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Abstract—A network of agents that form a random graph is
considered. Each agent represents an information source that gen-
erates a sequence of random variables (RVs). The RVs generated
by an unknown subset of nodes are correlated according to a known
kernel, while the remaining nodes generate independent and iden-
tically distributed random variables. To identify and localize the
desired unknown subset of correlated nodes, this paper formal-
izes and delineates a quickest search process, which is the strat-
egy that minimizes the average number of measurements. Despite
its widespread applications, the problem of identifying subgraphs
with such desired correlation structures is often investigated
under the fixed sample-size settings, in which the data acquisi-
tion process and the inferential mechanisms are decoupled. Mo-
tivated by the significant advantages of sequential methods for
agile inference, this paper analyzes this problem under a fully
sequential setting. Specifically, it offers a framework that unifies
the intertwined processes of information gathering and decision
making, and through a constructive proof, it provides an optimal
sequential data-gathering process as well as the attendant decision
rules for the quickest search of interest.

Index Terms—Correlation, dynamic decisions, local structure,
quickest search, random graph.

I. INTRODUCTION

HE proliferation of networked data and the need for ex-
T tracting refined information from these networks necessi-
tate detecting small structures in large networks and analyzing
their local properties. Specifically, while being a constituent
module in a very large network, each information source may
also belong to some sub-networks. For instance, each subscriber
in a social network may be a member of some local commu-
nities, or a group of co-located sensors dispersed in a wide
surveillance system generate locally correlated data in the pres-
ence of abnormal activities. In general, the data generated by
such subnetworks bears certain correlation structures, which are
induced by the underlying coupling or interaction among their
constituents. When such subnetworks exist, their structures can
be exploited to extract more precise information from the net-
work. Hence, detecting and localizing such subnetworks, which
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can be equivalently abstracted as detecting and localizing lo-
cal correlation structures in random graphs, are of paramount
significance.

The problem of detecting a local correlation structure in
given networked data arises in many application domains, such
as wireless sensor networks [1], distributed attack detection
in computer networks [2], anomaly detection with correlated
anomalous sources [3] and [4], health monitoring [5], social
sciences [6], and anomaly detection [7]. In order to formalize
local correlation, in this paper we consider a large graph in which
each node generates a sequence of random variables. The stream
of random variables generated by a specific subset of nodes form
a correlation structure according to a known kernel, while all
the remaining nodes generate independent random variables. In
such a model, the nodes generating independent random vari-
ables are isolated nodes, while the ones that belong to the local
structure form a connected graph in which the edges of the graph
capture the dependency structure of the generated data, i.e., two
nodes have one edge connecting them if their generated ran-
dom variables are dependent given the rest of the random vari-
ables. It is assumed that the correlation structure and its size are
known, and the objective is to identify a subset of the correlated
nodes. The recent studies in detecting and localizing local cor-
relation structures that are relevant to the scope of this paper can
be, broadly, categorized into two general directions.

In one direction, the data-gathering and decision-making pro-
cesses are decoupled, and a decision about the locality of the
local correlation structure is formed after the data is collected
in its entirety and based on a pre-specified strategy [8]-[19].
Specifically, the work in [8] considers detecting a local Markov
random field in a large graph, which is motivated by localizing
textured objects in images. The studies in [9] and [10] focus on a
graph of Gaussian random variables such that it is populated by
independent random variables and the locally correlated random
variables appear only sparsely. These studies aim at identifying
such sparse locally correlated Gaussian random variables under
different sampling constraints. The work in [11] applies princi-
pal component analysis to localize the coupled nodes, and [12]
models the network as a graph and applies the partial correla-
tion screening algorithms to identify strongly correlated nodes.
The studies in [13]-[17] investigate detection and localization
of geometric structures in lattice graphs such as one dimensional
grids, while [18] and [19] study the existence of local clusters
in graph structures. These approaches, irrespective of their dis-
crepancies, are designed as universally efficient ones, the cost
of which is that they are not data-adaptive and lack efficiency
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Fig. 1. A graph with a local correlation structure.

in adapting the data-gathering process to the actual structure of
the data, especially when the graph (data dimension) grows.
Driven by the advantages of sequential sampling [20] and con-
trolled sensing [21]-[26], in this paper we formulate the problem
of searching for local correlation structures in a fully sequential
setting, in which the data samples are collected in a sequence.
The ultimate objective is to minimize the average number of
samples required in order to identify the correlation structure of
interest with target reliability. We characterize a sampling and
decision-making strategy and establish its optimality properties,
that are valid for all arbitrary (but well-behaved) statistical dis-
tributions. The problems of detecting or localizing correlation
structures via data-adaptive sampling, albeit under different set-
tings and objectives, are also studied in [27]-[31]. Specifically,
the problem of data-adaptive sampling for deciding whether a
graph of Gaussian random variables in the finite-horizon set-
ting contains sparse locally correlated elements is investigated
in [27] and [28]. The objective of [27] and [28] is to form a
binary decision about whether such structures exist, and they
do not localize the structures, which is in contrast to the ob-
jective of this paper. A similar correlation detection problem
in the infinite-horizon setting is studied in [29]. The work in
[30] deploys an adaptive sensing strategy based on correlation
estimators to find the most mutually correlated nodes in a Gaus-
sian graph. Finally, forming a binary decision about whether the
entire graph exhibits a correlation structure is analyzed in [31].

II. PROBLEM FORMULATION
A. Data Collection Model

Consider a graph, as depicted in Fig. 1, consisting of n nodes
indexed by "= {1,...,n}. Each node i € \ represents one
information source that generates a sequence of random vari-
ables denoted by X' = {X! : j € N}.Itis assumed that there
exists a subset of nodes denoted by M C N that generate corre-
lated random variables according to a specified kernel, while the
remaining nodes in the graph generate independent and identi-
cally distributed (i.i.d.) random variables.

The objective is to identify set M with the fewest number
of measurements, on average, while controlling the quality of
the decision. For this purpose, we focus on a fully sequential
sampling model in which the measurements are collected se-
quentially and one at-a-time up to a stochastic stopping time,
at which point the data-gathering process is terminated and
a decision about the set M is made. We denote the stochas-
tic stopping time of the process by 7. In order to capture the

index of the node from which we make a measurement at time
t e {1,...,7},wedefine function® : {1,...,7} — N.Hence,
the ordered sequence of the nodes from which we have made
measurements up to time ¢t € {1,..., 7} is given by

U= (1), 0] (1

The sampling strategy is data-adaptive and the information from
all the past measurements is leveraged to guide the collection
of future measurements. To characterize this process, we de-
fine Y, as the measurement made at time ¢. Accordingly, for
any given time ¢ € {1,...,7} we define the ordered set of the
measurements collected by

YiSY,.L Y )

Hence, the information accumulated sequentially by observing
the sequence of measurements Y from the sequence of nodes
" can be abstracted by the filtration {F; : ¢t = 1,2, ...}, where
F = o (Y, "). Based on the information accumulated sequen-
tially, i.e. F;, at time ¢ the sampling procedure dynamically takes
one of the following actions.

Ay) Exploration: due to lack of sufficient information, no confi-
dent decision can be formed about the location of correlation
structure and one more measurement is made; or,

A2) Detection: the sampling process terminates, and based on
the collected information areliable decision about the location
of set M is made.

B. Data Model

For the convenience in notations we assume that the random
variables generated by all nodes have well-behaved probability
density functions (pdfs). We define fj as the marginal pdf of
the i.i.d. random variables generated by the nodes in A\ M,
i.e., the pdf of any random variable in {X] : j € N and i ¢
M}. For the correlated measurements generated by the nodes
in M we adopt a spatio-temporal correlation model. In order
to further specify this model, at each time ¢ we partition the set
of observed data Y into two subsets based on the membership
of their corresponding nodes to the set M. To this end, we first
define two ordered sets of time instants ? and H} such that
they partition the set {1,...,¢}. The set H) C {1,...,t} is the
sequence of time instants at which the measurement is taken
from one node in set '\ M, and H} = {1,...,t}\H} is the
sequence of the time instants at which one node from set M is
observed, i.e.,

H E{se{l,...,t} : ¢(s) ¢ M}, 3)
and Hl ={se{l,....t} : p(s)eM}. (&

Based on these definitions we denote the joint pdf of the ordered
sequence of random variables Y by f¢. Similarly, we define the
joint pdf of the ordered sequence of random variables {Y* : s €
H}} by fi. Based on the definitions of fy and f{ we have the
following decomposition for f*.

Fy = (1 s senty) - [T feo).

sEHY

(&)

We assume that all joint distributions fy, f* and f] are known.
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C. Problem Formulation

The objective is to identify a subset of M with p €
{1,...,|M]|} nodes. Setting p = 1 represents the extreme case
in which we identify only one element of M, while setting
p = | M| represents the other extreme in which we aim to iden-
tify M in its entirety. By defining C as the set of all sub-graphs
with p nodes, we define

0:Y" xoyT —C, 6)

as the decision rule exerted at the end of the sampling pro-
cess for determining the indices of the p nodes of interest. By
recalling the definitions of the stopping time 7 and the node
selection sequence ¢", the tuple ® &= (7,6,47) uniquely speci-
fies the intertwined information-gathering and decision-making
processes. The adaptive strategy ® is a measurable function with
respect to the filtration F;.

In order to find the optimal choice of the sampling and deci-
sion making rules ®, we define two figures of merit that capture
the quality and the agility of the process. For a given strategy ®,
the agility of the process can be captured by the average delay
in reaching a decision, which is given by

AD(®) = E{r}. (7

The quality of the final decision, on the other hand, is captured
by the frequency of erroneous decisions in localizing set M,
which for a given strategy ® is defined as

DE(®) = S}\14p P ZM). (8)

It is noteworthy that there exists an inherent tension between
AD(®) and DE(®), as improving the quality of the decision, on
average, requires collecting more measurements, which in turn
penalizes the delay. Hence, designing an optimal sampling and
decision-making strategy involves striking a balance between
these two measures. For this purpose, we control the quality of
the final decision and find the quickest sampling process among
all possible adaptive strategies. Therefore, the optimal strategy
is the solution to

i(r)}f AD(®)
st. DE(?) <« ©))

where o € (0,1) controls the reliability of the final decision.
We denote the set of all feasible solutions to (9) by I'(«), i.e.,
(o) = {® : DE(®) < a}. (10)
Finally, we define the following two information measures that
are instrumental to characterizing the sampling process as well
as the performance guarantees on the average delay of the

process. Specifically, for any sequence of nodes 1! and their
corresponding sequence of measurements Y, we assume that

the following two sequences converge completely as t — oc:

t
1 lOg ngl fO(Ye)

. t _
: e — I, if 'O M=0, (11
LAy
and tlog Hizlfo(Ys) I, if " C M, (12)

where () is the empty set. The following two conditions, estab-
lished in [32], are sufficient to guarantee complete convergence
of (11) and (12). Specifically, when ' N M = (), if for any

e>0
[e( [T fo(%)
0 Jr ()
holds, then (11) converges completely. Similarly, when 1! C
M, if for any € > 0
U YU.
wp [log A7)

/0 g <0§u§t {log [Ti=; fo(Ys)

holds, the limit in (12) converges completely. Note that when
the random variables generated by the nodes in set M are also
independent but their distribution is different from fj, the results
reduces to the Stein’s Lemma [33, Theorem 12.8.1] and the lim-
itsin (11) and (12) converge to the Kullback-Leibler divergence
between the distributions.

sup
0<u<t

l:lOg — UI():|

>eu>dt<oo

- 'LL.[1:|

>eu)dt<oo

D. Some Application Domains

1) Surveillance: The problem formalized in this paper arises
in many application domains. For example consider a surveil-
lance system which consists of a large array of sensors (e.g.,
cameras). For the area with no unusual activity, the sensors col-
lect some static data that can be considered as background noise
and assumed to be independent (or the measurements can be
whitened via pre-processing). Hence, the data collected by each
sensor monitoring the area can be modeled as an independent
random variable with pdf f,. Wherever there exists an unusual
activity in a certain subregion, the observations made by the
sensor in that specific sub-region will be following a different
statistical distribution, and furthermore, they will be correlated
since they observe a common phenomenon. This correlation
structure among the measurements in that locality is captured
by f1.Inthis setting, f, can be, for instance, a standard Gaussian
distribution, i.e., fo = N(0,1), and f; can refer to the joint pdf
of a zero-mean multivariate Gaussian vector with covariance
matrix 3, i.e., f1 = N(0,3).

2) Fault Detection in Power Grids: Searching for local struc-
tures can also be applied to fault detection in power grids.
A power grid can be modeled as a graph in which each bus
represents a node and the transmission lines are the edges.
Measurement devices are installed at each bus to collect volt-
age, current, and power measurements and send it to the central
monitoring unit. It is shown that [34] these measurements bear
a correlation structure that can be modeled by a random graph
with the same connectivity structure as the physical network. In
[35] it is shown that the measurements can be modeled as Gaus-
sian random variables where the covariance matrix (correlation
structure) depends on the topology of the graph. When a fault
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event happens in one of the transmission lines or system buses,
the local correlation structure changes. In order to prevent a
cascade of failures and mitigate the cost of recovery, we should
localize the faulty equipments in the quickest fashion. When
there exist multiple faults in the grid, it may be of interest to
localize a subset of faulty equipments as the reliability measures
taken for multiple contingency enables the grid to operate nor-
mally under some contingencies. The optimal strategy for this
case can be designed by selecting an appropriate parameter p.

In these applications data become available in real time and
one by one. For instance, in a surveillance system or monitoring
of a power system new data becomes available during the mon-
itoring process and we want to localize the unusual activities
such as intrusion in a surveillance system or fault in a power
grid as quickly as possible. Therefore, we collect measurements
as they become available and stop when a confident decision
can be formed.

III. QUICKEST SEARCH ALGORITHM
A. Definitions

We provide a constructive proof for solving the quickest
search problem formalized in (9). For this purpose we spec-
ify two graph settings based on the relative values of I, I}, and
n, | M|, and p, and then provide two algorithms each satisfying
the optimality properties in one of these two setting. Intuitively,
these tend to quickly identify p nodes that are the most likely
candidates for being member of the set M. Further measure-
ments are taken afterwards (up to the stopping time) to further
refine the set of the candidates by possibly replacing them with
the ones emerging as the more likely candidates. For this pur-
pose, to each node 7 € A we assign a time series of weights
denoted by W' = {w} : t € {0,...,7}} such that w! captures
the posterior likelihood of ¢ € M at time ¢. Next, we discuss
the rule for updating the elements of W' over time. All these
time series are initiated by setting w) = 0 for all i € . At
time ¢ = 1, we update the weight for node (1), i.e., the node
observed at time ¢ = 1 according to

pa, i)
w; = log ()’

This process continues at time ¢ € {2,...,7} by updating the
weights for only the nodes that are observed up to time ¢, i.e.,
nodes represented by ' = [¢)(1),...,9(t)]. Updating these
weights is facilitated by defining the following log-likelihood
ratio measures. At time ¢ and corresponding to any arbitrary
subset of measured nodes B C 1), we define

f({Ye : ¥(s) € BY)
[Ly5)es oY)

as the log-likelihood ratio of measurements from nodes in set B

up to time ¢. We also set L;(B) = 0 when B N 1! = (). Based

on this definition, at time ¢ and corresponding to all the nodes

observed up to time ¢, i.e., Vi € ¢!, we update the weight w}

according to

wi= o (L(BUL) - L(B)].

for i =(1). (13)

L(B) = log

(14)

15)

B. Dynamic Node Selection

The sequential sampling process terminates when a sub-graph
of size at least p is deemed to be a subset of M with high
accuracy. Prior to the stopping time, the process dynamically
selects a node for sampling at each time. At time ¢ = 1 we have
no side information about any node and all the nodes are equally
likely to belong to set M. Hence, the selection rule picks one
node from set A/ according to a uniform distribution. Based
on the first measurement Y; taken from node (1), we update
the weight of the observed node according to (13). The updates
continue over time according to the rule specified in (15). Given
the sequence of observed nodes 1’ and their corresponding
measurements Y, we define

At) =

= max
{B<y!':|Bl=p}

L(B), (16)
as the generalized log-likelihood ratio of the measurements from
the p most likely members of set M at time ¢ € N. When
|4)'| < p, which indicates that we have observed less than p
nodes, we set A(t) = 0. We also define the set P(¢) to track the
set associated with the maximizer of (16), i.e.,

P(t) = {B : L(B) =A(t)} . (17)

In case there exist multiple choices for B, we select one ran-
domly. Clearly we have |P(t)| = p. We also define the node
d(t) as the node that is the (| M| + 1)-th most likely candidate
node to be a member of M based on the nodes most updated
weights, i.e., there exist exactly | M| other nodes in the graph
with larger weights. Based on this, we define A;(t) as the dif-
ference between the log-likelihood ratio of nodes ¢ and d(t),
ie.,

Ai(t) 2w —w'™ (18)

The optimal stopping time and decision rules take different
forms based on the relative values of Iy and I; defined in (11)
and (12), and the relative size of the correlation structure and
the set of interest ¢ = L= where we have set m = | M].

In order to localize the correlation structure, we can follow
two different approaches; one is to identify the nodes that belong
to the local structure and sample them to reinforce the belief;
the other one is to reinforce the belief about the nodes that are
less likely to belong to the local structure. The size of the set
of nodes that do not belong to the local structure is ¢ times the
size of the desired set of p nodes in the local structure. Hence,
for the second approach to be optimal we require the amount of
the information provided by the independent nodes I to be ¢
times the information provided by the measurements from the
nodes that belong to the local structure /;. When qI; = I both
approaches have the same asymptotic performance.

1) Case 1: qI; > Ij: In this setting, the quickest approach
indicates that we need to dynamically, and at any time ¢, com-
pute the log-likelihood ratio defined in (14), and then maximize
itto find A(t) according to (16). Then the nodes contained in the
maximizer of A(t), denoted by P(t), are considered as candi-
dates to be observed at time (¢ + 1), among which one element
is selected randomly. Hence, we set ¢(t 4+ 1) randomly and
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according to the following distribution:

1

- 1eP(t
p (t)
0 i¢P(t)

Based on this randomized selection rule, the measurement at
time (¢4 1) is collected from one of the p nodes that are
considered to be the p most likely candidates to be members
of M.

2) Case 2: qI; < Iy: The procedure in this setting follows
the same spirit as in the previous case, albeit with some distinc-
tions. These changes are induced by the relative values of the
information measures [ and /;, and enforce a different optimal
approach to finding the correlation structure of interest. Specif-
ically, when ql; < I, identifying the correlation structure by
directly identifying its members incurs more delay compared
to an indirect approach in which the less likely candidates are
identified and winnowed out. Based on this observation, we pro-
vide different decision rules for the optimal sampling process
under this relative values of the information measures. Specifi-
cally, based on the information accumulated up to time ¢ we set
¥ (t + 1) according to

B(t+1) =d(t) .

This selection rule, intuitively, identifies the second most likely
set of candidate nodes for being members of M. This is in
contrast to the behavior of node selection in previous setting,
i.e., ¢I; > Iy, in which the selection rule dynamically identifies
the most likely set of candidate nodes for being members of M.

Remark 1: The underlying reason that (20) selects the sec-
ond best set of candidate nodes is that it aims to balance a
tradeoff. On the one hand it aims to winnow out some nodes
that are not strong candidates for being members of M, and on
the other hand, it tends to increase the information that can be
used later in the process, which prevents the sampling process
to select the least likely nodes. In other words, if the node selec-
tion identifies and removes the least likely nodes, even though
they are better candidates for being removed, nevertheless the
measurements collected from those nodes are entirely uninfor-
mative about the location of the correlation structure of interest,
and the overall impact of such a removal strategy will be an
increase in the delay of the process.

Remark 2: The node selection rules introduced in (19)
and (20) capture some of the ideas underlying the Chernoff
rule developed for controlled sensing [21], [23], [24], which
tends to select the action with the best immediate return (gain)
based on the past observations. In the context of the setting of
this paper, Chernoff’s rule at each time ¢ identifies the best set
of candidates as if the stopping time is 7 = ¢. Then based on this
decision, it selects the next set of nodes such that the decision
made is reinforced most strongly.

P(y(t+1)=1i) = (19)

(20)

C. Stopping Time and Decision Rule

The dynamic selection of the nodes terminates when the ac-
cumulated observations suffice to form a reliable final decision.
Building on the likelihood ratio A, () defined in (18), we adopt

Algorithm 1: quickest search for local structures in random
graphs.

1 Initialize v = log p(%l), t=0,
A;(0) =0, and wj) = 0 fori € N

3 While|{i : A; >~} <pdo
4 t—t+1
5 P(t) < pnodes with the largest w;
6 If qu Z I(J
7 j < Select one member of R randomly
8 Else
9 J < Select node with the (m + 1)-th
largest w;
10 Endif
11 Y, — X,J
12 Update w; for every node according to (15)
13 Update A; () according to (18)

14 End while
15 Return7 =tand § = P(t)

a likelihood ratio test as the stopping rule, and show that it
achieves asymptotic optimality. By defining

-1
72 10g 20, @1
o

where r = [ 1], the sampling process terminates when the value
of A, (t) exceeds v for pnodes. Hence, the stopping time is given
by

7 = inf{t : A;j(t) >, fori € P(t)}. (22)

This implies that there exists a subset of observed nodes P(t)
corresponding to which w! is sufficiently larger than the rest of
the nodes in NV and we are confident enough the they belong to
set M. Also, after the stopping, the process identifies a set of p
nodes as strong candidates for being members of M, i.e.,

6 = P(r). (23)

The quickest search algorithm for isolating the local structures
in random graph is summarized in Algorithm 1.

IV. PERFORMANCE ANALYSIS

In this section we evaluate the performance of the proposed
information-gathering and decision-making processes. For this
purpose, we first characterize the error performance of the opti-
mal sampling strategy in the following theorem.

Theorem 1: For the problem formulated in (9), in the asymp-
tote of w — 0 for any sampling strategy ® € I'(«) we have

log o log o
= |7pq‘ Ll (1+o(1)). (24
I I

Proof: See Appendix A. |

We show that this performance can be achieved by the pro-
posed adaptive sampling strategy. First, we characterize the de-
cision error performance of the proposed sampling strategy in
the following theorem.

AD(®) > min {p|
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Theorem 2: For any adaptive sampling strategy with the
stopping time and the final decision rule given in (22) and (23),
respectively, we have

PO ¢ M)<a. (25)

Proof: See Appendix B. |

Next, we show that besides achieving the desired quality
in the final decision, the proposed sequential strategy also ex-
hibits optimality guarantees regarding the average delay in form-
ing a decision. This asymptotic optimality is formalized in the
following theorem.

Theorem 3: The proposed adaptive strategy with the dy-
namic node selection rule delineated by (19)-(20), and the stop-
ping time and the final decision rule determined by (22) and
(23), respectively, is optimal in the asymptote of o — 0, i.e.,

E{r} = AD(®")(1 + o(1)), (26)

where ®* is the optimal sequential strategy.

Proof: See Appendix C. ]

According to this theorem, the sequential strategy proposed in
this paper is optimal in the sense that it asymptotically achieves
the minimum average delay for localizing set M with high
accuracy.

It is noteworthy that while the node selection rules proposed
in this paper are similar to the Chernoff rule in spirit, it requires
no assumption on distributions to be distinguishable under every
action, i.e., have positive KL divergence. The original Chernoff
rule requires this assumption to achieve asymptotic optimality
for a binary composite hypothesis testing [21], otherwise at
certain time instants a randomization in sampling should be
incorporated into the selection rule to ensure its asymptotic
optimality [23].

V. GAIN OF SIDE INFORMATION

In many applications, it is often possible to obtain additional
information about the membership of different nodes in a partic-
ular cluster. For instance some nodes might be exhibiting more
similar stochastic behavior, whereas some might be known to
be entirely independent. In this section we adopt a generic form
side information, which essentially provides some prior infor-
mation about which set of nodes have the potential of jointly
forming a cluster and a correlation structure. Based on such a
side information model, we assess the quality and the quick-
ness of the process, where we show that significant gains can
be achieved when the side information is exploited judiciously.
We provide these gains in the context of large graphs, for which
the nodes are heterogeneous enough to create a diverse set of
statistical behavior, in which case assuming side information
about the behavior of the nodes is more meaningful.

Specifically, we focus on the graphs in which n, m, and p
simultaneously grow, but the ratio “=™ tends to a finite value,

P
ie., q. We assume that there exists some prior
information about how the nodes are likely to form groups and
be candidates for forming the correlation structure of interest.
Specifically, we assume that the set of the nodes that are possible
candidates to form set M together with node ¢ € AV is a small

n—m M,M,p—00

subset of the graph, and for each node i € AV we denote the
set of such nodes by S;. Without loss of generality, we assume
that |S;| > m for every i € N, since otherwise for any node ¢
with |S¢| < m we can conclude that ¢ ¢ M and discard such
nodes and perform localization over the rest of the graph. Also,
we assume that |S;| < n — 1 for every i € N, since the setting
|Si| = n — 1 reduces to the setting that does not involve the
aforementioned side information. Based on these definitions of
{8; : i € N'}, corresponding to any set A C N we define

SA:{z' RS ﬂsj}.

jeA

Set S4 is the set of all nodes that in conjunction with the nodes
in A might form the local correlation structure of interest.

Defining sets {S; : i € N'} facilitates localizing the correla-
tion structure more efficiently. For instance, if we measure node
i1 € N att =1 and it turns out that node 4 belongs to the set
M with high probability, then the likelihood of the nodes in
set S; being also members of M increases. Based on this ob-
servation, we note that when node 7 is observed and it is more
(less) likely to belong to the set M, i.e., the likelihood ratio
of its measurements is greater (less) than 1, then the likelihood
that the nodes in S; are also members of the set M increases
(decreases). Hence, after observing node ¢ at time ¢ we update
the weights of all the nodes in S; according to

bl = L(BU{iY) — L:(B)] .
wy {B:Bg(gg§)7i¢3}[ +(BU{i}) — Li(B)]

27)

(28)

This weight updating rule in conjunction with the node selection
rules provided in Section III-B determines the dynamic sampling
strategy before the stopping time. In order to characterize the
stopping time we define

A(t) = M) — ", (29)
and set the stopping time
F=if{t : A(t)>~}. (30)

The final decision is provided in Section III-C in (23).

By denoting the stopping time, final decision rule, and the
node selection sequence of the quickest search strategy for iden-
tifying the local structure when side information is available by
7, 8, and 9", respectively, the tuple ® = (7,4,47) uniquely
specifies the processes. In order to analyze the performance of
the proposed data collection and decision rules, we first charac-
terize the error performance of the optimal sampling strategy in
this setting in the following theorem.

Theorem 4: For the problem formulated in (9), when the
graph grows such that “— LIP, g and p = of|log(a))),
in the asymptote of o — 0 for any sampling strategy ® € I'(«)
we have

loga| |logal
FLGEEE o)

Proof: See Appendix D. |
By comparing the result of this theorem with that of
Theorem 1 we observe that having side information in large
graphs translated into a lower bound on AD(qB) that is smaller

AD(®) > min{ (31)
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by a factor p. Indeed comparing the lower bounds does not nec-
essarily guarantee improvement. Nevertheless, in the sequel we
show that the lower bound delineated by Theorem 4 is in fact
achievable, which then establishes that we have p-fold improve-
ment in the delay. In order to show that the lower bound provided
by Theorem 4 can be achieved by the proposed strategy, in the
next step we characterize the decision error performance of the
proposed sampling strategy.

Theorem 5: The proposed sequential strategy with the final
decision rule determined by (22) and (23) achieves

PO M)<a. (32)

Proof: See Appendix E. |
This theorem in conjunction with Theorem 4 establishes p-

fold improvement in the delay of the sampling process when
we have side information about the correlation structures. It
is noteworthy that the condition required for achieving such
gain is that p grows slowly enough, i.e., p = o(] log «). Next,
we show that besides achieving the desired quality in the final
decision, under some mild conditions on set S; for every ¢ €
N, the proposed sequential strategy also exhibits optimality
guarantees regarding the average delay in forming a decision.
The asymptotic optimality of the designed sequential approach
is stated in the following theorem.

Theorem 6: The proposed sequential strategy with the node
selection rules given in (19)-(20), and the stopping time and the
final decision rule determined by (22) and (23), is optimal in the
asymptote of o — 0 and n, m — oo, i.e.,

E{#} = AD($*)(1 + o(1)), (33)

where ®* is the optimal sequential strategy, provided that | S | =
m + o(m) for any set A with |A] > p.
Proof: See Appendix F. |

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
sampling process via simulations. As a benchmark for compar-
ing the performance of the proposed algorithm we use a fixed
sampling method which can be described as follows. It is a non-
sequential, non-adaptive sampling method in which the number
of samples that will be collected from the graph and the nodes
that will be sampled are pre-specified before the sampling. Also,
the sampling budget is uniformly distributed among the nodes
in the graph. For instance, if we want to collect kn samples from
the graph and the graph has n nodes, each node will be sampled
k times. After collecting the data, the final decision is based
on a maximum generalized likelihood ratio given in (23). We
also provide the analytical asymptotic lower bounds on average
delay obtained in this paper for comparison. For the random vari-
ables generated in the graph, we consider a zero-mean Gaussian
distribution with a covariance matrix given by

1 ifi—j
Nij=4qp ifi#jand {i,j} CM ,

0 otherwise

(34)

4
00 —=—Fixed sampling
350l —e—Proposed rule
—a— Analytical bound

Fig. 2. Average delay versus decision quality for p = 0.7.

800

—e—Fixed sampling
—e—Proposed rule

7001 —a— Analytical bound

600}

22500}
(.
-
N 400}
=y

—_—

< 300f

2001

100}

0 ‘
107 107 107"

Fig. 3. Average delay versus decision quality for p = 0.5.

where p is a given constant determining the strength of the
correlation among the nodes in M.

In Fig. 2, we set n = 400, m = 50, p = 10, and p = 0.7, and
compare the number of samples required by the proposed sam-
pling process and the fixed sampling setting to achieve certain
decision quality levels. It is observed that the proposed sampling
process has a significant gain compared to the fixed sample-size
setting. We also compare the results for weaker correlation mod-
els by setting p = 0.5 in Fig. 3. The relative performance of two
methods is similar to Fig. 2, and we observe that for weaker
correlation structures, i.e. smaller p, the average delay increases
for the proposed sampling process, and the decision quality
degrades for the fixed sampling strategy.

In order to compare the results with another data-adaptive
approach, we consider the sequential thresholding strategy pro-
posed in [27]. In the sequential thresholding method, the total
number of samples is fixed, but the sampling budget is sequen-
tially divided among the nodes. It starts by observing all the
nodes and discard a fraction of them at each time. While it can
observe multiple nodes at each time, we still can compare the to-
tal number of measurements for two methods. For this purpose,
we set n = 100, m = 20, p = 5, and p = 0.7 and compare the
average number of measurements versus the localization error
probability in Fig. 4. It can be observed that our method out-
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1500

—=—Sequential thresholding
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0 ; ;
10 107 1072 107!
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Fig.4.  Average number of measurements versus decision quality for p = 0.7.

performs sequential thresholding method uniformly. The main
reason is that in the sequential thresholding method, at each
time step all the past information is discarded and the attendant
decision rules are only based on the current measurements.

VII. CONCLUSION

In this paper we have analyzed the problem of quickest search
for identifying a local correlation structure in a random graph,
in which a subset of nodes generate correlated data, and the rest
generate independently of each other. The objective has been to
co-design the information-gathering and decision-making pro-
cesses for the purpose of localizing the cluster of the nodes that
generate correlated data, with the fewest number of measure-
ments and in the quickest fashion. A combination of sampling
strategy and decision rules have been proposed, which exhibit
asymptotic optimality in the sense that they minimize the ex-
pected number of measurements needed to make a decision
while, in parallel, the rate of erroneous decisions is controlled.

APPENDIX A
PROOF OF THEOREM 1

Throughout the proofs we assume that r = - € N. We de-
note the probability measure and the expectation with respect to
pdf fo by Py and E, respectively. Also, we denote the proba-
bility measure and the expectation with respect to pdf f} by P
and E;, respectively. If we show that forall 0 < n < 1

1
lim 1nf Py <’7’ > np q| oga|) =1, (35)
a—0 Io
I
and hr% inf Py (T > np|01ga|> =1, (36)
a— 1

then by applying Markov inequality, we obtain that for any

n<l
T T
IU IU

(37

and

T T
_ U, _
Ey {plogal} 2n-B (ploga
T, T

(36)
>

> 7))

n. (38)
Since (37) and (38) hold for any 1 < 1 we should have

-
Eo { pallog o] } z 1,
1y
and [E; T > 1,
pgllog af
I

which give the lower bounds of Theorem 1. Now, we prove that
when gl < Iy, (35) holds and when qI; > I, (36) is true. Let
divide the graph into ¢ sub-graphs A; for i € {1,...,r} in a
way that the set M is one of the sub-graphs, say N;. Also, we
define the auxiliary decision rule 6 as follows:

0=1, If6CN;. (39)
When qI; > I, we define the event
A, L)={6=i,7<L}. (40)
Then, for any L > 0 and F' > 0 we have
DE(®) =P(§ £ M)
=P ZM)
>P(3#1)
= E{I541)}
> min {]E{H(S#,P(T)g/w)}>]E{]1<5¢1,7>(7)5z/\4))}} :
(4D)

We bound each term in (41) separately. For the first term and
for any Gy < 0 we have

E{1 S;ALP(T)QM)}

=Ei{l5.}
= Eo{ll (541)€ (T)}
> Eo{liag,1)j21.00)>G0)€" 7}

> GGUPO(AU’ L) LJ# lvA(T) > GO)

> 9P, (.A(j, L):j# 1,tsu1L)A(t) > G0>
<

@ EGU (IP(](A(]7 L) ] 7é 1) — Po(SupA(t) < GO))

t<L

(®)

= oG (]P’O(S #1)—=Py(r > L) _PO(SUPA(t) < GO))’

t<L
(42)
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where (a) and (b) hold due to the properties of set difference
operation. Now we have

]P()(T > L)
>Py(d #£1) —e PP #£ 1) — Py (sup A(t) < Go)
t<L
> 1—a—e_G°a—IP’0(supA(t) < GO) . (43)

t<L
Since (43) holds for any Gy < 0, we set Gy = —cLI for some
c > 1. Then for any 1 < K < L we obtain

Py (sup Aft) < Go)

t<L

=P, ( —supA(t) > —G0>

t<L

—supA(t) > cLIo)

(
< IP’O(— sup A(t) — sup A(t) > cLIO)

t<K K<t<L
L
<Py (—sup A(t) — sup (A(t)) — LIy > (c— 1)LIO)
t<K K<t<L \1
1 A(t
<P ( sup A(t) — sup (U + Io> > (c— 1)]0)
Lk K<t<L \ t
1 At
<Py (— sup A(t) + sup ‘ﬁ —&—I()’ > (c— 1)]0) .
L t<K t>K t

(44)

According to (12), for any € > 0 there exist a K (¢) such that

P, (|A§t)+[0]§e):1, Vit > K(e) . 45)

Hence, we have

Py ( —sup A(t) > cL]0> <
t<L

1

Py | —= sup A(t) > (c—1)j —€] . (46)
L t<K ()

Since, this is true for any L > 0 and ¢ > 1, we assume the case

that L — coandc > 1+ ﬁ In this setting the right hand side

of (46) approaches zero which indicates that for every ¢ > 1

lim P, ( —supA(t) > CLI[)) =0. 47)
L—o0 t<L
Next, for any 0 < n < L, by defining
log o
Ly £ npg 22 (48)
0
and setting L = L, we obtain
1
Py (T > np(q — 1)|Og‘a|> >
Iy
1—a—a'™™1 —Py(— sup A(t) > clyLa) . (49)

t<L,

Now, by combining (47) and (49), and for the setting in which
« approaches zero we obtain

1
Py (T > npq|0ga|> =1.
I

For the second term in (41), we can follow a similar procedure
and obtain

(50)

]E{]l(o:#l,’/’(ﬂg/\/t)}
>e G (]pl(g #1) = Pi(r > L) — Py (supA(t) > G1)>’
t<L
(51)

for some (G; > 0. By following the same line of argument, we
obtain

1
P, <7‘>7]p|0ga|>1. (52)
L
By defining
I I
I*:max{l,o}, (53)
P Pq
and combining (50) and (52), we obtain
| log ov|
P(r>n T =1. (54)

Since (54) holds regardless of the sampling procedure and stop-
ping rule and only depends on the error performance of the
strategy, it is valid for any strategy with the same decision qual-

ity, i.e.,
|log
=1
n T )

lim inf P <T > (55)
a—0 @

and by applying the Chebyshev inequality the proof is con-
cluded.

APPENDIX B
PROOF OF THEOREM 2

This theorem is proved based on the union bound and the
fact that when § ,Q_ M, at least one of the members of ¢ is
not a member of M. To analyze the decision error probability,
we partition the graph into 7 sub-graphs {N;}7_; such that
N1 = M. Note that each node i € § can belong to one of these
subgraphs and when ¢ € (§ \ M) it is a member of one of N,
j €{2,...,r}. But from the stopping rule we know that the
log-likelihood ratio of each node ¢ € ¢ is much larger than the
rest of the graph. Hence, first by defining 7; as the sequence
of time instants at which node 7 € A has been observed, we
provide the following lemma.

Lemma 1: For any node i that is identified as a member of set
M at the stopping time 7, i.e., ¢ € d,and forany j € {2,...,r}
we have

P(ieé,iE./\/},T:t) <e"P(r=1t)
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Proof:
P(i€dieN;,T=t)
<P(iedr=t]ichj)

:/<‘ea . Sor) fi({Ye = s € Hi\{i}})

< I fo)|ay

SEHI\T;

_ / Fo ) fL({Ys + s € MU {i}))
(Ai(t)>7)

< I v |ar?

SEHY\T;
Qe / PV Y\ Ya,)
(Ai(t)>7)

< fi({Ys © seH\{i}})

< ] foe)|ar!

SEH? \TL
<e"P(r=t),

where (a) holds due to the definition of the stopping time. W
Hence, for the probability of decision error we have

DE(®) = P(P(r) ¢ M)

I
Mg =

P(P() £ M, =1)

?..
Il
—

hE

P(U_, {3} g M, =1)

-+
Il
—

P(i ¢ M,7=1)

INB
WE
M@

~+
Il
—_
Il

i=1

bS]

I
NE

PieN; : je{2,....r},7=t)

t=1i=1

(b) o0 P T

<N N rlien, r=1)
t=1i=1 j=2

© o P r

<> e P(r =1t)
t=1i=1 j=2

= p(r—1)e™’

where (a) and (b) are due to the union bound, and (c) holds
because of Lemma 1.

APPENDIX C
PROOF OF THEOREM 3

We prove this theorem in two steps. First we define 7 as the
time instance after which the nodes with the largest likelihood
ratios always belong to set M, and show that 7; is exponentially
bounded. Then, we prove that E{7 — 7 } achieves the lower
bound provided by the theorem. We show that for 71 we have

P(r >t) < Kje “', (57)

for some K7 > 0 and ¢; > 0. We divide the graph into r sub-
graphs \V; for j € {1,...,r} such that Vj = M, and at time ¢
denote the log-likelihood ratio of the measurements from sub-
graph \j by A; (t). Next we define an auxiliary random variable
71 as the first time instant after which A (¢) is always positive
and A; (t) for j € {2,...,r} are always negative. Since, it can
be readily verified that 7, < 79, to prove (57) we show that

P(’T’l > t) < Kleiclt .

For the left hand side we have

P(7 >t) <P(A(t) <0) (58)
=Pi(Ai(t) <0). (59)
Hence, for any s < 0 we have
Eu{e™ 15, <o)}
=P (A (t) <0) By {15, 1))}
<E {esh M}, (60)

and since El{e'*Al(t) | H(Al(f,)<o)} > 1 for any s < 0, it yields

P (A (t) < 0) <E {eh1 ), (61)

The right hand side of (61) can be rewritten by using the towering
property of expectation as

() feren (1)
(62)

Now consider the inner expectation and define

o= { (M) |

It is a convex function of s and is equal to 1 for s = 0, —1. Two
cases are possible for & (s) when —1 < s < 0. In the first case,
it is constant and & (s) = 1, Vs € (—1,0), which occurs only
if the likelihood ratio inside the expectation is equal to 1, i.e.,
the measurement taken at time ¢ has the same distribution under
both fy and f}, which cannot happen since we assumed that Y; is
taken from set M. In the second case, & (s) < 1, Vs € (—1,0).
It means that there exists a constant ¢; > 0 such that for some
0 < s* <1 we have

(63)

G(s) <e ™ <1, (64)
By successive application of this approach, we obtain
Py (Ay(t) < 0) < El{e”‘l(”} <K, (65)
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Next, we prove the asymptotic optimality property of the
proposed adaptive strategy. To this end, at time ¢ denote the
log-likelihood ratio of the measurements from node i by A; (¢).
We show that when g1y > I, for any ¢ € §

]P’l(]\q;(t) < pllogal) < Koe !,

Pl LIPS

for t> 66)
L
and when ¢I; < Iy, for any j ¢ M
]P)O (]\J (t) > pq log a) S K§367(33t7
1
for t>p | Olg ‘(1+ o(1)) . .
0

To prove (66), we denote the observation at time ¢ by an optimal
selection rule 1oy by Y; op and the sequence of observed nodes

by Yopt Hence, we have

T fl({Y 1/)( =i})
Al(t)_lAZ(t) El{l [ (5= Jo(Y5) H

fHYs = 9(s) =1})
E, {log [T s)=i fo(Y5) }

_|_
JIHYs © top(s) =i})
— E; < log
{ [Tow )= H

5, {k,g LY. o) = ’})}

(68)

We consider the summands in (68) one by one. First, note that
the last term is equal to I; t. For the first bracket we have

. fl({Y w( —i})
At E1{1 AT }

Y w(s) =4))
Hs:t;‘)(s):i fO (Y;)

(69)

= ]\Z(t - 1) - ]El {10g
(70)

Ly Ay
() El{k’g (%) }

0
(71)

Since E{¢;} =0, for any ¢; > 0 we have E{{¢; + ¢} > 0.
Now consider the moment generating function of ¢; + ¢; for
any s < 0. Since for s = 0 the value of the moment generating
function is 1 and we have

d El{es(é;+el)}

=€ >0,
ds “l

5=0

(72)

we can conclude that there exist § < 0 and ¢ > 0 such that

E {5t} < et <1, (73)

Successively applying this technique yields

[{Ys 9 (s)=i}

5(A:()E {log { P

]El e sup(s)=1i

}+ .r) .y
<e ' (74

Next by using the same line of thought as in (61) we obtain

LB e AU v =i
Se_ézt. (75)

In order to work with the second bracket in (68), according to
the definition of 7, for ¢ > 7 we have

flt(m}/tl)} o flt(}/f,,opt( )D/(;ptl)
E, {log o (%) =[E; {log ™ .

(76)

Therefore, by defining

AdYs
Hs:u“}(s):l

fl ( opl>

El {lOgH f()( sopt)}’ (77)

we can conclude that for some K, > 0, we have |¢;| < 7 Ky,
and since 7 is exponentially bounded according to (57), for
some ¢3 > 0 we have

Pi(¢ > et) <e @l <1,

Gt = Eq {log

(78)

Finally, by defining e3 £ € 4 ¢ and combining (68), (75), and
(78) we obtain

Pl ([\l(t) < (Il — 63)t> S KQBiCQt, (79)

which concludes the proof for (66). The bound in (67) can be
proved by following the same line of argument.

APPENDIX D
PROOF OF THEOREM 4

To prove this theorem, we consider an auxiliary setting in
which some extra information about the location of the nodes
in set M is given. Therefore, the average delay of our setting
will be lower bounded by the average delay of this auxiliary
setting. In the new setting, we assume that the graph is divided
into r known sub-graphs N; for ¢ € {1,...,r}. It is known
that M = N for some i* € {1,...,r}. Therefore, the RVs
generated from the nodes in one of the sub-graphs are drawn
from the joint distribution f{, and for the other r — 1 sub-graphs
the RVs have marginal pdf f;. This problem is studied in [25]
and it is shown that the lower bound on the average delay is the
one provided in this theorem in (31).

APPENDIX E
PROOF OF THEOREM 5

In Theorem 2, we proved the feasibility of the sampling
process for any values of m and n. Hence, the proposed
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stopping time and decision rule guarantee the feasibility when
n,m — oo.

APPENDIX F
PROOF OF THEOREM 6

The idea for proving this theorem is the same as Theorem 3.
By defining 7, as the time instance after which the nodes with
the largest likelihood ratios always belong to set M, we can
follow the same line of argument to show that

P(r >t) < Kje “f, (80)

forsome K71 > 0andc; > 0. To show the asymptotic optimality,
we only need to show that by changing the stopping rule for
large graphs, the factor p in the average delay disappears. To
this end, we divide the graph into r sub-graphs denoted by N;
fori € {1,...,r} in a way that M = A/, and at time ¢ denote
the log-likelihood ratio of the measurements from sub-graph N;
by A;(t). We show that when qI; > I,

]P)l (/_\1 (t) < |loga|) < KQe—czt’
5, |logal

for (14 0(1)), (81)
1
and when gl < I,
IPO (A] (t) > IOg Oé) < K36763t,
1
for 1228 % 0101y, 82

0

To prove (81), we denote the node observed at time ¢ by an
optimal selection rule by Y; op and the sequence of observed

nodes by Y;fpt Hence, we have

. o TS 2 ¥(s) €N}
- {1 ’ [T (s)en fo(Y¥5) }

1 {10g AAY: = () EM})}
Hi:1 fo(Y5)

fl( opl)
- {k’gn o oY, >}

fl( opt)
o {logH —1 fo(Y 50pt>}

We consider the summands in (83) one by one. First, note that
the last term is equal to /;¢. For the first bracket we have

(83)

A Y : Y(s) eMY)
Aile) — B { [ syens Jo(Y5) } A
=Alt—1)-E {1 fl(l;{[Y¢ %}OG(N;})} (85)

+ log

w — T, {10 (86)

H A &)
fo(Y7) & } '

fo(Y2)

2

Since E,{¢;} =0 for any €; > 0 we have E{{¢;, + ¢} > 0.
Now consider the moment generating function of ¢; + ¢; for
any s < 0. Since for s = 0 the value of the moment generating
function is 1 and we have

dE, {est+en)

ds ®7)

=€ > O,
s=0
we can conclude that there exists some § < 0 and ¢ > 0 such
that

E {efiFe)} <e® <1, (88)
Successively applying this technique yields
K (Al (t)—E; {log f{ (. (S)fh;ly})> e t) X
E, {e si(s)eny 1O < e—czt’ (89)

Next by using the same line of thought as in (61) we obtain

Py ([\1(75) —]El{l og fl%Y 1%/5 !)f()e('/\/;})} < —61t>

< e et
(90)

In order to work with the second bracket, according to the defi-
nition of 71, for £ > 71 we have

5, {1og ff(YtlY“)} Lk {10 [(Vion(t >|Y;pﬁ>} |

fO (S/t) fO(Y;f,opt)
Therefore, by defining

2 fAYs = ¥(s) e M})
CtEl{l ng )ngo( 3 }

oD

fl( opt)
—Ei{ log ——®" L (92
1{ OgHa 1f0( som)} .

we can conclude that for some K4 > 0
|G| < 71Ky, (93)

and since 7 is exponentially bounded according to (80), for
some ¢ > 0 we have

Py (¢ > et) <e ' < 1. (94)

Finally, by defining 3 Z €6 4 ¢ and combining (83), (90), and
(94) we obtain

Py (A (t) <

which concludes the proof for (81). The bound in (82) can be
proved by following the same line of argument.

(I — e3)t) < Kye ', 95)
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