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Abstract— Effective interference management in the multiuser
interference channel necessitates that the users form their trans-
mission and interference management decisions in coordination,
and adapt them to the state of the channel. Establishing such
coordination, often facilitated through information exchange, is
prohibitive in fast-varying channels, especially when the net-
work size grows. This paper focuses on the multiuser Gaussian
interference channel and offers a receiver-centric approach to
interference management. In this approach, the transmitters
deploy rate-splitting and superposition coding to generate their
messages according to independent Gaussian codebooks. The
receivers can freely decode any arbitrary set of interfering mes-
sages along with their designated messages in any desired joint or
ordered fashion, and treat the rest of the interferers as Gaussian
noise. The proposed receiver-centric interference management
approach is applied to two class of problems (outage optimization
and fairness-constrained rate allocation), and constructive proofs
are provided to establish the following properties for the proposed
approach: 1) the optimal set of codebooks to be decoded by each
receiver is a local decision made by each receiver based on its
local channel state information (CSI); 2) the globally optimal
transmission rates are related to locally optimal rates computed
by the receivers based on their local information, which implies
that the transmitters do not require explicit knowledge of the
CSI and can determine their rates via limited feedback from the
receivers; and 3) obtaining the optimal interference management
strategy at each receiver has controlled complexity.

Index Terms— Distributed interference management, fairness,
group decoding, outage, superposition coding.

I. INTRODUCTION
A. Motivation

NVESTIGATING multiuser interference channels has a
rich history, spanning from Shannon’s seminal work in [1]
and the best known achievable rate-region derived in [2],
to the their limits in the high signal-to-noise-ratio (SNR)
regimes [3] and [4]. Motivated by the ambitious spectral

Manuscript received June 23, 2015; revised March 3, 2016; accepted
July 9, 2016. Date of publication July 27, 2016; date of current version
September 13, 2016. This work was supported by the U. S. National Science
Foundation under Grant ECCS-1455228 and Grant CCF-1526215.

M. Ashraphijuo and X. Wang are with the Electrical Engineering
Department, Columbia University, New York, NY 10027 USA (e-mail:
mehdi@ee.columbia.edu; wangx @ee.columbia.edu).

A. Tajer is with the Electrical, Computer, and Systems Engineering
Department, Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail:
tajer @ecse.rpi.edu).

C. Gong is with the Department of Electronic and Information Science,
University of Science and Technology of China, Hefei 230026, China (e-mail:
cgong821 @ustc.edu.cn).

Communicated by S.-Y. Chung, Associate Editor for Shannon Theory.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2016.2594219

efficiency goals and universal frequency reuse in cellular
networks, wireless networks are growing to be increasingly
interference-limited. Therefore, understanding the fundamental
limits of operation in the multiuser interference channel,
which captures the essence of interference-limited networks,
is of paramount importance for designing wireless networks.
The effectiveness of interference management strategies in
the multiuser interference channel strongly depends on the
availability of the channel state information (CSI) at the
transmitter as well as the receiver sides. While the receivers
can acquire the CSI through training sessions, acquiring it
by the transmitters, often facilitated via feedback, consumes
excessive communication resources, especially when the size
of network grows.

Driven by the challenges associated with acquiring the
CSI at the transmitters (CSIT), and based on the availabil-
ity extent of the CSIT there exist different research direc-
tions on interference management. Specifically, the existing
directions can be grouped under those assuming perfect and
instantaneous CSIT, perfect and delayed CSIT, and imperfect
CSIT. When the CSIT is assumed to be available perfectly
and instantaneously, in one significant approach the capacity
region of a two-user Gaussian interference channel (GIC)
within 1-bit accuracy is approximated in [5]. In another
important approach, the notion of interference alignment,
introduced in [3] and [4] characterizes the achievable degrees
of freedom in the multiuser interference channel. The capac-
ity region of the K-user GIC when the users are con-
strained to use point-to-point random codes is established
in [6] and [7]. This result is generalized to the case that
encoding is restricted to random code ensembles with time
sharing and superposition coding in [8]. While providing
imperative insights about the fundamental limits of multiuser
interference-limited networks, these recent developments on
interference channels strongly hinge on the availability of
the CSIT. In a second direction, motivated by the fact that
acquiring the perfect CSIT is not always feasible in real time,
and pioneered by the study in [9], there has been extensive
recent research on analyzing the effects of delayed perfect
CSIT on interference management (c.f. [10]-[13]). Finally, in
the third direction the effects of partial (imperfect) CSIT on
interference management and the achievable rate are studied
(c.f. [14]-[18]).

Meeting such CSIT requirements consumes communication
resources and can become prohibitive in large networks. This
motivates investigating and analyzing interference manage-
ment when the CSI is only available at the receivers. Despite
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its significance, the studies on the interference channels when
the transmitters do not have explicit access to the CSI is not
well-investigated [19] and [20].

B. Contributions

This paper focuses on the K-user GIC and assumes no
explicit availability of the CSIT (except for limited functions
of the CSI) and also assumes availability of only local CSI
at the receivers (CSIR). That is, each receiver knows only the
states of its incoming channels from different transmitters but
not those of the channels to other receivers. The transmitters
employ rate splitting, in which the message of each transmitter
is generated by superimposing messages drawn from multiple
independent Gaussian codebooks, where the power levels
allocated to the codebooks are pre-specified. The attendant
interference management scheme used by the receivers under
this setting consists in each receiver dynamically partitioning
the interfering codebooks into two disjoint sets, where one set
is decoded along with the intended codebooks while the other
set is discarded as Gaussian noise.

Under this setting, this paper proposes a receiver-centric
approach to interference management and analyzes the notion
of constrained partial group decoding (CPGD) which aims to
perform rate optimization over the rate region achievable under
the aforementioned rate splitting and interference management
strategies such that some notions of fairness in rate allocation
and controlled complexity in decoding the codebooks are
satisfied. The important observation is that having only local
CSIR and no explicit CSIT, in conjunction with reporting
some functions of the CSI from the receivers to the trans-
mitters suffice to identify the optimal' codebook rates and
the associated interference management strategies. We provide
a constructive proof to demonstrate this observation, which
consists in the following main components to establish the
optimality guarantees for rate allocation, while recognizing the
fairness and complexity constraints.

1) The message of each transmitter is generated by super-

imposing messages generated by M random codebooks.
M remains a constant as a design parameter and does not
depend on the CSI. Allocation of the power to different
codebooks in each transmitter is pre-specified. While the
focus of the paper is on equal power allocation, all the
analyses can be readily generalized to accommodate pre-
specified non-equal power allocation. Hence, the struc-
ture of the encoding strategy adopted is independent of
the CSI. On the other hand, the decoding dynamics is not
fixed and dynamically adapts to the CSI. Specifically, the
receivers can freely select any arbitrary set of interferers
to decode in any desired joint or ordered fashion.

2) Based on the definition of the rate optimization prob-
lem over the network we define an individual local
problem corresponding to each transmitter-receiver pair.
Such local problems are formulated and solved by
their respective receivers and based on the local CSIR
available at the receivers. The outcome of the process

'We remark that optimality refers to the maximum achievable rates under
the specified rate splitting, superposition coding, power allocation, and inter-
ference management strategies.
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at each receiver includes /ocal interference management
decisions (i.e., what codebooks should be decoded by
each receiver) and a set of rates computed for all
transmitters.

3) The globally optimal transmission rates are related to the
locally optimal ones computed by the receivers through
a known function. This implies that for identifying
the optimal rates for the transmitters, the information
required about the channel states is entirely embedded
in the local rates computed by the receivers. Hence,
the receivers refrain from feeding back the CSI to
the transmitters, and instead only report their locally
computed rates, the information content of which is
substantially smaller than that of the full CSL

4) The interference management strategies obtained locally
turn out to be also the globally optimal strategies. The
important implication is that no coordination among the
users is necessary for identifying the set of codebooks
to be decoded by each receiver, and that remains a local
decision.

5) Also, each receiver employs a successive group decod-
ing strategy in which at each stage the number of
codebooks that the receiver affords to decode jointly via
maximum likelihood (ML) decoding is controlled not to
exceed a pre-specified level. Such decoding complexity
constraint can be relaxed by selecting the threshold to
be sufficiently large.

The main properties of this receiver-centric approach to inter-
ference management are summarized below.

1) Distributed implementation: Being amenable to dis-
tributed implementation follows from the observed prop-
erties that the optimal codebook rates are related to
the locally computed ones through simple functions,
and that the optimal decoding strategy at each receiver
remains a local decision.

2) Search complexity: The search complexity for identi-
fying the best set of codebooks to be decoded at each
receiver grows exponentially with the number of users
and the number of codebooks per user. By deploy-
ing a successive decoding approach and leveraging the
matroid structure of the achievable rate regions, we show
that this search complexity can be reduced to polynomial
complexity. Similar search complexity problem when
there exists only one codebook per transmitter is studied
for point-to-point communication under the presence of
undesired interferers in [21] and for multiuser interfer-
ence channel in [22].

3) Decoding complexity: The complexity of jointly decod-
ing the optimal set of codebooks at each receiver grows
with the number of users and codebooks per user. The
proposed approach can control the number of code-
books can be decoded via ML decoding, based on the
decoding complexity that each receiver affords. This is
an extension of the conventional successive interference
cancellation (SIC) decoding such that at each decoding
stage, instead of one codebook, a subset of codebooks
are jointly decoded. The significance of such decoders is
that they span a broad spectrum of decoding strategies,
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ranging from the low-complexity SIC decoder to the
high-complexity ML decoder. The decoding complexity
aspect of CPGD can be considered as an extension of the
successive group decoder (SGD) initially introduced in
[23] for the uncoded Gaussian code-division multiple-
access (CDMA) channel, which is studied extensively
over the fading multiple-access channel (MAC) in [25].
The practical merits of the proposed approach when
multiple codebooks per user are deployed and practical
rates are designed for each codebook are studied in [25].
The remainder of this paper is organized as follows.
In Section II we present the system model for the GIC and
describe constrained partial group decoders. In Section III out-
age minimization, symmetric fair rate allocation, and max-min
fair rate allocation problems are formalized, which are treated
in sections IV, V, and VI, respectively. Simulation results and
concluding remarks are provided in sections VII and VIII,
respectively. The detailed proofs are relegated to the
appendices.

II. PRELIMINARIES
A. Channel Model

Consider a slow-fading fully connected K-user GIC con-
sisting of K transmitters each intending to communicate with
one designated receiver. Denote the fading channel from the
j™ transmitter to the i"" receiver by h; ; € C. By denoting
the input of the j transmitter to the channel during the n'"
symbol interval by X ;[n], the output of the channel at the i’ h
receiver is

K
Yilnl =" hij X;ln]+ Ziln), ¥neN, (1
j=1

where Z;[n] accounts for the noise at the i’" receiver during
the n'" transmission interval. Channel inputs are statistically
independent and channel noise values Z;[n] are statistically
independent of the channel inputs and temporally uncorrelated
with distribution A'c(0, 1).2 Furthermore, channel inputs are
subject to the power constraints E[lX,-[n]|2] < P; foralli e
{1, ..., K}. We define the channel vector k; as the vector of
incoming channels to the i’ receiver, i.c.,

hi =iy, ..., hix), Yie{l,...,K}, )

and define the channel matrix H by concatenating vectors
{hi}iK:1 as its rows, i.e., H = (R, .. .,hIT(]T.

B. Rate Splitting

The ultimate goal of each receiver is to effectively decode
the messages transmitted by its respective transmitter while
suppressing the disruptive effects of the interfering messages
transmitted by other transmitters. For effective interference
management each receiver may or may not benefit from
decoding the messages of the interferers depending on their
strengths. The optimal interference management strategies in

2Nc(a,b) denotes symmetric complex Gaussian with mean «a and
variance b.
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the extreme cases of weak and strong interference are well-
studied, where in the former case the best strategy is to treat
the interferers as Gaussian noise [26] and [27], whereas the
optimal strategy in the latter is to fully decode the interferers
[2], [28], and [29]. In the more general settings in which
the strength of the message and interference signals can
vary arbitrarily, however, a universally optimal interference
management strategy is unknown. Nevertheless, one effective
approach inspired by the Han-Koabayashi interference man-
agement scheme is to provide the receivers with the freedom
to dynamically decide which interfering messages to decode
along with their desired ones. Hence, each receiver must be
able to identify the optimal® set of the interfering signals
to be decoded. Moreover, since a receiver is not ultimately
interested in the messages of the interfering transmitters, it
is beneficial to allow the receivers to decode the interfering
transmitters only partially. For this purpose, the message of
each transmitter is split into multiple smaller messages, each
drawn from an independent Gaussian codebook.

Let us define M as the number of codebooks used by
each transmitter and denote the set of codebooks of the i’"
transmitter by X; = {Xi1, ..., X m} where &, is a Gaussian
codebook with rate R;, per channel use. Increasing the
number of codebooks M allows the receivers to approximate
the best power allocation with a higher accuracy, where
in the asymptote of large values of M (ie., M — 00)
the setting becomes equivalent to performing optimal power
allocation across codebooks, which is viable at the expense of
higher complexity in identifying the optimal set of decodable
codebooks at each receiver. Hence, increasing M provides
the receivers with the freedom to decide what fraction of the
interfering messages to decode and to treat what fraction as
noise. In order to formalize this, define X; ,[n] as the unit-
power input from codebook A;,, to the channel during the n' h
channel use. Therefore, we have

J
X;[n] = \/% "; X;mlnl, 3)

which satisfies the power constraint of P; for all i €
{1,..., K}. It is noteworthy that the power of different code-
books in each transmitter is pre-specified to be P;/M. While
the focus of the paper is on equal power allocation to all
transmitters for simplicity, all the analyses can be readily
generalized to accommodate pre-specified non-equal power
allocation. Subsequently, the rate of the i’ transmitter is

M
Ri=> Ry, forallief{l,.. . K} 4)
m=1
We define the rate matrix R such that [R]; ,, = R;, and use
the pair (i, m) to denote the index of codebook &; , and rate
Ri . Furthermore, we define the set K as the set of such index
pairs, i.e.,

A . .
K={(im)lie{l,...,K}andm e {l,...,M}}. (5)
3Definition of the optimal subset of the transmitted signals to be decoded

by each receiver depends on the objective sought to be optimized for the
interference channel and will be defined rigorously in the subsequent sections.
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For any set U/ C IC, we define the K x M indicator matrix 1z,
such that V(i,m) €

1 if G,m) el

Ledlian = [o if (i,m) ¢ U.

Finally, we represent the Hadamard product of matrices ¢/ and
VY by U oV, and denote the £1-norm of matrix R by

K M
IR =" D [Rlim.

i=1 m=1

C. Constrained Partial Group Decoding

Motivated by the premise that a receiver might benefit from
decoding a subset of the messages of the interferers, each
receiver partitions the set of all codebooks { X} UX,U- - -U Xk}
into a set of decodable codebooks that it will decode, and
a set of non-decodable codebooks that it will suppress by
treating them as noise. Optimal partitioning of the codebooks
hinges on the utility function that one seeks to optimize for
the network, which will be defined in Section III, as well
as the instantaneous realization of the channel. As a result,
designing the optimal transmission and receiving strategies
requires addressing the following issues.

o Coordination: When the CSI is revealed to all the
transmitters and receivers, the rate allocation problem and
the attendant interference management strategies can be
solved by all parties. Due to the communication overhead
incurred by revealing the CSI, the important question is
how much coordination (information exchange) across
the network is necessary in order to determine the optimal
rate allocation at the transmitter sites and interference
management at the receiver sites.

o Search complexity: Equipping the receivers with the
freedom to dynamically identify the optimal decodable
set of codebooks is viable at expense of two types of
complexities. One is the search complexity, that is the
complexity due to dynamically identifying the optimal
decodable set for each receiver. This complexity can
be readily shown to be growing exponentially with the
number of users and the number of codebooks per user.

o Decoding complexity: The other type of complexity is
pertinent to jointly decoding multiple codebooks by each
receiver.

The notion of CPGD aims to address the aforementioned
issues in a unified framework. The remainder of this section
is focused on providing a few definitions, which are instru-
mental to circumventing both types of complexities and also
formalizing the structure of coordination.

In order to control search complexity the CPGD, which
is a generalization of successive group decoders originally
proposed for multiple access channels [23] and [30], provides
a successive search approach to replace the exhaustive search,
and will be shown to break the exponential complexity in
MK to polynomial complexity in MK. In order to for-
malize the search process, define Q; C K as the set of
the indices of the decodable codebooks by the i’ receiver
(i.e., the set of codebooks to be decoded by the i'h receiver).
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Subsequently, K\ Q; contains the indices of the codebooks to
be treated as noise by the i’ receiver. The CPGD at the i'”
receiver further partitions Q; into p; disjoint and ordered sets,
for some p; € N, as

o =lal .o, (©)
and successively decodes all the codebooks included in Q;.
More specifically, corresponding to the ordered partitions
Q}, BRI Qf " the i'" receiver performs a p;-stage successive
decoding procedure, in which in stage k € {1,---, p;} it
jointly decodes the messages in Q;‘ while treating those in
IC\{Q}, cee, Q{.ﬁl} as Gaussian noise.

In order to control the decoding complexity, we define y;
as number of codebooks that the i receiver affords to decode
jointly. Hence, by defining /C as the set of all non-empty
subsets of K, corresponding to each receiver we define the
bounding function

fi K —{0,1},

such that for any U € K, f;({) = 1 indicates that the i'"
receiver affords to jointly decode the codebooks in U/, whereas
fiU) = 0 means that these codebooks cannot be decoded
jointly. In order to capture the decoding complexity that each
receiver can afford, we set the bounding function f; as the set
size control function

1 if Ul < p;
uer: fay=]" THI=wm )
0 otherwise,
for the pre-specified positive integers {u1,...,ug}. It is

noteworthy that x;’s can increase arbitrarily and this constraint
can be lifted by setting x; = 4+00. Based on these definitions,
we state Q; = {Qil, e in} is a valid ordered partition of
the codebooks if the following conditions are satisfied.
1) f(Qf.‘) =1 for all k € {1,..., pi}, i.e., the number of
codebooks to be decoded jointly by receiver i at each
step does not exceed u;.
2y Vmef{l,...,M}: (i,m) € Q;,i.e., all the codebooks
of the i"" transmitter will be decoded by the i'" receiver.
3) 3m € {l,..., M} such that (i, m) € Qf[ as otherwise,
Qf " can be combined with K\ Q; and be treated as noise.
We define Q; as the set of all valid ordered set of partitions
Q; for the i'" receiver.

D. Outage Event

For any two disjoint sets U,V C K, and a given channel
realization H we define the achievable rate region C; (h;, U, V)
as the set of all rate matrices R that the i’ receiver supports
when it jointly decodes the codebooks in ¢/ while treating
those in V as Gaussian noise. The achievable rate region
Ci(h;i,U,V) can be characterized as

Ci(hi,U,V)
= {ReREM IR o 1pl < Rithi, D, V), YD U],
®)
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where we have defined

> (myep PilhijI? ©
M+ 3 myev Pilhij1?

Ri(hi, D, V) = log(l +

Also, for given disjoint sets D, )V C K, and a given rate matrix
R we define

Ai(hi, D, V,R) = R;i(h;, D,V) — |R o 1p|l, (10)
which measures the gap between the boundary of the achiev-
able rate region and the instantaneous sum-rate of the code-

books in D. The following two properties can be readily
verified for function A;(h;, D, V, R):

1) Chain rule: For any disjoint sets ¢/, V), and set D:

Ai(h;,UUYV,D, R)
= Ai(hj,U,VUD,R)+ A;(h;,V,D,R). (11)

2) Subset: For any set D C B

Ai(hi,U,D,R) = Ai(h;,U, B, R). (12)
Based on the definition in (10), next for any two disjoint sets
U,V C K we define

¢i(hi,U,V, R) = pcmin Aihi, DV.R), - (13)

which identifies the subset of U/ that has the smallest sum-rate
gap with the one given by the boundary of the achievable rate
region. It can be readily verified that

R eCi(hi,U,V) < &i(hi,U,V,R) = 0. (14)
Hence, for a given valid ordered partition Q; = {Qi1 ).
the i receiver is in outage if 3k € {1, ...

!
, pi} such that
R ¢ C(hi, QF, K\ US_ Q). (15)
An outage event can be equivalently characterized by further
defining &;(h;, Q;, R) for a given set of ordered partitions as

Zi(hi, Qi, R) = min & (h, O, K\Us_, @/, R), (16)
kefl,...pi}

which indicates that the i’ receiver is in outage if and only
if & (h;i, Qi, R) < 0. When the i"" receiver is not in outage,
it can deploy a p;-stage successive procedure by using the
maximum likelihood rule. The contribution of the decoded
codebooks to the received signal is removed and the received
signal is consequently updated to

P.
Yiln] < Yilnl = D ﬁ’ hi j X jmln]

(j.m)eQk

a7

for further processing in the subsequent stages.
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III. PROBLEM FORMULATIONS
A. Fixed Rate Mode

The specific structure of the partial group decoders, and
in particular delineating partitions {Q;, K\Q;} and Q; =
{Qil, ey in} for each receiveri € {1, ..., K} depends on the
utility function to be optimized for the network. In this paper
we consider two classes of problems. First we assume that
the rates and power of all codebooks are fixed and invariant
to channel variations. The objective in this class of problems
reduces to identifying the best CPGD at each receiver such that
the likelihood of an outage event for the network is minimized.

Specifically, for a given channel realization H and given
rates R, the objective is to identify a valid partition QF =
{Q},---,QF} that maximizes &;(h;, Q;, R). Hence, the
fixed-rate outage minimization problem can be cast as

Q; =arg max & (h;, Qi, R),

18
Q;eQ; (1%

where &;(h;, Q;, R) is defined in (16). Having a combinatorial
nature, a crude exhaustive search can identify the the optimal
partitioning Q7 for the i"" receiver. In Section IV we discuss
the complexity of such exhaustive search and how CPGDs can
be leveraged to reduce the complexity.

B. Rate Adaptation Mode

In the second class the objective is to concurrently design
the rates of the codebooks and the CPGDs to be used by
different receivers. The rates in this class are dynamically
updated based on channel variations such that some notion
of fairness in rate allocation to different users is satisfied. In
order to formalize this assume that at some time instance 7T,
for n € N, the K-user interference channel is in some state,
which we denote by S,,. This state is influenced by the amount
of resources (power and spectrum) available to the transmitters
as well as the fading status of the wireless channels at time
instance 7y,. In order to account for channel variations, we use
hl’.i ; to denote the state of channel 4; ; at time instance 7},. Also
assume that at time instance 7}, the users are operating at some
decodable rate matrix R”", i.e., the i’ transmitter-receiver link
sustains the rates R = [[R"]i1,...,[R"];m]. The channel
remains in the same state for some duration, and due to some
variation in the available resources or channel statics, at time
instance 7,41 changes to the state S,11. Due to such change
the rates R" may remain decodable if Vi, the corresponding
codebooks of R! are all decodable by the i’ h receiver, and will
not be decodable if Ji such that the corresponding codebooks
of R! are not decodable by the i th receiver. Rate adaptation
seeks updating R" and obtaining a new set of decodable rates
R such that the following three conditions are satisfied.

1) Some notion of fairness is maintained, i.e., no user
sacrifices its rate in favor of the other users.

2) R"*!is optimal in the sense that it cannot be increased
without violating the fairness constraints.

3) We assume that each receiver has perfect and instan-
taneous access to the local CSI, i.e. h; is known only
to the i’ receiver, and the transmitters have no CSL.
Hence, rate updates are accomplished in a distributed
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way such that each user updates its rate only based on
its local information about network dynamics and with
some limited information exchange with other users.

1) Symmetric Fairness: In the symmetric fairness model, we
consider updating the rates of different codebooks based on a
pre-determined set of priorities for them. More specifically, we
are interested in finding the largest possible x € R such that
after updating the rate matrix as R"*! = R"+x.T for a given
K x M matrix T with [T];,, = t,; > 0, Vi € {1,...,K},
Vm € {l,..., M}, the updated rate matrix R"*!' remains
decodable. Matrix T can capture different notions of fairness.
For instance, setting T' = 1g x 3 provides all codebooks with
identical rate changes, or setting T = R" leads to scaling all
the rates identically. We call x the symmetric rate adaptation
factor and its optimal value is determined by solving

max x
B*(n) = {st. R"™ ' = R" 4 x . T is decodable
0 cQ Vie(l,... K}

When the rate matrix R" is decodable under the new network,
state f*(n) is expected to be non-negative and the rates can
possibly be incremented beyond R”. On the other hand, when
the rate matrix R" is not decodable after the change in the
network, state f*(n) will be negative and the rates should
be decremented in order to avoid outage. The objective of
symmetric-fair rate allocation problem is to determine the
unique rate matrix R"*! that satisfies the constraints in (19).

2) Max-Min Fairness: In this model, by denoting the rate
variation of the m'" codebook of the i’ user by [r]; . =
Ti,m, our objective is to maximize ming; ) 2—”: such that after
updating R"+! = R"+r for some given T, R"*! is decodable.
By defining the max-min rate adaptation factor y, the max-
min rate allocation problem yields

19)

max ming ., r,m
,m
7*) =15t R™' = R" +ris decodable  (20)
Q; eQ; Vief(l,...,K}).

Similar to the symmetric fairness model, if R" is decodable,
then y *(n) is non-negative and otherwise it is negative. One
major difference between the max-min rate adaptation factor
y*(n) and its symmetric counterpart f*(n) is that unlike the
symmetric case, which admits a unique rate matrix R
there exists potentially a set of distinct rate matrices R"*! that
satisfy the constraints given in (20) by having equal smallest
normalized rate increment value r; ,, /; ,,. We define the max-
min rate allocation strategy as the one resulting in a pareto-
optimal solution of (20).

Remark 1: It is noteworthy that the rate allocation problems
formalized in (19) and (20) aim to optimize rate allocations on
the codebooks level. These problems subsume the problems
of rate allocation on users level, which correspond to the
settings in which the elements within each row of T are
identical. This can be readily proved by contradiction. In the
symmetric fairness problem, for instance, if user-level rate
allocation problem leads to distinct optimal rates R"(i, m)
and R" (i, m") for codebooks &X; ,, and X, respectively, then
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by symmetry in the setting (both codebooks experience the
same channels), rates R" (i, m’) and R" (i, m) are also optimal
choices for codebooks X;, and X,/ respectively. By a
time-sharing argument, as a result, %(R" (i,m) + R"(i,m'))
and %(R”(i,m) + R"(i,m')) are also optimal choices for
codebooks X; ,, and &; -, which contradicts the assumption
that optimal rates being distinct.

IV. FIXED RATE MODE

In the fixed rate mode the rates of all the codebooks and
transmitters are pre-specified and these rates might fall inside
or outside the achievable rate region. The task of each receiver
is to identify a decodable set of codebooks, decoding which
leads to minimizing the likelihood of an outage event. Since
there is no rate optimization involved, the tasks of the receivers
reduces to only identifying their optimal decodable sets of
codebooks.

In the first step, in order to motivate the need for a com-
putationally efficient procedure for partitioning the codebooks
at each receiver, we compute the complexity of the exhaustive
search process. By computing the cardinality of Q; that is the
set of all valid ordered partitions of to be deployed by the i’"
receiver we can assess the scaling rate of |Q;| in terms of M
and K.

Lemma 1: The size of the set of valid partitions Q; scales
exponentially with the number of users K or the number of
codebooks per user M.

Proof: See Appendix A. |

Next, for given channel and rate matrices H and R, we pro-
pose a successive procedure which can determine the optimal
partitioning at each receiver without requiring any coordina-
tion among the receivers, and has polynomial complexity in
K M. Specifically this proposed procedure (Algorithm 1) has
at most (K — 1)M stages each of which bearing polynomial
complexity of an order not exceeding K M.

In order to establish the tools for evaluating whether there
exists a valid partitioning Q; such that each outage can be
avoided at the i’ receiver, for any two disjoint subsets of the
messages U,V C K, and for any receiver i € {1,..., K} we
define the outage indicator variable

max x
S.t. R+X~1K><M6Ci(hi,u;v)’
20

ai(hi,U,V, R) = [

where a;(h;,U,V, R) is the maximum rate change that we
can achieve by jointly decoding the codebooks listed in ¢/ and
treating those listed in ) as noise. This immediately establishes
the following necessary and sufficient condition:

ai(hi,U,V, R) <0 < decoing U while

treating )V as noise leads to outage at receiver i. (22)

Therefore, for a valid partitioning Q; = {Q},---, Q"} of
the codebooks at the i receiver, at stage k € {1, ..., p;} the
decoder experiences outage if and only if

o (hi, OF, K\ U2} Qf, R) < 0. (23)



ASHRAPHIJUO et al.: RECEIVER-CENTRIC APPROACH TO INTERFERENCE MANAGEMENT

Hence, given Q;, outage at the i’ receiver can be avoided if
and only if

. k k—1 j
ket o) {ai(hi, Qi K\ U;Z) Q7. R)} = 0.

.....

(24)

Hence, in order to avoid outage at the i’ h receiver, it suffices
to identify one valid partition Q; € Q; corresponding to
which the condition in (24) holds. As a result, a necessary
and sufficient condition for avoiding outage at the i’ receiver
is af > 0, where we have defined

max {min{a,-(h,-, Qf-‘, K\ UI;;% Q{, R)}}, (25)
QieQ; Kk

A
* A
a; =

with the corresponding optimal partitioning Q7 given by
Qf =arg max {min{a; (hi, Q. K\ V)] Q. R)}}. (26)

Verifying the condition « > 0 involves computing
a;(hi,U,V, R) and searching for an optimal partition Q.
Throughout the rest of this section we provide systematic
approaches for performing these tasks with controlled com-
plexity. Specifically we show that:
1) Function a;(h;,U,V, R) can be computed in polyno-
mial time.
2) The optimal Q; can be identified via a successive
approach that consists of at most M K successions each
with polynomial complexity in M K.

A. Computing o;(h;,U,V, R)

Computing o (h;,U, )V, R) has a central role in determining
whether the i'" receiver is experiencing outage. We provide
the following lemma, which establishes a connection between
oi(th;,U,V, R) and A;(h;,U,V, R) defined in (10), and pro-
vides a systematic approach for solving a;(h;, U, )V, R). The
result of this lemma can be proved by using the properties of
polymatroids and using the techniques developed in [31].

Lemma 2: For a submodular function fy : 24 5 R, on
the ground set U/ C K define the polymatroid

Pp, (U) = {R eREMRo1p| < (D), ¥D gu].

For function

aihi, UV, R) =1 " . @
st. R+4x-1gxm € Pp,(U)
we have
D)—||Rol
o;(hi U, V. R) = min fv(D) — [Rolp|
D#), DU DI
Proof: See Appendix B. |

Since the region R;(h;,U, V) can be readily shown to be
a polymatroid of the form Pp,(A) defined in Lemma 2 with
the submodular function f),(D) = R;(h;, D, V), by applying
Lemma 2, the solution to (21) can be found as
Ai(hi,D,V, R)
min ———M———.
D#p, DU |D|
Therefore, this lemma establishes that solving (21) reduces
to solving a combinatorial optimization of a submodular
function over a polymatroid, which is feasible in a polynomial
time [21] and [32].

ai(hi,U,V, R) = (28)
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B. Outage Minimization

As shown in Lemma 1, a naive exhaustive search for optimal
partition Q; has a complexity that scales exponentially with
K M. We, instead, propose an efficient successive procedure,
which finds QF with a complexity that is polynomial in
KM. We start by briefly explaining the steps involved in
this procedure and then provide the details followed by their
optimality properties. The procedure starts by including all the
codebooks as candidates to be decoded by the i'" receiver,
which forms a multiple access channel between the collection
of all codebooks and the i’ receiver. The capacity region of
this multiple access channel is characterized by QK — 1)
inequalities of the form

VDC K, D#¥: |Rolpl|l <Ri(hi,D,¥). (29)

Hence, the value of function a;(h;,U,V, R) for U = K and
VY = @, by its definition, yields the smallest per-codebook gap
between the two sides of inequality in (29), i.e.,
Ai(hi,D,?, R)

DI '
and the bottleneck set of codebooks corresponding to this
smallest gap is

al-l = ai(h;,C,#,R) = min

30
D#B,DCK (30)

. Ai(hiaD’ @9 R)
min e ——

V| = ar
P= gD;é(Z),DCIC |D|

€19

We will prove that ail > ( is a sufficient condition for the
i"" user not being in outage. On the other hand if ail <0 we
update sets V' and U based on the structure and cardinality
of set V1 and parameter ail and compute a second parameter
al.z, which itself can serve as an alternative sufficient condition
for verifying whether the i’ user is in outage. The procedure
continues by successively refining V and U, and generating
the sequence of parameters {oci1 , aiz, ai3 ...}, which collectively
establish necessary and sufficient conditions for checking
whether the i’ receiver is in outage. The detailed steps of
this successive procedure are presented in Algorithm 1, and
the optimality properties are demonstrated in the following
lemmas and theorem.

The following lemma demonstrates the evolution of the
sequence {al’.‘ }ZZI corresponding to the i' receiver.

Lemma 3: For the sequence {af‘}zzl computed by Algo-
rithm 1 wehaveoci1 < ocl.z < ... Zaq;.

Proof: See Appendix C. |

By leveraging Lemma 3, we provide the following lemma,
which is instrumental to proving the optimality of Algorithm 1.

Lemma 4: 1f af > a, then for the sets V{ and G; yielded
by Algorithm 1 we have

Vic Qi cg.

Proof: See Appendix D. |

Lemmas 3 and 4 establish the optimaliy of Algorithm 1 in
determining whether the i" receiver is in outage.

Theorem 1: Algorithm 1 determines whether the i'”
receiver is in outage for given channel and rate matrices H
and R. Also, a necessary and sufficient condition for avoiding
outage at the i th receiver is that a? > 0.
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Algorithm 1 Determining Outage

Algorithm 2 Determining Outage

1: Initialize G = IC, V =@, and k = 1.

2: repeat

3: Find al(‘ = Minpp pcg %D’V’R).

4: Find Vl-k = arg minpp pcg w,
5. if (i,m) ¢ V! forall m e {1,..., M}

6: G« GWE V<« VUV and k < k+ 1.
7: end if

:until I3m € {1,..., M} such that (i, m) € Vik.
9:set p=k

10: repeat

11:  Find af = minpp peg.pj<y, 2R
12: Find V{‘ = arg Minp .y DG, |D|<p; W.
13: if (i,m) ¢ V¥ forall m € {1,..., M}

14: GG\ V< VUV andk < k+ 1.
15: end if

16: until 3m € (1,..., M} such that (i, m) € VX,
17: g =k

18: if a? < 0 declare outage

19: if a? > 0 declare decodability

20:set G =G

Proof: See Appendix E. |
It is noteworthy that Algorithm 1 not only determines
whether a receiver is in outage, but also measures the gap
value a between the actual sum-rate based on R and the
achievable one based on the achievable rate region. The latter,
while necessary for proving the optimality of Algorithm 1,
is redundant when the objective is to determine whether the
i receiver is in outage. Motivated by this observation, we
modify Algorithm 1 and propose Algorithm 2 as an alternative
with a lower computational complexity, which focuses on
determining whether the i’/ receiver is in outage. Algorithm 2
is designed by taking into account that

al.l Salzf

< af =aj. (32)

This relationship implies throughout the successions in Algo-
rithm 1 when we encounter af > 0 for some k € {1,...,q —
1}, it is a sufficient condition for concluding that a;‘ > 0,
and hence the i'" receiver is not in outage. Therefore, in
Algorithm 2 the process terminates as soon as a non-negative
element in the sequence {al’.‘ }Z;é is identified.

V. SYMMETRIC FAIRNESS

The goal of fairness-constrained rate allocation is to dynam-
ically adjust and update the rates of different users (and code-
books) when the network undergoes a change in the channel
states, while in parallel some fairness in rate adjustments
is ensured. This section focuses on rate adjustment under
symmetric fairness as formalized in (19), where the goal is
to update the rate matrix R" to R"*! = R" + x - T for
a given matrix T such that the updated rate matrix R"*!
remains decodable. In this section, we offer the procedure for
identifying the optimal rate updates as well as the attendant
optimal interference management strategy at each receiver.

1: Initialize G = K, V =0, and k = 1.

2: repeat

3: Find al(‘ = minpy Dy %Dl,v,li)_

4: Find Vl-k = arg Minpp pcyy W.

50 ifaf>0

6: declare decodability

7 stop

8: end if

9: if (i,m) ¢ Vi forallm e {1,..., M}

10: G« GV YV« VUVFand k < k+1.
11: end if

12: until 3m € {1, ..., M} such that (k,m) € Vik.
13: repeat

14: Find (Zl]-{ = min'D#@j'Dg/[j"DKm %@lﬂ/,m

15: Find Vik = arg Minp .y, DY, | D|<u; %Dl’v’m.
16:  ifak>0

17: declare decodability

18: stop

19: end if

20: if (i,m) ¢ V¥ forallm e {1,..., M}

21: G <G\ V< VUVFand k < k+ 1.
22: end if

23: until 3m € (1,..., M} such that (i, m) € VF.
24: declare outage

We propose the CPGD procedure for solving the symmetric
fair rate adaptation problem formulated in (19). The notable
structure of this proposed procedure is that it breaks the rate
adaption problem into K /local problems each specialized
for one transmitter-receiver pair. These local problems are
solved by the receivers in parallel, after which the receivers
perform a round of information exchange, which facilitates
providing the optimal solution to all the users. By noting that
for achieving a network-wide optimal interference manage-
ment strategy different users cannot operate autonomously, the
important findings of the proposed constructive procedure are
the following:

1) Identifying the best partitions {Qj, ..., Ok} are purely
local decisions such that determining Q; can be carried
out by the i"" receivers based on its limited information
about the network. Recall that we assume that the i'”
receiver knows only its incoming channels h; defined
in (2). Hence, there is no coordination necessary among
the users for establishing the decoding procedure.

2) Each receiver provides a local solution for the rate
adaptation factor. The optimal solution is shown to be a
function of these local solutions. Hence, for determining
the optimal rates at the transmitters the receivers need
to feed their local solutions back to transmitters.

A. Local Interference Management

For a given rate matrix R", the fairness constraint embedded
in T, any two disjoint subsets of the codebooks U,V C K,
and for any receiver i € {1,..., K} we define a rate change
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factor as

Bi(h T UV, R, T)

A |max x

B L.t. R'+x-TeCh™ U,v), 59
where f; (h?Jrl ,U,V, R", T) is the maximum rate change that
we can achieve by jointly decoding U/ and treating ) as
noise. Given the definition in (33), the maximum rate change
factor that the i’" user can afford for a valid partitioning
Q; = {Q},---, O} of the codebooks at the k' stage, for
kefl,...,pi}is

ik, QF, K\ USZ O, R, T). (34)
Therefore, given partitions Q;, the maximum rate change fac-
tor corresponding to which the i’" receiver remains decodable
throughout all decoding stages is

. 1 Ak k—1 ~J
ke{r}nmpi} {Bi(h!™', QF, KK\ Uiz QLR".T). (35

Finally, an optimal valid partition of the codebooks at the i’"
receiver can be obtained by maximizing the rate factor change,
i.e.,

A . — j
Ai(m) = max {min (i, OF K\ VIS Of. R™. T},

(36)

with the corresponding optimal partitioning Q7 given by

Q; =arg max {min {8 (k' QF, K\ USZ) ©/ R", T)}}.
0icQ; K

(37)

The remaining part of this section will be devoted to solv-
ing (36) with controlled complexity constraints given in (7).
Solving (36) involves two levels of complexity. One stems
from the complexity of searching for the best choice of
partition Q; that solves (36), and the other one is related to the
complexity of solving (33) for given sets ¢/ and V. We discuss
each of these levels of complexity and our approaches for
mitigating them separately.

By following the same line of arguments as in
Section IV, we use the properties of polymatroids for solv-
ing Bi(K"*', U, V, R", T) for given disjoint sets U and V.
We provide the following lemma, which is instrumental for
solving the optimization problem in (33).

Lemma 5: For a submodular function fy : 24 5 R, on
the ground set & € K define the polymatroid

P, (U) = [R e REM . |IRolp| < fy(D), VD CU|.

For a given matrix T > 0,

max x

(R UV, R T =
fith = st R'+x-TePpU)

is equal to

Jy(D) — IR o Ipl||

(WU UV, R, T) = i
pi(h; , ) min Tolp

D#p, DU
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Proof: See Appendix F. |

In order to apply the above lemma on the problem at hand,

note that the region R; (h?Jrl ,U,V) can be readily shown to

be a polymatroid of the from Pp,(A) defined in Lemma 5

with the submodular function f,(D) = Ry (h{™", D, V) given

in (9). Hence, by applying Lemma 5, the solution of (33) can
be found as

Bi(h! T UV, R", T)
Ri(}, D, V) — |R" o 1p|
IT o 1p]

min (38)
DAA, DU
Therefore, solving (33) reduces to solving a combinatorial
optimization of a submodular function over a polymatroid,
which is feasible in a polynomial time [21] and [32].

By using the result of Lemma 5, we start by briefly explain-
ing the steps involved in this procedure, and then provide the
details followed by their optimality properties. Without loss of
generality, assume that the network state changes are in favor
of increasing the rates of the i’” user beyond its currently
operating rates, i.e., f7(n) > 0. Corresponding to each valid
ordered partition Q,-, the i'" receiver observes a multiple
access channel that needs to decode the messages included
in {Qil, e, in} successively and its noise level at the k"
stage is shaped by the interference induced by the messages
included in KC\ Ul;;ll Q{ . At the k' stage, the capacity region
of the associated multiple access channel corresponding is
characterized by 2191 inequalities of the following form.
For all non-empty sets D C Qf.‘ we have

IR o Lpll < R (W DKV O (39)

Based on these inequalities, the rate of the messages in D
can be incremented as much as this inequality is not violated.
Hence, the highest rate increments occur when

IR™ o 1p|| = Ry (b}, D, K\ USZ} @),
or equivalently

I(R" +x-T)olp| = IR o lp| +x- T olp]|
=R, D\ UL Q)),  40)

which provides that the maximum rate change factor corre-
sponding to set D is

R DR\UZY Q) — IR o 1p]
B IT o Lpl|

Now, among all possible choices for D, the one that yields
the smallest rate change factor x given in (41) will constitute
the bottleneck set of messages in the sense that these users
determine what the maximum rate change factor is. The
procedure that identifies this bottleneck set for the i’ receiver
is initialized by including all messages as candidates for being
decoded by the i’ receiver, which forms a multiple access
channel between the collection of all codebooks and the i’"
receiver. The capacity region of this multiple access channel
is characterized by 21X — 1 inequalities of the form

x (41)

VDS K, D#¥: [Rolpl =Rihi,D,0). (42)
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Hence, the value of function g;(h;,U,V, R) for U = KC and
V = @, by its definition, yields the smallest normalized per-
codebook gap between the two sides of inequality in (42),
i.e.,

Bl = B K, 0, R, T)
Ai(hi, D, 9, R")

; (43)
IT o 1pl|

= min

D#B,DcCK
and the bottleneck set of codebooks corresponding to this
smallest gap is

AR, D, 0, RY)
IT o 1p]

min

V = ar
| =
g D#M,D( K

(44)
Based on the structure of V) and value of ﬁil we update
sets V and U and compute a second parameter ﬁlz The
procedure continues by successively refining V' via eliminating
the codebooks that are not deemed beneficial if decoded,
and hence are treated as noise. Specifically, this procedure
successively identifies the group of codebooks which can
be safely treated as Gaussian noise and partitions those to
be decoded such that in each decoding step the number of
codebooks to be decoded jointly does not exceed u;, thus
limiting the decoding complexity. Furthermore, the procedure
generates a sequence of parameters {ﬁil, l_z’ ,[)’i3 ...}, which
collectively are sufficient for computing the locally optimal
rate adaptation factor g'(n) for the i'" receiver, defined
in (36). This procedure has at most (K —1)M steps, where each
step solves a problem of the form in (43), which as discussed
earlier has a polynomial complexity in K M. The steps of this
successive message elimination procedure are formalized in
Algorithm 3. The optimality of this algorithm is demonstrated
in the subsequent lemmas and theorem.

Lemma 6: For the sequence {ﬂik}Z:1 computed by
Algorithm 1 we have ,b’l.1 < ,812 < ... < ﬁiq.

Proof: See Appendix G. |

By leveraging Lemma 6 we provide the following lemma,
which is instrumental to proving that Algorithm 3 yields the
optimal local rate adaptation factor.

Lemma 7: If B¥(n) > ﬂiq then for the sets Viq and G;
yielded by Algorithm 3 we have

Vicorcg.

Proof: See Appendix H. |
Algorithm 3 provides a constructive approach for determin-
ing the optimal local rate allocation factor f(n). This con-
structive approach computes the optimal local rate adaptation
factor £ (n) for the i’ h receiver and generates partitions

or=1{9},...,9"), (45)

which achieve g (n). Algorithm 3 also provides the steps
involved in successive decoding by successively finding the set
of messages that constitute the decoding bottleneck through
exhibiting the smallest normalized gap between the mutual
information function and the operating rates as formalized
in (43). The optimality of Algorithm 3 is established in
Theorem 2.
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Algorithm 3 Symmetric Fair Rate Adaptation: Local

Calculations

: Initialize G =K, V =@, and k = 1.
: repeat

—

2
L+l n

3: Find g = minpy peg Murf@;}w/m

4 Find V¥ = argminp_p pcg wh;im

5. if (i,m)eViforallme(l,..., M}

6

7

8

G<G\WLYV < VUVFandk < k+ L.

end if
cuntil 3m e (1,..., M} such that (i, m) € VF.

9:p=k.

10: repeat .

11: Find ﬂlk = minfp#gj'pggJD‘Sm W
n+1 n

12: Find Vik = arg Minp 4y, Dcg,|Dl<pu; %

13: if (i,m) e V¥ forall m e {1,..., M}

14: G<—G\VE V< VUV and k < k+1.

15: end if

16: until 3m € {1,..., M} such that (i, m) € V.

17: g = k.

18:set G; =G.

19: repeat

) . X . A (W' D,V RY)
20: Find B{ = minpp pcg,|Di<p; — o1 ar—— TToin]
21:  Find Q{9 =

. Ai (W DV, R")

arg MIND4, DG, |DI<p; TTolp]

22: Set G « Q\Q;‘*‘frl and k <— k+ 1.
23:until Bme{l,...,M}: (i,m) €G.
24: Output p; =k —g and {Q}, ..., Q).

Theorem 2: Algorithm 3 yields the local optimal rate adap-
tation factor and the attendant optimal set of valid partitions

QT ie.,
Bim) = B,
and
or =1{Q},..., Q"
Proof: See Appendix 1. |

B. Coordination

In Algorithm 3, each user acts autonomously and determines
a local optimal rate change factor and the associated rate
update policy based on its local information. However, dis-
tinct users do not necessarily prescribe identical rate updates.
We show that for reaching a consensus among all users about
the optimal rate change policy it is sufficient to have them
exchange their local and independent computation results.
Specifically, as it will be proven in Theorem 3, the i’ user has
to report the value of 7 (n) (one scalar) to all the transmitters.
The globally optimal rate change factor f*(n) defined in (19)
is then found as the minimum of all {5} (n)}iK: |- Consequently,
the new rate matrix R"*! is

R =R"+ miin Brn)-T. (46)
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Algorithm 4 Symmetric Fair Rate Adaptation - User
Coordination

1: Input R"

cfori=1,...,K do

Use Algorithm 2 to determine £ (n) and QT
: end for

: Update R"T! < R" + min; {$(n)} - T

: Output R and {Q}}K

In Algorithm 4, first the optimal rate adaptation factor for each
user is determined (through {g (n)}iK: 1)- Then the smallest
such rate adaptation factor among all users (i.e., min; " (n)})
is chosen to be the global rate adaptation factor, i.e., f*(n); =
min; (47 (n)).

The optimality of this algorithm is demonstrated in the
following theorem.

Theorem 3: The updated rate matrix yielded by (46) satis-
fies R"™t! > R where R is any decodable rate matrix such
that R = R" + % - T for some X € R.

Proof: If there exists a decodable rate-matrix R as defined
above such that R"T! < I~€, then we have

X > f*(n) = min S (n).

By defining ¢ £ argmin; 7 (n) we conclude X > f;. Since
R is decodable, then R" + % - T is decodable by the ¢th
receiver and X > f;(n), which contradicts the optimality
of B;(n) as the optimal rate change factor for the '™ user

(Theorem 2). |

VI. MAX-MIN FAIRNESS

This section focuses on rate adjustment under max-min
fairness as formalized in (20), where the goal is to update
the rate matrix R” to R"T! = R" + r such that the max-
min fairness constraint in (20) is satisfied and the updated
rate matrix R"t! remains decodable. In this section, we
offer the procedure for identifying the optimal rate updates
as well as the attendant optimal interference management
strategy at each receiver. Similar to symmetric fairness, we
propose the CPGD procedure for solving the max-min fair
rate adaptation problem. Similarly to the symmetric fairness
setting, the notable structure of this proposed procedure is that
it breaks the rate adaption problem into K local problems,
each specialized for one transmitter-receiver pair. These local
problems are solved by the receivers in parallel, after which
the receivers perform information exchange, which facilitates
providing the optimal solution to all the users.

A. Local Interference Management

For a given rate matrix R", the fairness constraint embedded
in T, any two disjoint subsets of the codebooks U,V C K,
and for any receiver i € {1,..., K} we define a rate change
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factor as
yi(R T UV, R, T)
Ti,m
ti,m (47)
st. R"+x-reCH ™t u,v),

o max.  Mming ;}

where y,-(hl'.’H, Uu,V, R", T) is the maximum fair rate change
that we can achieve by jointly decoding U and treating V as
noise. Given the definition in (47), the maximum rate change
factor that the i’" user can afford for a valid partitioning
9, = {Qil, e in} of the codebooks at the k' stage, for
kefl,...,pi}is

yiR, QF K\UZ] 9/, R", T). (48)
Therefore, given partitions Q,-, the maximum rate change fac-
tor corresponding to which the i’? receiver remains decodable

throughout all decoding stages is

min (i, O K\ U] QL R, T)).

ke{l,....p
As a result, an optimal valid partition of the codebooks at
the i’ receiver can be obtained by maximizing the rate factor
change, i.e.,

A . 1 k=1 ~J
yi(m) = max {min {yi(h]"", QF, K\ UjZ) Qf, R, T)}},

QieQ,;

(49)

(50)
with the corresponding optimal partitioning Q7 given by

Qf = arg max {min {yi(h}™, Of K\UJ} O] ™. T))).

&1V

The following lemma provides the underlying connection
between the solution of the max-min fair rate change problem
in (47) and the symmetric fair rate change problem in (33).

Lemma 8: For the i’" user and any two disjoint subsets
U,V of K, we have

yi(h UV, R, T) = BRI, UV, R, T).

Proof: See Appendix J. |
Based on Lemma 8 and the definition of y*(n) in (50) we
have
yi(n) = max {min (R, OF K\ U[Z} O R". T))},
i €L

(52)

where G C IC, (i,m) € G, Vm € {1, ..., M}. By solving (52),
the i’ receiver identifies a rate change policy. In particular,
the i"" receiver recommends a rate update for each user such
that the i'" receiver can successfully decode its designated
user and max-min fairness is sustained, i.e., r]?,m = yi*tj,m.
Algorithm 5 is a computationally efficient procedure with
polynomial complexity in KM for finding the set of rate
. i= {r"l,...,r"K} by receiver i, where r;. =
,r}, y])- Note that deploying an exhaustive search
3KM)'

increments r
[r;, 1oeoe
costs a complexity which scales as O(

Theorem 4: If the i'" user is decodable under the
rate R", then it is also decodable under the rate matrix
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Algorithm 5 Max-Min Rate Adaptation: Local Calculations
1: Initialize G =K and V=0, k=1 and ¢ = 1.
2: repeat

. . Ai ("D VR
3:  Find ,Blk = Minpp pcg Aith; . D.V.RT)

ITolpl ’

) . Kk . Ai(h{",D,V,R")
4. Flnd Vi = arg mlnpiyj,pgg W
5: if Im, (i,m) € Vik

, ok AW D,V,R")

6. Flnd ﬁi = mlnD#Q),Dgg W
[Dl=pi et

) . k . Ai(hi" ,D,V,R")
7 Find V' = arg mlnprga‘?;g Vi rm—
8: end if -

9: if Im, (i,m) € Vik

10: r;m = ﬁiktj,m for all (j, m) € Vik,

11: G« G\ Qi =VE and € < (+ 1.
12:  else

13: r;m = +oo for all (j,m) € Vl.k,
14: G < G\VEL V< VUuVh

15: end if

16: k < k+ 1.

17: until G = ¢ '

18: Output {r;.}f:1 and {Q{}fizl.

R ., ri] is yielded by

R" + ri, where [ri,r},..
Algorithm 5. Furthermore,
i ~i
. rf,m . r
min —— > min s
(t,m)ek tem (t,m)ek te m

where [i"i, ey ’~'i1<] is any other arbitrary rate update matrix
for which the i th user is decodable under the rates R" +
(7, ..., Fl
Proof: See Appendix K. |
Therefore, according to Theorem 4, for each specific user
i Algorithm 5 identifies the optimal rate changes for all users
with the constraint that the i’" user remains decodable at its
designated receiver. In the following subsection we show how
the local rate changes computed by different users should
be processed in order to find the globally optimal fair rate
allocation.

B. Coordination

The core idea is that each user i solves the problem (52)
and computes y;*(n) independently of the rest without any
information exchange. These local solutions are then combined
with minimal information exchange. Specifically, each user
computes a rate change for its codebooks as well as other
users’ codebooks, which means that each user receives K
rate change suggestions corresponding to each codebook one
computed by itself and (K — 1) ones by the others. Next, each
user selects the smallest rate change suggested for each of
its codebooks. The steps for such rate change are formalized
in Algorithm 6. The optimal properties of this algorithm are
enumerated in Theorem 5.

Theorem 5: The distributed (iterative) max-min far
rate change algorithm (Algorithm 6) has the following
properties

Algorithm 6 Max-Min Fair Rate Adaptation - User

Coordination

1: Input R© = R" and ¢ = 0.

2: repeat

3;: fori=1,...,K do

4:  Run Algorithm 5 to determine r/ and O}.

5: end for

6: Update g < g + 1, Rl.(zz = Rg‘rinn + minlsgSK{ri‘:m}
foralli e {1,...,K}and m € {1,..., M},
and R™" « R,

7: until R converges.

(o]

: Output R"*! = R@ and {OF}K,

1) It is monotonic in the sense that R@+D > R(q), and it
is convergent.

2) The matrix R is max-min optimal, ie., for any
other arbitrary decodable rate matrix R > R™",
we have

() i P i

. Ri,m - Rgiln . Rim — Rgiln

min ——— > min ———
(i,m)elC tim (i,m)elC tim

3) The rate change yielded by Algorithm 6 is also pareto-
optimal.

Proof: See Appendix L. |

The second property in the theorem above, establishes
that Algorithm 6 solves (20) and computes p*(n). The
pareto-optimality property rules out the possibility of uni-
laterally increasing the rate of one user. In other words, it
states that the solution provided by Algorithm 6 has the
property that any increase in the rate of one user must
be penalized by a decrease in the rate of some other
user(s).

Remark 2: The solution to the max-min problem differs
from that to the symmetric problem several aspects. Specifi-
cally, in the max-min fairness setting the optimal rate adap-
tation factor gives a set of possible rates as opposed to the
symmetric case in which the rate choice is unique. Hence,
over all possible rate matrices, we look for the one that
is pareto-optimal (i.e., we cannot improve any rate without
penalizing others). Also, the algorithms for finding the pareto-
optimal rate are iterative such that in each iteration we find
a rate matrix that outperforms the previous one and the
procedure continues until convergence. Therefore, there are
consecutive rounds of local computations and coordination
(as opposed to symmetric case where the problem is solved
in one shot).

VII. SIMULATION RESULTS

In this section, we provide simulation results to assess the
performance of different CPGD algorithms and rate allocation
schemes. Throughout all simulations, we consider a CPGD
with three single-antenna transmitter-receiver pairs (K = 3).
Each transmitter divides its message into M parts (we consider
M = 1,2, and 3) and all the partial messages of all the
users are considered to have equal priority, i.e., T = 1yxk-
We assume that the channels are all quasi-static i.i.d. with
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Fig. 1. The outage probability versus SNR for the fixed-rate setting. (a) With
decoder size of u; = 2. (b) With no decoder size constraint (¢; = +00).

Rayleigh fading distribution. In all simulations, 500 channel
realizations are used.

First, we investigate the fixed rate mode and assume that
transmitters’ rate is % bits per channel use and they have
identical power constraints. Therefore, the set of rates for
M =1 is equal to

1
R=3 13, (53
for M =2 is equal to
R = ! 1 (54)
=2 3x2s
and for M = 3 is equal to
1
R = 3 -1343. (55)

In Figure 1, by using Algorithm 1 the outage probability
(probability of at least one of the users being in outage) over
a range of SNR is demonstrated. It is observed that splitting
the messages into several sub-messages via CPGD even for
M = 2 provides a substantial improvement in the outage
probability. Also, comparing Figure 1(a) and Figure 1(b)
demonstrates that imposing the decoding complexity constraint
i; = 2 penalizes the outage probability only slightly, while
offering significant gain in decoding complexity.
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Fig. 2. The sum-rate versus SNR for the symmetric fairness setting.
(a) With decoder size of x; = 2. (b) With no decoder size constraint
(uj = +00).

Figures 2 and 3 focus on the symmetric fairness setting,
where the initial rates are set according to the rates given
in (53), (54) and (55) for M = 1,2, and 3, respectively.
In Figure 2, by using Algorithm 3 and Algorithm 4, we com-
pare sum-rate change, which is the product of the rate adaption
factor and the number of sub-messages per user, over a range
of SNR for different values of M. It is observed that splitting
the messages into several sub-messages via CPGD even with
M = 2 provides an improvement in the sum-rate. Also,
comparing Figure 2(a) and Figure 2(b) demonstrates that
imposing the decoding complexity constraint x; = 2 penalizes
the sum-rate change only slightly, while offering significant
gain in decoding complexity. In both Figures 2(a) and 2(b),
it is observed that for SNR=12 and M = 1 the sum-rate
change is negative, which means that we need to decrease
the rate of the transmitter to sustain reliable communica-
tion, which after increasing the number of each user’s sub-
messages to M = 3, the sum-rate change becomes positive,
which means that the transmitters’ messages are decodabe
and even the rates can be further increased. This observation
confirms the effectiveness of rate splitting and superposition
coding.

In Figure 3, we compare the average group size, i.e.,
Qi = (XL, 195D/ () pi), over a range of SNR

for different values of M for the symmetric fairness setting.
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Fig. 3.  The average group size versus SNR for the symmetric fairness

setting. (a) With decoder size of x; = 2. (b) With no decoder size constraint
(1 = +00).

An interesting observation is that splitting the messages
into more sub-messages does not necessarily increase |Q;|.
In Figure 3(b), which presents the results for u = o0,
there is a direct relationship between |Q;| and M as expected.
However, an interesting behaviour is observed in Figure 3(a),
which presents the results for x; = 2, and that is the average
group size for the case of M = 2 is larger than that for
the case of M = 3. Comparing figures 2 and 3 indicates
that imposing the constraint x; = 2 does not penalize the
rate significantly, while it decreases the decoding complexity
significantly.

In Figure 4, the max-min fairness setting is evaluated,
where the initial rates are set according to (53), (54),
and (55) for M = 1,2, and 3, respectively. By using
Algorithm 5 and Algorithm 6, we compare the sum of
rate changes of all the sub-messages versus varying SNR
for different values of M. It is observed that breaking the
messages into several sub-messages via CPGD even with
M = 2 provides an improvement in the achieved rate. We
have the same observation here as in the case of symmetric
fairness case and comparing Figure 4(a) and Figure 4(b)
demonstrates that imposing the decoding complexity
constraint u; = 2 penalizes the sum-rate change only
slightly, while offering significant gain in decoding
complexity.
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(a) With decoder size of x; = 2. (b) With no decoder size constraint
(4j = +00).

As a representative of the structure of CPGD for symmetric
fairness model, next we consider the special case where Vi €
{1,..., K} we have set u; = 1. For user i, each of the
sequential decoding stages of the elements of a Qf.‘ for all
k € {1,..., pi} can achieve one edge of its corresponding
achievable rate region. If the direction of T (an image of T
corresponding to the elements of Q;‘ ) and the direction of one
of the Q{."s achievable rate region edges are the same, the
sequential decoding corresponding to that edge of the achiev-
able rate region is optimum. In Figure 5 it is observed that the
achievable rates via sequential decoding for two symmetric
models. Figure 5(a) presents a setting in which we have 3
codebooks (M = 3) and aim to decode codebooks 1 and 2. By
decoding them successively, we can achieve various corners of
the achievable rate region. If we show the coordination of these
2! = 2 corners shown in Figure 5(a) with (ay, b1) and (a2, b>),
with the constraint of x; = 1 we can achieve the union of the
two-dimensional intervals created by these two points, i.e.,
U%:] ([0, a;] x [0, b;]). Figure 5(b) demonstrates the case that
we have 4 codebooks and aim to decode codebooks 1, 2, and
3. By decoding these codebooks successively, we can achieve
various corners of the achievable rate region. If we denote the
coordinations of these 3! = 6 corners shown in Figure 5(b)
by (a1, b1, c1), - .., (as, b, c6), we can achieve the union of
the three-dimensional regions created by these six points, i.e.,
Uy (10, ail x [0, b1 x [0, ¢;1).
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Fig. 5. Achievable rate regions with sequential decoding with u; = 1.
(a) With two signals of power P being decoded and one signal of power P
being treated as noise. (b) With three signals of power P being decoded and
one signal of power P being treated as noise.

VIII. CONCLUSIONS

Motivated by the challenges associated with acquiring the
channel state information at the transmitters sites in the multi-
user interference channel, we have proposed and analyzed
constrained partial group decoders as an effective approach
for interference management without requiring the channel
state information at the transmitter and imposing only limited
coordination among the users. This a receiver-centric approach
to interference management, which in contrast to the majority
of the existing art on interference management, relies strongly
on processing at the receiver sites. The approach is discussed
for certain fairness-constrained rate allocation problems where
it is shown that optimal rate allocation is possible when
1) the transmitters do not have any channel state information,
2) the receivers have only local channel state information,
3) interference management decisions at each receiver are
formed only based on the local information available to each
receiver, and 4) the decoding complexity each receiver is
controlled at a desired level.
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APPENDIX A
PROOF OF LEMMA 1

Each partition {K,K\Q;} is of the form Q; =
{Ql,..., 9"}, where

D pi>1,

2) 3m € {1,..., M} such that (i, m) € O/,

3) and (i,m) € Q; forallm € {1,..., M}.
First, consider a particular choice of Qf " of size g, where
1 < g < p; and define d as

d = |{m | (k,m) e Q" (56)

where clearly 1 < d < min{g, M} and therefore there exist

m“‘{z"’:M’ ((K = I)M) (M)
= q—d d
(K—I)M—(q—d))
s—(M—d)
ways to select s messages from the remaining messages where
(M — d) number of them are the main messages and the
remaining (s — (M — d)) are chosen from the interfering
codebooks to be decoded in other stages. Therefore, given
a selection of ¢ messages in Qf i and s included in sets

such choices. For each such choice, there exist (

Ql.l, o, Qf i _1, the number of possibilities to partition the
aforementioned s messages using valid ordered partitions is
given by

( f;l by)!s!
bil. . by (ANPT L (g tyPm

>

I I
{bseZ )0 31 thy=s

Ls,up) =

(57)

Therefore, by defining Tk p as the cardinality of Q; when
we have K user pairs each with M codebooks, we have

wi (min{g, M}
(K — )M\ (M
Tew=2.| 2 ( —d )(d)

g=1 d=1 q
MK—q
(K —1DM —(q —d)
L, l. (58
X z ( 5 — (M—d) (s, 14i) ( )
s=M—d
Moreover, we can also derive the following differ-

ence equation, which establishes a connection between
Tk+1,m and Tk m:

Tk t1,m
pi fmintg MY N
22 (H)0)
M(K+1)—g KM — (g —d)

A
i [min{g,M) (

=2 X

g=1
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wi [min{g, M}
KM — 1\ (M
22 ()0
g=1 d=1 q—d d
M(K+1) KM —1— (g —d) .,
5 — (M—d) (s, 14i)
+i mile My g\ (M
— qg—d)\d

M(K+1)—q— I(KM— (g —d)

s— (M —d)
> 2Tk, m + Z

KM—I M
p q—d—l r

M(K+l)q KM—l—(q—d) .
S—(M—d) (s,4i)

s= M d
> 2Tk, m,

)L(5+1,,u,-)
s=M—d

Li mm{q M)

(59)

which shows that Tk » grows exponentially in K. Similarly
we can find a relationship between Tk y4+1 and Tx m as
follows.

Tk, M+1
(s ((K — )+ 1)) (M + 1)
g=I d=1 q—d d
(M+1)K —
TR — DM+ 1) = (g —7)
x > L(s,up)
s—M+1—-4d)
s=M+1-r

- ,uz, min{%/H“l} ((K . 1)(M+ 1) _ ])(M+ 1)
(g —4d)
L .

(MA DK~ ((K DM +1)—1—

Ui min{g,M+1}
(K—DM+1)—1\(M+1

2 2 ( g—d )( d)

g=1 d=1
s ((K — DM+ D —1- (g —d))L
s=M+1-d s—M+1-d) e

i [min{g, M+1}

+Z:; >

(K —1)(M+ 1)\ (M +1
()

r=1
MHEDK==1 g 1Y (M4+1) = 1= (g —d)
X Z Ls+1,u1)
e s — (M+1—d)

> 2Tk, m

Ui min{g,M+1}
(K—DM+1)—1\(M+1
(o= (CE)(0)

g=1 d=1
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M+1)K—
S "(<K—1>(M+1>—1—<q d))L( )
S, Hi
i s—(M+1—-4d)
> 2Tk M, (60)
which shows that Tk s grows exponentially in M.
APPENDIX B
PROOF OF LEMMA 2
Since Pp,(Uf) is a polymatroid and
(R+ai(hi,U,V,R) - 1xkxum) € Pp,U),
then the condition that for every non-empty set D C U
IRolp| +a;(h;,D,V, R)|D| < (D), (61)
indicates that
a;(h;,D,V, R)
< a;(hi,D,V, R)
D)—||Rol
s o D) —IRolp| )
D#3, DU |D|
On the other hand, we have
IR o Tyl + o (i, U, V, R)IU|
HoU) — R oy
< IR o Tyl + = 2]
A
= fy), (63)

which implies that (R—i—oc;- (hi,U,V, R)-1k « ) falls within the
polymatroid and, therefore, the upper bound a;.(hi,u ,V,R)
is achievable. As a result, a;(h;,U,V, R) = a;(hi,u, V, R).

APPENDIX C
PROOF OF LEMMA 3

First we show that ail < ... < alp, where p is defined in

line 9 of Algorithm 1. For k € {1,..., p — 1} we have

af = a;(hi, K\USZ VL UV RY (64)
@ Dk, Vi, UZ V) R)
= T (65)

Vil
Ax(hi, D, U521V R)
®  min S S (66)
D0, Del\UZ Y/ Vil
(B VR U VR ey

© Aihi, VEUVEH UV R) .

ZaMEaVA
@ Dihi, Vi, U_ VL R) + Ai(hi, VUV R)

ZanEaVA

(68)

© @ Vil + af il

(69)
ZanEEVA

where (a) is based on definition of Vk in line 4 of Algorithm 1,

(b) is based on definition of Vk in hne 4 of Algorithm 1, (c)
is based on optimality of Vk (d) is according to the chain rule
in (11), and (e) is based on the definitions of ak+1 and al
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The inequality between (64) and (69) provides

af (V4 H) =+l o)
or equivalently
af <aftl Vke{l,...,p—1}. (71)
Next we show that af < af *1 pased on their definitions.
Specifically,
PR
al = a;i(hi, K\ UZ; VI, U2 V] R) (72)
Ac(hi, D,U'_ V], R)
= min _ (73)
D#0,Dek\UP_| V] Vpl
—1+,j
() Ak(h,D,Up: V,R)
< min it i (74)
DA, DeK\U VI [Dl<ui [Vpl
= al™, (75)

where (a) is due to the additional constraint. Finally, by
following a similar line of argument as in (64)-(69), for

kel{p,...,q— 1} we have
af = aihi, K\ v UV R) (76)
@ M, VE, UV R)
B k (77)
V7]
& Ar(h;, D, u".:llvif, R)
= min k/_ (78)
D#ﬂ,DEK\U’;;IIV’./,‘Dlsﬂi |Vi |
) Ai(hi, Vi U Vi1, U];;%Vij’ R)
= k+1 k (79)
Wi+ 1V
@ Ailhi, Vier, U_ V] R + A, Vi V] R)
IV VK|
(80)
k+1 |y ok—+1 Kin ok
© @ WV +a V) |, .

VT |

where (a) is based on definition of Vl.k in line 12 of Algo-
rithm 1, (b) is based on definition of Vl.k in line 12 of
Algorithm 1, (¢) is based on optimality of Vik , (d) is according
to the chain rule in (11), and (e) is based on the definitions

of ocf.‘+1 and af.‘, which establishes that
af <kt Vkelp,...,q— 1) (82)
Hence, (71), (75), and (82) collectively establish that
al < a? < ... <al.
I — 1 —_— — 1
APPENDIX D

PROOF OF LEMMA 4

1)Q; C G;: Note that G; = K\ Uz;ll V¥, In order to show
that Q; € G; we equivalently show that Q; N Vik = ¢ for
k € {l,...,q—1}. By contradiction, let us assume that Q; has
non-empty intersection with some of the sets {Vil, e Viq 71}
and denote by j the smallest value such that Q; N Vl.j #* 0,
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while for k € {1,..., j — 1}, we have Q; ﬂVl-j = (). By using
the expansion
vl = nv/iu ki nvy, (83)
and the properties of A; defined in (11)-(12) along with the
definitions of & and V; (Algorithm 3) we get
ol Vi)

(2 1

Ai(hi, V], Ul Ve, R) (84)
QA (i, (Q NV U KNG N VL UIZIVL R) (85)
Q Aihi, FNQY NV UV R)
+ Ai(hi, Qi NV I\ N VY UUZIV) R)
(86)

IVE

Ai(hi, (K\NQ} NV UV R
—_—
v/
+Ai(hi, Qi NV K\QiR),
——

cQ;

(87)

where (a) holds based on definition of Vl.k in line 4 of
Algorithm 1, (b) is based on (83), (c) holds according to the
chain rule in (11), and (d) follows from {{K\Q;} N Vij} U
{U{;ll Vi} € K\Q;. Next, note that for any D C Vij we have

_ AV UDVER) _ Aihi. DUV R)

af - < D ,
Vi DI
(88)
or equivalently
Ai(hi, D, U2 VE, R) = o D).
Now, by setting D = {K\Q;} N Vij we get
Ai(hi, ((\Q) NV UL VE R = o] [t\Qi) V).
(89)

By following the same line of argument we can also show that

Ailhi, Qi NV K\QL, R) = af1Q; NV 1. (90)
Combining (87)-(90) provides that

o/ V]| = o] {KNQ} NV |+ 0710V O

> ol (I nv/1+1nv))  ©2)

= o/ V), (93)

where (92) follows from a} > ai] . Comparing (91) and (93)
indicates a contradiction. Hence, for all j € {1,...,q — 1},
QN Vl.j = and as a result Q; C G;.

2) Viq C Q;: If Viq ¢ Q;, then by noting that Viq C G; we
conclude VI N{G;\Q;} # #. By expanding V! = {VI N Q;}U
{Vl.q N{G;\Q;}} and following the same line of argument as in
the previous case we have

ad VI = Ai(hi, VI, U2V R) (94)
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@ A, VIO Qi VNGO U IUIZIVEL R

+ Ai(hi, VI N {G\Qi}, UIZ I VE, R (95)
QA VI 0 Qi KN R) + af VI 1 (G\ Q)

(96)

D @V + VN (GO ©7)

Dy, (98)

where (a) is according to the chain rule in (11), and (b)
follows from {Viq n{gi\Qi}}u{uZ;}v;f} C K\Q;, (c) follows
from VéﬂQi C Q;, and (d) follows from a;‘ > a?. Comparing
(94) and (98) establishes a contradiction, and as a result
Vi c Q.

APPENDIX E
PROOF OF THEOREM 1

We show that for the output of Algorithm 1 we have
al = a?, which in conjunction with the condition for outage
provided in (25), establishes the desired result.

Doaf < al:

We provide the proof by contradiction. Suppose that we
have af > a. Then, according to Lemma 4 we have V{ C

Q; C G;. Let us define F; = Gi\Q;. Therefore

Qi =Gi\Fi, V! CG\Fi, and K\Q; = {K\Gi} U F;.

99)
Consequently, we get
Ai(hi, VI, U121 VE R
ot = 21 Vi YV (100)
Vil
. (i, D, K\G;, R) Gon)
D#4, DG, |DI<u; |D|
— min l(hlap’ Ic\gl’ R) (102)
D#4, DG\ Fi,|D|<u; DI
2 min l(hHD’ {Ic\gl} Uﬁ’ R) (103)
D#4, DCGi\F;,|D| D]
_ min l(hl’D9 IC\QHR) (104)
D#3,DCQ,;,|D|<pu; |D|
=aj, (105)

where (102) holds since Viq C G;\F; and therefore min-
imizing over the sets G; or G;\JF; yields the same result.
Equation (103) follows from (12), and (104) follows from
the definitions provided in (99). Comparing (100) and (105)
shows that ocl’.k < a?, which contradicts the initial assumption
that ocl’.k > a?. Hence, we have a;“ < a?.

2)af > al:

Next we show, constructively, that there exist a set of parti-
tions {Q}, ..., O} which achieves «, which in conjunction
with af < o, establishes that af = a. Specifically, we
show that given the outputs of Algorithm 1, i.e., G; and ¢,
the sets {Q], ..., Q"} yielded by Algorithm 1 offer a valid
successive decoding order corresponding to which the optimal

rate gap factor is a?.
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Algorithm 7 Partitioning Q; = {Q], ..., O/}
1: Initialize G = Q;, V = K\Q; and k = g.
2: repeat
3: Find ﬁlk = MiNDy DG, D|<p; w .
4 Find Q7 =

arg minp 4, D, pj<y; SR

Set G < G\Q" ™ and i «i+1.

cuntil Am e {1,...,M}): (i,m) €G.

: Output p; =k —g and {Q], ..., Q"}.

To this end, we show that

af <. <al™ (106)

which can be readily verified by noting that for k € {q, ...
pi — 1} we have

4+

k _
a; =

. Ai(hiaD’ Va R)
min _
D#0.DQ\U| QL. IDI<u; DI
. Ai(hi,D,V, R)
min ——
D41, DO\, Q) IDI<pi DI
— gkt

= i ,

IA

(107)

(108)

where ¢ <i < g + p; — 2, and (107) holds due to the fact
that Q;\ Ulj;qlJrl Q{ is a subset of Q;\ Ulj;ql Q{ . By recalling
the definition of o from (25) we have

* B
=

of = max {min (i (k;, O K\U)Z) QL R} (109)

= {min {ai(h;, Of K\ U} Q. R)}) (110)
k

= n ol 111

kelq,...q+pi} ( )

=a, (112)

where the last step holds by invoking the order in (106).
Equations (105) and (112) prove that af = al.

1

APPENDIX F
PROOF OF LEMMA 5

Since Pp, (i) is a polymatroid and R + a;(h;,U,V, R) -
1xxm € Pp,(U), then the inequaity D C U for the nonempty
set D

IR o Lp|l + ai(hi, D, V, R)|T o Ip| < fu(D) (113)

indicates that

a;(hi,D,V,R) < a;(hi,D,V, R)
D)—||IRo1
o pin VO ZIReIpl
DAS, DU 1T olpll

which means that a;(h;, U, V, R) is bounded above by

fv(D) — IR 1p]
IT olpl

(115)
DA, DU

On the other hand,
IR o Tyl +a;-(hi,U, V, R)|T o1yl
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SyU) — IR o Tyl
IT o Ty

< IR Tyl +
= fth)

which shows that (R + al/.(h,-,l/{, V, R) - 1g ) falls within
the polymatroid and therefore the upperbound a;. (hi,U,V, R)
is achievable, or a;(h;,U,V, R) = a,(h;,U,V, R).

IT o Ty
(116)

APPENDIX G

PROOF OF LEMMA 6

First we show that #! < --- < p’. Forke{l,...,p— 1}
we have
BE = pilhi, K\UZ V) U2V R) (117)
k—1+,J
(g:) Ai(hi,Vk,szlvij,R) (118)
IT o ]ly[kll
A;(hi, D, U1V R

® min = =1 R (119)

D44, De\UiZ| V! IT o ]lvf”

(. Vk k+1 | k—1y,J

(c<) Ai(hi, ViUV, »szlVi , R) (120)

T T oLl + T o Tyl
@ Dithi, Vier, UV R) + Ai(hi, Vi U2V R)

IT o Lyerll + 1T o Lyl

(121)
@ BT oy, |+ BEIT o 1y, |
1T o Lyt | + 17 o Lyl
% V!

; (122)

where (a) is based on definition of V{‘ in line 4 of Algorithm 3,
(b) is based on definition of V{‘ in line 4, (c¢) is based on
optimality of Vik, (d) is according to the chain rule in (11), and
(e) is based on the definitions of ﬁikH and ,Blk . The inequality
between (117) and (122) provides

BE(IT o Ty | 41T 0 1y1)

< FTUT o lpenll + BEIT oLyl (123)
or equivalently
Bl < gt Vke{l,...,p—1 (124)

Next we show that ,b’lp < ﬁip *! based on their definitions.
Specifically,

B = Bilhi, K\ UIZ) VI UMV R) (125)
. Ai(hi9D; Ule Vl]9R)
= min A (126)
D0, Dek\U?_| V! IT oLy,
@ , Ai(hi, DUV R)
< min (127)
D0, Dek\UY_ V. ID<u; 1T oly,l
= g, (128)

where (a) is due to the additional constraint. Finally, by
following a similar line of argument as in (117)-(122), for
ke{p,...,q — 1} we have

Bf = Bilhi, K\UZ} V] UV B (129)
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. X k k—1+,J
@ Aithi, Vi, Ui Vi, B) (130)
1T o Lyl
Ai(hi, D, UFZV Ry
@ min i j=1 i (131)
D9, DK\ VI, D= 17 o Tyl
. K1y,
(i) Ai(hi, Vi UVkJrl,Uj:lV,‘ , R) (132)

IT o Ly |+ 1T 0 Ly
@ Dithi, Ve, U5V R) + Ai(hi, Ve, U2V R
I o Lpea | + 1T 0 Ty

(133)
BT o Lyt | + BEIT o Lok
IToLyenl+ T oyl

©

(134)

where (a) is based on definition of Vl.k in line 12 of Algo-
rithm 3, (b) is based on definition of Vl.k in line 12 of
Algorithm 3, (¢) is based on optimality of Vl.k, (d) is according
to the chain rule in (11), and (e) is based on the definitions
of ,Bf“ and ﬁl-k, which establishes that

Hence, (124), (128), and (135) collectively establish that ﬁil <
pE< ... =B

Bl < B, Vke{p,... (135)

APPENDIX H
PROOF OF LEMMA 7

1)Q; C G;: Note that G; = K\ UZ;II Vik. In order to show
that Q; € G; we equivalently show that Q; N Vik = { for
ke {l,...,q—1}. By contradiction, let us assume that Q, has
non-empty intersection with some of the sets {Vl.l s V;] _1}
and denote by j the smallest value such that Q; N Vij # 0,
while for k € {1,..., j — 1}, we have Q; ﬂVl-j = (). By using

the expansion
V] ={QinV/yuiK\Q:} NV}, (136)

and the properties of A; defined in (11)-(12) along with the
definitions of 8/ and V/ (Algorithm 3) we get

BT 01
@

vil

Ai(hi, V!, UIZ Vi, R)

Ai(hi, {Qi NV YU KNG} NV}, UlZ Vi, R)
Ai(hi, [\Qi} NV U2V R)

+ Ai(hi, Qi NV {I\Q) N VY UUZIV/), R)

®
©

IVE

Ai(hi, (K\NQ} NV UV R
e e’
v/
+Ai(hi, Qi NV K\QiR),

—
cQ;

(137)

where (a) is based on definition of V{‘ in line 4 in Algorithm 3,
(b) is based on (136), (c¢) follows chain rule in (11), and (d)
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follows from {{A\Q¢} N V/} U{U/Z/Vi} € K\Qy. Next, note
that for any D C Vij we have

A, VL UDVER) A DUV R)

5 B ,
IT o Tyl IT o 1pl

(138)

or equivalently

(h: J=1yk J
Aihi, D,Ui_1 Vi, R) = B IT o 1p].
Now, by setting D = {K\Q;} N Vij we get
Aq(hi, (K\Qi) NV UL VE R) = BlIKNQ) NV .

(139)

By following the same line of argument we can also show that

Aithi, Qi NV, K\Qi, R) = BF1Qin V]I (140)
Combining (137)-(140) provides that

BT oLyl = B1RNQ NV 1+ B71Q V]| (141)

> (e nvii+1einvl) a42)

= BT o1, (143)

where (142) follows from g* > ﬁlj Comparing (141) and
(143) indicates a contradiction. Hence, for all j € {1,...,q —
1}, Or N Vij = and as a result Q; C G;.

2) V! C Q;:

If Viq ,@ Q;, then by noting that Viq C G; we conclude Viq N
{Gi\Qi} # #. By expanding V' = (V/ NQ;} UV N{G\Qi})
and following the same line of argument as in the previous
case we have

BT o Lyl
= Ai(h;, VI, UIZ 1V R) (144)
= Ai(hi, VI N Qi VI N{GAQIN U UIZ V)L R)
+ Ai(hi, VI N (GO}, UIZ VE, R (145)

> Ai(hi, VI N Q;i, K\Qi, R) + BV N{G\Qi}l  (146)
> BIIT o Tyyall N Qil + BT o Ly | N{GAQiY - (147)
> BT o Tyl (148)

where (146) follows from {V{ N {G\Q;}} U {U{ZV!} C
K\Q;, (147) follows from V; N Q; C Q;, and (148) follows
from g > [)’? . Comparing (144) and (148) establishes a
contradiction, and as a result Vl.q C Q9;.

APPENDIX I
PROOF OF THEOREM 2

We show that for the output of Algorithm 3 we have
B = l.q , which in conjunction with the definition of optimal
local rate adaptation factor in (19), establishes the desired
result.
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D= B
We provide the proof by contradiction. Suppose that we
have g > ,[)’iq . Then, according to Lemma 7 we have Viq c

Q; C G;. Let us define F; = Gi\Q;. Therefore
Qi =G\Fi, V! < G\F, and K\Q; = {K\Gi} U F;.

(149)
Consequently, we get
(he VI Uk
po = Dl VL Vi VL R (150)
1T o Tys|
Ai(hi, D, K\Gi, R
— min l( L \gl ) (151)
D#3,DCGi,|D|<ui IT o 1pl|
Ai(hi, D, K\Gi, R
— min l( 1 \gl ) (152)
D#B,DCG\Fi,|DI<ui IT o1p]
A;(h;, D, {IK\G; YU F:, R
2 min l( 1 ’{ \gl} ]:l, ) (153)
D#), DEGi\Fi,|DI<ui IT o 1p||
Ai(h;, D, K\Qi, R
— min l( L> \Ql ) (154)
D#B,DCQ;,ID|<ui IT o 1p]|
=B (155)

where (152) holds since V;] C G;\F; and therefore min-
imizing over the sets G; or G;\JF; yields the same result.
Equation (153) follows from (12) and (154) follows from
the definitions provided in (149). Comparing (150) and (155)
shows that g < ,Blg , which contradicts the initial assumption
that g > ,b’lg. Hence, we have g < ﬁiq.

2) pf = B

Next we show that the set of partitions {Q},...,Qf 1
yielded by Algorithm 3 achieves ,[)’iq , which in conjunction
with ¥ < B, establishes that gF = pI. To this end, we
show that

pl<- =g (156)
which can be readily verified by noting that fork € {¢q, ..., g+
pi — 1} we have

Ai(h;,D,V,R
,B,k - min M
D1, DCQ\U1Q/ DIz, IIT o1l
Ai(hi,D,V, R
S mm 4 l( ls 9V’ ) (157)
D1, DO\ Q) DIy, 1T o Lol
=B, (158)

where ¢ < i < g+ p; — 2, and (157) holds due to the fact
that Q;\ Ulj_:qu Q! is a subset of Q;\ Ulj_:q1 Q!. By recalling
the definition of f from (25) we have

g = max {min {;(h;, O, K\ UZ! @/, R))} (159)
Q,eQ; k /

= {min {f;(hi. Q. K\ U[Z} Of. B))) (160)

— i k 161

ke{q,rfl.l,qup;}'b)l (161)

= pi, (162)

where the last step holds by invoking the order in (156).
Equations (155) and (162) prove that g = ﬁiq .
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APPENDIX J
PROOF OF LEMMA 8

-+ r should

be decodable requlres that

>

(i,m)eD

lim < D rim < AL DV, RY,
(i,m)eD

V@ # D C U, or equivalently,

ra . R DY) =R o 1p)

min
D44, DU 1T olpll

A<A

Also, it can be readily verified that Ry, + A -ty 1s in
the achlevable rate reglon Ri (h"+1 u, V) and, as a result,
max ming; ;) == fi "= =7 . By invoking (43) the proof is complete.

APPENDIX K
PROOF OF THEOREM 4

Assume that Algorithm 5 partitions the set K to the
disjoint sets {Vl.l, cee, Vl.p } with corresponding parameters
{ﬁil, cee ﬁip} such that d < p — 1 is the largest number that
Vm € {1,..., M} we have (i,m) € Uﬁ:;])i”l. By taking the
same approach as in Lemma 6 we can readily show that

Bl<- << < Bl (163)
As proposed by the algorithm, r". = +oo for (j,m) €
V! and for (i,m) € Vf, where ¢ > d + 1, f;: = pl.
Therefore
ri
min -2 = min{+o0, g7, ..., BF) = gL (164)
Jj,m
Now consider any arbitrary partitioning Q; = {Q1 .. Qp i

that supports the rate increments {7} and satisfies the max-
min optimality. Based on the deﬁmtlon in (47) we have
~i

r
2 =min (5, (W, QF K\ U] Q] R". T),

min
(,m)ek tjm
(165)
and by invoking the result of Lemma 8 we have
Fi ,
min =% = min (5 (k] 7', OF, K\ UjZ| Q] R". T)).
@i,mek tjm
(166)
Recall that according to Theorem 2,
ming  {B; (h;’Jrl , Qk K\ Uk Qlj, R",T)} is maximized

by deploylng Algorlthm 3 and its respective maximum value
is f; 4+1 "Which is the same in Algorithm 3 and Algorithm 5
due do therr similarities in constructing the sets {Vk } as well
as computing parameters {ﬁk }. Therefore,
7
min L% < ﬁ.dH.

167
(i,m)ekC jm - ( )

Equations (164) and (167) together establish the desired result.

1y

2)

3)

APPENDIX L
PROOF OF THEOREM 5

Since R™" is decodable, as an straightforward applica-
tion of Theorem 4 we find that R() is also decodable
and R = R™" In general, at the (¢ + 1)" iteration
for finding the rate matrix R+ we have set R™" =
R'D where again by using Theorem 4 we conclude that
RY*D js decodable and RY*D = R@. Finally, as the
set of rate matrices {R‘*1} is monotonically increasing
and the set of decodable rate matrices is bounded, the
convergence is guaranteed.

By invoking R > ... > RW from the first part we
get

R(q) _ Rmin R(l) _ Rmin

i,m i,m > min i,m i,m )

(i,m)ek ti,m

min

168
(i,m)elC tim ( )

Now, for the given rate matrix R let us define r =
Rl,m — Rm"1 for j =1,..., K. By noting that RSQI =
Rginn + minj<;< K{rl m} where {ri{ ) are the rate rec-
ommendations made after the first iteration, we get

(1) min
. tm Ri,m
min
(i,m)elC tim
: J
o oming<j<gfr;,}
= mn ——M——
(i,m)ek ti,m
j
. . ri,m
= min min
1=j=K (i;m)ek tim
A
> min min — (169)

1<j<K (i,m)ek lim
~J
. . i,m
= min min
(i,m)elC 1<j<K tjm
. . Rim — R;n:;ln
= min min ——————
(i,m)el 1<j<K tim
Rl " — Rmm
7”", (170)

= min
(i,m)elC tim

where (169) holds due to Theorem 4. By putting together
(168) and (170) the desired result is established.
We denote the output of Algorithm 6 by R* =
limg s o R@ and show that for this rate allocation, any
increase in the rate of any user will incur a decrease in
the rate of some other user and therefore, R* is the
pareto-optimal solution. For this purpose, we investi-
gate the possibility of increasing the rate of a specific
codebook while keeping the others’ unchanged. Without
loss of generality we examine whether the rate matrix
R = R* + elyy where U = {{1, 1}} is decodable for
some ¢ > 0.
At each iteration, each specific codebook of each user
receives rate increment suggestions by all other users,
among which the user with the lowest rate increment
suggestion identifies the rate increment for that specific
codebook. At the final iteration, let us assume that
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the lowest rate increment recommendatlon for the first
codebook of user 1 is made by the i’ user, i.e., ”1,1 =
mm,-{r1 = 0. Also, let {V1,...,ym yrtl o pPy
denote the sets found for the z’h user in the last
iteration of Algorithm 6, using R* as the minimum
rate matrix and denote their respective values by
{ﬁil,...,ﬁl.d,,[)’f”l,...,,[)’f’}. Suppose d < p — 1 is
the largest number that Vmm € {1,..., M} we have
@i,m) € Uf:_dl Vis+1 and since all the codebooks of the
i user must be decodable, we must have ,[)’flJrl > 0.
Also recall that ﬁil < ﬁlz < ... < ﬁip . Based on this
observation we can deduce the following properties for
the sets {Vf} and {,[)’f :

a) ﬁd+2 > 0: Clearly when ﬁd+1 > 0 we must
have ,b’”H'2 > 0. Now suppose ,b’ld+1 = 0
so that ,b’”H'2 > 0. Assume ,b’”H'2 = 0.

Then, since A; (hl, v+, (Ud“Vj) R*) =
A; (hi, Vl.dH, (U‘;ZIVZ.]), R*) = 0 it can be shown

that A; (i, V2, (U9, V), R¥) = 0. This is a
contradiction since it implies that in Algorithm 6,

line 4, we could have chosen Vl.d +2 instead of Vid +1
ThllS ﬁd+2 > ﬂd+l > 0.

b) (1,1) € Vd+1 First, (1,1) ¢ Vj for j < d since
otherwise the i'" user would recommend ’"1 | =
+00 which is a contradiction. On the other hand,
if Im : (i,m) €V, for j > d+2 as the i'" user
would recommend the rate increment ﬁij 11 >0
which is also a contradiction.

¢) B4t = 0: Since (1,1) € V¥*!, due to R* being
the convergence point, f4*! cannot be greater than
zero as otherwise it leads to a higher rate for
the first codebook of the 1°! user. By taking into
account that f9! > 0 we get p4*! = 0.

As argued in Theorem 4, we have f ... < S . Now,
define ¢ € {1,...,d)} such that f! < ... < ¢ <0 and
petl < ... < g4+l =0 and construct the sets
'D_éVllU'“UViC,
0 & yyctl d+1
D —Vl.c U---uy',
+ A yd+2 P
DT = ViU --- UV

Recall that R > R*. Consequently, it follows that no
codebook with index in D~ can be decoded at receiver
i, under the rate assignment R. Thus, the codebooks
in D~ must be treated as Gaussian interferers. Next
since the rates of the signals in D" remain unal-
tered, these codebooks are decodable using the partition
U2V K\ UI_y 10 V) under the rate assignment
R. Thus, without loss of optimality, we can assume that
these users have been perfectly decoded and expurgated.
In the following, for simplicity we define the partitioning
operator Ux[ X, for any set X.

Let us focus on any arbitrary partitioning of sets
{G,D‘ U DO\_C’;} and Uk[_C’;]k such that (i, m) € G for
all m € {1,..., M}. Our objective is to show that at

least one of the codebooks of user i is not decodable
under the rate assignment R using any such partition.
First consider the case (1, 1) ¢ G. For all the codebooks
of user i to be decodable we must have

min { A (i, (1, D~ UD"\ Ui, 11, By}
= min {A;(h;. (G, D~ UD\U_, 1G], R} = 0.

Using the fact that g¢+! =0, we can conclude that for
any partitioning Uk[DO\g]k we have

min { A (i, [DO\Gli, D™ Uy (DG, R = 0.
However, since for any partitioning Uy [D°]; we have
min { A (i, (D", D™ Uyt D], R} = 0,

we must have that both

min { A (h, [G), D~ UD\ UL, 1G], R}

and
min { i (i, [DN\Gli, D~ Uy ID\G, R

are equal to zero. Again using the fact that we have
Bt = 0, it is concluded that for any partitioning
UDN\G U (W1_, V)l we have

min { A; (i, [D\G U (UT_, V),

D™ Ujsk [Do\g~ U (U?=c+1vij)]j’ R*)} z 0.

171)
However, since for any partitioning U [U —c+1V‘j]k we
have
min {Ai(hi, (W V1. D™ Ujas [U?:Hlvij]j’R*)}
i (172)
and
min {A; (i, [D\G1. D™ Ujoi (DG, B) | = 0.
(173)

we immediately have
min {A; (i, (DG U (UF_ VDIks (U V)

UD™ Ujok [D\G U (U, V)1, BY) |
=0. (174)

This yields us the desired contrad_iction since the parti-
tioned set Ug[DO\G U (Uj C+1V-j)]k does not contain
(i,m) for all m € {1,..., M} but was not selected
instead of VidH in line 4 of Algorithm 5. Conse-
quently, we conclude that the codebooks of user i is
not decodable using the partitioning {G, D~ U D°\G}
and Uy [é]k under rate assignment R* and hence under
rate assignment R.

Finally, we need to rule out partitions {_C’; , D~ U DO\G}
and Uy[G; such that (1,1) € G and (i, m) € G for all
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[15]
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[17]

m € {1,..., M}. For user i to be decodable, we must
have that

min {Ai(hi, [Gle, D~ UD\ US_, 51, k)} z0.

Using the facts that T = 0 and (1,1) ¢ D\G, we
conclude that

min { A, (i, [D\G1i, D™ U [D\G), RN = 0.

These facts collectively provide that
ming {A;(h;, [Pk, D~ Uj=i [D];, R%)} >
0. However, this is a contradiction since
ming {A; (hi, [D°k, D~ Uj»r [P°];, R*)} = 0 and

R > R* with Iél,l > RT]'
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