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Non-linear state recovery in power system under bad data

and cyber attacks
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Abstract The problems of recovering the state of power
systems and detecting the instances of bad data have been
widely studied in literature. Nevertheless, these two oper-
ations have been designed and optimized for the most part
in isolation. Specifically, state estimators are optimized
based on the minimum mean-square error criteria, which is
only optimal when the source of distortions in the data is
Gaussian random noise. Hence, the state estimators fail to
perform optimality when the data is further contaminated
by bad data, which cannot necessarily be modeled by
additive Gaussian terms. The problem of power state
estimation has been studied extensively. But the funda-
mental performance limits and the attendant decision rules
are unknown when the data is potentially compromised by
random bad data (due to sensor failures) or structured bad
data (due to cyber attacks, which are also referred to false
data injection attacks). This paper provides a general
framework that formalizes the underlying connection
between state estimation and bad data detection routines.
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We aim to carry out the combined tasks of detecting the
presence of random and structured bad data, and form
accurate estimations for the state of power grid. This paper
characterizes the optimal detectors and estimators. Fur-
thermore, the gains with respect to the existing state esti-
mators and bad data detectors are established through
numerical evaluations.

Keywords State estimation, Power system security, Bad
data detection, Data injection attack

1 Introduction
1.1 Motivation

Estimating the state of power grid, i.e., recovering bus
voltages and phase angles, was initially formalized in the
1970s. State estimation involves designing algorithms that
leverage the data collected by various measurement units
across the grid as well as other information about power
grid (e.g., topology and dynamics) in order to form an
estimation for the state of power grid [1]. These state
estimations serve multiple purposes including informing
control actions, predicting loads, updating pricing policies
and identifying abnormalities in power grid. In support of
these tasks, various types of measurements are collected
and transmitted to a control center via remote terminal
units. Therefore, intelligent electronic devices and state
estimation algorithms are key to build a real-time network
model within the energy management system (EMS) [2, 3].
Traditional state estimation approaches, which are con-
ducted centrally in power grid control center, perform three
main routines [4].
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1) Observability analysis: its role is to determine whether
a unique state estimation can be characterized for the
state of the system. Observability analysis is generally
performed prior to state estimation.

2) State estimation: it is responsible for characterizing an
optimal estimation for the complex voltages at differ-
ent buses by leveraging the real-time measurements.

3) Bad data detection: the estimations formed are used in
order to determine whether the measurements bear any
errors, identify them when they are deemed to exist,
and eliminate them in order to enhance state estima-
tion fidelity.

There exists a rich literature of various approaches to
bad data detection under different assumptions on the data
model or network topology. The existing design principles
for bad data detection often use gross measurement errors,
that is the difference between the measurements and the
estimations of measurements, which is found by using the
state estimation. When such gross measurement errors are
small enough, the estimation is deemed reliable, and when
the errors are large enough, the measurements are consid-
ered to contain bad data [4]. Such bad detector approaches
are effective against the bad data that has a random cause
(e.g., failure in power grid). Nevertheless, when the
disruptions are structured (not random), there exists a high
likelihood that the bad data can bypass the bad data
detectors. For instance, when the disruptions affect the
measurements in a way that they conform to the physical
laws and the topology of power grid, they can appear as
legitimate measurements [5]. Such a possibility raises
concerns about security vulnerabilities that state estimation
faces, which can be capitalized by the adversaries to launch
attacks. Such attack, for instance, can contaminate the
measurements without being detected, while misleading
the state estimators, rendering wrong estimations for the
system. The possibility of such attacks is especially
strenuous as more advanced measurement units are incor-
porated into EMS.

The effectiveness of cyber attacks for contaminating the
measurements and misleading the state estimators, while
remaining hidden from bad data detector strongly hinges
on the extent of information that the attackers possess on
power grid. The two extreme cases in which the attackers
either have full and perfect information about power grid,
or have no information extensively studied in the literature.
When the attacker has no information, all it can do is to
produce random bad data. Such bad data can be efficiently
detected by using the traditional bad data detectors [4],
even though the existing approaches, as we will discuss
later are not optimal. On the other hand, in which the
attackers have full and perfect information about all the
dynamics of power grid, the attacks can be designed
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intelligently so that they appear as legitimate data and can
bypass the traditional bad data detection algorithms [5].
While such attacks can cause severe damages, assuming
that they are not realistic. Specifically, the strong
assumption that all the instantaneous dynamics of pow-
er grid fully known to the attackers is hard to meet in
practice.

In this paper, we propose a framework for recovering
the state of the system while facing the potential risk that
the measurements are contaminated by random bad data or
structured bad data. Furthermore, we assume that when the
data is contaminated by structured bad data (i.e., attacks),
the attackers are assumed to have only partial information
about power grid topology and its time-varying dynamics.
The objective of this framework is two-fold. The primary
objective is forming a reliable estimation for the state. The
second objective of forming reliable state estimation per-
tains to detect whether there exists any source of random or
structured bad data in the measurements.

1.2 Ecxisting studies

The focus of this paper is on false data injection attacks
(FDIAs). The main objective of the FDIAs is to disrupt
power grid functions while avoiding the possibility of
being detected by bad data detectors [6]. Even though the
FDIAs mainly aim to distort state estimation, their dis-
ruptions exceed and can affect a wide range of control and
dispatch decisions. More specifically, a compromised
estimation of the system state can lead to non-optimal
dispatch. There exist studies that investigate the minimum
number of measurements that should be tampered with to
make an effective attack. The dynamics between the
number of measurement units protected (or compromised)
and the effectiveness of the attacks are studied in [7].

An analytical approach to evaluate the impact of FDIAs
that can evade bad data detectors and affect electricity
market is formalized in [8]. The study in [9] presents
another FDIA design strategy, which maximizes the gen-
erated market revenue with a single measurement attack.
Based on the multi-step electricity price (MEP) model
introduced in [10], the impact of FDIAs in the real-time
market against MEP is investigated in [11]. In order to
incorporate the inter-temporal constraints, [12] proposes an
attack strategy to withhold generation capacity for profit by
manipulating the ramp constraints of the generators during
look-ahead dispatch. In [13], an FDIA strategy based on
the geometric characterization of the real-time marginal
prices on the state space of power grid is proposed.

Game-theoretic approaches to model the interactions
between the attack and defense strategies are investigated
in [14, 15]. Specifically, the study in [14] focuses on
mechanisms based on attacks that disrupt state estimation,
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and consequently, manipulate the ensuing decisions that
rely on the state estimation. The study in [15] examines the
compromising of the communication channels that carry
the measurement information to manipulate market deci-
sions. The idea of directly jamming the pricing signals is
studied in [16], where the attackers can make a profit
without intruding the power system and changing the
reported data. The study in [17] analyzes attack strategies
by using a nonlinear model for power systems and state
estimators. The impacts of adversaries with limited infor-
mation about the network on the market operations are
studied in [18-20].

2 Preliminaries
2.1 Bad data and attack models

Consider a general non-linear system model, the mea-
surement vector y € R" is related to the state of the system
x € R™ according to:

y=hx)+z (1)

where h captures the dynamics and topology of power grid,
and z accounts for the measurement noise. This model
represents the instances at which the only source of the
contamination in the measurements is noise. Furthermore,
when there exists random failure in the network (e.g.,
malfunctioning measurement units) or an attacker or a
group of attackers compromising the measurements, the
non-linear system model changes according to:

y=h(x)+z+b (2)

where b accounts for the effects of injected random or
structured bad data. Based on the currently widely-used
approaches, for a given state estimation, denoted by X, the
set of measurement is considered to contain bad data based
on a gross measurement test. Specifically, it is decided that
the bad data exists if the gross measurement error exceeds a
pre-specified threshold 7, i.e.:

ly —h(x)[, > (3)

The key weakness of such a bad data detector is that it
does not detect bad data vectors b that are designed prop-

declare bad data if

erly so that the distorted measurement h(x)+z+b

appears as a legitimate measurement vector. For instance,
in a linearized system model, when b is aligned in the range
space of the Jacobian matrix H (found by linearizing h). It
can bypass the residue-based detectors, as discussed in [5].
Furthermore, even when bad data is detected, the only
existing remedy is to collect fresh measurements in the
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hope of having better data, and subsequently, producing a
reliable estimation.

The primary cause of such weaknesses for the bad data
detector in (3) is that: @ the state estimation and the bad
data detection decisions are treated as independent routines
as it ignores the inherent coupling between the two deci-
sions; and @ it tends not to fully capitalize on the rich
redundancy in the measurements because the dimension of
the observation space n is significantly larger than that of
the state space m. When these two routines (e.g., state
estimator and bad data detector) are designed by properly
leveraging the fundamental underlying connection, and the
redundancy in measurements is capitalized effectively, it is
possible to mitigate the effects of bad data to a large extent.
Specifically, while the objective is estimating the state, a
decision should also be made, in parallel, about the
underlying observation model. These combined decisions
can be cast as a composite hypothesis test problem, in
which hypothesis H represents the model in which the
only data contamination is noise, and hypotheses H; and
H, represent the cases in which the data is contaminated by
structured and random bad data, respectively:

Hoy: y = h(x) + z
Hy: y=nhx) +z+b
Hy: y="hx)+2z+0b

structured bad data

random bad data
(4)

We remark that cases of random and structured bad data
are treated under different models to emphasize that the
nature and models of the data under these two scenarios are
distinct. Specifically, random bad data accounts for the
naturally-occurring failures in power grid such as line
outages when power grid is stressed. The disruptions in the
measurements when such failures occur often follow a
random behavior. In contrast, under cyber attacks, the
disruptions are designed carefully in order to impose a
certain interruption on the functions in power grid. For
instance, an attacker exploits some information about the
network in order to launch an attack that effectively distorts
the state estimation ¥, while not being detected by the bad
data detector.

2.2 Information model of attacker

In this paper, the focus is on the data injection attack
model presented in (2). In such models, the attacker tam-
pers with the measurement units (e.g., phasor measurement
units) such that they report false data to the network
operator. Such attacks can lead to a series of disruptions in
the monitoring (e.g., state estimation) and the ensuing
actions (e.g., generation and dispatching).
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As commented earlier, the effectiveness and the design
of the effective cyber attacks strongly hinge on the amount
of information that the attacker has about the network
topology and dynamics. All such information is embedded
in h. For instance, in a linearized system with H, this
information is embedded in the entries of H. In order to
distinguish the full information about the network and what
is known to the attacker, we define h as the partial infor-
mation about k known to the attacker. For instance, in a
linearized setting, instead of the full information about H,
the attacker knows only a noisy version of this matrix,
which we denote by H. Clearly, the case of h = h repre-
sents the scenario in which the attacker has full information
about the network. In this paper, we consider a general
setting and do not impose any constraint on the relevance
of h and h. Such an assumption facilitates a wide range of
attack information models. All the analyses provided are
general and can be applied to all choices of . Such choices
span the scenario of fully informed attackers (& = h) to the
more practical assumption. And it has only partial infor-
mation about & available to the attacker.

For a given h, the attack strategy can be modeled as a
function that maps & to b, i.e.,

¢ . Rnxm N RHXI (5)

We remark the optimal design of b in a linearized
system when the information about the Jacobian matrix
associated with A is fully known to the attackers [21].

3 State recovery under bad data
3.1 Data models

We define the sets 2, C R™ and Q, C R™ as the spaces
of valid values for x and b, respectively. Furthermore, we
assume that x and b are distributed in their designated
spaces €, and €} according to known statistical models. It
is noteworthy that the distribution of x in space €2, can be
found by leveraging the historical data about the state
parameters. When such patterns are not available or they
are not reliable enough for forming a statistical model, we
assume that x is distributed in €, according to a uniformed
distribution. Similarly, by leveraging the information and
the historical data on the failure patterns of the measure-
ment units, the distribution of b in space €, can be char-
acterized. Finally, in case of structured bad data (attacks),
due to the unknown nature of the attacks or attack strate-
gies, we assume that b takes values in its designated space
€2y according to a uniformed distribution.

We denote the the probability density function (PDF) of
x under hypothesis H; by m;(x), for i € {0,1,2}. Finally,
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by accounting for the randomness of the noise measure-
ments z, the measurements under hypothesis H; are dis-
tributed according to:

Hi: y~fily[x) and

where f; is the PDF of y, which is governed by the distri-
bution of noise. Based on this formulation, the state esti-
mation problem reduces to concurrently detect the true
hypothesis and estimate the unknown vector x.

There exists a few sub-optimal approaches in solving
such combined problems. All these approaches decouple
the joint problem into two disjoint estimation and detection
routine. One major class is that the problem is reduced to
an estimation-driven detection. An estimation is formed
under each hypothesis, reducing it into a pure detection
problem, and then an optimal detection routine is carried
out. The most prevalent approach in this direction is the
generalized likelihood ratio test (GLRT). The second major
class involves parallel detection and estimation, in which
multiple estimations are formed under various hypotheses.
Also, a detection decision is formed in parallel. If the
detection rules are in favor of hypothesis H;, then the
estimation formed under hypothesis H; will be admitted as
the estimation of interest. Despite their popularity, all such
approaches are sub-optimal.

In this paper, we take a radically different approach to
treat the combined problem. Aiming to form reliable esti-
mations, we provide a natural formulation in which the
objective is optimizing a relevant cost function, while in
parallel, controlling the detection power. This approach
results in novel optimal designs for estimators that are
designed based on a decoupling approach.

X~ 7(x) (6)

3.2 Bad data detection

To formalize the detection routine and characterize
optimal detection rules, we start by defining a randomized
test with decision rules denoted by {(y), 01(y),d2(y)}- In
this test, given data y, the rule ;(y) denotes the likelihood
of deciding H; for i € {0,1,2}. These probability terms
satisfy:

0i(y) >0

22%)5;'()’) =1 (7)

Accordingly, we define the decision vector as
d(y) = [00(y),01(y), 02(y)]. Furthermore, we denote the
true hypothesis and the decision of the detector by T €
{Ho,H,H,} and D € {Hy,H,.H,}, respectively.

Based on these definitions, the probability of deciding in
favor of hypothesis H; while the true hypothesis is H;, for

i # j is given by:
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Pi(8(y)) =P(D=H; | T = H,)
_ / / 8:(3) £y | %) m(x) dx dy

x (3)
= [ 50)50) &
y

We have six such error probability terms. Next, by

defining the estimation costs, we show how these detection

error terms can be integrated with the estimation cost to

form a combined approach for designing the estimators and
detectors.

3.3 State estimation

Based on the observed data y, besides discerning the
underlying true model H;, we also form an estimation for x.
We denote the estimation of x based on the collected data y
by X;(y). To quantify the fidelity of the estimation under
hypothesis H;, we define the cost function C;(x,x;(y)),
which captures the difference between the estimation and
the ground truth. A popular cost function pertains to the
minimum mean-square error (MMSE) criterion, which is
given by:

Ci(x,u) = ||x — ul)? 9)

For a given generic cost function C;(x,u), we will also
evaluate the average posterior cost function. Such an
average cost function quantifies the estimation error cost
after observing y, and it is given by:

Cip(u | y)=Eix[Ci(x,u) | y] (10)

where the expectation is computed with respect to x; under
hypothesis H;. Therefore, the minimum average posterior
cost function is given by:

Cip(y) = inf Cip(u | y) (11)

These cost functions have pivotal roles in designing the
estimator and detector as they capture the quality of
estimation. Finally, the optimizer of the average posterior
cost is [22] denoted by:

X; (y) = arginf C;,(u | y) (12)
3.4 Combined state recovery and bad data detection

In this subsection, we propose an approach that incor-
porates both estimation and detection decision rules in a
unified framework. Given randomized detection rules d(y)
and state estimators u;(y), under hypothesis H;, we define
the conditional average estimation costs as:

STATE GRID

Ji(0i(y), wi(y)) = Eix[C(x,ui(y)) | D = H|] (13)

The expectation is taken with respect to x and y under H;.
Given the individual cost functions under different
hypotheses, we aggregate the three cost functions into a
unified one. Specifically, for a given measurement vector y,
randomized detection rules d(y), and estimators

u(y) = [Uo(y), Ui (y), U2(y)], we define:
J((S(y),u(y)) = ielg(l)?ffz} Ji(éi(,)’)yui(.)’)) (14)

This aggregate cost function captures only the
performance of the estimators. To integrate the quality of
the detectors, which are captured by the probability terms
P;(6(y)) defined in (8), we formulate the combined
problem as the one that minimizes the estimation
performance subject to controlled quality for the error
probability terms P;(d(y)) according to:

inf J(3(y).u(y)

oy

st. Py(d(y)) <oy i
Parameters a = [o;;], where o; € (0,1) ensure that the
probability of declaring H; while the underlying true
hypothesis is H; are controlled in a desired level. In the
next section, we discuss how the problem P(a) can be
solved in a closed form.

= (15)

4 Optimal state estimator and decision rule
4.1 Feasibility of P(«)

Note that solving (15) does not always have a feasible
solution for any arbitrary choice of {o;;}. Specifically, from
the Neyman-Pearson (NP) theory, we know that when
facing a multi-hypothesis testing problems, the probability
of decision errors cannot be made arbitrarily small at the
same time. The set of simultaneously feasible choices of
{o;} can be found by solving the following problems, in
which five of the error probabilities are controlled to
remain below a specified threshold, and the sixth term is
minimized. Without the loss of generality, we aim to
minimize Pgy;(6(y)), while controlling the rest of error
terms, i.e.:

{ﬁé I?&?H)l@@))
sit. Py(8(y)) <oy (i,)) # (0, 1)

This problem can be solved readily by leveraging the
same line of argument as in NP test [22]. Note that solv-
ing (16) is merely for the purpose of characterizing the

(16)
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solution f§ and not the decision rule. Once this problem is
solved, if f satisfies f§ < o, then the combined estimation
and detection problem in (15) is feasible, and vice versa.

4.2 Optimal state estimator

Close scrutiny of (15) indicates that the estimators
appear only in the objective function of the optimization
problems and the constraints depend only on the detectors.
This observation suggests that the problem in (15) can be
decomposed into two problems. Firstly, the estimators are
characterized for any given set of detectors. Specifically,
for any given choices of the detectors d(y), the optimal
estimators can be found as the solution to:

infJ (u(y)) (17)

This observation is summarized in the following theorem.

Theorem 1 (state estimator) The solution to the opti-
mization problem

) = argui;g)l(ﬁb’%u@)) (18)

x(y) =K), 50), )] (19)

The proof can be found in Appendix A.

Irrespectively of the structure of the detection rules,
the result of Theorem 1 is that the Bayesian estimators are
optimal. This implies that the combined estimation and
detection problems can be reduced to a bad data detection
problem, which we will investigate in Subsection 4.3,
followed by state estimators with the structures in (12).

4.3 Optimal bad data detectors

With the estimators designed in the previous subsection,
these estimators can be substituted into the problem (15),
rendering a purely detection problem. This detection
problem can be found as the solution to:

{ P(a) = inf J(5(y). ' (7))
(20)
For this purpose, we define:
J(8(y)) =)ig(1yf)1(5(v)»f(y)) =J(8(y),x"(y)) (21)
which transforms (20) as:
STATE GRID

@ Springer

P(a) = inf J(5(y) )

By solving P(a) in (22), we find the closed-form
characterization for the detection rules, which essentially
determine whether the system is suffering from bad data,
and if so, whether it is structured bad data (attack) or
random bad data. For this purpose, by recalling the
definitions of J;, J, and J in (13), (14), and (21),
respectively, we obtain:

J3) =I(0), %))
= max J,(5(y),ff (J’))

ie{0,1,2}
= max EL[C(x.(y) | D= H] .
= s, EalC,0) | D = H)
£, 8:0) ) Ci, ) dy
= max
20y ], 60) f0) dy

We remark that each of the three terms involved in (23)
is quasi-linear in &;(y), which are quasi-convex [23].
Furthermore, weighted maximum preserves quasi-
convexity. Hence, the term J(d(y)) is quasi-convex and
can be solved by finding the solutions to an equivalent
family of feasibility problems [23-25]. More specifically,
for solving P(a), we first characterize a relevant feasibility
problem. For characterizing and solving such a feasibility
problem, based on (23), for any given ¢ € R, that satisfies

J(8(y)) <t for i€ {0,1,2}, we have:
/ 5i0) £,0) [CL () — 1] dy < O (24)

As a result, for any given set of values &, which controls
bad data detection power and the real number f we
generate the following feasibility problem:

set all d(y) that satisfy
Q. t)= [, 0i(y) f:y) [Ci,(v) — 1] dy <O (25)
Py(0(y)) <oy i#]

The relationship specified in (24) indicates that the two
problems Q(a,t) and P(a) are related according to:

if Oa,t) #¢ then Pla)<t
if Q(a,t) =¢ then P(a) >t
Based on this property, it can be readily verified that the

optimal value of P(a) can be found through a bi-section
search with the steps detailed in Algorithm 1.

(26)
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Algorithm 1: Detection algorithm

Initialize fmin = 0 and fmax = E[Ci(x,0) | y]
Evaluate the average posterior costs in (10)
repeat
to — (tmin + fmax) /2
Solve Q(a, 7o)
if O(a,19) >0
Imin < 1o

else

e N RN

tmax < 1o
end if
until 7,,,x —
P(&) — tmax
Output a and ¢ to characterize the rules in (36)

—_ =
A e

tmin < € for e sufficiently small

—
b

Based on the connections between the two problems
Q(a,t) and P(a), we have observed that for solving P(a),
we can instead solve Q(a,#) combined with a bi-section
search. In the next step, we specify how to optimally solve
Q(a,?). In order to proceed, we introduce the slack variable
7 and define the following auxiliary problem, which can be
readily verified to be convex.

inf 1

o(y) ’

st. Q(a1) = [, 6:y) fiy) [C1,0) —dy<y (2D

Py(d(y)) <oy +y i)

Based on the definitions of the problems Q(«,?) and
Q(a, t), we have the following two statements, which are
equivalent:

Q1) =0 <« Q1) >0 (28)

This equivalent implies that for establishing the feasi-
bility of Q(d, 1), we need to equivalently compare the value
of Q(d,7) with a fixed threshold. As the final step, we
characterize the solution of Q((S, t), which in turn provides
a closed-form characterization of the decision rules d(y).

For solving Q(4,7), which is a convex problem, we
firstly form the Lagrangian by assigning the non-negative
Lagrange multipliers a;, i € {0, 1,2} to the constraints:

/ 5:0) 1) [CL,0) — 1] dy <y (29)

and assigning the non-negative Lagrangian multipliers c;;,
for i #j and i,j € {0, 1,2}, to constraints

STATE GRID

Pi((y)) <o+ (30)

By defining a = [g;] and ¢ = [bj], which satisfy:
2at ) by=1 (1)
i ]

the Lagrangian is given by:

L(8,7,a,¢c)= (1 =Y ai— Zbij>7
i i
+a [anm (Cm-qe @)
i y
+ 3 e (Pi(o0) — o)
ij
As a result, the dual of the Lagrangian function is given

by:

g(a.c) £ min£(.7.a.¢)
=min {3 [00)10) [0~ &
+ > cu(Pio0)) |
— :Z;c,-joc,»j (33)

By leveraging the expression of P;(d) in (8), the
Lagrangian dual can be equivalently state as:

gla,c) = H&llynz / SiAi )y — > cijoy (34)
V4 7
in which we have defined:
Aily)=2aif,(v) [C;, ) — 1] + Zcuﬁ(y) (35)
J#
Based on these observations and properties, the optimal
detection rules are formalized in the next theorem.

Theorem 2 The problem P(a) has a globally optimal
solution and the decision rule d(y) that optimizes P(a) (and
gla,c)) is given by:

doy) =1 if Agly) > max{Ai(y),A2(y)}

ory) =1 if Ay(y) > max{Ao(y),A>(y)} (36)

52()’) =1 if Az(y) Z max{Ao(y),Al(y)}

As a result, based on Theorem 2, we start by computing
the Lagrange multipliers @ and ¢, in order to compute the

constants A;(y). These constants determine the system
operates under which model.
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Fig. 1 Normalized estimation performance versus o
5 Case study

In this section, we evaluate the performance of the
optimal framework on the IEEE 14-bus system, in which
the measurement units undergo potential false data injec-
tion attacks. We evaluate both a DC linearized system and
the AC non-linear system models. In this model, any
combination of the 14 measurement units on the buses can
be compromised.

The benchmark method to compare against the approach
developed in this paper is the detection-driven approach. In
this approach, the effect of the state parameters are ignored,
and a purely detection problem is considered to determine
whether the measurements are entirely legitimate, or they
bear random or structured bad data. This is carried out by
performing a simple hypothesis testing over the three
possible hypotheses {Ho, H;,H,} defined in (6). Once a
decision is formed, based on that an estimator is designed
to form reliable state estimations.

We compare the average estimation cost for a detection-
driven approach, where the correct decision about
{Hy,H,H,} is followed by Bayesian estimation. The
degradation in the estimation cost normalized by the esti-
mation cost under an attack-free setting is depicted in
Fig. 1, which shows how the estimation quality suffers
from the existence of the random and structured bad data.
The plots in this figure illustrate the variations of this
estimation quality versus océoc,-j, which control the detection
error rates, as specified in (15).

Figure 1 consists of three curves, one representing the
estimation cost averaged over all the costs under different
hypothesis g, the best estimate among different estimations
under different models gmax, and the worst estimate among
different estimations under different models gni,. Besides,
we also depict the performance of the detection-driven
approach, which appears as one isolated point. The detec-
tion-driven approach is forced to take a specific detection
quality. It does not enjoy the flexibility of the optimal
approach that can place any desired emphasis on the
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estimation detection and bad data/attack detection prob-
lems. Furthermore, the detection-driven approach produces
considerable weaker estimations.

6 Conclusion

In this paper, we have investigated the non-linear state
estimation in power system when the system is vulnerable
to structured or random bad data. Forming estimations in
such scenarios is inherently coupled with detecting the true
model of the system. We have shown that all the existing
approaches are sub-optimal, which essentially decouple the
involved estimation and detection routines. Based on that
premise, we have provided a general framework that treats
the state estimation and bad data detection problem in a
unified way. We have characterized the optimal state
estimators and bad data detectors in closed forms.
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Appendix A

From(13), we have:

Ji(3:0), 1)) = E[C(x. w(y)) | D=H]]
/ / 51(9)C v, () iy | x)(x)dedy
y Jx

/ 5:()fi(y)dy
Yy

(A1)

Using the definition of C;,(u;(y) |y) from (11), a lower
bound on J;(d;,u;(y)) is given by:

/ 5(9)Ciplai(y) | »)fi(y)dy
Ji(0:(y),ui(y)) ==
5,‘ i d
/y YV ()dy
[ 0 int Copluits) | 5051y
> 2 ’
/ 50 (v)dy

(A2)

which implies that:
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/ 5i)CL, () (v)dy
Ji(0i(y), ui(v)) = =
/ 8:()fi(y)dy

(A3)

Based on the definition of ¥; (y) provided in (12), this lower
bound is clearly achieved when the estimator u;(y) is
chosen to be:

X (y) = arg'li}l(ﬁ Cip(ui(y) |y) (A4)

which proves that the estimator characterized in (12) is an
optimal estimator that minimizes the cost J;(J;,u;). The
corresponding minimum average estimation cost is:

J,50)C, 0)i0)y
/ 5:(y)fi(y)dy

Ji(0i(y),%; (v)) (AS)

Next, we prove that:
max H'ilin{Ji(éi(y)aui(y))}
= ran n’liaX{-,i((si(y)a ui(y))}

Recall from (14), the overall estimation cost J(d,u) is
defined as:

J(8(y), u(y)) = max{J;(d;(y), wi(y))}

Define S(s,d,u) as a convex function of J;(0;(y),u;(y)),
i €{0,1,...,T}, and it is given by:

(A6)

(A7)

T
S(x,8,u)2 > " sidi(0i,m) (A8)
=0
where s = [so, 51, . . ., 57, and they satisfy:
T
S;i = 1
% (49)

Si € [0, 1]

We can represent J(d,u) as a function of S(x,d,u) in the
following form:

J(0,u) = max S(x, 6, u) (A10)
X
Let s* = {Q]* :j=0,1,...,T} be defined as:
s*= arg max S(x, 6, u) (A11)
X
where s* = 1 if:
Jj=arg mljclx{J;(éi,u,-)} (A12)
From (A4) and (AS5), we observe that:
STATE GRID

max min S(x, §,u) = max S(x, §,X)
X

“ * (A13)
> min max S(x, d, u)
u X
At the same time, we have:
max S(x, d,u) > max min S(x, d,u) (A14)
P P u
which implies that:
minmax S(x, d, ) > max minS(x, 5, u) (A15)
From (A13) and (A15), it is easily concluded that:
max min S(x, d,u) = minmax S(x, 8, u) (A16)
X u u X

which completes the proof for (A6).
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