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Abstract—Agile localization of anomalous events plays a
pivotal role in enhancing the overall reliability of the grid and
avoiding cascading failures. This is especially of paramount
significance in the large-scale grids due to their geographical
expansions and the large volume of data generated. This paper
proposes a stochastic graphical framework, by leveraging which
it aims to localize the anomalies with the minimum amount of
data. This framework capitalizes on the strong correlation struc-
tures observed among the measurements collected from different
buses. The proposed approach, at its core, collects the measure-
ments sequentially and progressively updates its decision about
the location of the anomaly. The process resumes until the loca-
tion of the anomaly can be identified with desired reliability. We
provide a general theory for the quickest anomaly localization
and also investigate its application for quickest line outage local-
ization. Simulations in the IEEE 118-bus model are provided to
establish the gains of the proposed approach.

Index Terms—Anomaly detection, localization, quickest detec-
tion, stochastic graphs.

I. INTRODUCTION

D
UE TO the large-scale and strong inter-connectivities in

the power grid, any fault or failure can transcend its

realm and disrupt operations in other parts of the grid as well.

This can potentially cause disruption of service and destabi-

lize grid operations. Therefore, real-time monitoring of a grid,

consisting of generators, transmission lines, and transformers,

is of paramount importance in securing reliable power deliv-

ery. Specifically, agile detection and localization of system

failures facilitate mitigating the disruptive impacts the fail-

ure can cause to the network, and prevent anomalous events

that can lead to failures in larger scales. The introduction of

advanced measurement devices such as phasor measurement

units (PMUs) has enabled collecting real-time synchronized

data from the entire network, which allows the operators to

dynamically observe the status of the system and detect and

even localize potential failures.
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Transmission lines are constantly exposed to various kinds

of disturbances such as equipment malfunctioning and natu-

ral disasters. While the power system is designed to operate

under single or multiple contingencies, the monitoring task

should identify those contingencies quickly to prevent over-

load in one section of the grid which may lead to the cascade

of events and a major blackout. Detecting such contingencies

and anomalies when they occur, and localizing them accu-

rately can expedite the repair of the faulty components, speed

up restoration of the grid, reduce outage time, and improve

power system reliability [1]. Hence, anomaly detection and

localization have been investigated extensively in the exist-

ing literature under different settings and objectives. Detection

of anomalies, identifying their location, and specifying the

type of the anomalous events are the main objectives of fault

analysis in power grids. In this paper we develop a stochas-

tic graphical framework for modeling the bus measurements,

and devise data-adaptive data-acquisition and decision-making

processes for reliably detecting and localizing the anomalous

events with the fewest number of measurements. This is moti-

vated by lowering the required communication and reducing

the computational complexity and delay of decision-making.

Analyzing anomalous events can be categorized into two

broad classes according to the type of information used. In

one direction, detecting and localizing events are based on the

changes in the impedance of the corresponding transmission

lines which are leveraged to detect and localize the event by

evaluating voltage and current measurements. The available

data in this method plays a critical role in the complexity

and detection accuracy. Local approaches, according to the

number of terminals from which measurements can be taken,

are categorized into single-end [2]–[5]; double-end [6]–[10];

and multi-end algorithms [11]–[15]. The systems that use val-

ues measured in both line terminals give more exact results

than those that only use values measured in one terminal.

Nevertheless, in double-end approaches, measurements require

synchronization which makes data acquisition more complex.

In another direction anomalous events are studied based

on the high frequency contents of the signal propagated in

the network under an event [16]–[22]. In these approaches,

signature waves are sent along the transmission lines, and

the traveling durations are determined by leveraging the cor-

relation between forward and backward waves. Such time

durations explicitly determine the distance from that terminal

to the anomalous point. This class of localization techniques

are insensitive to fault type, fault resistance, and source param-

eters of the system, and are independent of the equipments
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installed in the network. For the arrival times, feature extrac-

tion techniques such as wavelet transform are leveraged to

distinguish between the normal signal and the one contain-

ing high frequency components. Feature extraction techniques

combined with classification methods such as neural networks

can also be used for anomaly detection [23], their classifica-

tion [24], [25], and localization [26]–[28].

All the aforementioned studies utilize a static monitoring

mechanism for analyzing the events, i.e., pre-specified loca-

tions of the grid are monitored continuously. It implies that

a sufficiently large number of measurements is required to

ensure reliable detection and localization of anomalies. Despite

the effectiveness, such approaches can become inefficient in

large-scale networks that are expanded over a large geographic

area, due to the costs associated with collecting and processing

large volumes of data. To circumvent this issue, a stochas-

tic graphical framework is developed in this paper to model

the measurements collected from the grid. Generated measure-

ments at different buses around the network follow a certain

correlation structure which depends on the topology of the

network and the status of different transmission lines. Under

an anomalous event, this correlation model changes to the

one that reflects the location of the event. This framework is

leveraged to minimize the number of measurements required

to ensure that all the events can be localized with a target

reliability through designing a coupled data-acquisition and

decision-making process. This leads to minimizing the amount

of data required for localizing the fault. Specifically, it devel-

ops a stochastic graphical model in which the connectivities

in the graph are modeled based on the grid parameters and

capture the correlation among the measurements reported by

neighboring buses. By properly leveraging such correlation,

the quality of the information provided by different measure-

ment units are quantified. This enables devising a data-adaptive

information-gathering process, which can dynamically form an

estimate about the location of the potential event and, accord-

ingly, measure the buses that are most informative about the

anomaly.

This paper designs a quickest coupled data-acquisition and

decision-making strategy for detecting and localizing anoma-

lous events in transmission lines. The purpose of such a

strategy is to detect and localize the anomalies with the

minimum number of measurements, while satisfying a target

reliability for the decisions. In contrast to the non-adaptive

strategies, which collect the data according to a pre-specified

rule and in one shot, the proposed adaptive approach gradu-

ally and progressively focuses its sampling resources on the

areas in the network which are most likely to contain the

anomalous line(s). Specifically, this approach starts by tak-

ing rough measurements from potentially anywhere in the

network, and based on the collected measurements, dynam-

ically and over time it eliminates the regions considered to

behave normally, and further scrutinizes those that are stronger

candidates for behaving anomalously. Designing such strate-

gies involves balancing a tension between the accuracy and

agility of the decision, as two opposing performance measures.

Specifically, achieving a higher quality in decision necessitates

collecting more data, which in turn penalizes the delay of the

process. This data-acquisition and decision-making strategy

involves making dynamic decisions at each time about 1) what

set of measurement units to be measured, and 2) whether a

reliable decision can be formed based on the collected data,

or more measurements are still needed. Under each anomaly,

it is assumed that the network remains connected and it set-

tles down to a steady-state quickly. Furthermore, the collected

data are assumed to bear no measurement noise or data injec-

tion attacks. We first review the preliminaries on the stochastic

graphical model and anomaly detection in Section II. Quickest

anomaly detection and localization is formalized in Section III.

In Section IV we present the theory for characterizing the

data acquisition and decision-making processes as well as

the general framework for anomaly detection, and the associ-

ated algorithms for implementing the optimal decision rules.

Finally, in Section V we apply the designed algorithm to the

problem of line outage detection and localization as a spe-

cial anomaly detection problem. It is noteworthy that the line

outage detection in power grids is investigated extensively in

the existing literature. When a transmission line is in outage,

it is assumed that the tripping log of its associated relay is

not available or accessible. Hence, the localization of the out-

age should be performed based on the phasor measurements

from different buses. When all the measurements are avail-

able, exhaustive search for detecting single line outage events

is studied in [29] and [30], and computing line outage dis-

tribution factors for detecting multiple line outages is studied

in [31] and [32]. In [33], a quickest change point detection

approach is deployed that monitors the network sequentially

in order to detect a persistent outage and identify its loca-

tion. Joint outage detection and state estimation are considered

under the Bayesian setting in [34]. In [35], measurements are

modeled as a Gauss-Markov random field (GMRF) and out-

age detection is performed by approximating the covariance

matrix of the measurements. The study in [36] formulates out-

age detection as a sparse signal recovery problem and applies

compressive sensing tools for outage detection. All these stud-

ies utilize the measurements from all the buses and their

performance degrades significantly when a subset of measure-

ments are available. To address this issue, the study in [37]

develops an algorithm based on the ambiguity group theory for

localizing the outage event. Another approach is to estimate

the unobserved PMU data prior to performing detection [38].

The optimal static PMU selection for minimizing the error

probability in outage detection over all possible outage events

is studied in [39]–[42].

II. PRELIMINARIES

A. Background on Markov Random Fields

A Markov random field (MRF) is a graphical model that

encodes certain dependency structures among a collection of

random variables. Given an undirected graph G = (B, E) with

N nodes B
△
= {1, 2, . . . , N}, the set of random variables θ

△
=

{θ1, . . . , θN} form a Markov random field with respect to G

if they satisfy the global Markov property. To formalize this

property, for any given set A ⊆ {1, . . . , N} we define θA
△
=

{θi : i ∈ A}. We also say that set C separates disjoint sets A
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and B if any path starting in A and terminating in B has at

least one node in C.

Definition 1 (Global Markov Property): The set of random

variables θ
△
= {θ1, . . . , θN} satisfies the global Markov prop-

erty associated with graph G = (B, E) if and only if for any

two disjoint subsets A, B ⊆ B and a separating subset C ⊆ B,

random variables θA and θB are conditionally independent

given θC, i.e.,

P(θA|θB, θC) = P(θA|θC). (1)

Random variables satisfying the global Markov property

also satisfy the following weaker Markov property.

Definition 2 (Local Markov Property): A random variable

is conditionally independent of all other random variables,

given its neighbors, i.e.,

P
(

θu|θv, θNu

)

= P
(

θu|θNu

)

∀v /∈ (Nu ∪ u), (2)

where Nu denotes the set of neighbors of u, i.e.,

Nu
△
= {v ∈ B : (u, v) ∈ E}.

B. Statistical Model of Bus Measurements

Studies in [35], [43], and [44] show that the statistical

relationship among the measurements collected from differ-

ent buses across the grid can be modeled effectively by a

GMRF. Based on this model, grid topology determines the

graph underlying the GMRF, such that the buses correspond

to the vertices of the graph and the lines constitute the

edges. This model relies on the observation that the second-

neighbor correlations are dominated by those of the immediate

neighbors [43].

To formalize this connection, consider a power grid con-

sisting of N buses, abstracted by graph G = (B, E), where

B
△
= {1, . . . , N} denotes the set of buses and E ⊆ B × B rep-

resents their connectivities such that (i, j) ∈ E if buses i, j ∈ B

are directly connected by a line (see Fig. 1). We define θi

and pi as the voltage phasor angle and the injected active

power at bus i ∈ B. By defining xij as the reactance of the

line connecting buses i and j, from the DC power flow model

we have [45]:

pi =
∑

j∈Ni

(

θi − θj

xij

)

. (3)

Hence, defining p
△
= [p1, . . . , pN]T and θ

△
= [θ1, . . . , θN]T

provides

p = H · θ , (4)

where H ∈ R
N×N is the weighted Laplacian matrix of the

connectivity graph defined as

H
[

ij
]

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

(i,ℓ)∈E

1

xiℓ

if i = j

−
1

xij

if (i, j) ∈ E

0 Otherwise.

(5)

Furthermore, from (3) it follows that θi can be represented as

θi =
∑

j∈Ni

rijθj + βipi, (6)

Fig. 1. IEEE 14-bus standard system with 20 transmission lines and 5
generators. The transmission line between bus (i, j) has reactance xij.

where we have defined

βi
△
=

⎛

⎝

∑

(i,j)∈E

1

xij

⎞

⎠

−1

, and rij
△
=

βi

xij

. (7)

Equation (6) indicates that θi depends only on the voltage pha-

sor angles at its immediate neighbors. By accounting for the

random disturbances in the system as well as the uncertainties

associated with load profiles, the aggregate injected power at

different buses can be modeled as independent random vari-

ables [46] and [47]. This assumption in conjunction with (6)

shows that the set of voltage phasor angles {θi : i ∈ B} satisfy

the local Markov property.

We note that, by construction, matrix H is rank-deficient,

which causes ambiguity for the solution of θ in (4). To fix

this ambiguity, one bus is selected as reference with its phasor

angle set to zero and the phasor angles of all other buses denote

their differences relative to the reference bus. By removing

the row and column corresponding to the reference bus, the

remaining (N − 1) × (N − 1) matrix H has full rank. In the

remainder of this paper, when referring to the Laplacian matrix

of the network, we always mean the modified full-rank one.

C. Anomalous Events

The grid consists of L
△
= |E | transmission lines, where the

set of lines is denoted by L
△
= {1, . . . , L}. We are interested

in detecting and localizing anomalous events in the trans-

mission lines. Any change in the reactance of transmission

lines that does not conform with the expected patterns is con-

sidered to be an anomalous event and, there exist (2L − 1)

such possible events, each one corresponding to one combina-

tion of lines experiencing anomaly. These events, in practice,

occur with different frequencies, and have different disruptive

effects on grid operations. Furthermore, we only consider the

events that keep the underlying post-event graph connected.

This precludes considerable changes between pre-event and

post-event bus power injections. We define M as the number

of events that represent the most critical ones, which should

be localized in the quickest fashion. Accordingly, we define

R = {R1, . . . , RM} as the set of such events, where Rk ⊆ L

contains the indices of the lines experiencing anomaly under
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event k ∈ {1, . . . , M}. Additionally, event R0 is reserved to sig-

nify the event under which all lines are normal. Dynamically

determining the state of the grid, and localizing the anomaly,

when the grid is deemed to be anomalous, can be abstracted

as dynamically deciding which event Rk ∈ R represents the

model of the grid. By denoting the true event by T ∈ R,

detecting and localizing anomalies can be cast as the following

multi-hypothesis testing problem:

Hk : T = Rk, for k ∈ {0, . . . , M}. (8)

When an anomaly occurs, network connectivity profile

changes. We denote the connectivity graph of the grid and

the reactance of the line connecting buses i and j under event

Rk by Gk(B, Ek) and xk
ij, respectively, corresponding to which

for k ∈ {0, . . . , M} we define matrix Hk such that

Hk

[

ij
] △

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑

(i,ℓ)∈Ek

1

xk
iℓ

if i = j

−
1

xk
ij

if (i, j) ∈ Ek

0 Otherwise.

(9)

Hence, the multi-hypothesis model in (8) can be expressed as

Hk : θ = Bk · p , for k ∈ {0, . . . , M}, (10)

where we have defined Bk
△
= H−1

k . Under each anomalous

event, θ follows a distinct correlation structure governed by the

associated topology and line reactances of the network, which

is imposed through matrix Bk. Due to the massive scale of

power networks, collecting measurements from all the buses

incurs prohibitive sensing and processing costs. Hence, we

devise a data-adaptive decision-making framework that can

form arbitrarily reliable decisions about the state of the grid

with minimal number of measurements.

III. QUICKEST LOCALIZATION OF ANOMALIES

In this section, we formalize a sequential data-acquisition

and decision-making process to collect measurements of volt-

age phasor angles and use these measurements to localize

the anomalies, when one is deemed to exist, with the fewest

number of measurements. This is motivated by reducing the

costs associated with data-acquisition, communication, and

processing, especially in large-scale grids. This data collec-

tion and decision-making mechanism is constructed based on

the premise that when a specific anomaly occurs, it affects the

measurements from different buses with varying degrees. For

instance, when the line connecting bus i and j is in outage,

its effects on the measurements generated at buses i and j can

be more than those of a remote bus. By capitalizing on such

discrepancies among the level of information provided by dif-

ferent buses, the proposed sampling procedure progressively

forms a decision about the likely events, and takes measure-

ments from the buses that are expected to be more informative

about these events.

The data-acquisition process sequentially collects ℓ mea-

surements at-a-time from ℓ different buses. The process

continues until time τ ∈ N, as the stopping time of the process,

at which point it terminates and a decision about the under-

lying event is formed. For modeling the dynamic decisions

about the buses to be observed at time t we define the selec-

tion function ψ(t)
△
= [ψ(t, 1), . . . , ψ(t, ℓ)], which captures

the indices of ℓ buses to be measured at time t ∈ {1, . . . , τ }.

We denote the vector of measurements collected at time t by

θ(t)
△
= [θ(t, 1), . . . , θ(t, ℓ)] where θ(t, i) is the measurement

collected from bus ψ(t, i). Accordingly, we denote the vector

of observed buses and their corresponding measurements up

to time t by ψt and θ t, respectively, i.e.,

ψt
△
= [ψ(1), . . . , ψ(t)]T and θ t

△
= [θ(1), . . . , θ(t)]T . (11)

Finally, we define δ ∈ R as the decision rule at the stopping

time. The quality of decision at the stopping time is captured

by the decision error probability, i.e.,

Pe = P(δ �= T) =

M
∑

i=0

P(T = Ri)
∑

j �=i

P
(

δ = Rj|T = Ri

)

. (12)

Hence, the optimal sampling strategy, which aims to form the

quickest decision subject to maintaining a target decision qual-

ity is obtained as the solution to the following optimization

problem.

minimize
τ,δ,ψτ

E{τ } subject to Pe ≤ β (13)

where β ∈ (0, 1) controls the probability of erroneous

decisions.

IV. OPTIMAL DECISION RULES

The optimal sampling strategy involves dynamically select-

ing the buses to be monitored and deciding the time to stop

the process. In the next subsections we characterize the bus

selection function ψ(t), the stopping time τ , and the final deci-

sion rule δ. We remark that these rules, collectively, satisfy

asymptotic optimality guarantees and solve the quickest detec-

tion problem of interest formalized in (13). In the sequel, we

assume that the total number of lines that can be concurrently

anomalous is upper bounded by η max.

A. Bus Selection Rule

1) Analysis: The measurements from different buses are not

equally informative about different events. Hence, dynamically

selecting buses based on real-time data for measuring their

voltage phasor angles has a critical role in striking an opti-

mal balance between the decision quality and the quickness

of the process, as formalized in (13). In order to characterize

the optimal bus selection rule ψ(t), we start by establishing

the relevant theoretical foundations, and then we provide the

specific designs for ψ(t). Solving the problem in (13) can be

facilitated by using the techniques in controlled sensing, and

specifically the Chernoff rule [48]. According to the Chernoff

rule, at each time t we first make a maximum likelihood deci-

sion about the true model Rk based on which we select the bus

that reinforces this decision to be measured at time (t+1). The

information of each observation is quantified in terms of the

Kullback-Leibler (KL) divergence between the distributions

under various hypotheses. The main advantage of the Chernoff
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rule is low computational complexity. The main weakness, on

the other hand, is that it can be suboptimal as it decouples

the impact of the decisions made at each time on the future

decisions. To circumvent this deficiency, we propose a new

selection rule to incorporate the effect of each action on the

future ones. This new decision rule, in general, involves an

exhaustive search over all buses and can have prohibitive com-

plexity, especially as the grid size grows. Nevertheless, we

show that by properly leveraging the Markov structure, the

computational complexity can be reduced significantly and it

becomes as simple as that of the Chernoff rule. In order to

prove these properties, we first focus on a binary setting, i.e.,

R = {R0, R1} and consider taking one sample at-a-time, i.e.,

ℓ = 1. Under the normal event R0, we assume that the mea-

surements form a GMRF with mean θ̄ , which represents the

empirical average of θ based on the historical data, and covari-

ance matrix (I − Q0), where the elements of Q0 = [rij] are

defined in (7). Under the anomalous event R1, on the other

hand, we assume that the measurements form an alternative

GMRF with a different covariance matrix Q1. For the simplic-

ity in notations we assume Q1 = I. We define set S i
t as a subset

of unobserved buses prior to time t that contain bus i, i.e.,

S i
t ⊆ B \ ψt−1 and i ∈ S i

t . (14)

Furthermore, at time t, and corresponding to each valid set S i
t

we assign the following two metrics to each bus i:

M0
i

(

t,S i
t

)

=
1

2

∑

j∈ψt−1

log
1

1 − r2
ij

+ r2
ij

(

	θ2
j − 1

)

+
1

2
∣

∣S i
t

∣

∣

∑

j∈S i
t

log
1

1 − r2
ij

, (15)

and M1
i

(

t,S i
t

)

=
1

2

∑

j∈ψt−1

log
(

1 − r2
ij

)

+
r2

ij

(

	θ2
j + 1

)

1 − r2
ij

+
1

2
∣

∣S i
t

∣

∣

∑

j∈S i
t

log
(

1 − r2
ij

)

+
2r2

ij

1 − r2
ij

, (16)

where we have defined 	θi
△
= θi − θ̄i for i ∈ {1, . . . , N}. Based

on these definitions, when the maximum likelihood decision

about the true model at time (t − 1) is H0, at time t we

select bus

ψ(t) = arg max
i/∈ψt−1

max
S i

t

M0
i

(

t,S i
t

)

. (17)

Similarly, when the maximum likelihood decision about the

true model at time (t − 1) is H1, we select

ψ(t) = arg max
i/∈ψt−1

max
S i

t

M1
i

(

t,S i
t

)

. (18)

Determining the selection function in (17) and (18) is compu-

tationally prohibitive as it involves an exhaustive search over

all the possible subsets of unobserved buses. However, our

analyses demonstrate that the complexity of such an exhaustive

search over GMRFs can be reduced substantially by ana-

lytically proving that the optimal group of the buses to be

measured belong to a small subset of buses. Specifically for

each node i, the choice of the set S i
t \ {i} is limited to the

subset of the unobserved neighbors of i, i.e.,

U i
t

△
= Ni \ ψt−1. (19)

This indicates that for determining which node to select at each

time in a GMRF it is sufficient to consider a shorter future for

each node, while in general, we have to decide based on all the

remaining nodes. The cardinality of the set of subsets of U i
t

is significantly smaller than that of unobserved nodes, which

translates into significant reduction in the complexity of char-

acterizing the optimal selection functions. This observation is

formalized in the following theorem.

Theorem 1: At each time t, for all valid sequences S i
t and

for u ∈ {0, 1} we have

arg max
i/∈ψt−1

max
S i

t

Mi
u

(

t,S i
t

)

= arg max
i/∈ψt−1

max
S i

t ⊆U i
t

Mi
u

(

t,S i
t

)

. (20)

Proof: See [49, Appendix A].

This theorem states that it suffices to search over the neigh-

bors of each bus to find the bus that provides the most relevant

information about the underlying event. The structure of the

metric for each bus depends on the joint distribution of volt-

age phasor angles. Next, we show that the selection rule that

only searches over the neighbors of one node achieves asymp-

totic optimality as the size of the network grows and the

frequency of erroneous decisions tends to zero. This statement

is formalized in the following theorem.

Theorem 2: For the quickest anomaly detection and local-

ization problem given in (13), the selection functions in (17)

and (18) achieve asymptotic optimality as β approaches zero,

i.e., for i ∈ {0, 1}

lim
β→0

infτ,δ,ψτ Ei{τ }

infδ Ei{τo}
= 1, (21)

where τo is the stopping time when the bus selection rules are

given in (17) and (18).

Proof: See [49, Appendix B].

Next, by leveraging the results of Theorems 1 and 2 we

provide an optimal bus selection rule for the general setting

with arbitrary number of anomalous events, M, and number

of measurements taken at-a-time, ℓ.

2) Implementation: Inspired by the results for the binary

setting (M = 1), we devise data-adaptive bus selection rules

that can accommodate any arbitrary number of anomalous

events M. For this purpose, corresponding to each event Rk,

we assign the following time-varying metric to each bus i

Mk
i (t) =

1

2

∑

j∈ψt−1

log
1

1 −
(

rk
ij

)2
+

(

rk
ij

)2(

	θ2
j − 1

)

+
1

2
∣

∣S i
t

∣

∣

∑

j∈S i
t

log
1

1 −
(

rk
ij

)2
, (22)

where we have defined

βk
i

△
=

⎛

⎝

∑

(i,j)∈Ek

1

xk
ij

⎞

⎠

−1

, and rk
ij

△
=

βk
i

xk
ij

. (23)
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Based on these metrics, the optimal data-adaptive bus selection

rule at time t involves selecting the buses that render the largest

values in the set

{

Mk
i (t) : k ∈ {0, . . . , M} and i ∈ B \ ψt−1

}

. (24)

Inspired by the observation in Theorem 2, we characterize a

simple rule for implementing these selection rules. We first

note that for a fixed time t and bus i metric Mk
i (t) takes rel-

atively similar values under different events. In other words,

the dynamic range of the set

{

M0
i (t), . . . , MM

i (t)
}

(25)

is very narrow. This is primarily due to the fact that each event

Rk only affects a limited number of buses, and consequently,

the effects on Mk
i (t) are minor. Motivated by reducing the

computational complexity, for each bus i, we retain only metric

M0
i (t) as a representative for the set {M0

i (t), . . . , MM
i (t)}. This

leads to assigning only one metric to bus i at time t denoted by

Mi(t) =
1

2

∑

j∈ψt−1

log
1

1 − r2
ij

+ r2
ij

(

	θ2
j − 1

)

+
1

2
∣

∣S i
t

∣

∣

∑

j∈S i
t

log
1

1 − r2
ij

. (26)

This metric consists of three terms, where the first and third

terms are functions of the correlation structure through {rij}.

While Mi(t) as defined in (26) can be used directly for the

bus selection, we offer an alternative two-stage selection rule

in order to place more emphasis on the data. In this two-stage

approach, in the first stage we focus on the buses that are

already observed, and identify the buses whose measurements

have the largest level of deviation from the expected values,

i.e., the buses with the largest |θi − θ̄i|. This provides an esti-

mate of the location of the underlying anomaly event, and

is equivalent to maximum likelihood decision about the true

hypothesis model. In the second stage, among the neighbors of

the buses with larger |	θ |, we identify buses with the largest

metric Mi(t). Also, at t = 1, data collection is initialized by

selecting ℓ buses with the most number of neighbors such that

the most informative measurements are collected. The steps of

bus selection rule are presented in Algorithm 1. Figure 2 illus-

trates the bus selection process for IEEE 14-bus system under

the outage of the line connecting buses 9 and 14. By setting

ℓ = 2, buses 4 and 6, which have the highest degree in this

system, are selected at time t = 1. Since bus 4 is a neighbor

of bus 9, it experiences larger deviation in its voltage pha-

sor value. Therefore, at time t = 2 among the neighbors of

bus 4, which are buses {2, 3, 5, 7, 9}, the two buses with the

largest metric values are selected, and the process continues in

this way.

Since the connectivity degree of the graph underlying the

grids is substantially smaller than the size of the grid (e.g., in

the IEEE 118-bus model the degree is 12), the complexity of

the proposed bus selection rule is substantially lower than that

of the exhaustive search.

Fig. 2. Bus selection process in IEEE 14-bus system under the outage of
line connecting buses 9 and 14.

Algorithm 1 Data-Adaptive Bus Selection

1 Set t = 0 and T = {1, . . . , N}
2 For i = 1, . . . , N repeat
3 deg(i) ← Number of buses connected to bus i

4 M(i) ← maxU⊆Ni

1
|U |

∑

j∈U log 1

1−r2
ij

5 End for
6 T ← Sorted T based on decreasing deg(·)
7 ψ(t) ← First ℓ elements of T
8 While stopping criterion is not met do
9 Take measurements from buses in ψ(t)
10 S ← ψt

11 t ← t + 1
12 ψ(t) ← {}
13 While |ψ(t)| < ℓ do
14 i ← arg maxj∈S |θj − θ̄j|
15 Ni ← Neighbors of i sorted based on decreasing M(·)
16 If |Ni| < ℓ − |ψ(t)| then
17 ψ(t) ← ψ(t) ∪ Ni
18 Else
19 ψ(t) ← ψ(t) ∪ {Ni(1), . . . ,Ni(ℓ − |ψ(t)|)}
20 End if
21 S ← S \ i
22 End while
23 End while
24 Set τ = t

B. Stopping Time and Decision Rule

The data-acquisition process is terminated as soon as a

decision can be made with the desired reliability, i.e., error

probability is controlled below β. To formalize this, we define

n
△
= p − p̄ as the perturbations in the power injection

incurred by an anomaly, which can be modeled as a zero-

mean Gaussian random vector [36]. We denote the covariance

matrix of n under Rk by �k. Hence, based on (4), under event

Rk we have

Hθ̄ + n = Hkθ , for k ∈ {0, . . . , M}. (27)

We denote the incident matrix of the grid by M ∈ R
N×L,

which is constructed based on the topology of the grid when

there exists no anomaly in the following form. The i-th col-

umn of M, denoted by mi, corresponds to line i ∈ L and

all its entries are zero except at two locations that specify

the buses connected by line i. Specifically, if line i connects
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buses m and n, then the m-th and n-th entries of mi are +1

and −1, respectively. Hence, matrix Hk can also be generated

from the incident matrix of the network and the reactance of

transmission lines as follows.

Hk =
∑

i∈L

Xk[ii]mimi
T = MXkMT , (28)

where Xk ∈ R
L×L is a diagonal matrix defined such that when

the i-th transmission line connects buses m and n we have

Xk[ii] =
1

xk
mn

. Hence, (28) implies that

Hk = H −
∑

i∈Rk

(X0[ii] − Xk[ii])mimi
T , (29)

which in conjunction with (27) yields

H · 	θ =
∑

i∈Rk

(X0[ii] − Xk[ii])mim
T
i θ + n = Msk + n,

where sk ∈ R
L is defined as

sk[i]
△
=

{

(X0[ii] − Xk[ii])mT
i θ if i ∈ Rk

0 Otherwise.
(30)

The locations of the non-zero elements of vector sk correspond

to the indices of the anomalous lines. By assuming that each

anomalous event affects a small fraction of the total number

of transmission lines, sk becomes a sparse vector. Now, by

defining B
△
= H−1 we obtain

	θ = BMsk + Bn. (31)

Hence, at the stopping time τ we have

	θ τ = Bτ Msk + Bτ n, (32)

where Bτ is the matrix constructed from B by keeping its rows

corresponding to set ψτ . Since the noise vector Bτ n is colored,

we include a pre-processing whitening stage. For this purpose,

we consider the following singular value decomposition (SVD)

of matrix Bτ�

1
2

k , where �k is the covariance matrix of n under

event Rk:

Bτ�

1
2

k = Uk�kVT
k . (33)

Then, by defining

yk
△
= �

−1
k UT

k 	θ τ , (34)

ñk
△
= �

−1
k UT

k Bτ n, (35)

and Ak
△
= VT

k M, (36)

from (32)–(36), corresponding to event Rk we obtain

yk = Aksk + ñk, (37)

where ñk is a white noise vector with covariance matrix I.

This leads to an overcomplete representation of sparse vec-

tor sk by measurement vector yk given in (37). Therefore, off

the shelf tools from compressed sensing can be applied to

find the non-zero elements of sk to detect and localize any

anomaly event. In this paper, we use orthogonal matching

pursuit (OMP) as a fast sparse recovery algorithm, which is

summarized in Algorithm 2. In Algorithm 2, the i-th column of

Algorithm 2 OMP Algorithm

1 Inputs yk and Ak for k ∈ {0, . . . , M}
2 Set rk = yk, sk = 0 and Tk = {}
3 While mink ‖rk‖ > γ and |T1| < ηmax do
3 For k = 1, . . . , M Repeat

4 Ik ← arg max
i

|aT
k,i

rk|

|ak,i|
4 Tk ← Tk ∪ {Ik}

5 sk[Tk] =
(

AT
k,Tk

Ak,Tk

)−1
AT

k,Tk
yk

6 rk = yk − Aksk
7 End for
7 End while
8 If mink ‖rk‖ > γ

9 Continue sampling
10 Else
11 i ← arg mink ‖rk‖
11 Stop sampling and Return si
12 End if

matrix Ak is denoted by vector ak,i, and the matrix composed

of a set of columns of matrix Ak indexed in set T is denoted

by Ak,T . The value of threshold γ depends on the power of

perturbation noise and the performance accuracy constraint β.

It is noteworthy that parameter β is set according to the error

margin that the network operator can tolerate in localizing the

anomalous events. Both β and γ can be calculated based on

some historical data or through a comprehensive simulation of

power grid under different events.

This data-adaptive data acquisition and decision-making

strategy works based on the offline and real-time information

from the grid. The offline information includes the network

topology, the nominal values for the voltage phasor angles

in the fault-free situation as well as each anomalous event,

which are computed based on the network topology and his-

torical data. The real-time data are the information collected

from the buses during the data gathering process.

V. CASE STUDY: LINE OUTAGE DETECTION

When a transmission line is overloaded, the protection

devices of the grid automatically remove that line to prevent

major damages to the grid and electrical devices. Line outage

can be considered a special case of anomaly in the grid, and the

devised algorithm can be applied to detect and localize them.

For the simulations, we use the software toolbox MATPOWER

to generate synthetic data for voltage phasor angles under dif-

ferent outage events [50]. In the simulations and by using

the IEEE standard systems, we compare the results of data-

adaptive data-acquisition approach with the pre-specified bus

selection method in terms of decision accuracy and the num-

ber of required measurements. We also evaluate the interplay

among delay, number of measurements, and decision accuracy.

A. Gains of Dynamic Bus Selection

The proposed approach aims to detect and localize the

lines under outage with the minimum number of measure-

ments to achieve a target reliability level. The major feature of

this approach is data-adaptive selection of buses for acquiring
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TABLE I
AVERAGE RUNNING TIME COMPARISON

the measurements that are most informative about the state

of the grid. In order to assess the gain of such dynamic

bus selection, we compare the performance of our proposed

approach with the pre-specified bus selection rule in the 118-

bus IEEE standard system. To this end, we fix the number of

measurements in the pre-specified bus selection rule and the

data-adaptive approach to be the same and compare their accu-

racy in localizing the underlying event. In the pre-specified

method we select the set of buses with the most number of

neighbors, and for the data-adaptive technique we set ℓ = 5.

Figure 3 compares the accuracy performance of both meth-

ods under the single line outage setting when R is the set

of all single line outage events in which the network is still

connected. It is assumed that the perturbation noise vector is

uncorrelated with power 1% of the average injected power

before any outage, and the number of lines under outage is

known. It is observed that for equal number of measurements,

the data-adaptive approach uniformly outperforms the pre-

specified method. The reason is that in data-adaptive approach,

the correlation structure among the measurements is exploited

judiciously to collect measurements from more relevant buses

that provide more relevant information about the underlying

outage event. Also, it is observed that in the data-adaptive

approach the performance gains diminishes as the number of

measurements exceeds 70, which indicates that by partially

observing the grid we can achieve a performance close to the

performance of full observation.

Figure 4 compares the performance for different number

of lines in outage under the same settings as in Fig. 3. We

assume that multiple line outages is a result of the overload-

ing of neighboring lines when a single outage occurs. Hence,

the lines under outage are in the same locality of the grid.

Motivated by Fig. 3, we set the number of measurements in

both methods to 70 and also include the results for full obser-

vation of the network. It is observed that the data-adaptive

approach, for single and multiple line outage events, outper-

forms the pre-specified method by a considerable margin and

its performance, as expected, is close to the full observation

of the network.

In order to assess the computational advantage of the

proposed approach for bus selection, established in Theorem 1,

we compare the simulation time required for implementing

the proposed approach with an exhaustive search for finding

the most relevant buses. We denote the average of the sim-

ulation time over all possible single line outage events for

the exhaustive search and the data-adaptive search by t ES and

tDA, respectively. The results, provided in Table I, show that

for 70 measurements, which performs close to observing the

Fig. 3. Decision accuracy versus number of measurements.

Fig. 4. Decision accuracy versus number of lines under outage.

entire network, data-adaptive collection of measurements is

14.2 times faster.

B. Trade-Off Among Performance Measures

We consider single line outage setting and evaluate the

interplay among different performance measures by changing

ℓ and the target decision quality β. In Fig. 5 the number of

required measurements to achieve a certain accuracy level is

compared for different values of ℓ. It is observed that as ℓ

increases we need more measurements to achieve the same

decision accuracy, because larger ℓ means taking more mea-

surements at the same time and they cannot incorporate the

information of the current time instant. In other words, for

ℓ = 1 we take one measurement based on the entire past mea-

surements while in ℓ = 5 for all 5 new measurements we use

the same information. Also, it is observed that the number

of required measurements for improving accuracy from 60%

to 70% is less than the one required for improving accuracy

from 70% to 80%. In order to evaluate the impact of ℓ on data

collection delay, which is the number of time steps required

to collect all the measurements, in Fig. 6 we compare average

delay for various ℓ and different detection accuracy levels.

It is observed that for smaller ℓ, improving detection accu-

racy incurs more delay compared to larger ℓ. Furthermore, for

smaller ℓ and the same accuracy performance, decreasing ℓ

leads to more delay.

C. Scalability and Complexity

In order to evaluate the scalability of the proposed detec-

tion algorithm, we consider the Polish power system provided
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Fig. 5. Number of measurements versus ℓ for different accuracy level.

Fig. 6. Average delay versus ℓ for different accuracy level.

Fig. 7. Decision accuracy versus number of measurements for noise-free
case.

by MATPOWER case2383wp casefile which is a 2383-bus

system. We set ℓ = 10 and consider the noise-free case. The

performance of the proposed selection approach for differ-

ent number of measurements is compared with pre-specified

selection rule in Fig. 7. It is observed that even for large-

scale power systems, the data-adaptive selection rule can

achieve considerable performance by selecting a subset of

buses in the grid, and outperforms the pre-specified selection

approach by a large margin. In fact, as the grid size grows

the performance gain improves too. This is primarily due

to the fact that larger grids provide more freedom for selecting

the buses.

VI. CONCLUSION

The problem of detecting and localizing anomalies in

transmission lines by using the minimum number of measure-

ments has been considered. By adopting a stochastic graphical

model for the voltage phasor angles, a data-adaptive strategy

for coupled data-acquisition and decision-making processes

is designed. Specifically, in this graphical framework the

grid connectivities impose a correlation structure among the

measurements from different buses. Corresponding to each

possible anomalous event, the underlying correlation structure

takes a specific form according to the associated topology and

parameters of the grid. Hence, depending on the true correla-

tion model, the measurements collected from different buses

have different information quality. Data-adaptive monitoring of

the network proposed in this paper identifies the most infor-

mative buses under each event and minimizes the number

of required measurements for a reliable decision about the

existing anomaly. A case study for line outage detection and

localization confirms the gains of the proposed approach in

the IEEE 118-bus system as well as a 2383-bus system.
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