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Abstract—Agile localization of anomalous events plays a
pivotal role in enhancing the overall reliability of the grid and
avoiding cascading failures. This is especially of paramount
significance in the large-scale grids due to their geographical
expansions and the large volume of data generated. This paper
proposes a stochastic graphical framework, by leveraging which
it aims to localize the anomalies with the minimum amount of
data. This framework capitalizes on the strong correlation struc-
tures observed among the measurements collected from different
buses. The proposed approach, at its core, collects the measure-
ments sequentially and progressively updates its decision about
the location of the anomaly. The process resumes until the loca-
tion of the anomaly can be identified with desired reliability. We
provide a general theory for the quickest anomaly localization
and also investigate its application for quickest line outage local-
ization. Simulations in the IEEE 118-bus model are provided to
establish the gains of the proposed approach.

Index Terms—Anomaly detection, localization, quickest detec-
tion, stochastic graphs.

I. INTRODUCTION

UE TO the large-scale and strong inter-connectivities in
Dthe power grid, any fault or failure can transcend its
realm and disrupt operations in other parts of the grid as well.
This can potentially cause disruption of service and destabi-
lize grid operations. Therefore, real-time monitoring of a grid,
consisting of generators, transmission lines, and transformers,
is of paramount importance in securing reliable power deliv-
ery. Specifically, agile detection and localization of system
failures facilitate mitigating the disruptive impacts the fail-
ure can cause to the network, and prevent anomalous events
that can lead to failures in larger scales. The introduction of
advanced measurement devices such as phasor measurement
units (PMUs) has enabled collecting real-time synchronized
data from the entire network, which allows the operators to
dynamically observe the status of the system and detect and
even localize potential failures.
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Transmission lines are constantly exposed to various kinds
of disturbances such as equipment malfunctioning and natu-
ral disasters. While the power system is designed to operate
under single or multiple contingencies, the monitoring task
should identify those contingencies quickly to prevent over-
load in one section of the grid which may lead to the cascade
of events and a major blackout. Detecting such contingencies
and anomalies when they occur, and localizing them accu-
rately can expedite the repair of the faulty components, speed
up restoration of the grid, reduce outage time, and improve
power system reliability [1]. Hence, anomaly detection and
localization have been investigated extensively in the exist-
ing literature under different settings and objectives. Detection
of anomalies, identifying their location, and specifying the
type of the anomalous events are the main objectives of fault
analysis in power grids. In this paper we develop a stochas-
tic graphical framework for modeling the bus measurements,
and devise data-adaptive data-acquisition and decision-making
processes for reliably detecting and localizing the anomalous
events with the fewest number of measurements. This is moti-
vated by lowering the required communication and reducing
the computational complexity and delay of decision-making.

Analyzing anomalous events can be categorized into two
broad classes according to the type of information used. In
one direction, detecting and localizing events are based on the
changes in the impedance of the corresponding transmission
lines which are leveraged to detect and localize the event by
evaluating voltage and current measurements. The available
data in this method plays a critical role in the complexity
and detection accuracy. Local approaches, according to the
number of terminals from which measurements can be taken,
are categorized into single-end [2]-[5]; double-end [6]—-[10];
and multi-end algorithms [11]-[15]. The systems that use val-
ues measured in both line terminals give more exact results
than those that only use values measured in one terminal.
Nevertheless, in double-end approaches, measurements require
synchronization which makes data acquisition more complex.

In another direction anomalous events are studied based
on the high frequency contents of the signal propagated in
the network under an event [16]-[22]. In these approaches,
signature waves are sent along the transmission lines, and
the traveling durations are determined by leveraging the cor-
relation between forward and backward waves. Such time
durations explicitly determine the distance from that terminal
to the anomalous point. This class of localization techniques
are insensitive to fault type, fault resistance, and source param-
eters of the system, and are independent of the equipments
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installed in the network. For the arrival times, feature extrac-
tion techniques such as wavelet transform are leveraged to
distinguish between the normal signal and the one contain-
ing high frequency components. Feature extraction techniques
combined with classification methods such as neural networks
can also be used for anomaly detection [23], their classifica-
tion [24], [25], and localization [26]—[28].

All the aforementioned studies utilize a static monitoring
mechanism for analyzing the events, i.e., pre-specified loca-
tions of the grid are monitored continuously. It implies that
a sufficiently large number of measurements is required to
ensure reliable detection and localization of anomalies. Despite
the effectiveness, such approaches can become inefficient in
large-scale networks that are expanded over a large geographic
area, due to the costs associated with collecting and processing
large volumes of data. To circumvent this issue, a stochas-
tic graphical framework is developed in this paper to model
the measurements collected from the grid. Generated measure-
ments at different buses around the network follow a certain
correlation structure which depends on the topology of the
network and the status of different transmission lines. Under
an anomalous event, this correlation model changes to the
one that reflects the location of the event. This framework is
leveraged to minimize the number of measurements required
to ensure that all the events can be localized with a target
reliability through designing a coupled data-acquisition and
decision-making process. This leads to minimizing the amount
of data required for localizing the fault. Specifically, it devel-
ops a stochastic graphical model in which the connectivities
in the graph are modeled based on the grid parameters and
capture the correlation among the measurements reported by
neighboring buses. By properly leveraging such correlation,
the quality of the information provided by different measure-
ment units are quantified. This enables devising a data-adaptive
information-gathering process, which can dynamically form an
estimate about the location of the potential event and, accord-
ingly, measure the buses that are most informative about the
anomaly.

This paper designs a guickest coupled data-acquisition and
decision-making strategy for detecting and localizing anoma-
lous events in transmission lines. The purpose of such a
strategy is to detect and localize the anomalies with the
minimum number of measurements, while satisfying a target
reliability for the decisions. In contrast to the non-adaptive
strategies, which collect the data according to a pre-specified
rule and in one shot, the proposed adaptive approach gradu-
ally and progressively focuses its sampling resources on the
areas in the network which are most likely to contain the
anomalous line(s). Specifically, this approach starts by tak-
ing rough measurements from potentially anywhere in the
network, and based on the collected measurements, dynam-
ically and over time it eliminates the regions considered to
behave normally, and further scrutinizes those that are stronger
candidates for behaving anomalously. Designing such strate-
gies involves balancing a tension between the accuracy and
agility of the decision, as two opposing performance measures.
Specifically, achieving a higher quality in decision necessitates
collecting more data, which in turn penalizes the delay of the
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process. This data-acquisition and decision-making strategy
involves making dynamic decisions at each time about 1) what
set of measurement units to be measured, and 2) whether a
reliable decision can be formed based on the collected data,
or more measurements are still needed. Under each anomaly,
it is assumed that the network remains connected and it set-
tles down to a steady-state quickly. Furthermore, the collected
data are assumed to bear no measurement noise or data injec-
tion attacks. We first review the preliminaries on the stochastic
graphical model and anomaly detection in Section II. Quickest
anomaly detection and localization is formalized in Section III.
In Section IV we present the theory for characterizing the
data acquisition and decision-making processes as well as
the general framework for anomaly detection, and the associ-
ated algorithms for implementing the optimal decision rules.
Finally, in Section V we apply the designed algorithm to the
problem of line outage detection and localization as a spe-
cial anomaly detection problem. It is noteworthy that the line
outage detection in power grids is investigated extensively in
the existing literature. When a transmission line is in outage,
it is assumed that the tripping log of its associated relay is
not available or accessible. Hence, the localization of the out-
age should be performed based on the phasor measurements
from different buses. When all the measurements are avail-
able, exhaustive search for detecting single line outage events
is studied in [29] and [30], and computing line outage dis-
tribution factors for detecting multiple line outages is studied
in [31] and [32]. In [33], a quickest change point detection
approach is deployed that monitors the network sequentially
in order to detect a persistent outage and identify its loca-
tion. Joint outage detection and state estimation are considered
under the Bayesian setting in [34]. In [35], measurements are
modeled as a Gauss-Markov random field (GMRF) and out-
age detection is performed by approximating the covariance
matrix of the measurements. The study in [36] formulates out-
age detection as a sparse signal recovery problem and applies
compressive sensing tools for outage detection. All these stud-
ies utilize the measurements from all the buses and their
performance degrades significantly when a subset of measure-
ments are available. To address this issue, the study in [37]
develops an algorithm based on the ambiguity group theory for
localizing the outage event. Another approach is to estimate
the unobserved PMU data prior to performing detection [38].
The optimal static PMU selection for minimizing the error
probability in outage detection over all possible outage events
is studied in [39]-[42].

II. PRELIMINARIES

A. Background on Markov Random Fields

A Markov random field (MRF) is a graphical model that
encodes certain dependency structures among a collection of
random variables. Given an undirected graph G = (B, £) with
N nodes B = {1,2,..., N}, the set of random variables 6 =
{61, ...,0y} form a Markov random field with respect to G
if they satisfy the global Markov property. To formalize this
property, for any given set A C {1,..., N} we define 94 S
{0, : i € A}. We also say that set C separates disjoint sets A
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and B if any path starting in A and terminating in B has at
least one node in C.

Definition 1 (Global Markov Property): The set of random
variables 0 = {61, ..., 6N} satisfies the global Markov prop-
erty associated with graph G = (B, £) if and only if for any
two disjoint subsets A, B C B and a separating subset C C B,
random variables 64 and 6p are conditionally independent
given ¢, i.e.,

P(0al68, 6c) = P(6albc). (D

Random variables satisfying the global Markov property
also satisfy the following weaker Markov property.

Definition 2 (Local Markov Property): A random variable
is conditionally independent of all other random variables,
given its neighbors, i.e.,

P(6u16y, 00;,) = P(BulOn,) Vv & (N Uw), )

where N, denotes the set of neighbors of u, i.e.,

J\fué{veB:(u,v)ef}.

B. Statistical Model of Bus Measurements

Studies in [35], [43], and [44] show that the statistical
relationship among the measurements collected from differ-
ent buses across the grid can be modeled effectively by a
GMRE. Based on this model, grid topology determines the
graph underlying the GMREF, such that the buses correspond
to the vertices of the graph and the lines constitute the
edges. This model relies on the observation that the second-
neighbor correlations are dominated by those of the immediate
neighbors [43].

To formalize this connection, consider a power grid con-
sisting of N buses, abstracted by graph G = (B, &), where
B {1, ..., N} denotes the set of buses and £ C B x B rep-
resents their connectivities such that (i, j) € £ if buses i,j € B
are directly connected by a line (see Fig. 1). We define 6;
and p; as the voltage phasor angle and the injected active
power at bus i € 3. By defining x;; as the reactance of the
line connecting buses i and j, from the DC power flow model

we have [45]:
0; — 6;
pi = Z <T]) 3

JeN;
Hence, defining p = p1, ...,pN]T and § = [0y, ...,0n]7
provides

p=H-0, 4)

where H € RV*VN is the weighted Laplacian matrix of the
connectivity graph defined as

1 e
Z(i,é)eé’ x_e ifi=j
L
Hlj]=1_1 if (i) e € ®)
Xij
0 Otherwise.
Furthermore, from (3) it follows that 6; can be represented as

0= ryth + Bipi. (6)
JjeN;
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Fig. 1. IEEE 14-bus standard system with 20 transmission lines and 5
generators. The transmission line between bus (i, /) has reactance x;;.
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Equation (6) indicates that 0; depends only on the voltage pha-
sor angles at its immediate neighbors. By accounting for the
random disturbances in the system as well as the uncertainties
associated with load profiles, the aggregate injected power at
different buses can be modeled as independent random vari-
ables [46] and [47]. This assumption in conjunction with (6)
shows that the set of voltage phasor angles {6; : i € B} satisfy
the local Markov property.

We note that, by construction, matrix H is rank-deficient,
which causes ambiguity for the solution of @ in (4). To fix
this ambiguity, one bus is selected as reference with its phasor
angle set to zero and the phasor angles of all other buses denote
their differences relative to the reference bus. By removing
the row and column corresponding to the reference bus, the
remaining (N — 1) x (N — 1) matrix H has full rank. In the
remainder of this paper, when referring to the Laplacian matrix
of the network, we always mean the modified full-rank one.

C. Anomalous Events

The grid consists of L 2 |E] transmission lines, where the
set of lines is denoted by £ = {1,...,L}. We are interested
in detecting and localizing anomalous events in the trans-
mission lines. Any change in the reactance of transmission
lines that does not conform with the expected patterns is con-
sidered to be an anomalous event and, there exist (2 — 1)
such possible events, each one corresponding to one combina-
tion of lines experiencing anomaly. These events, in practice,
occur with different frequencies, and have different disruptive
effects on grid operations. Furthermore, we only consider the
events that keep the underlying post-event graph connected.
This precludes considerable changes between pre-event and
post-event bus power injections. We define M as the number
of events that represent the most critical ones, which should
be localized in the quickest fashion. Accordingly, we define
R = {Ry, ..., Ry} as the set of such events, where Ry C L
contains the indices of the lines experiencing anomaly under
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event k € {1, ..., M}. Additionally, event R is reserved to sig-
nify the event under which all lines are normal. Dynamically
determining the state of the grid, and localizing the anomaly,
when the grid is deemed to be anomalous, can be abstracted
as dynamically deciding which event R; € R represents the
model of the grid. By denoting the true event by T € R,
detecting and localizing anomalies can be cast as the following
multi-hypothesis testing problem:

Hi: T=Ry, forke{0,..., M} ®)

When an anomaly occurs, network connectivity profile
changes. We denote the connectivity graph of the grid and
the reactance of the line connecting buses i and j under event
Ry by Gr(B, &) and xf; respectively, corresponding to which
for k € {0, ..., M} we define matrix H such that

r
Z(i,Z)GEk * ifi=j
N it
Hifij] =11 if (i, )) € & ©)

0 Otherwise.

Hence, the multi-hypothesis model in (8) can be expressed as

Hi:0=B;-p, forke{0,...,M}, (10)
where we have defined By = Hk_l. Under each anomalous
event, @ follows a distinct correlation structure governed by the
associated topology and line reactances of the network, which
is imposed through matrix By. Due to the massive scale of
power networks, collecting measurements from all the buses
incurs prohibitive sensing and processing costs. Hence, we
devise a data-adaptive decision-making framework that can
form arbitrarily reliable decisions about the state of the grid
with minimal number of measurements.

III. QUICKEST LOCALIZATION OF ANOMALIES

In this section, we formalize a sequential data-acquisition
and decision-making process to collect measurements of volt-
age phasor angles and use these measurements to localize
the anomalies, when one is deemed to exist, with the fewest
number of measurements. This is motivated by reducing the
costs associated with data-acquisition, communication, and
processing, especially in large-scale grids. This data collec-
tion and decision-making mechanism is constructed based on
the premise that when a specific anomaly occurs, it affects the
measurements from different buses with varying degrees. For
instance, when the line connecting bus i and j is in outage,
its effects on the measurements generated at buses i and j can
be more than those of a remote bus. By capitalizing on such
discrepancies among the level of information provided by dif-
ferent buses, the proposed sampling procedure progressively
forms a decision about the likely events, and takes measure-
ments from the buses that are expected to be more informative
about these events.

The data-acquisition process sequentially collects ¢ mea-
surements at-a-time from ¢ different buses. The process
continues until time v € N, as the stopping time of the process,
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at which point it terminates and a decision about the under-
lying event is formed. For modeling the dynamic decisions
about the buses to be observed at time ¢ we define the selec-
tion function ¥ (¢) = [V, 1), ..., ¥, £)], which captures
the indices of £ buses to be measured at time 7 € {1, ..., 7}.
We denote the vector of measurements collected at time ¢ by
0(1) = [6(t,1),...,0(t £)] where 6(t, i) is the measurement
collected from bus (¢, i). Accordingly, we denote the vector
of observed buses and their corresponding measurements up
to time ¢ by v, and 6,, respectively, i.e.,

e = ), ..., w®]" and 0, 2 [0(1),....001". (1)

Finally, we define § € R as the decision rule at the stopping
time. The quality of decision at the stopping time is captured
by the decision error probability, i.e.,

M

Pe=P@#T)=Y P(T=R)Y P(=RIT=R). (12)
i=0 i

Hence, the optimal sampling strategy, which aims to form the

quickest decision subject to maintaining a target decision qual-

ity is obtained as the solution to the following optimization

problem.

Pe<p

minimize E{r}
7,0,

subject to (13)
where B € (0,1) controls the probability of erroneous
decisions.

IV. OPTIMAL DECISION RULES

The optimal sampling strategy involves dynamically select-
ing the buses to be monitored and deciding the time to stop
the process. In the next subsections we characterize the bus
selection function v (¢), the stopping time 7, and the final deci-
sion rule 6. We remark that these rules, collectively, satisfy
asymptotic optimality guarantees and solve the quickest detec-
tion problem of interest formalized in (13). In the sequel, we
assume that the total number of lines that can be concurrently
anomalous is upper bounded by 7 max.

A. Bus Selection Rule

1) Analysis: The measurements from different buses are not
equally informative about different events. Hence, dynamically
selecting buses based on real-time data for measuring their
voltage phasor angles has a critical role in striking an opti-
mal balance between the decision quality and the quickness
of the process, as formalized in (13). In order to characterize
the optimal bus selection rule ¥ (), we start by establishing
the relevant theoretical foundations, and then we provide the
specific designs for 1/ (¢). Solving the problem in (13) can be
facilitated by using the techniques in controlled sensing, and
specifically the Chernoff rule [48]. According to the Chernoff
rule, at each time ¢ we first make a maximum likelihood deci-
sion about the true model R; based on which we select the bus
that reinforces this decision to be measured at time (z+1). The
information of each observation is quantified in terms of the
Kullback-Leibler (KL) divergence between the distributions
under various hypotheses. The main advantage of the Chernoff
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rule is low computational complexity. The main weakness, on
the other hand, is that it can be suboptimal as it decouples
the impact of the decisions made at each time on the future
decisions. To circumvent this deficiency, we propose a new
selection rule to incorporate the effect of each action on the
future ones. This new decision rule, in general, involves an
exhaustive search over all buses and can have prohibitive com-
plexity, especially as the grid size grows. Nevertheless, we
show that by properly leveraging the Markov structure, the
computational complexity can be reduced significantly and it
becomes as simple as that of the Chernoff rule. In order to
prove these properties, we first focus on a binary setting, i.e.,
= {Ro, R} and consider taking one sample at-a-time, i.e.,
£ = 1. Under the normal event Ry, we assume that the mea-
surements form a GMRF with mean é, which represents the
empirical average of # based on the historical data, and covari-
ance matrix (I — @), where the elements of Q, = [r;] are
defined in (7). Under the anomalous event Ry, on the other
hand, we assume that the measurements form an alternative
GMREF with a different covariance matrix Q;. For the simplic-
ity in notations we assume Q, = I. We define set S! as a subset
of unobserved buses prior to time ¢ that contain bus i, i.e.,

SICB\Y,1 and ieS. (14)

Furthermore, at time ¢, and corresponding to each valid set S,i
we assign the following two metrics to each bus i:

Z log ~ r%j(Aej? - 1)

JEI/’t 1
4 p! 1 (15)
—_ og——,
2|8 ~ -2
JjeS; Y
(Aef + 1)
and M Z log(l - rU) 7
JGWI i
272
o ( ) i e
2]5’\2 ¢ 2 U
jeS! Y
where we have defined A6; £ 0;—0; fori e {1,...,N}. Based

on these definitions, when the maximum likelihood decision
about the true model at time (¢t — 1) is Hg, at time ¢t we
select bus

Y (f) = argmax max M?(l, St’)
gy S

Similarly, when the maximum likelihood decision about the
true model at time (r — 1) is Hy, we select

a7)

¥ (f) = argmax max M (t S)
ig Y- S/

Determining the selection function in (17) and (18) is compu-
tationally prohibitive as it involves an exhaustive search over
all the possible subsets of unobserved buses. However, our
analyses demonstrate that the complexity of such an exhaustive
search over GMRFs can be reduced substantially by ana-
Iytically proving that the optimal group of the buses to be
measured belong to a small subset of buses. Specifically for

(18)
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each node i, the choice of the set S,i \ {i} is limited to the
subset of the unobserved neighbors of i, i.e.,

U= Ni\ 1. (19)

This indicates that for determining which node to select at each
time in a GMREF it is sufficient to consider a shorter future for
each node, while in general, we have to decide based on all the
remaining nodes. The cardinality of the set of subsets of !
is significantly smaller than that of unobserved nodes, which
translates into significant reduction in the complexity of char-
acterizing the optimal selection functions. This observation is
formalized in the following theorem.

Theorem 1: At each time ¢, for all valid sequences Sti and
for u € {0, 1} we have

argmax max M.,(t, S!) = argmax max M.(t,S!). (20)
igy1 S g1 S;SU;
Proof: See [49, Appendix Al. |

This theorem states that it suffices to search over the neigh-
bors of each bus to find the bus that provides the most relevant
information about the underlying event. The structure of the
metric for each bus depends on the joint distribution of volt-
age phasor angles. Next, we show that the selection rule that
only searches over the neighbors of one node achieves asymp-
totic optimality as the size of the network grows and the
frequency of erroneous decisions tends to zero. This statement
is formalized in the following theorem.

Theorem 2: For the quickest anomaly detection and local-
ization problem given in (13), the selection functions in (17)
and (18) achieve asymptotic optimality as B approaches zero,
ie., for i € {0, 1}

inft,S,I/fT Ei{l'}

=1, 21
infs E;{z,} @D

B—0
where 1, is the stopping time when the bus selection rules are
given in (17) and (18).

Proof: See [49, Appendix B]. |

Next, by leveraging the results of Theorems 1 and 2 we
provide an optimal bus selection rule for the general setting
with arbitrary number of anomalous events, M, and number
of measurements taken at-a-time, £.

2) Implementation: Inspired by the results for the binary
setting (M = 1), we devise data-adaptive bus selection rules
that can accommodate any arbitrary number of anomalous
events M. For this purpose, corresponding to each event Ry,
we assign the following time-varying metric to each bus i

2
mo=3 Y o3+ () (a4 1)
]EWr 1 l]
2l5’| Zlog (22)
(’v>
where we have defined
1 A
gE= > | . and %;éﬂ—;{. (23)
()& i Xij
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Based on these metrics, the optimal data-adaptive bus selection
rule at time ¢ involves selecting the buses that render the largest
values in the set
{M{f(r) kel{0,...,M) and ie B\I/IH}. (24)
Inspired by the observation in Theorem 2, we characterize a
simple rule for implementing these selection rules. We first
note that for a fixed time ¢ and bus i metric Ml'-‘ (1) takes rel-
atively similar values under different events. In other words,
the dynamic range of the set
{M?(t), o M{”(t)} (25)
is very narrow. This is primarily due to the fact that each event
Ry only affects a limited number of buses, and consequently,
the effects on M{‘ () are minor. Motivated by reducing the
computational complexity, for each bus i, we retain only metric
M? (1) as a representative for the set {M? o, ..., MlM (1)}. This
leads to assigning only one metric to bus 7 at time ¢ denoted by

M;(1) = Z log r?j(Aej? — 1)
/El/f, 1
2|51 Zl g r2' (26)

jeS! i

This metric consists of three terms, where the first and third
terms are functions of the correlation structure through {r;}.
While M;(t) as defined in (26) can be used directly for the
bus selection, we offer an alternative two-stage selection rule
in order to place more emphasis on the data. In this two-stage
approach, in the first stage we focus on the buses that are
already observed, and identify the buses whose measurements
have the largest level of deviation from the expected values,
i.e., the buses with the largest |6; — 9_,-|. This provides an esti-
mate of the location of the underlying anomaly event, and
is equivalent to maximum likelihood decision about the true
hypothesis model. In the second stage, among the neighbors of
the buses with larger |A6@|, we identify buses with the largest
metric M;(¢). Also, at t = 1, data collection is initialized by
selecting ¢ buses with the most number of neighbors such that
the most informative measurements are collected. The steps of
bus selection rule are presented in Algorithm 1. Figure 2 illus-
trates the bus selection process for IEEE 14-bus system under
the outage of the line connecting buses 9 and 14. By setting
¢ = 2, buses 4 and 6, which have the highest degree in this
system, are selected at time r = 1. Since bus 4 is a neighbor
of bus 9, it experiences larger deviation in its voltage pha-
sor value. Therefore, at time + = 2 among the neighbors of
bus 4, which are buses {2, 3, 5,7, 9}, the two buses with the
largest metric values are selected, and the process continues in
this way.

Since the connectivity degree of the graph underlying the
grids is substantially smaller than the size of the grid (e.g., in
the IEEE 118-bus model the degree is 12), the complexity of
the proposed bus selection rule is substantially lower than that
of the exhaustive search.
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Outage

@ O most affected buses

Fig. 2. Bus selection process in IEEE 14-bus system under the outage of
line connecting buses 9 and 14.

Algorithm 1 Data-Adaptive Bus Selection

1 Settr=0and 7 ={1,...,N}

2 Fori=1,...,N repeat

3 deg(i) <= Number of buses connected to bus i
4 M(i) < maxyc A, Iﬁ\ > jets log e

5 End for !

6 T <« Sorted 7 based on decreasing deg(-)

7 Y (f) < First £ elements of T

8  While stopping criterion is not met do

9 Take measurements from buses in ¥ (7)

10 S < '(/f[

11 t<t+1

12 v < {}

13 While |(1)| < £ do

14 [ < argmax;cg |0j — 9,|

15 N; < Neighbors of i sorted based on decreasing M(-)
16 If |N;| < £ — |y (2)| then

17 V() < YO UN;

18 Else

19 V(1) < () UIN(D), ..., Ni(€ — [¥ (D))}
20 End if

21 S« S\i

22 End while
23 End while
24 Sett=t

B. Stopping Time and Decision Rule

The data-acquisition process is terminated as soon as a
decision can be made with the desired reliability, i.e., error
probablhty is controlled below B. To formalize this, we define
n = p — p as the perturbations in the power injection
incurred by an anomaly, which can be modeled as a zero-
mean Gaussian random vector [36]. We denote the covariance
matrix of » under Ry by X;. Hence, based on (4), under event
R; we have

HO +n=H;0, forkel0,...,M}. 27)

We denote the incident matrix of the grid by M e RN*L,

which is constructed based on the topology of the grid when
there exists no anomaly in the following form. The i-th col-
umn of M, denoted by m;, corresponds to line i € £ and
all its entries are zero except at two locations that specify
the buses connected by line i. Specifically, if line i connects
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buses m and n, then the m-th and n-th entries of m; are +1
and —1, respectively. Hence, matrix Hj can also be generated
from the incident matrix of the network and the reactance of
transmission lines as follows.

H, = ZXk[ii]m,-m,-T = MXMT,
iel

(28)

where X € RE*E is a diagonal matrix defined such that when
the i-th transmission line connects buses m and n we have
X [ii] = - Hence, (28) implies that

X

mn

Hi=H =y (Xoliil — Xglii)mm;" (29)
ieRy
which in conjunction with (27) yields
H- A0 = Z(Xo[ii] — Xi[iil)ymim! 0 +n = Ms; + n,
i€Ry

where s; € R is defined as

o) (Xolid] —Xk[ii])miT0 if i € Ry

slil = {O Otherwise. (30)

The locations of the non-zero elements of vector sy correspond
to the indices of the anomalous lines. By assuming that each
anomalous event affects a small fraction of the total number
of transmission lines, s becomes a sparse vector. Now, by
defining B = H™' we obtain

A@ = BMsy + Bn. 3D
Hence, at the stopping time t we have
A0 = B Ms; + Bn, (32)

where B is the matrix constructed from B by keeping its rows
corresponding to set ¥/;. Since the noise vector B n is colored,
we include a pre-processing whitening stage. For this purpose,
we consider the1 following singular value decomposition (SVD)

of matrix BtZZ, where X is the covariance matrix of n under
event Ry:
1
B.X? = UxA(V}. (33)

Then, by defining

ye = A'UTAG,, (34)
iix = A 'UIB.n, (35)
and Ay =VIM, (36)

from (32)-(36), corresponding to event Ry we obtain

i = ArSk + g, (37)

where n; is a white noise vector with covariance matrix I.
This leads to an overcomplete representation of sparse vec-
tor s; by measurement vector y; given in (37). Therefore, off
the shelf tools from compressed sensing can be applied to
find the non-zero elements of sy to detect and localize any
anomaly event. In this paper, we use orthogonal matching
pursuit (OMP) as a fast sparse recovery algorithm, which is
summarized in Algorithm 2. In Algorithm 2, the i-th column of
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Algorithm 2 OMP Algorithm

1 Inputs y; and Ay for k € {0, ..., M}
2 Setry =y, sy =0and T = {}
3 While ming ||ry|| > y and |7{| < nmax do
3 Fork:l,...,MRe})eat

lay Tkl
4 Iy < argmax —

i la.il
4 Tie < Tr U {lx}
5 sl el = (AT 7 A7) ' AT Ly
ST k,Tx

6 e =Yg — ApSk
7 End for
7  End while
8 If ming ||rg] > y
9 Continue sampling
10  Else
11 i < argming ||rgl
11 Stop sampling and Return s;
12 End if

matrix Ay is denoted by vector ay ;, and the matrix composed
of a set of columns of matrix A; indexed in set 7 is denoted
by Ay 7. The value of threshold y depends on the power of
perturbation noise and the performance accuracy constraint g.
It is noteworthy that parameter S is set according to the error
margin that the network operator can tolerate in localizing the
anomalous events. Both 8 and y can be calculated based on
some historical data or through a comprehensive simulation of
power grid under different events.

This data-adaptive data acquisition and decision-making
strategy works based on the offline and real-time information
from the grid. The offline information includes the network
topology, the nominal values for the voltage phasor angles
in the fault-free situation as well as each anomalous event,
which are computed based on the network topology and his-
torical data. The real-time data are the information collected
from the buses during the data gathering process.

V. CASE STUDY: LINE OUTAGE DETECTION

When a transmission line is overloaded, the protection
devices of the grid automatically remove that line to prevent
major damages to the grid and electrical devices. Line outage
can be considered a special case of anomaly in the grid, and the
devised algorithm can be applied to detect and localize them.
For the simulations, we use the software toolbox MATPOWER
to generate synthetic data for voltage phasor angles under dif-
ferent outage events [50]. In the simulations and by using
the IEEE standard systems, we compare the results of data-
adaptive data-acquisition approach with the pre-specified bus
selection method in terms of decision accuracy and the num-
ber of required measurements. We also evaluate the interplay
among delay, number of measurements, and decision accuracy.

A. Gains of Dynamic Bus Selection

The proposed approach aims to detect and localize the
lines under outage with the minimum number of measure-
ments to achieve a target reliability level. The major feature of
this approach is data-adaptive selection of buses for acquiring
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TABLE I
AVERAGE RUNNING TIME COMPARISON

Number of measurements 30 50 70 90
tpa(sec) 0.2774 | 0.8069 1.4681 2.0817
trs(sec) 6.4415 | 14.4312 | 20.8759 | 23.398
tes/tpa 23.2 17.9 14.2 11.2

the measurements that are most informative about the state
of the grid. In order to assess the gain of such dynamic
bus selection, we compare the performance of our proposed
approach with the pre-specified bus selection rule in the 118-
bus IEEE standard system. To this end, we fix the number of
measurements in the pre-specified bus selection rule and the
data-adaptive approach to be the same and compare their accu-
racy in localizing the underlying event. In the pre-specified
method we select the set of buses with the most number of
neighbors, and for the data-adaptive technique we set £ = 5.
Figure 3 compares the accuracy performance of both meth-
ods under the single line outage setting when R is the set
of all single line outage events in which the network is still
connected. It is assumed that the perturbation noise vector is
uncorrelated with power 1% of the average injected power
before any outage, and the number of lines under outage is
known. It is observed that for equal number of measurements,
the data-adaptive approach uniformly outperforms the pre-
specified method. The reason is that in data-adaptive approach,
the correlation structure among the measurements is exploited
judiciously to collect measurements from more relevant buses
that provide more relevant information about the underlying
outage event. Also, it is observed that in the data-adaptive
approach the performance gains diminishes as the number of
measurements exceeds 70, which indicates that by partially
observing the grid we can achieve a performance close to the
performance of full observation.

Figure 4 compares the performance for different number
of lines in outage under the same settings as in Fig. 3. We
assume that multiple line outages is a result of the overload-
ing of neighboring lines when a single outage occurs. Hence,
the lines under outage are in the same locality of the grid.
Motivated by Fig. 3, we set the number of measurements in
both methods to 70 and also include the results for full obser-
vation of the network. It is observed that the data-adaptive
approach, for single and multiple line outage events, outper-
forms the pre-specified method by a considerable margin and
its performance, as expected, is close to the full observation
of the network.

In order to assess the computational advantage of the
proposed approach for bus selection, established in Theorem 1,
we compare the simulation time required for implementing
the proposed approach with an exhaustive search for finding
the most relevant buses. We denote the average of the sim-
ulation time over all possible single line outage events for
the exhaustive search and the data-adaptive search by tgs and
pa, respectively. The results, provided in Table I, show that
for 70 measurements, which performs close to observing the

IEEE TRANSACTIONS ON SMART GRID, VOL. 9, NO. 5, SEPTEMBER 2018

100
M Data-adaptive

P re-specified

90t
80f
70F
601
501
40t

Accuracy (%)

301
201

30 50 70 90 110
Number of measurements

Fig. 3. Decision accuracy versus number of measurements.
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Fig. 4. Decision accuracy versus number of lines under outage.

entire network, data-adaptive collection of measurements is
14.2 times faster.

B. Trade-Off Among Performance Measures

We consider single line outage setting and evaluate the
interplay among different performance measures by changing
£ and the target decision quality 8. In Fig. 5 the number of
required measurements to achieve a certain accuracy level is
compared for different values of ¢. It is observed that as £
increases we need more measurements to achieve the same
decision accuracy, because larger £ means taking more mea-
surements at the same time and they cannot incorporate the
information of the current time instant. In other words, for
¢ =1 we take one measurement based on the entire past mea-
surements while in £ = 5 for all 5 new measurements we use
the same information. Also, it is observed that the number
of required measurements for improving accuracy from 60%
to 70% 1is less than the one required for improving accuracy
from 70% to 80%. In order to evaluate the impact of £ on data
collection delay, which is the number of time steps required
to collect all the measurements, in Fig. 6 we compare average
delay for various ¢ and different detection accuracy levels.
It is observed that for smaller ¢, improving detection accu-
racy incurs more delay compared to larger £. Furthermore, for
smaller £ and the same accuracy performance, decreasing ¢
leads to more delay.

C. Scalability and Complexity

In order to evaluate the scalability of the proposed detec-
tion algorithm, we consider the Polish power system provided
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case.

Decision accuracy versus number of measurements for noise-free

by MATPOWER case2383wp casefile which is a 2383-bus
system. We set £ = 10 and consider the noise-free case. The
performance of the proposed selection approach for differ-
ent number of measurements is compared with pre-specified
selection rule in Fig. 7. It is observed that even for large-
scale power systems, the data-adaptive selection rule can
achieve considerable performance by selecting a subset of
buses in the grid, and outperforms the pre-specified selection
approach by a large margin. In fact, as the grid size grows
the performance gain improves too. This is primarily due
to the fact that larger grids provide more freedom for selecting
the buses.
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VI. CONCLUSION

The problem of detecting and localizing anomalies in
transmission lines by using the minimum number of measure-
ments has been considered. By adopting a stochastic graphical
model for the voltage phasor angles, a data-adaptive strategy
for coupled data-acquisition and decision-making processes
is designed. Specifically, in this graphical framework the
grid connectivities impose a correlation structure among the
measurements from different buses. Corresponding to each
possible anomalous event, the underlying correlation structure
takes a specific form according to the associated topology and
parameters of the grid. Hence, depending on the true correla-
tion model, the measurements collected from different buses
have different information quality. Data-adaptive monitoring of
the network proposed in this paper identifies the most infor-
mative buses under each event and minimizes the number
of required measurements for a reliable decision about the
existing anomaly. A case study for line outage detection and
localization confirms the gains of the proposed approach in
the IEEE 118-bus system as well as a 2383-bus system.
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