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On the Determination of Thermal
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Experiments

The Fourier and the hyperbolic heat conduction equations were solved numerically to
simulate a frequency-domain thermoreflectance (FDTR) experiment. Numerical solutions
enable isolation of pump and probe laser spot size effects and use of realistic boundary
conditions. The equations were solved in time domain and the phase lag between the tem-
perature of the transducer (averaged over the probe laser spot) and the modulated pump
laser signal was computed for a modulation frequency range of 200 kHz—200 MHz.
Numerical calculations showed that extracted values of the thermal conductivity are sen-
sitive to both the pump and probe laser spot sizes, while analytical solutions (based on
Hankel transform) cannot isolate the two effects. However, for the same effective (com-
bined) spot size, the two solutions are found to be in excellent agreement. If the substrate
(computational domain) is sufficiently large, the far-field boundary conditions were found
to have no effect on the computed phase lag. The interface conductance between the
transducer and the substrate was found to have some effect on the extracted thermal con-
ductivity. The hyperbolic heat conduction equation yielded almost the same results as the
Fourier heat conduction equation for the particular case studied. The numerically
extracted thermal conductivity value (best fit) for the silicon substrate considered in this
study was found to be about 82—108 W/m/K, depending on the pump and probe laser spot

sizes used. [DOI: 10.1115/1.4052655]
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1 Introduction

The ability to control and manipulate heat transport at the nano-
scale is important for the advancement of thermal management
strategies in electronic and optoelectronic devices. In the past dec-
ade, noncontact optical pump probe techniques based on thermor-
eflectance have been used extensively for the study of heat
transport at very small time and length scales. The two most com-
monly used techniques are the time domain thermoreflectance
(TDTR) technique and the frequency domain thermoreflectance
(FDTR) technique. In TDTR, the sample is heated using a pulsed
laser that is modulated, and the surface is probed using a time-
delayed laser that measures the change in the reflectivity of the
surface caused by the change in temperature of the sample [1-3].
In FDTR, the sample is, instead, heated using a modulated contin-
uous wave pump laser beam resulting in surface temperature
(reflectivity) oscillations, which are then monitored using a probe
laser. The lag in phase between the pump and probe laser signals
is recorded. In either method, the surface of the target material
(whose thermal properties are sought) is covered with an ultrathin
metallic layer, often referred to as the transducer.

Extraction of the thermal conductivity of the substrate from
measured thermoreflectance data requires use of a thermal trans-
port model. Since both TDTR and FDTR experiments measure
surface temperature (or some indicator of it), while thermal con-
ductivity is a volumetric property, the two quantities can only be
related through a thermal transport model. Furthermore, the pres-
ence of the transducer complicates matters since the heat must
now transfer through multiple layers and the imperfect contact
between the two layers. The most common model used for this
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purpose is based on the solution of the Fourier heat conduction
equation in frequency domain. This was brought to the limelight
by Cahill [1] and has been used by the vast majority of researchers
since then. Multiple layers are treated using the well-known Feld-
man algorithm [4]. Interfaces between layers are treated as artifi-
cial layers whose thermal properties are adjusted to reproduce
measured interface conductance values.

The thermal conductivity extracted from FDTR experiments
using such a Fourier law-based model has been found to change
when the modulation frequency of the pump laser is changed
[1-3,5]. This behavior is attributed to the fact that when the laser
modulation frequency is high, the thermal penetration depth,
which is inversely proportional to the square root of the modula-
tion frequency, is small and can often be smaller than the mean
free path of some of the energy-carrying phonons. As a result,
some phonons hardly scatter. This results in so-called ballistic-
diffusive transport or quasi-ballistic transport. In this regime of
transport, the effective thermal conductivity has been found to be
smaller than the bulk value—a phenomenon known as thermal
conductivity suppression [5-T7].

In an effort to capture ballistic effects and develop a model that
can predict thermal conductivity suppression across all modula-
tion frequencies, researchers have proposed various enhancements
to Fourier law-based models [8—18]. One class of these models
makes use of the hyperbolic heat conduction equation, which
accounts for finite group velocity of the phonons. The Cattaneo
equation, the Cattaneo—Vernotte model, and the dual phase lag
model fall in this category [8,9]. Even though the hyperbolic heat
conduction equation accommodates finite phonon speed, all pho-
nons, regardless of their type and frequency, are assumed to have
the same speed. In an effort to remove this deficiency, Ramu and
Bowers [10] proposed a two-band model in which a cutoff fre-
quency is used to classify the phonons into ballistic and diffusive
phonons. The ballistic phonons are then treated by adding a higher
order correction term to the Fourier law that is derived from the
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Boltzmann transport equation (BTE) for phonons. In a similar
model, Ma [11] treated nondiffusive effects by introducing an
additional term in the Fourier heat conduction equation that
involves the characteristic ballistic heat transport length as an
additional parameter to the thermal conductivity of the substrate.
This characteristic length is an additional tuning parameter in this
model. In the ballistic-diffusive model proposed by Chen [12],
and later expanded to complex three-dimensional geometry by
Mittal and Mazumder [13,14], the phonon intensity is split into a
diffusive component and a ballistic component. The diffusive
component, by virtue of being more or less isotropic, can be
treated using the method of spherical harmonics, while the ballis-
tic component is treated using a surface-to-surface exchange for-
mulation. More recently, a model that introduces a hydrodynamic
term in the Fourier heat conduction equation—analogous to the
advective term in the Navier—Stokes equation—has been proposed
to capture ballistic effects [17,18]. In principle, the multidimen-
sional phonon BTE encapsulates the necessary phonon physics,
and should be used as the model to interpret the measured data, as
demonstrated by Ali and Mazumder [19] for TDTR experiments.
All of the aforementioned approximate models were proposed and
exercised to avoid full-fledged (and very time-consuming) solu-
tion to the phonon BTE, and continue to be used for the extraction
of thermal conductivity from both TDTR and FDTR experimental
data.

One advantage of using the Fourier law and the aforementioned
transform method is the efficiency of the calculation process.
Numerical solution of the Fourier heat conduction equation in
time domain, although considerably simpler than solving the
BTE, is still time-consuming. Such calculations have been con-
ducted by Xing et al. [20] using the commercial finite-element
solver comsoL. The numerical calculations were motivated by the
desire to address nonlinearity (due to temperature dependence of
the thermal conductivity) and to assess the effect of external heat
loss. It was found that heat loss plays an insignificant role unless
the modulation frequency is very low. Braun and Hopkins [21]
have conducted numerical calculations using the Fourier heat con-
duction equation in multilayered materials under continuous and
pulsed laser energy input with the goal of investigating the ther-
mal penetration depth and its dependence on various parameters.
In this study, we reassess the efficacy of numerical solutions by
solving the governing heat conduction equation in time domain.
This allows us to assess the validity of some of the assumptions
invoked in transform methods. Specifically, the objective is to
answer the following questions: (1) is an effective laser spot size,
\/ rpzyump + rgrobe’
mal conductivity, or do the individual values of rpump and rprobe
have any bearing on the results? (2) What is the effect of heat loss
from the system (effect of boundary conditions)? (3) What is the
effect of the finite thickness of the substrate? (4) What is the effect
of the interface conductance between the substrate and the trans-
ducer? In addition to the Fourier heat conduction equation, numer-
ical solution of the hyperbolic heat conduction equation is also
explored in an effort to capture quasi-ballistic effects.

defined as reff = adequate for extracting the ther-

2 Theory and Solution Method

2.1 Analytical Solution: Fourier Heat Conduction. The
analytical solution to the Fourier heat conduction equation with
periodic heat flux boundary conditions is obtained by first trans-
forming the original equation in time domain to an equation in fre-
quency domain, followed by invoking a Fourier transform. Details
of this procedure are provided elsewhere [22]. In this particular
case, the frequency domain solution for a single layer is obtained
by taking the Hankel transform of the response due to the laser
beam since the sample is assumed to have cylindrical symmetry.
For a semi-infinite solid being heated by a periodic heat flux oper-
ating at an angular frequency , the response of the surface is
given by [1,22]
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AT::2m4J G(p)exp [~ (rpump + Toeote) /2IPdp (1)
0

where p is the Hankel transform parameter, rpymp and rpppe are the
1/* radius of the pump and the probe beam, respectively, and A is
the amplitude factor of the heat flux (due to the pump laser). The
quantity AT denotes the weighted (over the radius of the probe
laser beam) average temperature and has both a real and an imagi-
nary part. The quantity G(p) in Eq. (1) is given by

1 im
Gp)=———=: ¢ =— )
P) =7 el

where £ is the thermal conductivity of the solid (or substrate) and
o its thermal diffusivity. It is clear from Eq. (1) that the effect of
individual variation of the values of rpump and rpbe cannot be
delineated in the analytically calculated phase lag; rather the

-2 ")
’pump + ’probe’

effective radius, defined as rey = is the only

quantity that matters.

When the solution is extended to a layered structure using the
Feldman algorithm [4], as proposed in [1], the layers are num-
bered starting from n=1 being the one closest to the surface
being heated by the laser. The thickness, thermal conductivity,
and thermal diffusivity of each layer are denoted by L,, k,, and
o, respectively. The expression for G(k), shown in Eq. (2), is
then replaced by

1 (Bl — By
Wm-;@ﬁ;ﬁ} T = hattrs iy = \JATP + g (3)

The quantities B and B~ are the growth and decay exponents
along the thickness. For an N-layered structure, the furthest layer
only has decay (By = 1) and has no growth (By; = 0). The growth
and decay exponents for the other layers are determined using the
following recursive relation starting from the Nth layer

By 1 | exp(—ualn) 0

B, 2y, 0 exp(unLy,)
Vn + Tn+1 Tn = Vnt Bn++1 (4)
Tn = Vnt1 Ta + Pn+1 B;+1

In this method, the interface between layers is treated as an artifi-
cial layer for which the thermal conductivity, thermal diffusivity,
and thickness are chosen such that a known thermal conductance
value (=k,/L,) is matched, and the thermal mass is small. How-
ever, lateral (radial) conduction within the interface, which is
unphysical, cannot be eliminated.

2.2 Numerical Solution: Fourier Heat Conduction. The
starting point of the numerical solution is the transient Fourier
heat conduction equation. Under the axisymmetric assumption,
and constant thermophysical properties, this equation may be
written in cylindrical coordinates as [22]

oT O*T ko [ or
(+2) ®

P — 2 = K—— - —_—
pe ot KT k@z2 +r8r r@r

where z is in the axial or through-plane direction, and r is in the
radial or in-plane direction, as shown in Fig. 1. The boundary con-

ditions in the section where the laser is shining (r < ;) is written
as

k— = ¢} (r)[1 + sin ]

(£,0,0<r)

(6a)
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Fig. 1 Schematic of the computational domain and boundary
conditions

where ¢/ (r) is the radially varying laser heat flux profile, and is
assumed to be Gaussian in shape [1]. As noted in Eq. (6a), the
laser flux also has a temporally varying component with modula-
tion frequency w. At the axis of symmetry, the boundary condition
is written as

or

arl =0

(t,2,0)

(6b)

On the top surface outside of the laser spot and the external (side
and bottom) surfaces of the substrate, a Newton cooling boundary
condition was used, namely

oT
Top surface: —k—— =h[T(t,0,r >r) —Tx]  (6¢)
0z (£,0,0>r7)
. oT
Side surface : _kE = hy[T(t,z,15) — Tao] (6d)
(t,z,r5)
oT
Bottom surface: k— = hy[T(t,zr + z5,7) — Ts] (6€)
zZ
(tzr+zs.r)

where h,, hy, and hy, are the heat transfer coefficients on the top,
side, and bottom surfaces, respectively, and T, is the ambient
temperature.

For numerical solution of Eq. (5) subject to the boundary condi-
tions in Eq. (6), the solution domain is first split into two regions:
the transducer and the substrate. The transducer is very thin, and
consequently, may be assumed to have negligible temperature
gradient in the axial or z-direction. Thus, it may be split into a
series of radial control volumes, as shown in Fig. 2. Applying the
finite volume procedure [23] to these control volumes, we obtain

krzr (2r; — Ary) 2rjAr;
Arj + Al’j_l * Prerer At
kTZT (2}’]' — Ai‘j)
Tt A |
i+ Arj

|:kTZT (2}‘] + Ar,) TTJ-

Arj + Arjyy

{szT (21 + Ary)
N |Trjr —

Arj + Arjyy

2rjAr;
At

TP + 24} rjAr — 24 jriAr; @)

= Prerzr
where ¢/} is the heat flux on the top surface of the jth control vol-
ume (or cell) of the transducer, and is given by either Eq. (6a) or
Eq. (6¢) depending on the location of the cell. The density, ther-
mal conductivity, and specific heat capacity of the transducer are
denoted by py, kr and cr, respectively, while zy denotes its
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Fig. 2 Schematic representation of the stretched mesh used
for computations in the two different regions (transducer on
top and substrate at the bottom) and their coupling

thickness. The radius of the jth cell’s center is denoted by r;, while
the radial span (grid size) is denoted by Ar;. Equation (7) is
derived using the backward Euler time advancement method [23],
wherein T?'J‘-i denotes the temperature of the jth cell of the trans-
ducer at the previous time-step. The heat flux through the bottom
surface of the transducer or the interfacial contact (see Fig. 2) is
denoted by ¢ ;, and is related to the contact conductance by the
following relation

qc; = Ge(Trj —Tsjop) (3)

where G is the contact conductance (in W/m*/K), and T Jitop are
the temperatures on the top surface of the substrate. Equation (8),
in fact, serves to connect the transducer to the substrate, details of
which will be discussed shortly. Substitution of Eq. (8) into Eq.
(7), followed by rearrangement yields

kTZT (2}'/' + AI"/) kTZT (21"/ — AI‘[) 2r]A;]
R [ : 2GeriAr | Tr;
Arj+ Ay Arj+Ari_y tprerzr— =t GenAn I
krzr (2rj+Arj) krzr (2r; — Ary) -
Arj+Arjyy T+ Ari+Ari Tyl
2I‘j

Arj
=pPrCrir At J T;)-lq + Zq’,c,-r,-Ar,- +2GcTstl',[0pl’j/'A)’_/'

oJ

©)

Equation (9) represents a set of N tri-diagonal equations that can
be solved readily using the tridiagonal matrix algorithm [23].

In order to derive similar equations for the cells in the substrate,
the finite volume procedure is applied again, but now to the full
two-dimensional equation, to yield

ksAzg(2rj + Arj)  ksAzi(2rj — Arj) AksriAr;
Arj + Arjyy Arj + Arj_y Az + Azpyy
AksriAr; 2rjAr;
S Az, Te -
Az + Az PsCsAZy At Sk
ksAzi(2r + Ary) | ksAzi(2ri — Ary) |
Arj + Arjyy SitLk Arj+ Arj_y Si—1k
AksriAr; T 4ksrjAr;
Az 4+ Az Skt Azp + Az Sik=1
2riAr;
= pgCsAz; JAt / Tslﬁk

(10)
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where thermal properties with subscript “S” denote those of the
substrate. Similar equations may be derived for cells adjacent to
the boundaries. These equations are not presented here for the
sake of brevity. Equation (10), along with similar equations for
the boundary cells, represent a system of five-banded linear alge-
braic equations that may be solved using any iterative solver tai-
lored for banded systems. In this particular case, the Stone’s
strongly implicit method [23] is used.

Equations (9) and (10) are coupled, and are solved using the
following iterative procedure:

(1) The temperature on the top surface of the substrate, T op,
is first guessed. A reasonable guess may be the temperature
of the ambient, i.e., T.

(2) Equation (9) is then solved using a tridiagonal matrix algo-
rithm. This yields the temperature of all cells of the trans-
ducer, namely T7; .

(3) Equation (8) is next used to compute the heat flux through
the interface or contact.

(4) The computed value of the flux serves as a boundary condi-
tion for the top surface of the substrate. With this boundary
condition, Eq. (10), along with similar equations for the
boundary cells in the substrate, are solved using the
Stones’s method.

(5) Steps 1-4 are repeated until convergence.

(6) Once convergence has been attained for the time step in
question, this solution replaces the initial condition, and the
procedure is repeated for the next time step.

2.3 Hyperbolic Heat Conduction Equation. The Fourier
law can be derived from the BTE in the limit where the number of
scattering events of the heat carriers, i.e., phonons, is infinite. This
limit may also be manifested by assuming an infinite group veloc-
ity of the phonons. The Fourier heat conduction equation does not
contain any information pertaining to either the group velocity or
the relaxation time scale of the phonons. It is incapable of captur-
ing any physical phenomena where the finite speed of the phonons
may be of importance.

To overcome the aforementioned limitations of infinite wave
speed as predicted by the Fourier heat conduction equation, a
modification to Eq. (§) was proposed by Catteneo [8,9], in which,
an additional transient term was introduced

0T or ) 0T ka< )
pC’EW—FpCEfkv T—kg-ﬁ*;a IE

(11)
Equation (11) is a damped wave equation with wave speed
\;k/ pct, and is referred to as the hyperbolic heat conduction
equation. This equation can also be derived from the BTE by tak-
ing its first moment [8,9]. It assumes that the time scales of inter-
est are of the same order of magnitude as the relaxation time,
whereas the length scales are much larger than the characteristic
length scale for local thermodynamic equilibrium. This makes the
hyperbolic heat conduction equation nonlocal in time but local in
space. Therefore, the ballistic behavior of phonons is only par-
tially captured by this model. In addition, the frequency dependent
behavior of phonons cannot be modeled using this equation.

As far as discretization and the numerical solution of Eq. (11) is
concerned, the procedure is very similar to the one described in
Sec. 2.2. The right-hand side is discretized and spatial boundary
conditions are applied in exactly the same manner as discussed
earlier. The second derivative in time is discretized using the
backward Euler method, as described elsewhere [23]. The numeri-
cal solution also follows the same algorithm outlined for the Fou-
rier heat conduction equation. Once the temperature distribution
has been computed, the heat fluxes are computed using

r@+q= —kNT

ot (12)
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rather than the Fourier law, i.e., Eq. (12) is used instead of
q = —kVT. One of the critical additional inputs to the hyperbolic
heat conduction equation (Eq. (11)) is the effective relaxation
time-scale of the phonons, 7. As to how it is determined is dis-
cussed in Sec. 3.

3 Results and Discussion

For the purposes of this study, the experimental data reported
by Regner et al. [2] have been used for extraction of the thermal
conductivity. The substrate in this experiment is a silicon block
that is 525 um thick, i.e., zg= 525 um. The radial extent of sub-
strate, rs, is not known, and was assumed to be also equal to
525 um for the numerical calculations. The transducer is a bilayer
transducer with 55 nm of gold and 5 nm of chromium, resulting in
zr =60nm. The thermophysical properties of silicon, gold, and
chromium that were used for calculations are shown in Table 1.
Based on the thicknesses of the gold and chromium layers, effec-
tive values of the properties of the transducer were estimated and
used. These are also shown in Table 1.

For numerical calculations, a 200 x 200 nonuniform mesh with
a stretching factor not exceeding 1.2 was used, as shown sche-
matically in Fig. 2. This mesh was found to yield grid independent
solutions. The modulation frequency, which is as an input parame-
ter, was varied between 200kHz and 200 MHz as in the experi-
ments, and calculations were conducted for 22 different
frequencies in this range. Each sinusoidal cycle of the laser was
split into 5000 time steps. This implies that for high frequencies, a
very small time-step size (~1 ps) was used to ascertain accurate
temporal solutions. The nominal value of the interfacial (between
the substrate and the transducer) contact conductance, G¢, was
taken to be 200 MW/m?/K, as suggested by Cahill [1], although
for a different material pair. The pump and probe laser 1/e” radii,
denoted by rpump and rprobe, respectively, are inputs in the model.
A Gaussian laser flux profile (in r) was used for all calculations.
The laser power was adjusted to attain a temperature rise of
approximately 5 deg at the center of the laser spot, as reported in
the experimental description [2]. For each modulation frequency,
the calculations were advanced in time for several tens of cycles
until the system exhibited quasi-periodic behavior. Three cases
were considered:

e Case 1 (baseline case): rpymp=4.1pum, 7rprobe =2.8 um,
resulting in regr = 4.95 pm

o Case 2! rpump=3.5um, rprobe=3.5um, resulting in
Terr = 4.95 um

e Case 3: rpump=2.8um, rpobe=2.8 um, resulting in
Teff — 3.95 Hm

The radii for the baseline case were selected based on data pre-
sented in the supplementary material document of Regner et al.
[2]. Cases 1 and 2 constitute a parametric variation in which the
pump and probe radii are altered while keeping the effective
radius unchanged. Cases 1 and 3, on the other hand, constitute a
parametric variation in which the pump radius is varied while
keeping the probe radius unchanged.

Figure 3 shows a plot of the temperature—time history of the
center of the transducer (origin in Fig. 1) for four different fre-
quencies for the baseline case. At low frequency, the transducer

Table 1 Thermophysical properties of the various materials
used in the calculations

Transducer
Silicon Gold Chromium Effective
Density (kg/m3) 2329 19,320 7140 18,290.8
Specific heat capacity (J/kg/K) 702 129 450 155.7
Thermal conductivity (W/m/K) Calculated 310 93.9 266.6

Transactions of the ASME
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Fig. 3 Computed (Fourier equation) temperature history at the
center of the top surface of the transducer for different frequen-
cies for the baseline case

receives the laser flux for a longer period of time and, conse-
quently, heats up more. This time-domain signal is postprocessed
to calculate the phase shift or lag between the pump laser and the
computed temperature at the center of the transducer. The same
calculation was repeated for several different thermal conductivity
(of substrate) values. For each thermal conductivity value, a phase
lag versus frequency plot was generated. The error norms—both
L1 norm and L2 norm—between the computed phase lag and the
experimentally measured phase lag were then computed. The
extracted (or desirable) thermal conductivity was chosen to be the
one that minimized the error norm. In other words, it is a value
that best fits the data over the entire range of frequency considered
in this study. It was found that depending on which norm (L1 or
L2) is used for best fit, the extracted value of thermal conductivity
is slightly different, as discussed shortly. To improve the quality
of fit, previous researchers have suggested that, perhaps, one
should consider a frequency-dependent thermal conductivity [5],
while others have suggested using an anistropic thermal conduc-
tivity [24]. Yet others have tried to adjust the interface thermal
conductance to obtain a better fit [11]. Wilson et al. [25], and later
Regner et al. [26], proposed and used a more sophisticated
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nonequilibrium two-temperature model in which phonons and
electrons have different temperature, and exchange of energy at
the interface between the metal transducer and the semiconductor
substrate is driven by the difference in these temperatures. While
such a model better represents the energy transport at the inter-
face, it requires solution of two transient heat equations, which is
beyond the scope of this study, and also has additional unknown
(uncertain) parameters.

The sensitivity of the extracted thermal conductivity to the
pump and probe radii was first investigated, since in many experi-
ments, these quantities are often uncertain. Cases 1 and 3 consti-
tute a parametric variation in which the pump radius is varied,
while the probe radius is unchanged. Furthermore, in both cases,
the output temperature signals were processed in two ways: the
center spot of the transducer (corresponds to the limiting case of
Tprobe = 0), and an average over rpope = 2.8 um. Figure 4(a)
shows the phase lag computed for the two different pump radii
and 7rprope = 2.8 wm for k=98 W/m/K. As seen, the computed
phase lag is sensitive to the pump laser spot size, especially at low
and intermediate frequencies when the thermal wave gets an
opportunity to penetrate more, and the radial transport of heat
becomes more pronounced with a smaller laser spot. Figure 4(b)
shows the phase lag computed with two different probe/pump
radii combinations, while maintaining the same effective radius of
3.5 um. Again, k=98 W/m/K is used to generate this phase plot.
It is clear from Fig. 4(b) that the numerically calculated phase is
affected by individual values of the pump and probe radii, as
opposed to just the effective radius in the analytical model. The
extracted thermal conductivity values that result in best fit to the
experimental data are shown in Table 2. For the baseline case, the
analytically and numerically extracted thermal conductivity val-
ues are in excellent agreement: 99 W/m/K versus 98 W/m/K. The
fact that these two results start deviating from each other in
the other cases is simply due to the fact that the experimental
data are for the baseline case and using it for extracting the
thermal conductivity under other conditions is not valid, strictly
speaking. The analytical value also agrees with the reported value
[2] of &£ = 996 W/m/K, and the phase plots for these cases are
shown in Fig. 5. The numerical model curve represents the best fit
to the experimental data using the L2 norm minimization crite-
rion. For the numerical model, the best fit is obtained by a thermal
conductivity value of k =98 W/m/K. If instead, the L1 norm mini-
mization criterion is used, the best fit is obtained with a thermal
conductivity value of 99 W/m/K. From Fig. 4 and Table 2, it is
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Fig. 4 Numerically computed phase lags for the different cases considered: (a) Cases 1 and 3 showing effect of
variation of pump radius and (b) Cases 1 and 2 showing effect of variation of both pump and probe radii but same

effective radius. In each case, k=98 W/m/K was used.
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Table 2 Effect of pump and probe laser radius on the extracted thermal conductivity (in W/m/K)

Tpump (ﬂm)

2.8

35

T'probe (pm) Analytical Numerical

Analytical

4.1

Numerical

Analytical

Numerical

0 47
2.8 76
35 —

64
82

70

108

78
99
109

73
98

also clear that both pump and probe radii have noticeable effects
on the predicted phase lag and the resulting thermal conductivity.
Most importantly, the numerical results show that effective radius
alone is not adequate to extract the thermal conductivity and vari-
ation of individual pump and probe radii do have an impact on the
extracted thermal conductivity. Any uncertainty in the probe and
pump radii can have a significant impact on the results.

The extracted value of thermal conductivity, namely,
k=98 W/m/K, is significantly smaller than the bulk thermal con-
ductivity of silicon at 300K, which is about 148 W/m/K. This
reduction in thermal conductivity represents the so-called thermal
conductivity suppression reported in the literature [6,7]. The phase lag
versus frequency behavior with the bulk value of thermal conductivity
is shown in Fig. 6. The phase lag is underpredicted at all frequencies
if the bulk value of 148 W/m/K for thermal conductivity is used.

The spatiotemporal evolution of the nondimensional tempera-
ture distribution and the heat wave is illustrated in Fig. 7 for a
modulation frequency of 200kHz. For clarity of visualization,
only a small portion of the substrate is shown. Since the penetra-
tion depth of the heat wave is inversely proportional to the inverse
square root of the modulation frequency, and 200kHz is the
smallest frequency considered in this study, the distributions
shown in Fig. 7 represent the highest penetration of the heat wave
among all cases considered. After 30 cycles, the system has
almost reached quasi-steady-state. Since the substrate (and com-
putational domain) is of size 525 um in both directions, and the
heat wave has not even penetrated 200 um in the worst-case sce-
nario, it is fair to conclude that the computational domain is large
enough for the far-field boundary conditions at the top and side to
have minimal effect on the results. This is corroborated using
additional calculations described in the next paragraph. The
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Modulation Frequency (MHz)

Fig. 6 Phase lag computed using the numerical model (Fourier
equation) with two different thermal conductivity values

computed 1/e penetration depths were compared against those
reported by Braun and Hopkins [21], although the present system
includes a transducer layer, while the calculations reported in [21]
does not. At pump laser frequencies of 200 kHz and 10 MHz, the
penetration depths reported in [21] are 7 yum and 1.8 um, respec-
tively. In contrast, because of the presence of a transducer (and
the contact resistance between the transducer and the substrate),
the penetration depths in the present study was found to be expect-
edly lower: 2.4 um and 1.1 um, respectively, for the same two
frequencies.

For baseline numerical calculations with rpymp = 4.1 wm and
averaging Over rppe = 2.8 um, the top surface of the transducer
outside of the pump laser spot was assumed to have heat loss with
h;=10W/m?*/K. On the other hand, the far-field boundaries on
the side and bottom were assumed to be isothermal at the ambient
temperature (T-,= 300K), which essentially corresponds to a
very high heat transfer coefficient, i.e., ks, h, — oco. To investigate
the sensitivity of this boundary condition on the computed results,
the solution was recomputed with an adiabatic boundary condition
instead of an isothermal boundary condition. An adiabatic bound-
ary condition represents the other extreme wherein the heat trans-
fer coefficients are zero. Figure 8 shows the difference in the
temperature along the centerline (axis) of the substrate. Clearly,
there is no meaningful difference implying that the boundary con-
dition has no impact on the results. This may be attributed to the
fact that the computational domain is much larger than the pene-
tration depth. Likewise, the heat transfer coefficient on the top of
the transducer was changed from 10 W/mz/K to 250 W/mz/K, and
the maximum change in temperature anywhere on the transducer
was found to be 5.5 uK. The general trend of these results appears
to agree with the findings of Xing et al. [20].

One of the critical inputs to the model considered here is the
interface conductance, G¢. For the baseline calculations, a value
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Fig. 7 Nondimensional temperature distributions computed
using the Fourier heat conduction equation in the substrate
after various instances of time with a modulation frequency of
200kHz for the baseline case. Dimensions shown are in
micrometer.
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Fig. 9 Effect of interface conductance on phase lag computed

using the Fourier heat conduction equation for the baseline
case

of 200 MW/m?/K was used, in accordance with Cahill [1]. Other
researchers have suggested a value in the range 160-250 MW/m*/K
[11]. To understand the sensitivity of the extracted thermal conduc-
tivity to this unknown parameter, computations were performed for
various values of G¢. Figure 9 shows the predicted phase lag for
various values of G¢ and a thermal conductivity of 98 W/m/K.
There is clearly some difference in the results at intermediate and
high modulation frequencies. The quality of the fit is best for Go=
200 MW/m2/K than for the other two values.

As a final step in the analysis, all calculations were repeated
using the hyperbolic heat conduction equation. The effective (or
average) relaxation time-scale, t, which appears as an input in the
hyperbolic heat conduction equation, was estimated using the fol-
lowing relationship [27]

Dmax,p

2
Cop|Vop| Topdw

|

Ominp

=)

 Wmin,p

13)

T =

Omaxp

Cop|Vop \Zda)

where c,,, is the spectral specific heat capacity of silicon, and v,,,,
is the spectral group velocity of the phonons. Both of these quanti-
ties can be computed directly for any polarization p and frequency
o using dispersion relationships of silicon, as explained elsewhere
[8,28]. The value of the effective relaxation time-scale using
Eq. (13) and frequency and polarization dependent time-scale
expressions proposed by Holland [29,30] was found to be about
0.0101 ns. The error (difference) in temperature as predicted by
the two models (Fourier versus hyperbolic) is depicted in Fig. 10.
The error in temperature shown in the y-axis is the difference nor-
malized by the peak-to-peak temperature of each case, and
expressed as a percentage. The nondimensional distance shown in
the x-axis is the distance normalized by the theoretical penetration
depth for the lowest frequency (200 kHz) case. At high frequency,
quasi-ballistic effects are expected to be the strongest and conse-
quently, some difference is observed between the two models. At
low frequency, the errors are practically nonexistent. At 200 MHz,
the cycle time is 5ns, which is still significantly larger than the
estimated effective relaxation time scale. This is the reason why
even for the highest frequency case, the largest error is only about
0.12%. The phase lag calculated using the two models was found
to be almost identical, and the resulting thermal conductivity com-
puted using the hyperbolic heat conduction model was found to be
97 W/m/K (as opposed to 98 W/m/K with the Fourier heat conduc-
tion model). Again, this closeness in the extracted value of
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Fig. 10 Computed temperature difference (percentage) along
the centerline of the substrate between the Fourier heat con-
duction and hyperbolic heat conduction models for various
modulation frequencies after 30 cycles for the baseline case

thermal conductivity is to be expected since the relaxation time-
scale used in the calculations is significantly smaller than the
cycle time for any modulation frequency considered.

The choice of the effective relaxation time-scale was further
investigated. Figure 11 shows a plot of the relaxation time scales
of the two acoustic phonon types along with the cumulative
energy distribution function computed at 300 K. It shows that a
significant amount of energy is carried by low-frequency phonons,
which have a much larger relaxation time-scale compared to the
average value. Based on this observation, computations were per-
formed with 7=0.05ns instead of 0.01ns. With this relaxation
time scale, the thermal conductivity that exhibited best fit to the
phase plot was still found to be 97 W/m/K, although the quality of
the fit was not as good as the lower average time scale case. These
results indicate that the conditions under which this particular set
of experiments were conducted, are such that ballistic effects, if
considered on an average, are almost negligible. Perhaps, phonons
of extremely low frequency exhibit this effect, and this can only
be captured by a higher fidelity model such as the BTE.
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Fig. 11 Relaxation time scales of acoustic phonons computed
using [26,27] and the cumulative energy distribution function
computed at 300K for silicon
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4 Summary and Conclusions

Calculations were conducted both analytically and numerically
to extract the thermal conductivity of a silicon substrate from
FDTR experimental data. The analytical calculations used Hankel
transforms of the Fourier heat conduction equation in frequency
domain along with the Feldman algorithm to treat multiple finite-
sized layers. The numerical calculations were conducted in time
domain using the finite volume method and a backward Euler
time advancement scheme. Both the Fourier heat conduction
equation and the hyperbolic heat conduction equation were
explored for numerical solutions. The numerical solutions enable
use of more realistic boundary conditions, namely, convective
heat loss at the surfaces of the substrate and transducer, and can
also isolate the effect of variation of the spot sizes of the pump
and probe lasers. The calculations were conducted in the range of
modulation frequency going from 200 kHz to 200 MHz for 22 dif-
ferent frequencies. The phase lag between the modulated pump
laser signal and the temperature of the transducer averaged over
the probed spot was calculated in each case and a plot of phase
lag versus frequency was generated. This plot was compared to
the same plot measured experimentally, and the thermal conduc-
tivity was adjusted to obtain the best fit. The numerically
extracted thermal conductivity was found to be in the range
82-108 W/m/K, depending on the pump and probe laser spot sizes
used, choice of boundary conditions, and the interface conduct-
ance between the transducer and the substrate used in the calcula-
tions. For the baseline case, the extracted value agrees almost
perfectly with the value of 9926 W/m/K reported earlier [2] for
the same experimental dataset. Parametric studies revealed that
the extracted thermal conductivity is sensitive to both the pump
and probe laser spot sizes, and the effect cannot be captured by an
effective radius alone. It is quite insensitive to the boundary con-
ditions at the surfaces of the substrate/transducer. For this particu-
lar case, the hyperbolic heat conduction equation yielded almost
the same results as the Fourier heat conduction equation, with
errors in predicted temperature below 0.12%.
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Nomenclature

¢ = specific heat capacity (J/kg/K)
h = heat transfer coefficient (W/m/K)
k = thermal conductivity (W/m/K)
n = time index
p = Hankel transform parameter
r = radial coordinate (m)
z = axial coordinate (m)
q = heat flux vector (W/m%/K)
A = amplitude factor (see Eq. (1))
N = number of layers
T = temperature (K)
h, = external heat transfer coefficient at the bottom surface of

the tank (W/m?/K)

hy = external heat transfer coefficient at the side surface of the
tank (W/m?*/K)

h, = external heat transfer coefficient at the top surface of the
tank (W/m%/K)

Transactions of the ASME



reff = effective laser radius (m)
T'probe = Probe laser 1/¢? radius (m)
T'pump = pump laser 1/ radius (m)
G¢ = thermal contact conductance (W/m/K)
L, = thickness of nth layer (m)
T+ = ambient temperature (K)
zr = thickness of transducer (m)
¢ = laser heat flux (W/m?*/K)
At = time-step size (sec)

Greek Symbols

o = thermal diffusivity (m?/s)
p = density (kg/m?)

T = relaxation time scale (s)

o = modulation frequency (Hz)
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