal. On the other hand, in which the

attackers have full and perfect information about all the

dynamics of power grid, the attacks can be designed

intelligently so that they appear as legitimate data and can

bypass the traditional bad data detection algorithms [5].

While such attacks can cause severe damages, assuming

that they are not realistic. Specifically, the strong

assumption that all the instantaneous dynamics of pow-

er grid fully known to the attackers is hard to meet in

practice.

In this paper, we propose a framework for recovering

the state of the system while facing the potential risk that

the measurements are contaminated by random bad data or

structured bad data. Furthermore, we assume that when the

data is contaminated by structured bad data (i.e., attacks),

the attackers are assumed to have only partial information

about power grid topology and its time-varying dynamics.

The objective of this framework is two-fold. The primary

objective is forming a reliable estimation for the state. The

second objective of forming reliable state estimation per-

tains to detect whether there exists any source of random or

structured bad data in the measurements.

1.2 Existing studies

The focus of this paper is on false data injection attacks

(FDIAs). The main objective of the FDIAs is to disrupt

power grid functions while avoiding the possibility of

being detected by bad data detectors [6]. Even though the

FDIAs mainly aim to distort state estimation, their dis-

ruptions exceed and can affect a wide range of control and

dispatch decisions. More specifically, a compromised

estimation of the system state can lead to non-optimal

dispatch. There exist studies that investigate the minimum

number of measurements that should be tampered with to

make an effective attack. The dynamics between the

number of measurement units protected (or compromised)

and the effectiveness of the attacks are studied in [7].

An analytical approach to evaluate the impact of FDIAs

that can evade bad data detectors and affect electricity

market is formalized in [8]. The study in [9] presents

another FDIA design strategy, which maximizes the gen-

erated market revenue with a single measurement attack.

Based on the multi-step electricity price (MEP) model

introduced in [10], the impact of FDIAs in the real-time

market against MEP is investigated in [11]. In order to

incorporate the inter-temporal constraints, [12] proposes an

attack strategy to withhold generation capacity for profit by

manipulating the ramp constraints of the generators during

look-ahead dispatch. In [13], an FDIA strategy based on

the geometric characterization of the real-time marginal

prices on the state space of power grid is proposed.

Game-theoretic approaches to model the interactions

between the attack and defense strategies are investigated

in [14, 15]. Specifically, the study in [14] focuses on

mechanisms based on attacks that disrupt state estimation,
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and consequently, manipulate the ensuing decisions that

rely on the state estimation. The study in [15] examines the

compromising of the communication channels that carry

the measurement information to manipulate market deci-

sions. The idea of directly jamming the pricing signals is

studied in [16], where the attackers can make a profit

without intruding the power system and changing the

reported data. The study in [17] analyzes attack strategies

by using a nonlinear model for power systems and state

estimators. The impacts of adversaries with limited infor-

mation about the network on the market operations are

studied in [18–20].

2 Preliminaries

2.1 Bad data and attack models

Consider a general non-linear system model, the mea-

surement vector y 2 Rn is related to the state of the system

x 2 Rm according to:

y ¼ hðxÞ þ z ð1Þ

where h captures the dynamics and topology of power grid,

and z accounts for the measurement noise. This model

represents the instances at which the only source of the

contamination in the measurements is noise. Furthermore,

when there exists random failure in the network (e.g.,

malfunctioning measurement units) or an attacker or a

group of attackers compromising the measurements, the

non-linear system model changes according to:

y ¼ hðxÞ þ zþ b ð2Þ

where b accounts for the effects of injected random or

structured bad data. Based on the currently widely-used

approaches, for a given state estimation, denoted by x̂, the

set of measurement is considered to contain bad data based

on a gross measurement test. Specifically, it is decided that

the bad data exists if the gross measurement error exceeds a

pre-specified threshold s, i.e.:

declare bad data if ky� hðx̂Þk2� s ð3Þ

The key weakness of such a bad data detector is that it

does not detect bad data vectors b that are designed prop-

erly so that the distorted measurement hðxÞ þ zþ b

appears as a legitimate measurement vector. For instance,

in a linearized system model, when b is aligned in the range

space of the Jacobian matrix H (found by linearizing h). It

can bypass the residue-based detectors, as discussed in [5].

Furthermore, even when bad data is detected, the only

existing remedy is to collect fresh measurements in the

hope of having better data, and subsequently, producing a

reliable estimation.

The primary cause of such weaknesses for the bad data

detector in (3) is that: � the state estimation and the bad

data detection decisions are treated as independent routines

as it ignores the inherent coupling between the two deci-

sions; and ` it tends not to fully capitalize on the rich

redundancy in the measurements because the dimension of

the observation space n is significantly larger than that of

the state space m. When these two routines (e.g., state

estimator and bad data detector) are designed by properly

leveraging the fundamental underlying connection, and the

redundancy in measurements is capitalized effectively, it is

possible to mitigate the effects of bad data to a large extent.

Specifically, while the objective is estimating the state, a

decision should also be made, in parallel, about the

underlying observation model. These combined decisions

can be cast as a composite hypothesis test problem, in

which hypothesis H0 represents the model in which the

only data contamination is noise, and hypotheses H1 and

H2 represent the cases in which the data is contaminated by

structured and random bad data, respectively:

H0 : y ¼ hðxÞ þ z

H1 : y ¼ hðxÞ þ z þ b structured bad data

H2 : y ¼ hðxÞ þ z þ b random bad data

8
><

>:

ð4Þ

We remark that cases of random and structured bad data

are treated under different models to emphasize that the

nature and models of the data under these two scenarios are

distinct. Specifically, random bad data accounts for the

naturally-occurring failures in power grid such as line

outages when power grid is stressed. The disruptions in the

measurements when such failures occur often follow a

random behavior. In contrast, under cyber attacks, the

disruptions are designed carefully in order to impose a

certain interruption on the functions in power grid. For

instance, an attacker exploits some information about the

network in order to launch an attack that effectively distorts

the state estimation x̂, while not being detected by the bad

data detector.

2.2 Information model of attacker

In this paper, the focus is on the data injection attack

model presented in (2). In such models, the attacker tam-

pers with the measurement units (e.g., phasor measurement

units) such that they report false data to the network

operator. Such attacks can lead to a series of disruptions in

the monitoring (e.g., state estimation) and the ensuing

actions (e.g., generation and dispatching).
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As commented earlier, the effectiveness and the design

of the effective cyber attacks strongly hinge on the amount

of information that the attacker has about the network

topology and dynamics. All such information is embedded

in h. For instance, in a linearized system with H, this

information is embedded in the entries of H. In order to

distinguish the full information about the network and what

is known to the attacker, we define �h as the partial infor-

mation about h known to the attacker. For instance, in a

linearized setting, instead of the full information about H,

the attacker knows only a noisy version of this matrix,

which we denote by �H. Clearly, the case of �h ¼ h repre-

sents the scenario in which the attacker has full information

about the network. In this paper, we consider a general

setting and do not impose any constraint on the relevance

of �h and h. Such an assumption facilitates a wide range of

attack information models. All the analyses provided are

general and can be applied to all choices of �h. Such choices

span the scenario of fully informed attackers (�h ¼ h) to the

more practical assumption. And it has only partial infor-

mation about h available to the attacker.

For a given �h, the attack strategy can be modeled as a

function that maps �h to b, i.e.,

/ : Rn�m ! Rn�1 ð5Þ

We remark the optimal design of b in a linearized

system when the information about the Jacobian matrix

associated with h is fully known to the attackers [21].

3 State recovery under bad data

3.1 Data models

We define the sets Xx � Rm and Xb � Rm as the spaces

of valid values for x and b, respectively. Furthermore, we

assume that x and b are distributed in their designated

spaces Xx and Xb according to known statistical models. It

is noteworthy that the distribution of x in space Xx can be

found by leveraging the historical data about the state

parameters. When such patterns are not available or they

are not reliable enough for forming a statistical model, we

assume that x is distributed in Xx according to a uniformed

distribution. Similarly, by leveraging the information and

the historical data on the failure patterns of the measure-

ment units, the distribution of b in space Xb can be char-

acterized. Finally, in case of structured bad data (attacks),

due to the unknown nature of the attacks or attack strate-

gies, we assume that b takes values in its designated space

Xb according to a uniformed distribution.

We denote the the probability density function (PDF) of

x under hypothesis Hi by piðxÞ, for i 2 f0; 1; 2g. Finally,

by accounting for the randomness of the noise measure-

ments z, the measurements under hypothesis Hi are dis-

tributed according to:

Hi : y� f iðy j xÞ and x� piðxÞ ð6Þ

where f i is the PDF of y, which is governed by the distri-

bution of noise. Based on this formulation, the state esti-

mation problem reduces to concurrently detect the true

hypothesis and estimate the unknown vector x.

There exists a few sub-optimal approaches in solving

such combined problems. All these approaches decouple

the joint problem into two disjoint estimation and detection

routine. One major class is that the problem is reduced to

an estimation-driven detection. An estimation is formed

under each hypothesis, reducing it into a pure detection

problem, and then an optimal detection routine is carried

out. The most prevalent approach in this direction is the

generalized likelihood ratio test (GLRT). The second major

class involves parallel detection and estimation, in which

multiple estimations are formed under various hypotheses.

Also, a detection decision is formed in parallel. If the

detection rules are in favor of hypothesis Hi, then the

estimation formed under hypothesis Hi will be admitted as

the estimation of interest. Despite their popularity, all such

approaches are sub-optimal.

In this paper, we take a radically different approach to

treat the combined problem. Aiming to form reliable esti-

mations, we provide a natural formulation in which the

objective is optimizing a relevant cost function, while in

parallel, controlling the detection power. This approach

results in novel optimal designs for estimators that are

designed based on a decoupling approach.

3.2 Bad data detection

To formalize the detection routine and characterize

optimal detection rules, we start by defining a randomized

test with decision rules denoted by fd0ðyÞ; d1ðyÞ; d2ðyÞg. In
this test, given data y, the rule diðyÞ denotes the likelihood

of deciding Hi for i 2 f0; 1; 2g. These probability terms

satisfy:

diðyÞ� 0

P2

i¼0
diðyÞ ¼ 1

8
<

:
ð7Þ

Accordingly, we define the decision vector as

dðyÞ ¼ ½d0ðyÞ; d1ðyÞ; d2ðyÞ�. Furthermore, we denote the

true hypothesis and the decision of the detector by T 2
fH0;H1;H2g and D 2 fH0;H1:H2g, respectively.

Based on these definitions, the probability of deciding in

favor of hypothesis Hi while the true hypothesis is Hj, for

i 6¼ j is given by:
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PijðdðyÞÞ ¼PðD ¼ Hi j T ¼ HjÞ

¼
Z

y

Z

x

diðyÞ fjðy j xÞ pjðxÞ dx dy

¼
Z

y

diðyÞ fjðyÞ dy

ð8Þ

We have six such error probability terms. Next, by

defining the estimation costs, we show how these detection

error terms can be integrated with the estimation cost to

form a combined approach for designing the estimators and

detectors.

3.3 State estimation

Based on the observed data y, besides discerning the

underlying true model Hi, we also form an estimation for x.

We denote the estimation of x based on the collected data y

by x̂iðyÞ. To quantify the fidelity of the estimation under

hypothesis Hi, we define the cost function Ciðx; x̂iðyÞÞ,
which captures the difference between the estimation and

the ground truth. A popular cost function pertains to the

minimum mean-square error (MMSE) criterion, which is

given by:

Ciðx; uÞ ¼ kx� uk2 ð9Þ

For a given generic cost function Ciðx; uÞ, we will also

evaluate the average posterior cost function. Such an

average cost function quantifies the estimation error cost

after observing y, and it is given by:

Ci;pðu j yÞ¼M Ei;x½Ciðx; uÞ j y� ð10Þ

where the expectation is computed with respect to xi under

hypothesis Hi. Therefore, the minimum average posterior

cost function is given by:

C�i;pðyÞ¼
M

inf
u
Ci;pðu j yÞ ð11Þ

These cost functions have pivotal roles in designing the

estimator and detector as they capture the quality of

estimation. Finally, the optimizer of the average posterior

cost is [22] denoted by:

x̂�i ðyÞ¼
M

arg inf
u
Ci;pðu j yÞ ð12Þ

3.4 Combined state recovery and bad data detection

In this subsection, we propose an approach that incor-

porates both estimation and detection decision rules in a

unified framework. Given randomized detection rules dðyÞ
and state estimators uiðyÞ, under hypothesis Hi, we define

the conditional average estimation costs as:

JiðdiðyÞ; uiðyÞÞ¼
M

Ei;x½Cðx; uiðyÞÞ j D ¼ Hi� ð13Þ

The expectation is taken with respect to x and y under Hi.

Given the individual cost functions under different

hypotheses, we aggregate the three cost functions into a

unified one. Specifically, for a given measurement vector y,

randomized detection rules dðyÞ, and estimators

uðyÞ ¼ ½U0ðyÞ;U1ðyÞ;U2ðyÞ�, we define:

JðdðyÞ; uðyÞÞ ¼ max
i2f0;1;2g

JiðdiðyÞ; uiðyÞÞ ð14Þ

This aggregate cost function captures only the

performance of the estimators. To integrate the quality of

the detectors, which are captured by the probability terms

PijðdðyÞÞ defined in (8), we formulate the combined

problem as the one that minimizes the estimation

performance subject to controlled quality for the error

probability terms PijðdðyÞÞ according to:

PðaÞ¼M inf
dðyÞ;uðyÞ

JðdðyÞ; uðyÞÞ

s:t: PijðdðyÞÞ	 aij i 6¼ j

8
<

:
ð15Þ

Parameters a ¼ ½aij�, where aij 2 ð0; 1Þ ensure that the

probability of declaring Hi while the underlying true

hypothesis is Hj are controlled in a desired level. In the

next section, we discuss how the problem PðaÞ can be

solved in a closed form.

4 Optimal state estimator and decision rule

4.1 Feasibility of PðaÞ

Note that solving (15) does not always have a feasible

solution for any arbitrary choice of faijg. Specifically, from
the Neyman-Pearson (NP) theory, we know that when

facing a multi-hypothesis testing problems, the probability

of decision errors cannot be made arbitrarily small at the

same time. The set of simultaneously feasible choices of

faijg can be found by solving the following problems, in

which five of the error probabilities are controlled to

remain below a specified threshold, and the sixth term is

minimized. Without the loss of generality, we aim to

minimize P01ðdðyÞÞ, while controlling the rest of error

terms, i.e.:

b,min
dðyÞ

P01ðdðyÞÞ

s:t: PijðdðyÞÞ	 aij ði; jÞ 6¼ ð0; 1Þ

(

ð16Þ

This problem can be solved readily by leveraging the

same line of argument as in NP test [22]. Note that solv-

ing (16) is merely for the purpose of characterizing the
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solution b and not the decision rule. Once this problem is

solved, if b satisfies b	 a01, then the combined estimation

and detection problem in (15) is feasible, and vice versa.

4.2 Optimal state estimator

Close scrutiny of (15) indicates that the estimators

appear only in the objective function of the optimization

problems and the constraints depend only on the detectors.

This observation suggests that the problem in (15) can be

decomposed into two problems. Firstly, the estimators are

characterized for any given set of detectors. Specifically,

for any given choices of the detectors dðyÞ, the optimal

estimators can be found as the solution to:

inf
uðyÞ

JðuðyÞÞ ð17Þ

This observation is summarized in the following theorem.

Theorem 1 (state estimator) The solution to the opti-

mization problem

�x�ðyÞ ¼ arg inf
uxðyÞ

JðdðyÞ; uðyÞÞ ð18Þ

is

�x�ðyÞ ¼ ½x̂�0ðyÞ ; x̂
�
1ðyÞ ; x̂

�
2ðyÞ� ð19Þ

The proof can be found in Appendix A.

Irrespectively of the structure of the detection rules,

the result of Theorem 1 is that the Bayesian estimators are

optimal. This implies that the combined estimation and

detection problems can be reduced to a bad data detection

problem, which we will investigate in Subsection 4.3,

followed by state estimators with the structures in (12).

4.3 Optimal bad data detectors

With the estimators designed in the previous subsection,

these estimators can be substituted into the problem (15),

rendering a purely detection problem. This detection

problem can be found as the solution to:

PðaÞ ¼ inf
dðyÞ

JðdðyÞ; �x�ðyÞÞ

s:t: PijðdðyÞÞ	 aij i 6¼ j

(

ð20Þ

For this purpose, we define:

~JðdðyÞÞ ¼ inf
�xðyÞ

JðdðyÞ; �xðyÞÞ ¼ JðdðyÞ; �x�ðyÞÞ ð21Þ

which transforms (20) as:

PðaÞ ¼ inf
dðyÞ

~JðdðyÞÞ

s:t: PijðdðyÞÞ	 aij i 6¼ j

8
<

:
ð22Þ

By solving PðaÞ in (22), we find the closed-form

characterization for the detection rules, which essentially

determine whether the system is suffering from bad data,

and if so, whether it is structured bad data (attack) or

random bad data. For this purpose, by recalling the

definitions of Ji, J, and ~J in (13), (14), and (21),

respectively, we obtain:

~JðdðyÞÞ¼ JðdðyÞ; �x�ðyÞÞ
¼ max

i2f0;1;2g
JiðdðyÞ; x̂�i ðyÞÞ

¼ max
i2f0;1;2g

Ei;x½Cðx; x̂�i ðyÞÞ j D ¼ Hi�

¼ max
i2f0;1;2g

Ei;x½C�i;pðyÞ j D ¼ Hi�

¼ max
i2f0;1;2g

R

y diðyÞ fiðyÞ C
�
i;pðyÞ dy

R

y
diðyÞ fiðyÞ dy

ð23Þ

We remark that each of the three terms involved in (23)

is quasi-linear in diðyÞ, which are quasi-convex [23].

Furthermore, weighted maximum preserves quasi-

convexity. Hence, the term JðdðyÞÞ is quasi-convex and

can be solved by finding the solutions to an equivalent

family of feasibility problems [23–25]. More specifically,

for solving PðaÞ, we first characterize a relevant feasibility
problem. For characterizing and solving such a feasibility

problem, based on (23), for any given t 2 Rþ that satisfies
~JðdðyÞÞ	 t for i 2 f0; 1; 2g, we have:
Z

y

diðyÞ f iðyÞ
�
C�i;pðyÞ � t

�
dy 	 0 ð24Þ

As a result, for any given set of values a, which controls

bad data detection power and the real number t, we

generate the following feasibility problem:

set all dðyÞ that satisfy

Qða; tÞ,
R

y diðyÞ f iðyÞ
�
C�i;pðyÞ � t

�
dy	 0

PijðdðyÞÞ	 aij i 6¼ j

8
><

>:
ð25Þ

The relationship specified in (24) indicates that the two

problems Qða; tÞ and PðaÞ are related according to:

if Qða; tÞ 6¼ / then PðaÞ	 t

if Qða; tÞ ¼ / then PðaÞ[ t

�

ð26Þ

Based on this property, it can be readily verified that the

optimal value of PðaÞ can be found through a bi-section

search with the steps detailed in Algorithm 1.
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Algorithm 1: Detection algorithm

1: Initialize tmin ¼ 0 and tmax ¼ E½Ciðx; 0Þ j y�
2: Evaluate the average posterior costs in (10)

3: repeat

4: t0  ðtmin þ tmaxÞ=2
5: Solve ~Qða; t0Þ
6 if ~Qða; t0Þ[ 0

7: tmin  t0

8: else

9: tmax  t0

10: end if

11: until tmax � tmin	 � for � sufficiently small

12: PðaÞ  tmax

13: Output a and c to characterize the rules in (36)

Based on the connections between the two problems

Qða; tÞ and PðaÞ, we have observed that for solving PðaÞ,
we can instead solve Qða; tÞ combined with a bi-section

search. In the next step, we specify how to optimally solve

Qða; tÞ. In order to proceed, we introduce the slack variable
c and define the following auxiliary problem, which can be

readily verified to be convex.

inf
dðyÞ

c

s.t. ~Qða; tÞ ¼
R

y diðyÞ fiðyÞ
�
C�i;pðyÞ � t

�
dy	 c

PijðdðyÞÞ	 aij þ c i 6¼ j

8
>><

>>:

ð27Þ

Based on the definitions of the problems Qða; tÞ and
~Qða; tÞ, we have the following two statements, which are

equivalent:

Qðd; tÞ ¼ ; () ~Qðd; tÞ [ 0 ð28Þ

This equivalent implies that for establishing the feasi-

bility ofQðd; tÞ, we need to equivalently compare the value

of ~Qðd; tÞ with a fixed threshold. As the final step, we

characterize the solution of ~Qðd; tÞ, which in turn provides

a closed-form characterization of the decision rules dðyÞ.
For solving ~Qðd; tÞ, which is a convex problem, we

firstly form the Lagrangian by assigning the non-negative

Lagrange multipliers ai, i 2 f0; 1; 2g to the constraints:
Z

y

diðyÞ f iðyÞ
�
C�i;pðyÞ � t

�
dy	 c ð29Þ

and assigning the non-negative Lagrangian multipliers cij,

for i 6¼ j and i; j 2 f0; 1; 2g, to constraints

PijðdðyÞÞ	 aij þ c ð30Þ

By defining a ¼ ½ai� and c ¼ ½bij�, which satisfy:
X

i

ai þ
X

ij

bij ¼ 1 ð31Þ

the Lagrangian is given by:

Lðd; c; a; cÞ, 1�
X

i

ai �
X

ij

bij

 !

c

þ
X

i

ai

Z

y

di f iðyÞ
�
C�i;pðyÞ � t

�
dy

þ
X

ij

cij

�
PijðdðyÞÞ � aij

�

ð32Þ

As a result, the dual of the Lagrangian function is given

by:

gða; cÞ,min
d;c
Lðd; c; a; cÞ

¼ min
d;c

nX

i

ai

Z

y

diðyÞ f iðyÞ
�
C�i;pðyÞ � t

�
dy

þ
X

ij

cij

�
PijðdðyÞÞ

�o

�
X

ij

cijaij ð33Þ

By leveraging the expression of PijðdÞ in (8), the

Lagrangian dual can be equivalently state as:

gða; cÞ ¼ min
d;c

X

i

Z

diðyÞAiðyÞdy�
X

ij

cijaij ð34Þ

in which we have defined:

AiðyÞ,aif iðyÞ
�
C�i;pðyÞ � t

�
þ
X

j 6¼i
cijfjðyÞ ð35Þ

Based on these observations and properties, the optimal

detection rules are formalized in the next theorem.

Theorem 2 The problem PðaÞ has a globally optimal

solution and the decision rule dðyÞ that optimizes PðaÞ (and
gða; cÞ) is given by:

d0ðyÞ ¼ 1 if A0ðyÞ� maxfA1ðyÞ;A2ðyÞg
d1ðyÞ ¼ 1 if A1ðyÞ� maxfA0ðyÞ;A2ðyÞg
d2ðyÞ ¼ 1 if A2ðyÞ� maxfA0ðyÞ;A1ðyÞg

8
><

>:
ð36Þ

As a result, based on Theorem 2, we start by computing

the Lagrange multipliers a and c, in order to compute the

constants AiðyÞ. These constants determine the system

operates under which model.
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5 Case study

In this section, we evaluate the performance of the

optimal framework on the IEEE 14-bus system, in which

the measurement units undergo potential false data injec-

tion attacks. We evaluate both a DC linearized system and

the AC non-linear system models. In this model, any

combination of the 14 measurement units on the buses can

be compromised.

The benchmark method to compare against the approach

developed in this paper is the detection-driven approach. In

this approach, the effect of the state parameters are ignored,

and a purely detection problem is considered to determine

whether the measurements are entirely legitimate, or they

bear random or structured bad data. This is carried out by

performing a simple hypothesis testing over the three

possible hypotheses fH0;H1;H2g defined in (6). Once a

decision is formed, based on that an estimator is designed

to form reliable state estimations.

We compare the average estimation cost for a detection-

driven approach, where the correct decision about

fH0;H1;H2g is followed by Bayesian estimation. The

degradation in the estimation cost normalized by the esti-

mation cost under an attack-free setting is depicted in

Fig. 1, which shows how the estimation quality suffers

from the existence of the random and structured bad data.

The plots in this figure illustrate the variations of this

estimation quality versus a,aij, which control the detection
error rates, as specified in (15).

Figure 1 consists of three curves, one representing the

estimation cost averaged over all the costs under different

hypothesis q, the best estimate among different estimations

under different models qmax, and the worst estimate among

different estimations under different models qmin. Besides,

we also depict the performance of the detection-driven

approach, which appears as one isolated point. The detec-

tion-driven approach is forced to take a specific detection

quality. It does not enjoy the flexibility of the optimal

approach that can place any desired emphasis on the

estimation detection and bad data/attack detection prob-

lems. Furthermore, the detection-driven approach produces

considerable weaker estimations.

6 Conclusion

In this paper, we have investigated the non-linear state

estimation in power system when the system is vulnerable

to structured or random bad data. Forming estimations in

such scenarios is inherently coupled with detecting the true

model of the system. We have shown that all the existing

approaches are sub-optimal, which essentially decouple the

involved estimation and detection routines. Based on that

premise, we have provided a general framework that treats

the state estimation and bad data detection problem in a

unified way. We have characterized the optimal state

estimators and bad data detectors in closed forms.
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Appendix A

From(13), we have:

JiðdiðyÞ; uiðyÞÞ ¼ E Cðx; uiðyÞÞ jD¼Hi½ �

¼

Z

y

Z

x

diðyÞCðx; uiðyÞÞfiðy j xÞpðxÞdxdy
Z

y

diðyÞfiðyÞdy

ðA1Þ

Using the definition of Ci;pðuiðyÞ j yÞ from (11), a lower

bound on Jiðdi; uiðyÞÞ is given by:

JiðdiðyÞ; uiðyÞÞ ¼

Z

y

diðyÞCi;pðuiðyÞ j yÞfiðyÞdy
Z

y

diðyÞfiðyÞdy

�

Z

y

diðyÞ inf
uiðyÞ

Ci;pðuiðyÞ j yÞfiðyÞdy
Z

y

diðyÞfiðyÞdy
ðA2Þ

which implies that:
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JiðdiðyÞ;uiðyÞÞ�

Z

y

diðyÞC�i;pðyÞfiðyÞdy
Z

y

diðyÞfiðyÞdy
ðA3Þ

Based on the definition of x̂�i ðyÞ provided in (12), this lower
bound is clearly achieved when the estimator uiðyÞ is

chosen to be:

x̂�i ðyÞ ¼ arg inf
uiðyÞ

Ci;pðuiðyÞ j yÞ ðA4Þ

which proves that the estimator characterized in (12) is an

optimal estimator that minimizes the cost Jiðdi; uiÞ. The
corresponding minimum average estimation cost is:

JiðdiðyÞ; x̂�i ðyÞÞ ¼
R

y diðyÞC
�
i;pðyÞfiðyÞdy

Z

y

diðyÞfiðyÞdy
ðA5Þ

Next, we prove that:

max
i

min
u

JiðdiðyÞ; uiðyÞÞf g


 min
u

max
i

JiðdiðyÞ; uiðyÞÞf g
ðA6Þ

Recall from (14), the overall estimation cost Jðd; uÞ is

defined as:

JðdðyÞ; uðyÞÞ ¼ max
i

JiðdiðyÞ; uiðyÞÞf g ðA7Þ

Define Sðs; d; uÞ as a convex function of JiðdiðyÞ; uiðyÞÞ,
i 2 0; 1; . . .; Tf g, and it is given by:

Sðx; d; uÞ,
XT

i¼0
siJiðdi; uiÞ ðA8Þ

where s ¼ ½s0; s1; . . .; sT �, and they satisfy:

PT

i¼0
si ¼ 1

si 2 ½0; 1�

8
<

:
ðA9Þ

We can represent Jðd; uÞ as a function of Sðx; d; uÞ in the

following form:

Jðd; uÞ ¼ max
x

Sðx; d; uÞ ðA10Þ

Let s� ¼ fX�j : j ¼ 0; 1; . . .; Tg be defined as:

s�, argmax
x

Sðx; d; uÞ ðA11Þ

where s� ¼ 1 if:

j ¼ argmax
i

Jiðdi; uiÞf g ðA12Þ

From (A4) and (A5), we observe that:

max
x

min
u

Sðx; d; uÞ ¼ max
x

Sðx; d; x̂Þ

� min
u

max
x

Sðx; d; uÞ
ðA13Þ

At the same time, we have:

max
x

Sðx; d; uÞ� max
x

min
u

Sðx; d; uÞ ðA14Þ

which implies that:

min
u

max
x

Sðx; d; uÞ� max
x

min
u

Sðx; d; uÞ ðA15Þ

From (A13) and (A15), it is easily concluded that:

max
x

min
u

Sðx; d; uÞ ¼ min
u

max
x

Sðx; d; uÞ ðA16Þ

which completes the proof for (A6).
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