5608

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 11, NOVEMBER 2018

Resource Allocation Under Sequential
Resource Access

Ali Tajer™, Senior Member, IEEE, Maha Zohdy, Student Member, IEEE, and Khawla Alnajjar, Member, IEEE

Abstract— This paper treats the problem of optimal resource
allocation over time in a finite-horizon setting, in which the
resource become available only sequentially and in incremental
values, and the utility function is concave and can freely vary
over time. Such resource allocation problems have direct appli-
cations in data communication networks (e.g., energy harvesting
systems). This problem is studied extensively for special choices
of the concave utility function (time invariant and logarith-
mic) in which case the optimal resource allocation policies are
well-understood. This paper treats this problem in its general
form and analytically characterizes the structure of the optimal
resource allocation policy and devises an algorithm for computing
the exact solutions analytically. An observation instrumental to
devising the provided algorithm is that there exist time instances
at which the available resources are exhausted, with no carryover
to future. This algorithm identifies all such instances, which
in turn, facilitates breaking the original problem into multiple
problems with significantly reduced dimensions. Furthermore,
some widely used special cases in which the algorithm takes
simpler structures are characterized, and the application to the
energy harvesting systems is discussed. Numerical evaluations
are provided to assess the key properties of the optimal resource
allocation structure and to compare the performance with the
generic convex optimization algorithms.

Index  Terms— Sequential
delay-limited, optimization.

access, energy harvesting,

I. INTRODUCTION

A. Overview

ONSIDER a resource allocation problem over a finite
Ctime horizon T' € N. The resource is made avail-
able for utilization sequentially over time and in increments.
Such resource allocation models manifest in a wide range
of power allocation and scheduling objectives in commu-
nication systems. For instance, in energy harvesting net-
works the transmitters rely partly or entirely on ambient
sources in their surrounding environments. In such systems,
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the energy resources are available only sequentially and incre-
mentally over time as they are harvested. Similarly, the packet
transmission systems under stringent quality-of-service (QoS)
constraints constitute another class of resource allocation
problems in which the data packets to be transmitted arrive
sequentially over time at the transmitter, while all the arriving
information packets are required to be delivered to their
destination by a given deadline or by using a given amount
of energy. In order to set the context for further discussions,
and by relegating closer review of the motivations and related
literature to Section I-B, we next provide the statement of the
problem.

In a time-slotted setting, we denote the incremental amount
of resource made available during time slot ¢t € {1,...,T}
by s; € R, and denote the actual amount of resource utilized
during time slot ¢ € {1,...,T} by x; € RT. The resource is
assumed to be used only causally, leading to the following set
of T' resource utilization constraints:

t t
o< s Vee{l,...,T} 1)
=1 =1

Accordingly, we denote the resource vector by s =
[s1,...,s7] and denote the vector of utilized resource over
time by x 2 [1,...,2z7]. Also, we define the utility function
ft + RT — RT as the measure of the contribution of the
amount of resource utilized during time slot ¢ € {1,..., T},
i.e., ;. We assume that all functions {f; : t € {1,...,T}}
are differentiable, non-decreasing, and strictly concave, and
denote the aggregate utility gleaned over the entire time
horizon by F(x) = Zthl fi(x¢). Based on these definitions,
the resource allocation problem under the sequential access to
the resource over a finite time-horizon can be formalized as

max F(x)
¢ t
Ps)=qst. Y o< s, Vie{l,... T} @
i=1 i=1
x = 0.

The problem in (2), in its special cases with some constraints
relaxed, subsumes an extensive body of well-understood prob-
lems, e.g., power allocation in parallel channels [1] and power
allocation in single-user multi-antenna channels [2] when
{si = 0:4 € {1,...,7 — 1}}. In this paper, we leverage
the structure of the convex optimization problem formalized
in (2) and provide the optimal solution for the general form
analytically. First, we study the properties of the optimal
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solution, based on which we devise an algorithm to provide
the optimal solution as will be shown in Section I-C.

B. Motivation and Related Work

In this subsection we provide a more detailed overview
of two classes of communication systems and their existing
relevant literature in which resource allocation objectives can
be formalized as problem P(s) defined in (2).

1) Energy Harvesting Communication Systems: Among the
varying conditions communication systems experience, causal
and incremental availability of the energy resource introduces
a new dimension in resource allocation that does not exist
in systems facing average or aggregate constraints on the
resource. Energy harvesting networks, in which the trans-
mitters rely partly or entirely on ambient sources in their
surrounding environments, represent one class of such com-
munication systems in which the resource is available only
sequentially. Energy harvesting networks empowered by per-
petual sources of power, are especially promising alternatives
to systems with lifetime-limited batteries. In such systems,
nevertheless, the availability of energy becomes sporadic and
temporally volatile, in which case devising optimal policies for
efficient utilization of the harvested energy directly translates
into how continually the communication link can be sustained
by relying on the harvested energy. In such systems, optimally
balancing energy consumption over time leads to solving
problems of the form in (2).

Optimal resource allocation policies under different set-
tings and objectives are studied extensively. In particular, and
most relevant to the scope of this paper, in the single-user
energy harvesting channels, optimal power allocation policies
are studied under a number of assumptions on the battery
size for storing the harvested energy (finite versus infinite),
and information available regarding the causality of energy
harvesting, and wireless channel fading process (slow versus
fast). Specifically, the studies in [3] and [4] consider infinite-
capacity batteries, establish certain properties of the optimal
policies, and devise the directional water-filling approach to
power allocation in static as well as fading wireless channels.
Extensions to random channel conditions and finite-capacity
batteries for static channels are studied in [5]-[7].

Enforcing a finite battery capacity induces constraints on
the policies, which are driven by the possibility of battery
overflow at the instances of harvesting energy. Extensions to
such finite-battery settings when facing inefficiencies in battery
storage is investigated in [8]. The studies in [9] and [10]
address causal and non-causal availability of the channel
state information. The settings in which the channels undergo
random fading processes as well as the associated policies
are studied in [11]-[14]. A closely related problem is studied
in [15], which investigates an optimal power allocation scheme
that minimizes the delay by which a given amount of data
is successfully transmitted. A greedy power allocation policy
and the conditions under which the policy is optimal is studied
in [16]. Properties of online optimal policies in fading channels
are analyzed in [17]. The impacts of finite-horizon on optimal
power control is studied in [18] and [19]. The undesired effect
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of non-ideal power circuit at the transmitters of the additive
white Gaussian noise channel (AWGN) is analyzed in [20].
A universal approach that incorporates the effects of the energy
arrival process is presented in [21], and energy harvesting
sensor networks are studied in [22] and [23].

In addition to the single-user systems, multiuser energy
harvesting systems are also studied extensively. Specifically,
the multiple access channels under different settings are stud-
ied in [24]-[28], broadcast channels are studied in [29], and
interference channels are studied in [30]-[32]. Other studies
that do not primarily focus on resource (power) optimization,
but indirectly involve that include analyzing the capacity of the
AWGN channel [33]-[39], and that of the Gaussian multiple
access channel [40], [41].

2) QoS-Constrained Systems: Optimizing the efficiency of
packet transmission systems under stringent quality-of-service
constraints is another class of resource allocation problems
solving which is equivalent to the problem in (2). In such
systems, the data packets to be transmitted arrive sequentially
over time at the source and all the arriving information packets
requires to be delivered to their destination by a given deadline
or by using a given amount of energy. For instance, the studies
in [42] and [43] consider minimizing the energy-cost used
to transmit data packets through wireless channels subject to
given delay or other quality-of-service constraints. Maximizing
the transmission throughput of an energy- or time-constrained
transmitter over fading channels is studied in [44]. Under a
fixed delay constraint, a transmission schedule that maximizes
the battery life-time is derived in [45], while the study in [46]
considers minimum-energy scheduling problems over fading
multiple-access and broadcast channels. Also, the recent study
in [47] analyzes proactive content caching from an energy
efficiency perspective. Moreover, a scheduling algorithm with
real-time constraints was presented in [48].

C. Contributions

In this paper we treat the problem in (2) in its general from.
This problem in the special form that the utility functions
are homogeneous (identical) over time, i.e., f; = f for all
t € {1,...,T}, is considered in [43] to address problems
arising in QoS-constrained energy optimization. This study
develops a calculus approach and offers an optimal algorithm
for determining the optimal solution. Furthermore, in the
context of energy harvesting systems, while the optimal struc-
ture is not fully characterized, some of the properties of the
optimal solution are delineated in [4], and the special case of
homogeneous utility functions, i.e., static channels, is treated
in [4] and [7].

In this paper, we analytically characterize the properties of
the optimal solution, based on which we provide an algorithm
that determines the exact optimal solution. The key component
of the structure of the optimal solution is that there exist time
instances at which all the available resources are exhausted
and the amount of available resources is set to zero. This
is in contrast to the other time instances, at which always
a fraction of the resources are reserved to be consumed in the
future. The proposed algorithm progressively determines all
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these time instances, and we call the associated constraints
the dominant constraints. Once these instances are known,
the finite-horizon optimization problem reduces to a collec-
tion of smaller problems that do not include any inequality
constraint, and each involves only one equality constraint.
Furthermore, we also comment on a stochastic account of the
problem in (2) and show that when the amount of available
resources and/or the utility functions bear stochastic uncer-
tainties, optimizing the expected aggregated utility subject to
chance constraints on the available resources can be translated
into and solved by a problem of the form in (2).

The remainder of the paper is organized as follows.
In Section II we provide the optimal structure of the optimal
solution to (2) and algorithms that identify the optimal solution
in its general form, and for some common special cases.
In Section III we discuss the direct application to the single-
user energy harvesting system. The numerical evaluations
are provided in Section IV to assess the structure of the
solution and also compare the performance with that of the
generic convex optimization algorithms. Section V concludes
the paper, and all the proofs are relegated to the appendices.

II. OPTIMAL SOLUTION: PROPERTIES AND ALGORITHM

The objective in this section is to analytically character-
ize x*, which we define as the solution to P(s). The solution
™ is unique since all the constraints are linear and the utility
function is strictly concave. We start by considering the offline
resource allocation problem, in which the resource vector s
and the utility functions {f; : ¢t € {1,...,T}} are known
deterministically. We characterize the optimal solution analyt-
ically, and discuss the generalization to the settings in which
these terms bear stochastic uncertainties in Section II-H.

A. Algorithm for Finding the Optimal Solution

We start by providing an algorithm that identifies the exact
solution to P(s), discuss its complexity in Section II-B,
present an overview of the scheme of the proofs in
Section II-C, and present the detailed steps of the analysis for
establishing its optimality properties in sections II-D and II-E.
In these latter two subsections, specifically, we show that the
optimal solution x* has two key properties, which constitute
the main structure of Algorithm 1 for analytically solving
P(s). The first property is that the set of optimal values
{z7,...,2%} can be partitioned into d mutually exclusive
subsets separated at time instants ¢ € {ug, u1, ..., uq}, which
we can find analytically. We denote these subsets by

{‘flka""le}v '71";’}) 3)

where we have set ug = 0 and ugy = 1. We show that each
subset can be characterized analytically and independently of
the rest. Built on this observation, secondly, we show that
among all the constraints of P(s), i.e.,

{xzd—l‘i’l’ o

t t
Sm<) s, Vte{l,.... T} )
i=1 i=1

the constraints corresponding to ¢ € {uy,...,uq} hold
with equality, and all others hold with strict inequality.
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Finally, based on these two properties we show that find-
ing a* via solving P(s) reduces to solving a number
of problems with a similar structure, but with reduced
dimension.

The detail steps of solving P(s) are provided
in Algorithm 1. This algorithm receives the resource vector
s as its input and produces the optimal resource allocation
solution x*. It consists of one outer loop (lines 3-13) the
purpose of which is progressively determining the indices
of the time instants {u; : ¢ € {1,...,d}}. Each of the d
outer loops involves an inner loop (lines 6-9), which finds a
part of the optimal solution, and specifically in the iteration
¢ of the outer loop, the inner loop finds the optimal values
{zF 1 € {ui—1 +1,...,u;}}. This inner loops within the
i*" iteration solve optimization problems Q.. , .:(s) for all
values of ¢t € {w;—; + 1,...,T}, where corresponding to
each pair m < n we have defined the auxiliary problem

1=m-+1
Qnn(s) 2 " " )
I Y e Y s

i=m-+1 i=m+1

x = 0,

It is noteworthy that Q,,,—.,,(s) has a unique globally optimal
solution, since its utility function is strictly concave.

Algorithm 1 Solving P(s) for Any Given Resource Vector s

1: input s
2: initialize ¢t =1, d = 0 and ug = 0,
3: while ug <T —1
4. d—d+1
5: set Ag = {ug_1+1,...,T}
6: for t € Ay
7: set wh! as the solution to Q,, ,.+(s)
8: set ¢t = min {%%(w?’t) :
i€ {ud,1+1,...,t}}
9: end for
10: ug = arg {niqu’t (if not unique, select the smallest®)
€Aq
11: = it
12: 2% = quhta

13: end while
14: foric {1,...,d}
15: fort € D; ={ui—1+1,...,u;}

16: xf = 2
17: end for
18: end for

19: output z* and d and {uq,...,uq} and {v1,...,v4}

“For the convenience in the analyses, throughout the rest of the paper we
assume that u4 is unique. In case that it is not unique, by selecting the smallest
choice all the analyses remain valid.
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B. Computational Complexity

The significance of obtaining the optimal solution x*
analytically is the substantial reduction in the computational
complexity. To furnish the relevant context, we remark that
since the utility functions are strictly concave, the generic
approaches in convex optimization can be readily applied to
the problem at hand. In particular, the primal-dual interior-
point (IP) methods are known to be extremely efficient and
capable of handling large-scale nonlinear problems. From a
computational perspective, the complexity of IP methods is
shaped primarily by two factors, namely the desired level
of accuracy in the solution they provide (i.e., closeness to
the optimal solution) and the nature of the utility functions
(e.g., linear or quadratic). In the IP methods, it is well-
investigated that for linear utility functions, the computational
complexity scales at the rate O(v/T Inl), where T is the
dimension of the problem and e accounts for the error of
the solution provided by the IP method, i.e., the difference
between the optimal solution and the solution provided by the
IP method. For non-linear utility functions, which is the case
in this paper, the complexity is higher, and except for special
cases (e.g., quadratic) the general complexity is unknown.
On the other hand, Algorithm 1 provides the exact optimal
solutions, which corresponds to guaranteeing that ¢ = 0 for
the output of Algorithm 1, achieving which by the IP method
results in theoretically unbounded computational complexity.
The same trend is true for other numerical approaches as well,
and in Section IV we provide numerical comparisons between
the computational complexities. Finally we remark that the
complexity of Algorithm 1 is O(T'), since in the worst case
it has 7T iterations. Each iteration involves solving a problem
of the form Q,,_,,(s). The solution to Q,,.,(s) often has
a closed-form when the utility functions are specified, and as
a result as it is customary, the computational complexity is
considered negligible.

C. Scheme of the Proofs

Before proceeding to the details of the proofs, we provide a
scheme of the steps involved. The objective is to characterize
the key properties of x* as the optimal solution of P(s).
For the analytical purposes, we construct another resource
allocation vector & as the output of Algorithm 1 when its input
s is replaced by x*. It is noteworthy that this serves merely as
an auxiliary solution which we are not interested in computing,
but rather we investigate its properties. Specifically, we show
the following properties for x:

1) From the construction of &, it can be readily verified
that & satisfies all the constraints of P(s). As a result
due to the optimality of x*, the utility corresponding
to & cannot exceed the utility corresponding to x*,

i.e., F(x*) > F(x). This is established in Lemma 2.
2) Also, from the construction of x, we prove that

F(x*) < F(&). This is established in Lemma 3.
3) By leveraging the results of lemmas 2 and 3 we sub-

sequently have & = x*. This implies that if we initiate
Algorithm 1 with «*, it will produce the same vector
ax* as its output. This is established in Theorem 1.
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4) Finally, we show that initiating Algorithm 1 with inputs
s and ™ results in the same resource allocation vectors.
This is formalized in Theorem 2, which in conjunc-
tion with Theorem 1 establishes that the output of
Algorithm 1 is the unique desired vector x*.
Besides these main items, we also show that & and the value of
the utility functions corresponding to this resource allocation
vector have a number of algebraic properties established
in lemmas 1, 4, and 5, which x* also inherits due to the
observation that =* = .

D. Grouping the Constraints

We start the analysis by showing that the set of the optimal
values {z7,..., 2%} has the key property that this set can be
partitioned into smaller subsets, such that the elements within
one subset are closely related. These properties are established
via lemmas 1-5. For this purpose, we first establish a number
of properties for &, which is the output of Algorithm 1 when
its input s is replaced with the optimal solution x*. It is
noteworthy that it is not our objective to actually compute x,
but rather we aim to show that when such an auxiliary term
is constructed according to the rules specified in Algorithm 1,
it satisfies certain desired properties. Hence, the purpose of this
algorithm is only proving the properties, and does not involve
knowing the optimal solution x*, or actually computing &.

In order to construct &, Algorithm 1 admits * as its input,
and based on that successively partitions the set of constraints
S a <3 s te{1,...,T}} into d disjoint subsets
of constraints. Specifically, it returns time indices 0 = ug <
up < - < ug =T, and partitions the set {1,...,7} into d
disjoint sets:

D ={ui1+1,...,u;}, for ie{l,....d}. (6

Furthermore, this algorithm computes the metrics {v; : i €
{1,...,d}} and assigns v; to the set D;. Once the dominant
constraints are known, solving P(x*) reduces to solving a
collection of smaller problems in the form of Q,,, , ., (x*)
defined in (5). The properties of & are formalized in the
following lemmas.

Lemma 1: When Algorithm 1 is initiated with x*, for given
me{l,...,d}andt € A = {tm_1+1,...,T}, we have

af

d_f.ﬁ'l(w;n7t) = Am,fn Vi € {Um,—l + 17 .. )t . w;nﬂ‘/ > 0}

df; .

dj;l (W) > Aty Vi € {umer +1,..., L w™ =0},
where we have defined w™' = [w™",... . wi""], and Apn; €

R4 is a strictly positive real constant. Furthermore we have
qm’t = )\m,t~
Proof: See Appendix A. [ ]
Lemma 2: Vector x generated by Algorithm 1 satisfies all
the constraints of P(s).
Proof: See Appendix B. |
Lemma 3: The vector & satisfies F(x) > F(x*), and the
equality holds if and only if x* = .
Proof: See Appendix C. [ ]
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The results of lemmas 1-3, collectively, establish the opti-
mality of & generated by Algorithm 1, which is formalized by
the following theorem.

Theorem 1: By initiating Algorithm 1 with x* as the opti-
mal solution to P(s), then & generated by Algorithm 1 is
equal to the optimal solution to P(s), i.e, & = x*.

E. Dominant Constraints

By leveraging the results in the previous subsection, which
essentially partition the set of all constraints into a collec-
tion of d disjoint constraint sets, next we provide additional
properties for these sets of constraints. Specifically, we show
that in each of the given d sets, at least one constraint holds
with equality, which we refer to as the dominant constraint.
These d dominant constraints are the only constraints needed
to characterize the optimal solution *. The following lemma
represents an intermediate and instrumental step towards char-
acterizing the set of dominant constraints of P(s). In particu-
lar, it establishes a connection among the derivative measures
g%t and v? defined in Algorithm 1.

Lemma 4: The sequence {v1,...,vq} is strictly decreasing.

Proof: See Appendix D. [ |

We remark that the indices {u; : ¢ € {1,...,d}} and
their associated constraint indices {v; : i € {1,...,d}}
have significant physical meanings in resource allocation.
Specifically, the elements of {u; : ¢ € {1,...,d}} specify
the time instances at which all the resources arrived by that
time instance are consumed in their entirely. At other time
instances, a fraction of the available resources is reserved for
being consumed in the future time instances. This observa-
tion is formally demonstrated in the following lemma. Also,
the measures {v; : i € {1,...,d}} are the derivatives of
the utility functions at the optimal solution x* over time.
Specifically, for all the indices in the range ¢ € D;iq,
the derivatives of all the utility terms f; at the non-zero optimal
values of «* are all the same, and equal to v;, i.e., for the set
D; defined in (6) we have

_ dft(a?t)

%
d.’L’t ’

Lemma 5: Under the optimal solution x*, all the inequality

Vit € D;, and Va, 7& 0.

constraints with indices included in {u,, : m € {1,...,d}}
hold with equality, i.e.,
Vme{l,....d}y: Y ;=) s (7)
i=1 i=1
Proof: See Appendix E. [ ]

F. Initiating the Algorithm via x*

By leveraging the results of Lemma 4 and Lemma 5
in this subsection, we prove the optimality of Algorithm 1 for
obtaining x*. So far we have shown that if we modify
Algorithm 1 such that instead of inputting s we input the
resource vector x*, then the output will be in fact the optimal
solution x*. Next we show that initiating Algorithm 1 with
either «* or s yields the same output. The underlying insight
is that this algorithm depends on x* primarily for determining
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the metrics {v; : @ € {1,...,d}} and their associated
constraint indices {u; : i € {1,...,d}}. By invoking the
result of Lemma 5, we next show that for determining the
sets {v; i € {1l,...,d}} and {u; : i € {1,...,d}},
alternatively, we can also use the resource vector s, based
on which subsequently we can show that the outcome of
Algorithm 1 based on the input s will be in fact the optimal
solution x*. Insensitivity of Algorithm 1 to the choice of x*
or s as the input is formalized in the next lemma.

Lemma 6: Denote the set of constraint indices yielded by
Algorithm 1 by {u; : i € {1,...,d}}, and denote the
counterpart set when in Algorithm 1 s* is replaced with x*
by {u; : i € {1,...,d}}. We have {u; : i € {1,...,d}} =
{u; :ie{l,...,d}}.

Proof: See Appendix F. [ ]

Based on the result of Lemma 6, in the following theorem
we establish the optimality of Algorithm 1, that is it produces
x* when it is initiated with input s.

Theorem 2: By admitting s as its input, Algorithm I
generates the optimal solution of P(s).

Proof: See Appendix G. [ ]

G. Homogeneous Utility Functions

In this subsection we consider the settings in which the
utility functions are all identical, i.e., f; = f for all ¢t €
{1,...,T}. While in such settings we can solve P(s) directly
via Algorithm 1, nevertheless, by leveraging the homogeneity
structure, this algorithm can be significantly simplified. Specif-
ically, we show that the inner loop that solves an optimization
problem for all the future time instances (lines 6-9) can be
avoided, and the indices of the dominant constraints and the
associated resource allocation scheme can be found directly
based on s. Specifically, in the following lemma, we show
that the set of dominant constraints {u,, : m € {1,...,d}}
can be found without solving the optimization problems of the
form Q,, ,—(s), unlike in the general form.

Lemma 7: For problem P(s) with identical utility function

ft = f, the indices of the dominant constraints {t,, : m €
{1,...,d}} are given by
1 t
Uy = arg min ——— Si 8
m gtE.Am t— Up—1 . Z ' ®
i=Um—1+1
Proof: See Appendix H. u

Based on the result of Lemma 7, we provide Algorithm 2 as
a simpler algorithm for obtaining the optimal solution x* to
the problem in (2) by admitting the resource vector s as the
input. The optimality of the outcome of the algorithm, x*, is
stated in Theorem 3.

Theorem 3: The optimal solution to the problem
P(s) under homogeneous utility functions is yielded
by Algorithm 2, and takes the closed form x* =
anzl B [Oupvs D=1 O7—u,,|. where 0y and
1, are (-dimensional vectors of all zeros and all ones,
respectively.

Proof: See Appendix I. [ ]

We comment that a similar solution structure is provided
in [15] for treating the problem of optimal power allocation
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Algorithm 2 Computing x* Under Homogeneous Ultility
Functions

1: input s

2: initialize d =0andug =0
3: while ug <T —1

4: d—d+1
5.

6

AN
set Ay ={uq—1+1,...,T}
t
Ug = argmin tﬂ}d - S;
teA, T i=ug_1+1
A 1 Ud
7: 5d = Ud—Ud—1 Z Si
i=uq—1+1
8: end while

9: =¥ = Z;inzl Bm. - [®um_1 s Lt~ 19 ®T—um]

over a point-to-point static channel in an energy harvesting
system.

H. Stochastic Uncertainties

In this subsection we consider a class of utility functions
and resource vectors the true values of which are known only
causally, and otherwise bear stochastic uncertainties. We show
that solving this class of stochastic problems can be reduced
to solving problems of the form in (2). To formalize such
settings, we assume {s; : t € {1,...,T}} are independent
and identically distributed (i.i.d.) random variables unknown
non-causally. Furthermore, to capture the uncertainties in f;(x)
we assume that the function depends on an unknown random
variable oy, and denote it by f;(z, ;). We also assume that
ft is concave in its both arguments. Given these notations,
a stochastic account of (2) can be formalized by optimizing
the expected value of the aggregate utility subject to chance
constraints on the availability of the resource, i.e.,

max

12 é: Eqo, [fe(me, o))

QM) = P i )Z% PEENC)

s.t.

Y "
.OlM“

xr

It can be readily verified that the function fi(z) =
Eo, [fi(z, )] is concave in x. Also, by denoting the cumu-
lative distribution function of Ele s; by G4, the stochastic
constraints can be rewritten as Y.._, x; < G; (1 — ) By
setting v, = G7(v), defining

nE=G N (1—7) =G (1—7), Vte{2,...,T}, (10)

and noting that G¢(x) > Gy_1(z) forallt € {2,..., T}, itcan
be readily verified that the solution of Q(v) can be found by
solving the problem P(s) since Q(v) = P([y1,--.,77])-

III. APPLICATION: ENERGY HARVESTING SYSTEMS

In this section we discuss the application of the general
approach developed in Section II to the problem of power allo-
cation in a single-user point-to-point communication channel
in which the transmitter’s battery is equipped with an energy
harvesting unit, gathering its power entirely from ambient
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sources in its surrounding environment. Hence, power, as the
resource, is made available for transmission only sequentially
and incrementally over time. For this purpose, consider a time-
slotted transmission over a single-antenna channel in which the
channel input at time ¢t € {1,...,T} is denoted by X;, and
the output is given by

Yi=h - Xy + Ny forte{l,...,T}, (11)
where h; denotes the channel coefficient at time ¢ €
{1,...,T}, and N, account for additive white Gaussian noise

distributed according to N¢(0,1). In this model, z; denotes
the transmission power at time ¢ € {1,...,T} and s; denotes
energy increments harvested at time ¢. Throughout the analysis
we assume that the battery has infinite capacity.

A. Sum-Rate Maximization in Fading Channels

By setting the utility function as fi(z;) = log(1+ oy - 1)
where oy = |hy|?, the optimal power consumption scheme
over time for the purpose of maximizing the sum-rate capacity
in this energy harvesting system can be obtained via solving

T
> log(1+ oy - x)

max
T tjl .
PEO=Vst. Sa<Ss, teql,.. 7y 12
i=1 i=1

z - 0.

For solving P(s) we can directly apply Algorithm 1, which
can identify the set of the dominant constraints recursively.
In each recursion cycle, the algorithm solves a power alloca-
tion problem that is equivalent to optimizing power allocation
across independent parallel channels and can be solved via
the well-known water-filling algorithm. Nevertheless, when
there is more structure to be leveraged, solving such power
allocation problems can be avoided, and the indices of the
dominant constraints, and the associated power allocation
schemes can be found directly. Hence, for a general fading
model, the optimal solution of P(s) consists in identifying
the dominant constraints indexed by {u; : i € {1,...,d}}
in conjunction with applying the water-filling algorithm d
times for solving Q,, , ., (s). We remark that the indices
{u; : i € {1,...,d}} mark the instances at which the entire
energy available at those instances is exhausted, and there is
no energy carry-over to the following instances. The fact that
the optimal solution involves elements similar to water-filling
is pointed out and discussed in details in [4], and the result
in this paper complements this observation by determining the
exact time intervals {u;—1+1,...,u;} over which the optimal
power solution is the water-filling solution of Q,, , ., (s).
In the following corollary, we also address a special cases of
interest, in which the fading process can be time-varying, but
the rate of variations is small enough to be bounded by a
measure specified by the variations of the harvested energy
over time. Spemﬁcally, if the deviations of —- from their

average T thl +; are smaller than the average harvested
T .
energy % > i—1 St i.e., when

1 T
B Ny
mlnf Qg t:l

13)
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then the structure of Algorithm 1 simplifies significantly,
as specified in the following corollary and Algorithm 3.
It is noteworthy that a static channel (i.e., «; constant)
satisfies (13) and power allocation in static channels can be
also determined by Algorithm 3.

Algorithm 3 Optimal Power Allocation p* Over Quasi-Static
Fading Channels

1: input s
2: initialize d =0anduy =v4 =0
3: while ug <T —1
4. d—d+1
5: set Adé{ud71+1,...,T}
: _ : RS _ L)
6: Uq al;%fzm o i:u§1+1 (Sz t3
Uq
E ﬁdéﬁ > (sita)
i=ugq_1+1
8: end while
9: forte{l,...,T}
10: set p; = B — a%, where j = inf{u; : u; >t}
11: end for

Corollary 1 (Slowly Fading Channels): For a fading model
that satisfies (13), for the optimal solution of P(s) the time
instants at which the available resources are exhausted, for
m € {1,...,d}, are given by

_ 1 : 1
U = argtrengln m . | Z (si + 05—1> . (14)
1=Upm—1+1
Proof: See Appendix J. [ |

Based on the result of Corollary 1, we provide
Algorithm 3 as a simple approach to obtain the optimal
power allocation p* to the problem in (12) by admitting the
vector of harvested energy s as an input. For the convenience
in notation, we define the channel power gain vector as o =
[a1, ..., ar]. The optimality of the provided power allocation
p* is stated in Theorem 4.

Theorem 4: For a quasi-static fading model that satis-
fies (13), power allocation p* yielded by Algorithm 3 is the
optimal solution to the problem P(s).

Proof: Follows the same line of argument as in the proof
of Theorem 3. [ ]

B. Special Cases

In this subsection we present two special cases that special-
ize the sum-rate optimization of interest to the two special case
studies in Section II, namely homogeneous utility functions
and utility functions with stochastic uncertainties.

Example 1 (Homogeneous Utility Functions): In the con-
text of energy harvesting, the utility functions turn out to be
homogeneous when the fading process is static and the fading
coefficients do not vary over time, i.e., ®p = --- = oy =
as a result of which the utility functions remain unchanged
over time, i.e., fi(z) = log(1 + ax).

Example 2 (Stochastic Uncertainty): When the fading
coefficient «; is random and unknown to the transmitter,
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the utility function f;(z, o) = log(14 ayx), which is concave
in both a; and z, becomes also random and unknown. Based
on the discussion in Section II-H, the expected utility function
fi(x) = Eo, [fe(as, 2)] = Eq, [log(1 + ayx)] is concave in z,
and as a result the stochastically-constrained power allocation
problem can be solved via (9).

IV. NUMERICAL EVALUATIONS

In this section, we present numerical evaluations to highlight
the structure and the properties of Algorithm 1 provided
in Section II and compare its performance with the generic
numerical algorithms for solving convex problems. Through-
out the simulations we pursue two objectives. First, we aim
to numerically assess the structure of the optimal solution
given in lemmas 4 and 5, and assess the number of the
variations of the dominant constraints, as well as the utility
value with respect to different resource arrival processes.
Secondly, we compare the structure of the optimal solution
and the performance yielded by the optimal solution charac-
terized with those yielded by two generic convex optimization
approaches, namely the interior point (IP) method and the
Matlab CVX solver.

Throughout the simulations we focus on the slowly-fading
energy harvesting application specified in Section III. In this
model the utility function at time ¢ is f;(x;) = log(1+|h¢|?2),
where the channel coefficients h, follow a Rayleigh fading and
are distributed according to N¢(0,1). The amount of energy
harvested at different time slots, ie., {s; : t € {1,...,T}},
randomly varies over time, and for the purpose of implemen-
tation we consider three different models for the energy arrival
process, namely Unif (0, 27), Exp(%’), and Poisson(n), where
7 denotes the average resource arrival rate.

A. Constraint Groups

The key structure of the solution to P(s) is that it can
be reduced by partitioning {z*,...,z%} into d disjoint sets,
where the values in each set are related (their respective
functions have same derivatives) and can be computed inde-
pendently of each other. The set {u; :€ {1,...,d}} specifies
the time instances at which all the available resources are
exhausted. In order to demonstrate this numerically, we set
the time horizon to 7" = 10, and generate one realization of
the harvested energy vector s. We solve the problem P(s) for
this realization, and in Fig. 1 plot the variations of 22:1 ]
over time to asses the optimal properties stated in lemmas 4
and 5. For this evaluation we consider Unif(0,2n) as the
energy arrival process, with 77 = 5. The light (red) bar at time
t shows the level of available resources at time ¢, and the
dark (blue) bar depicts the amount of available resources to
be consumed at time ¢. It is observed that at certain time
instants the two bars have exactly same heights indicating the
available resources are exhausted. These time instants occur
at {uy,u2,uz,uq,us} = {6,10,11,16,20}. We have also
evaluated the variations of 22:1 x; for the solution z provided
by the CVX solver as well as the IP method, where we have
observed that the solutions match with the optimal solution
with high accuracy (albeit with higher complexity analyzed
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TABLE I
COMPUTATIONAL TIME IN SECONDS

2 Unif (0,10) Exp () Poisson (50)
Alg. 1 P | CVX | Alg I IP | CVX Alg. 1 IP | CVX
10 20x10° 1011 [ 1.84 [51x10° 015 ] 1.75 [058x10°% [ 0.12 | 1.95
100 31x10°° [ 0.87 | 11.25 [ 55x 107 ° [ 0.87 | 10.55 | 1.15x 102 | 0.87 | 11.51
1000 42 x 1070 [ 2.09 | 443.70 | 77 x 107° | 2.08 | 376.23 | 1.91 x 10~3 | 2.09 | 369.72
140 T T
Il cumulative available resource Zle S
120 H Il cumulative consumed resource Z::, x 4 =
. uy U ug Uy %5 ‘E
% ! Y
3 !
Z £ 4 T =50 —Tnif(1,21)] |
E g -~ Exp(})
g ;; a5 —— Poisson(n)
3 T=10
2
g .l v
2 S X Loz A . 5
0 5 10 15 20
time ¢ 25 ’ ’ ’ ’ ’

Fig. 1. Resource arrival and allocation.

0.35

derivatives { % }

0 5 10 15 20
time ¢

Fig. 2. Derivative measures {df;/dt}.

in Section IV-B). Furthermore, for the same system realization
used for the evaluations in Fig. 1, the variations of the deriv-
atives of the utility functions, i.e., {df:/dt: t € {1,...,T}}
are depicted in Fig. 2. It shows two main properties associated
with the derivative measures {v; : i € {1,...,d}}. First,
the solutions in the range {u; + 1,...,u;41} have the same
derivatives, and secondly, the metrics {v; : i € {1,...,d}}
are strictly decreasing over time. These values are marked
in Fig. 2.

B. Computational Complexity

An important practical advantage of {z*,..., 2%} is that
the elements in each partition are computed independently of
each other. This leads to significant reduction in the compu-
tational complexity since instead of solving a T-dimensional
problem we face solving a number of problems with dimen-
sions much smaller than 7'. To compare the complexity of
Algorithm 1 with those of CVX solver and IP method,
we consider the setting of Section IV-A, and provide Table I,

10 20 30 40 50 60 70 80 90 100
average resource arrival rate n

Fig. 3. Average d versus 7.

which demonstrates the processing times of the algorithm
for different values of 7" and three energy arrival processes
(uniform, exponential, and Poisson). This table shows that the
algorithm, in designing which the structure of the problem is
taken into account, is considerably faster than the CVX solver
and the IP method.

C. Number of Partitions

Figure 3 depict the variations of the number of partitions
d with respect to different rates of energy arrival 7 under
three different processes, and for different problem dimensions
T = 10,50, 100. It is observed that for a given T, d remains
rather insensitive to energy arrival process, and the the average
arrival rate 7. The underlying reason is that the expected
values of {u; : i € {1,...,d}} do not depend on the exact
distribution of the resource arrival process, and rather they
depend on the relative changes of these distributions over time.
When the distributions are identical over time, as is the case
in this setting, their exact choices do not have a significant
impact. As a result, varying the energy arrival rate 7 does
not affect the average values of {u; : i € {1,...,d}}, and
subsequently, the expected value of d.

Increasing 7" has two opposing effects on d. On the one hand
it increases the spacing between the consecutive time indices
in {u; : ¢ € {1,...,d}}. The reason underlying this is that
according to Algorithm 1, these time indices are determined
by selecting the maximum derivative measure, g%, for every
t € A; and i € {1,...,d}. Thus, by increasing the time
horizon 7', the maximum values of the derivative measures,
qd’t, appear, on average, at later time instances. This effect
tends to decrease d. On the other hand, a larger T is expected
to lead to a larger number of constraint groups. Figure 3 shows
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5 400t \ .
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300 b
200 T =10 .
100 /
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10 20 30 40 50 60 70 80 90 100

average resource arrival rate n

Fig. 4. Aggregate utility versus 7).

the combined effect of these two opposing trends is in favor
of an increasing trend for d.

D. Aggregate Utility

Finally, we evaluate the maximum sum-rate as the solution
to (12) and in Fig. 4 depict the variations of the sum-rate versus
the resource arrival rate 7 for different values of 7. We use a
setting similar to those described in the previous subsection.
As expected, increasing the transmission horizon leads to
increased throughput. Specifically, it can be readily shown that
the sum-rate scales linearly with the time horizon 7T'. Also it
is observed that increasing 7 leads to increase in the sum-rate,
which is also expected as higher 7, on average, indicates higher
amount of resources, and leads to a larger utility. Finally,
we remark that the CVX method and the IP method achieve
similar solutions within a range of bounded error, albeit at the
expense of higher computation complexities.

V. CONCLUSION

In this paper, we have analyzed and solved the problem
of optimal resource allocation over time, when the resource
becomes available sequentially and incrementally over time.
Such problems in their general forms subsume a wide range
of conventional resource allocation problems in communica-
tion systems (e.g., resource allocation over parallel channels),
and have direct application in certain applications in which
resources are accessible sequentially (e.g., energy harvesting
and quality-constrained systems). Such problems are well-
investigated in their special forms for the utility functions, and
in this paper, we have treated the problem in its general form.
First, we have established certain key properties of the optimal
solution, based on which we have proposed an algorithm for
obtaining the solution. A key observation has been that there
exist time instants at which the available resource is entirely
utilized, and characterizing the optimal solution depends on
identifying those instants. The proposed algorithm provides
closed-form characterization of these instants. Furthermore,
we have shown that the proposed algorithm can be applied
to a stochastic version of the resource allocation problem,
in which only the statistical properties of the resource arrivals
are known. Moreover, we have applied the obtained optimal
solution to identify a closed-form optimal power allocation
policy under energy harvesting constraints over the single-
user fading channels. Finally, we have provided numerical
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evaluations to depict the key properties of the optimal resource
allocation policy and to also compare the performance with
those of generic convex optimization algorithms.

APPENDIX A
PROOF OF LEMMA 1

By recalling the definitions of w?? (line 6 of Algorithm 1)
and Q. (x*) in (5), it can be readily verified that vector
w™!, where m € {1,...,d} and t € A,,, is a solution to
Qu,,_,—t(x*). Corresponding to each pair of m and ¢ where
me{l,...,d} and t € A, 2 {m-1+1,...,T}, we define
the A, and nfmt as positive real numbers Lagrange multi-
pliers corresponding to the equality and inequality constraints
in (5). Enforcing the Karush-Kuhn-Tucker (KKT) condition
yields that for all ¢ € {w,,—1 +1,...,t} we have

af,
dx

where 7,,, , > 0 if w

m,t

(wz ) = At + Ufn,m (15)

m,t . 1 _

; =0, and otherwise 7,, , = 0.
APPENDIX B

PROOF OF LEMMA 2

Recall that in Algorithm 1 we have defined Z, = 2¥ where
i =inf{j : u; > t}. Also, define

-1 +
ht(/\)él(i—‘i\t> (A)] . Vte{l,...,T}, (16)

where [z]T denotes max{z,0}. Since functions {f; : t €
{i,...,T}} are strictly concave, the inverse of their deriva-
tives, i.e., {h; : t € {1,...,T}} are non-increasing functions.

Hence, for a given combination of m,t, and ¢, such that
m € {0,...,d =1}, t € Dy, = {tm-1+1,...,up}, and
€ {um—1+1,...,t}, we have

o =z (definition of Z; in Algorithm 1)  (17)
= w,"" (definition of z¢ in Algorithm 1)  (18)
= h¢(Amou,,) (according to 16) (19)
= he(¢"™"™)  (definition of g% in Algorithm 1) (20)
< he(g™") (h: is non-decreasing) 21
= he(Am.t) (definition of ¢%! in Algorithm 1) (22)
= w)"". (according to (16) and Lemma 1) (23)
Consequently, corresponding to each m € {1,...,d}, for all
t € D,, we have
t t t
S (17);(23> Y owrt= Y a e
O=ttpy_1+1 (=t 141 =t 1+1

where the last equality in (24) holds since for ¢ € {u,,—1 +
1,. . Um}, w™? is the solution of Q,, _, ..(x*), as speci-
fied in Algorithm 1. By invoking the inequalities in (24) we
find that for each m € {1,...,d}, and for all t € D,,, we have

t m—1 t
Soai=Y > @+ Y i (25)
/=1 i=1 LeD; =Up,_1+1
m—1 ) t
=Y > H+ > @ (26)
i=1 LeD; L=Upy _1+1
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t
>, @

=3 e @
i=1 £eD; £=Um 141
m—1
=30 ST DRE T
i=1 £eD; {=tum_1+1
=530 SETHD DRI
i=1 £eD; {=um_1+1
t
= Z P s (30)
(=1 (=
where (27) holds by noting the definition of w®!

in Algorithm 1; the transition from (27) to (28) holds since for
eachi € {1,...,d}, it can be readily verified that w®"i is the
solution of Quiflﬁui( *), and subsequently, >, 5, w wy =
> tep, ;s the transition from (28) to (29) holds by invoking
the inequalities in (24); and (30) follows by recalling that x* is
an optimal solution of P(s), which as a result, should satisfy

all constraints of P(s).

APPENDIX C
PROOF OF LEMMA 3

Based on the definition of z¢, for each m € {1,...,d},
it can be readily verified that 2™ is the solution
of Q.. ,—u, (x*). Based on the definition of Q,, ., (s)
in (5), this observation indicates that for any vector & > 0
that satisfies Y ;" =y x; we have

T=Uy — 1+1
SoEm= Y S (1)

t=um_1+1 t=um_1+1

Clearly x* satisfies the above constraint, based on which we
obtain
Um Um

doofE =Y fE).

t=upm—1+1 t=um—1+1

(32)

By recalling the definition of & in Appendix B, and by
invoking the inequality in (32) we obtain

T .
F@) = 3 filin) @ Z S A@E) 63
t=1 m=1t=um,_1+1
d Um
=D D LM (34)
m=1t=um_1+1
@ 4 Um
> > fila) = F@). (35)
m=1t=um_1+1

APPENDIX D
PROOF OF LEMMA 4

We start by establishing Ay, w,,, = Amjup,yy @0d Ay >

)‘erl,um+1 :
D Mnjus 2 Anyun, s - By noting the definitions of u4 and q®t
in Algorithm 1, and using Lemma 1

MUy m,t M, U, 1
/\M,um =q m max ¢ > q S

teAm My Uy -1 (36)

5617

2) Mnumit = Am4l,umsq - By recalling the definition of hy

in (16) and that w®" is the solution to Q,,, ,.(x*) we have

Um Um

DR TICE S E R A 1)
t=tum_1+1 t=Up—1+1
Um+1 Um 41

Y bttunn) = > 7, (38)
t=um+1 t=uUp +1
Um+1 Um+1

and > ) = Y, @ (39)
t=tum_1+1 t=tum_1+1

Now, by contradiction assume that Ay, w0y < Mg 1,upmss-
Based on (39) we find

Um+1

>

t=um—_1+1
Um

>

t=Upm—-1+1

ht ()\m,,um+ 1 )

P (A i) (40)
—_——

Zht (A )

ht ()\m,um+1 )
——

>hie(Am41,up,41)
U, Um 41

>0 Y Bt D i) 42)

t=um_1+1 t=um-+1
U, Um+1

Yo wih Y oai=

t=upm—1+1 t=upm+1

Um+1

p>

t=um+1

(41)

m u-,”

Um+1

>

t=um—1+1

31=(38) "
= Ty, (43)

which contradicts (39). Hence, given the inequalities in (36)
we have

,T})

Uy = maxq™" (where A, = {tupm_1+1,...

= Am,u,, (definition of ug and Lemma 1)

> >‘m+1 Um+1

= max ¢"tHt (where Api1 = {um +1,...
tEAm 41

,T})

(44)

Um+1-

APPENDIX E
PROOF OF LEMMA 5

We provide the proof via backward induction.

Basis: The statement is true for m = d. We start by
proving that the statement holds for m = d. To this end note
that by construction, uqy = 7. Hence, we need to show that
Z% LT = ZT_l s¢. Assume that, by contradiction, we have
D i1 Ty < D,y St.in which case we generate another vector
& according to

fort e {1,...,
fort =1T.

T-1}

*

T {xt T T

Ty = * *
xr; + E St — E x
il t=1"" t=1 ‘]

(45)

It can be readily verified that x satisfies the constraints
of P(s), and since fr is monotonic F(Z) > F(x*), which
contradicts the optimality of x*. Hence, for m = d the
statement is valid.
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Induction Hypothesis: The statement is true for some
(m+1)e{2,...,d}.

Induction Step: The statement is true for m. By contradic-
tion, assume that » " f < > ;™ s;. Next, select indices
T € {um_1 +1,..,upt and §j € {uym + 1,0 umy1}
such that z; and x; are strictly positive, and select a positive
constant ¢ in the range (0, ,_; sy — >, «;], and generate
x according to

xy fort e {1,...,T}\ {i,7}
x;+0 fort=1
xy—9 fort=j

(46)

Ty =

It can be easily verified that  satisfies all the constraints
of P(s). Next, we show that for structure of & characterized
in (46) there exist 6 € (0, ,_, st — > _;_, =j] corresponding
to which F'(&) > F(x*). This conclusion violates the optimal-
ity of *, and proves the induction statement by contradiction.
For this purpose, we define the function ¢ : R — R as
g(8) = F(z). Clearly, g(0) = F(&)|s=o = F(x*). Hence,
from the expansion of F' we have

dg(9)

dé

T

|y dfie) _ A +8) | A5 29

(47)

dé dé do

t=1

By recalling the definitions of ¢ and v4, noting the range
of 7 and 7, and following the same line of derivations as in the
proof of Lemma 2 (specifically (20)) we can readily show that

dfii +8)) g 55 —0)

do §=0 do §=0
From (47)-(48) we find that dg(d)/dd|ls=0 = vm —
Um+1, Which in conjunction with Lemma 4 establishes that
dg(8)/dd|s=o > 0, Hence, for a sufficiently small 6 > 0 we
have F(&) = g(6) > ¢g(0) = F(x*) which contradicts the

Um, Um

optimality of z*, and as a result > ™ xf = >, s¢

V1. (48)

APPENDIX F
PROOF OF LEMMA 6

We demonstrate this statement by induction.

Basis: w1 = uj. For m = 1, Algorithm 1 computes 7T’
vectors {wh ! ... whT} and the associated gradient terms
{g"*,...,¢"T} by admitting an input s. Similarly, it gen-
erates the corresponding sets by admitting the vector x*,
which we denote by {w'!,... w"T} and {g"!,... ¢ T},
to highlight their potential discrepancies. By noting that

up = argmax{q"’ :t € {1,...,T}}
and @; = argmax{g'’:t € {1,...,T}},

(49)
(50)

in order to show that u; = u;, we provide the following two
properties.

Property 1: "t = @4t for t = uy:
As shown in Lemma 5, constraint u; for the optimal solution
x* holds with equality, i.e.,

Ul Ul
./I),L' = S;.
i=1 i=1

This implies that w™* is the solution to Qg ., (%) =
Q0—u, (8). Similarly, from the construction of Algorithm 1 by

(51
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admitting s we have that w'*! is the solution to Qg_..,, (8).
As a result, wh™ = w"" | which in turn indicates that

ghv = min{ifi (w) ™) rie{1,... ,ul}} (52)
x

di — 1, u1 -
min{%(w}’ ):Ze{l,...,ul}} (33)

—l,ul

=q (54)

Property 2 (¢ht > ¢'t for t € {1,...,T}\ {u;}): For all
te{1,...,T}\{u1}, the constraints do not hold necessarily
with equality, and are valid only in their general form

t t
*

E z; < E S;.

i=1 i=1

Since @ is the solution to Qg _;(x*) and w'"* is the
solution to Qp_.+(s), by recalling the definition of h; in (16)
we find

t t t t
> hi(hg) = a7 and Y hi(Ag) =D si, (56)
i=1 i=1 i=1 i=1

where we have defined the Lagrangian multipliers {\; ;} as
the counterparts of {\;;} corresponding to w"“. By not-
ing that functions h; are decreasing, and invoking (55) we
consequently have A1 ; > A1, and subsequently g1 > gt
Property 2 in conjunction with (49) demonstrates that

ql,ul _ max{ql,t te {]_7 . ,T}}
> max{ght:t € {1,...,T}}.

(55)

(57)
(58)

Additionally, from Property 1 we have ¢b¥1 = gh*1 € {gh? :
t € {1,...,T}}, which combined with (57) establishes the
desired property that ¢**1 = max{g>*: t € {1,...,T}}. and
subsequently, u; = argmax{q"' : t € {1,...,T}} = uy.

Induction Hypothesis: tpy—1 = Upm—1 for (m — 1) €
{1,...,d—1}.

Induction Step: Uy, = Uy, for m € {2,...,d}. We assume
that u,;,—1 = Um—1, and the proof follows the same line
of arguments as in the proof for the case m = 1 with the
necessary modifications, i.e., replacing indices g, @, w1, and
U1 bY Um—1, Um—1, Um, alsO U,,, respectively. Besides these
changes, all other steps are exactly the same, which are omitted
for brevity.

APPENDIX G
PROOF OF THEOREM 2
Based on the construction of Algorithm 1 by admitting the
input s, «* can be found based on the vectors {zi NS
{1,...,d} (described in lines 14-18), which in turn can be

computed from the vectors {w"" : i € {1,...,d} (described
in line 11). Let the vectors {2° : i € {1,...,d} and {w"% :
i € {1,...,d} denote the corresponding vectors generated

by admitting the vector * as an input. Using the result of
Lemma 6 we show that the sets {z' : i € {1,...,d} and
{w*% .4 € {1,...,d} generated by Algorithm 1, admitting
x* and s are identical. Note that from Lemma 6 we have u,,, =
Um for all m € {1,...,d}. As a result @™ "™ is the solution
0 Qa1 (@) = Qup1—un (@) = Qupsy—u, (8)
where the solution of the last problem is w™™"m. Hence,
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w™ % = ™Y for all m € {1,...,d}, which also implies
that 2™ = 2™ for all m € {1,...,d}. Hence, the vector
Z computed based on {z' : i € {1,...,d} is the same x*
computed based on {z%:i € {1,...,d}. Finally, the solution
« computed by using «* lends its optimality to that computed
based on s.

APPENDIX H
PROOF OF LEMMA 7

By proving Lemma 6 and Theorem 2 stated in Subsection II-
F, we showed that the solution «* to problem (2) yielded
computed by using s through Algorithm 1 is optimal. In this
lemma, we characterize the set of constraint indices {u; : i €
{1,...,T}} (defined in line 9 in Algorithm 1) as well as
the set of derivative measures {v; : ¢ € {1,...,T}} (defined
in line 10 in Algorithm 1) that are specialized to the setting
of interest, i.e., homogeneous utility functions. The result of
this lemma constitutes an intermediate step that will be used
in proving the optimality p* determined by Algorithm 3 in
Subsection II-G. For this purpose, note that according to
Lemma 1, and based on the symmetry involved, all the terms

{wim’t .1 € A, } must be non-zero and satisfy

d et .
—f(wi”’t) =Mty Vi€{upmo1+1,...,t, (39
dw
which in turn indicates that the terms {w]™" : i € A,,} are
equal. Hence,
af\
m,t
L = B — )\" . 60
= (L) oo (60)
Since w™! is the solution to Q. _,+(s), we obtain
t t
SETED S
1=Um—1+1 T=Um—1+1
e (L) 0. @
- m—1 dz m,t)s
or equivalently,
df 1 !
Amp=— | —— ; 62
m,t ar \t—w, Z Si (62)
i=uUm—1+1

Based on the definition of the sets A, for u,, defined in line 4
in Algorithm 1, we obtain

Um = argmax ¢’ (63)
teAm,
df
= argmax mln{i(’w:l’t) 11 € {Udfl —+ ]., e ,t}}
tEA dz
(64)
= argmax A ¢ (65)
teAm,
d 1 .
@ arg max —f _ Si (66)
ted,, dz \t—upm_1 i
1 ¢
= argmin ——— Si. 67)
T
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APPENDIX I
PROOF OF THEOREM 3

According to Algorithm 2, for every m € {1,...,T}, and
forall t € {um—1+1,...,un}, the optimal solution is =} =
2" = w;""™ By recalling (60) and (62), for all t € D,,, we
have

U,

M, Uy, 1 2 : 8.

i = Pm = Up — U
m Ml 41

(68)

APPENDIX J
PROOF OF COROLLARY 1

First note that under the condition specified in (13), by using
the results of Lemma 1, it can be readily verified that all
optimal solutions {w!™ : i € {um,_1 + 1,...,t}} for all
m € {1,...,d} and all t € A, are strictly positive, and
satisfy

dw 1+a;-w™ ™"

(2

(w (69)

Also, since w™! is a solution to Q,, _,.+(s), it satisfies

t

t
YoowM= > s (70)
1=Upm—1+1 1=Upm—1+1
Based on (60) and (70) it can be readily verified that
, —1
1 - 1
At = | 7o (35 +—) (71)
Ty i
Hence,
Uy, = argmax ¢! = argmax Am t (72)
teEAm teEAm,
71 1 ¢ 1
o arg min ——— - Z (si + —) . (73)
teAm t— Um—1 =ty 141 (673
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