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ABSTRACT 
The Fourier heat conduction and the hyperbolic heat conduction 
equations were solved numerically to simulate a frequency-
domain thermoreflectance (FDTR) experimental setup. 
Numerical solutions enable use of realistic boundary conditions, 
such as convective cooling from the various surfaces of the 
substrate and transducer. The equations were solved in time 
domain and the phase lag between the temperature at the center 
of the transducer and the modulated pump laser signal were 
computed for a modulation frequency range of 200 kHz to 200 
MHz. It was found that the numerical predictions fit the 
experimentally measured phase lag better than analytical 
frequency-domain solutions of the Fourier heat equation based 
on Hankel transforms. The effects of boundary conditions were 
investigated and it was found that if the substrate (computational 
domain) is sufficiently large, the far-field boundary conditions 
have no effect on the computed phase lag. The interface 
conductance between the transducer and the substrate was also 
treated as a parameter, and was found to have some effect on the 
predicted thermal conductivity, but only in certain regimes. The 
hyperbolic heat conduction equation yielded identical results as 
the Fourier heat conduction equation for the particular case 
studied. The thermal conductivity value (best fit) for the silicon 
substrate considered in this study was found to be 108 W/m/K, 
which is slightly different from previously reported values for 
the same experimental data. 
  
INTRODUCTION 
The ability to control and manipulate heat transport at the 
nanoscale is important for the advancement of thermal 
management strategies in electronic and optoelectronic devices. 
In the past decade, noncontact optical pump probe techniques 
based on thermoreflectance have been used extensively for the 
study of heat transport at very small time and length scales. The 
two most commonly used techniques are the Time Domain 
Thermo-Reflectance (TDTR) technique and the Frequency 
Domain Thermo-Reflectance (FDTR) technique. In TDTR, the 

sample is heated using a pulsed laser that is modulated, and the 
surface is probed using a time-delayed laser that measures the 
change in the reflectivity of the surface caused by the change in 
temperature of the sample [1-3]. In FDTR, the sample is, instead, 
heated using a modulated continuous wave pump laser beam 
resulting in surface temperature (reflectivity) oscillations, which 
are then monitored using a probe laser. The lag in phase between 
the pump and probe laser signals is recorded. In either method, 
the surface of the target material (whose thermal properties are 
sought) is covered with an ultrathin metallic layer, often referred 
to as the transducer. 

Extraction of the thermal conductivity of the substrate from 
measured thermoreflectance data requires use of a thermal 
transport model. Since both TDTR and FDTR experiments 
measure surface temperature (or some indicator of it), while 
thermal conductivity is a volumetric property, the two quantities 
can only be related though a thermal transport model. 
Furthermore, the presence of the transducer complicates matters, 
since the heat must now transfer through multiple layers and the 
imperfect contact between the two layers. The most common 
model used for this purpose is based on the solution of the 
Fourier heat conduction equation in frequency domain. This was 
brought to the limelight by Cahill [1]. Multiple layers are treated 
using the well-known Feldman algorithm [4]. Interfaces between 
layers are treated as artificial layers whose thermal properties are 
adjusted to reproduce measured interface conductance values. 

The thermal conductivity extracted from FDTR experiments 
using such a Fourier law based model has been found to change 
when the modulation frequency of the pump laser is changed [1-
3,5]. This behavior is attributed to the fact that when the laser 
modulation frequency is high, the thermal penetration depth, 
which is inversely proportional to the square root of the 
modulation frequency, is small, and can often be smaller than the 
mean free path of some phonons. As a result, some phonons 
hardly scatter. This results is so-called ballistic-diffusive 
transport or quasi-ballistic transport. In this regime of transport, 
the effective thermal conductivity has been found to be smaller 
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than the bulk value—a phenomenon known as thermal 
conductivity suppression [5-7]. 

In an effort to capture ballistic effects and develop a model 
that can predict thermal conductivity suppression across all 
modulation frequencies, researchers have proposed various 
enhancements to Fourier law based models. One class of these 
models make use of the hyperbolic heat conduction equation, 
which accounts for finite group velocity of the phonons. The 
Cattaneo equation, the Cattaneo-Vernotte model, and the dual 
phase lag model fall in this category [8,9]. Even though the 
hyperbolic heat conduction equation accommodates finite 
phonon speed, all phonons, regardless of their type and 
frequency, are assumed to have the same speed. In an effort to 
remove this deficiency, Ramu and Bowers [10] proposed a two-
band model in which a cut-off frequency is used to classify the 
phonons into ballistic and diffusive phonons. The ballistic 
phonons are then treated by adding a higher order correction term 
to the Fourier law that is derived from the Boltzmann Transport 
Equation (BTE) for phonons. In a similar model, Ma [11] treated 
non-diffusive effects by introducing an additional term in the 
Fourier heat conduction equation that involves the characteristic 
ballistic heat transport length as an additional parameter to the 
thermal conductivity of the substrate. This characteristic length 
is an additional tuning parameter in this model. In the ballistic-
diffusive model proposed by Chen [12], and later expanded to 
complex three-dimensional geometry by Mittal and Mazumder 
[13,14], the phonon intensity is split into a diffusive component 
and a ballistic component. The diffusive component, by virtue of 
being more or less isotropic, can be treated using the method of 
spherical harmonics, while the ballistic component is treated 
using a surface-to-surface exchange formulation.  

In principle, the multidimensional phonon BTE 
encapsulates the necessary phonon physics, and should be used 
as the model to interpret the measured data, as demonstrated by 
Ali and Mazumder [15] for TDTR experiments. All of the 
aforementioned approximate models were proposed and 
exercised to avoid full-fledged (and very time-consuming) 
solution to the phonon BTE, and continue to be used for the 
extraction of thermal conductivity from both TDTR and FDTR 
experimental data. Further, the equations used for this purpose 
(to be presented in the next section), employ transform methods 
in frequency domain that require certain assumptions. In this 
work, we re-assess the efficacy of such models by solving the 
governing heat conduction equations numerically in time 
domain. This allows us to assess the validity of some of the 
assumptions invoked in transform methods. Specifically, the 
objective is to answer the following questions: (1) what is the 
effect of heat loss from the system? (2) what is the effect of the 
finite thickness of the substrate? (3) what is the effect of the 
interface conductance between the substrate and the transducer? 
In addition to the Fourier heat conduction equation, the 
hyperbolic heat conduction equation is also explored in an effort 
to capture quasi-ballistic effects.  

 
 
 
 

 

THEORY AND SOLUTION METHOD 
 
Anaytical Solution: Fourier Heat Conduction  
The analytical solution to the Fourier heat conduction equation 
with periodic heat flux boundary conditions is obtained by first 
transforming the original equation in time domain to an equation 
in frequency domain, followed by invoking a Fourier transform. 
Details of this procedure are provided elsewhere [16]. In this 
case, the frequency domain solution for a single layer is obtained 
by taking the Hankel transform of the response due to the laser 
beam since the sample is assumed to have cylindrical symmetry. 
For a semi-infinite solid being heated by a periodic heat flux 
operating at an angular frequency ω , the response of the surface 
is given by [16,1], 

2 2 2 2
0 1

0

2 ( ) exp[ ( ) / 2]T A G p p w w p dpπ π

∞

∆ = − +∫ , (1) 

where p is the Hankel transform parameter, 0w  and 1w  are the 
1/e2 radius of the pump and the probe beam, respectively, and A
is the amplitude factor of the heat flux (due to the pump laser). 
The quantity T∆  denotes the weighted (over the radius of the 
probe laser beam) average temperature and has both a real and 
an imaginary part. The quantity, ( )G p , in Eq. (1) is given by 

2
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where k is the thermal conductivity of the solid (or substrate) and 
α its thermal diffusivity. 

When the solution is extended to a layered structure using 
the Feldman algorithm [4], as proposed in [1], the layers are 
numbered starting from n = 1 being the one closest to the surface 
being heated by the laser. The thickness, thermal conductivity, 
and thermal diffusivity of each layer are denoted by nL , nk , and 

nα , respectively. The expression for ( )G k , shown in Eq. (2), is 
then replaced by 
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The quantities B+  and B−  are the growth and decay exponents 
along the thickness. For an N-layered structure, the furthest layer 
only has decay ( 1NB− = ) and has no growth ( 0NB+ = ). The 
growth and decay exponents for the other layers are determined 
using the following recursive relation starting from the N-th 
layer: 
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. (4) 

In this method, the interface between layers is treated as an 
artificial layer for which the thermal conductivity, thermal 
diffusivity and thickness are chosen such that a known thermal 
conductance value (= /n nk L ) is matched, and the thermal mass 
is small. However, lateral (radial) conduction within the 
interface, which is unphysical, cannot be eliminated. 
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Figure 1: Schematic of the computational domain and boundary 
conditions. 
 
Numerical Solution: Fourier Heat Conduction 

The starting point of the numerical solution is the transient 
Fourier heat conduction equation. Under the axisymmetric 
assumption, and constant thermophysical properties, this 
equation may be written in cylindrical coordinates as [16] 

2
2

2

T T k Tc k T k r
t r r rz

ρ ∂ ∂ ∂ ∂ = ∇ = +  ∂ ∂ ∂∂  
. (5) 

where z is in the through-plane direction, and r is in the radial or 
in-plane direction, as shown in Fig. 1. The boundary conditions 
in the section where the laser is shining ( Lr r≤ ) is written as 

( ,0, )

( )[1 sin ]
L

L
t r r

Tk q r t
z

ω
≤

∂ ′′= +
∂

, (6a) 

where ( )Lq r′′  is the radially varying laser heat flux profile, and is 
assumed to be Gaussian in shape [1]. As noted in Eq. (6), the 
laser flux also has a temporally varying component with 
modulation frequency ω . At the axis of symmetry, the boundary 
condition is written as 

( , ,0)

0
t z

T
r

∂
=

∂
. (6b) 

On the top surface outside of the laser spot and the external (side 
and bottom) surfaces of the substrate, a Newton cooling 
boundary condition was used, namely 
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∂
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t z r
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∂
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( , , )
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T S

b T S
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Tk h T t z z r T
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+

∂
= + −

∂
, (6e) 

where th , sh , and bh  are the heat transfer coefficients on the top, 
side, and bottom surfaces, respectively, and T∞  is the ambient 
temperature. 

 
Figure 2: Schematic representation of the stretched mesh used 
for computations in the two different regions and their coupling. 
 

For numerical solution of Eq. (5) subject to the boundary 
conditions in Eq. (6), the solution domain is first split into two 
regions: the transducer and the substrate. The transducer is very 
thin, and consequently, may be assumed to have negligible 
temperature gradient in the axial or z-direction. Thus, it may be 
split into a series of radial control volumes, as shown in Fig. 2. 
Applying the finite-volume procedure [17] to these control 
volumes, we obtain 
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, (7) 

where ,t jq′′ is the heat flux on the top surface of the j-th control 
volume (or cell) of the transducer, and is given by either Eq. (6a) 
or Eq. (6c) depending on the location of the cell. The density, 
thermal conductivity, and specific heat capacity of the transducer 
are denoted by Tρ , Tk  and Tc , respectively, while Tz  denotes 
its thickness. The radius of the j-th cell’s center is denoted by jr
, while the radial span (grid size) is denoted by jr∆ . Eq. (7) is 
derived using the backward Euler time advancement method 
[17], wherein ,

old
T jT  denotes the temperature of the j-th cell of the 

transducer at the previous time step. The heat flux through the 
bottom surface of the transducer or the interfacial contact (see 
Fig. 2) is denoted by ,C jq′′ , and is related to the contact 
conductance by the following relation: 

, , , ,( )C j C T j S j topq G T T′′ = − , (8) 
where CG is the contact conductance (in W/m2/K), and , ,S j topT  
are the temperatures on the top surface of the substrate. Equation 
(8), in fact, serves to connect the transducer to the substrate, 
details of which will be discussed shortly. Substitution of Eq. (8) 
into Eq. (7), followed by rearrangement yields 
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Equation (9) represents a set of N tri-diagonal equations that can 
be solved readily using the tridiagonal matrix algorithm [17]. 

In order to derive similar equations for the cells in the 
substrate, the finite-volume procedure is applied again, but now 
to the full two-dimensional equation, to yield 
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where thermal properties with subscript “S” denote those of the 
substrate. Similar equations may be derived for cells adjacent to 
the boundaries. These equations are not presented here for the 
sake of brevity. Equation (10), along with similar equations for 
the boundary cells, represent a system of five-banded linear 
algebraic equations that may be solved using any iterative solver 
tailored for banded systems. In this particular case, the Stone’s 
strongly implicit method [17] is used. 

Equations (9) and (10) are coupled, and are solved using the 
following iterative procedure: 
1) The temperature on the top surface of the substrate, , ,S j topT , 

is first guessed. A reasonable guess may be the temperature 
of the ambient, i.e., T∞ . 

2) Equation (9) is then solved using a tridiagonal matrix 
algorithm. This yields the temperature of all cells of the 
transducer, namely ,T jT  . 

3) Equation (8) is next used to compute the heat flux through 
the interface or contact. 

4) The computed value of the flux serves as a boundary 
condition for the top surface of the substrate. With this 
boundary condition, Eq. (10), along with similar equations 
for the boundary cells in the substrate, are solved using the 
Stones’s method. 

5) Steps 1-4 are repeated until convergence. 
6) Once convergence has been attained for the time step in 

question, the solution replaces the initial condition, and the 
procedure is repeated for the next time step. 

 

Hyperbolic Heat Conduction Equation 
The Fourier law can be derived from the BTE in the limit where 
the number of scattering events of the heat carriers, i.e., phonons, 
is infinite. This limit may also be manifested by assuming an 
infinite group velocity of the phonons. The Fourier heat 
conduction equation does not contain any information pertaining 
to either the group velocity or the relaxation time-scale of the 
phonons. It is incapable of capturing any physical phenomena 
where the finite speed of the phonons may be of importance. 

To overcome the aforementioned limitations of infinite 
wave speed as predicted by the Fourier heat conduction equation, 
a modification to Eq. (5) was proposed by Catteneo [8,9], in 
which, an additional transient term was introduced: 

2 2
2

2 2

T T T k Tc c k T k r
t r r rt z

ρ τ ρ∂ ∂ ∂ ∂ ∂ + = ∇ = +  ∂ ∂ ∂∂ ∂  
.  (11) 

Equation (11) is a damped wave equation with wave speed 
/k cρ τ , and is referred to as the hyperbolic heat conduction 

equation. This equation can also be derived from the BTE by 
taking its first moment [8,9]. It assumes that the time scales of 
interest are of the same order of magnitude as the relaxation time, 
whereas the length scales are much larger than the characteristic 
length scale for local thermodynamic equilibrium. This makes 
the hyperbolic heat conduction equation nonlocal in time but 
local in space. Therefore, the ballistic behavior of phonons is 
only partially captured by this model. In addition, the frequency 
dependent behavior of phonons cannot be modeled using this 
equation. 

As far as discretization and the numerical solution of Eq. 
(11) is concerned, the procedure is very similar to the one 
described in the preceding section. The right hand side is 
discretized and spatial boundary conditions are applied in 
exactly the same manner as discussed earlier. The second 
derivative in time is discretized using the backward Euler 
method, as described elsewhere [17]. The numerical solution 
also follows the same algorithm outlined for the Fourier heat 
conduction equation. Once the temperature distribution has been 
computed, the heat fluxes are computed using 

k T
t

τ ∂ + = − ∇
∂
q q  (12) 

rather than the Fourier law, i.e., Eq. (12) is used instead of 
k T= − ∇q . One of the critical additional inputs to the hyperbolic 

heat conduction equation [Eq. (11)] is the effective relaxation 
time-scale of the phonons, τ . As to how it is determined is 
discussed in the next section. 
 
RESULTS AND DISCUSSION 
For the purposes of this study, the experimental data reported by 
Regner et al. [2] have been used for extraction of the thermal 
conductivity. The substrate in this experiment is a silicon block 
that is 525 µm thick, i.e., Sz = 525 µm. The radial extent of 
substrate,  Sr , is not known, and was assumed to be also equal to 
525 µm for the numerical calculations. The transducer is a 
bilayer transducer with 55 nm of gold and 5 nm of chromium, 
resulting in Tz  = 60 nm. The thermophysical properties of 
silicon, gold and chromium that were used for calculations are 
shown in Table 1. Based on the thicknesses of the gold and 
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chromium layers, effective values of the properties of the 
transducer were estimated. These are also shown in Table 1. 

Table 1: Thermophysical properties of the various materials used 
in the calculations. 

  Transducer 
 Silicon Gold Chromium Effective 
Density (kg/m3) 2329 7140 19320 18290.8 
Specific heat 
capacity (J/kg/K) 

702 93.9 310 266.6 

Thermal conductivity 
(W/m/K) 

Calculated 450 129 155.7 

For numerical calculations, a 200 x 200 nonuniform mesh 
with a stretching factor not exceeding 1.2 was used. This mesh 
was found to yield grid independent solutions. The modulation 
frequency, which is as an input parameter, was varied between 
200 kHz and 200 MHz, and calculations were conducted for 22 
different frequencies in this range. Each sinusoidal cycle of the 
laser was split into 5000 time steps. This implies that for high 
frequencies, a very small time-step size (~ 1 ps) was used to 
ascertain accurate temporal solutions. The nominal value of the 
interfacial (between the substrate and the transducer) contact 
conductance, CG , was taken to be 200 MW/m2/K, as suggested 
by Cahill [1], although for a different material pair. A Gaussian 
profile was used for the laser heat flux with a 1/e2 radius of 3.5 
µm. The laser power was adjusted to attain a temperature rise of 
approximately 5 degrees at the center of the laser spot, as 
reported in the experimental description [2]. 

 
Figure 3: Computed temperature history at center of transducer 
for different frequencies. 

For each modulation frequency, the calculations were 
advanced in time for several tens of cycles until the system 
exhibited quasi-steady behavior. The temperature-time history of 
the center of the transducer (origin in Fig. 1) was recorded. 
Figure 3 shows a plot of this data for 4 different frequencies. At 
low frequency, the transducer receives the laser flux for a longer 
period of time and, consequently, heats up more. This time-
domain signal is post-processed to calculate the phase shift or lag 
between the pump laser and the computed temperature at the 
center of the transducer. The same calculation was repeated for 
several different thermal conductivity (of substrate) values. For 
each thermal conductivity value, a Phase Lag versus Frequency 
plot was generated. The error norms—both L1 norm and L2 
norm—between the computed phase lag and the experimentally 
measured phase lag were then computed. The extracted (or 
desirable) thermal conductivity was chosen to be the one that 

minimized the error norm. In other words, it is a value that best 
fits the data over the entire range of frequency considered in this 
study. It was found that depending on which norm (L1 or L2) is 
used for best fit, the extracted value of thermal conductivity is 
slightly different, as discussed shortly. 

 
Figure 4: Phase lag calculated using the analytical and numerical 
models for k = 108 W/m/K. 

For baseline numerical calculations, the top surface of the 
transducer outside of the laser spot was assumed to have heat 
loss with th = 10 W/m2/K. On the other hand, the far-field 
boundaries on the side and bottom were assumed to be 
isothermal at the ambient temperature ( T∞ = 300 K), which 
essentially corresponds to a very high heat transfer coefficient. 
Figure 4 shows a comparison of the phase lag obtained using the 
analytical and numerical solutions with experimental data 
reported by Regner et al. [2]. The curves shown represent the 
best fit to the experimental data using the L2 norm minimization 
criterion. For both the numerical model and the analytical model, 
the best fit is manifested by a thermal conductivity value of k = 
108 W/m/K. However, the fit is closer with the numerical model, 
as evident from the figure. If instead, the L1 norm minimization 
criterion is used, the best fit is obtained with a thermal 
conductivity value of 110 W/m/K. It is evident from Fig. 4 that 
in the case of the analytical model, the fit is not as good for 
intermediate and high frequencies as for low frequencies. To 
address this issue, previous researchers have suggested that, 
perhaps, one should consider a frequency-dependent thermal 
conductivity [5], while others have suggested using an anistropic 
thermal conductivity [18]. Yet others have tried to adjust the 
interface thermal conductance to obtain a better fit [11]. The fact 
that the numerical solution yields almost perfect fit at all 
frequencies, while the analytical model does not, suggests that 
this discrepancy maybe due to the assumptions invoked in the 
derivation of the analytical solution rather than absence of 
necessary physics in the model. These include semi-infinite 
media (in the radial direction), the contact surface being treated 
as a volume and has lateral conduction, lack of heat loss from the 
top of the system, among others. 
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Figure 5: Phase lag computed using the numerical model with 
two different thermal conductivity values. 
 

The extracted value of thermal conductivity, namely k = 108 
W/m/K is significantly smaller than the bulk thermal 
conductivity of silicon at 300K, which is about 148 W/m/K. This 
reduction in thermal conductivity represents the so-called 
thermal conductivity suppression reported in the literature [6,7]. 
The phase lag versus frequency behavior with the bulk value of 
thermal conductivity is shown in Fig. 5. The phase lag is slightly 
underpredicted at all frequencies if the bulk value of thermal 
conductivity is used. For the same experimental data set, Regner 
et al. [2] reported a thermal conductivity of 99 ± 6 W/m/K. 

The spatiotemporal evolution of the nondimensional 
temperature distribution and the heat wave is illustrated in Fig. 6 
for a modulation frequency of 200 kHz. For clarity of 
visualization only a small portion of the substrate is shown. Since 
the penetration depth of the heat wave is inversely proportional 
to the inverse square root of the modulation frequency, and 200 
kHz is the smallest frequency considered in this study, the 
distributions shown in Fig. 6 represent the highest penetration of 
the heat wave among all cases considered. After 30 cycles, the 
system has almost reached quasi-steady state. Since the substrate 
(and computational domain) is of size 525 µm in both directions, 
and the heat wave has not even penetrated 200 µm in the worst-
case scenario, it is fair to conclude that the computational domain 
is large enough for the far-field boundary conditions at the top 
and side to have minimal effect on the results. This is 
corroborated next using additional calculations.  

 
(a) 2 cycles (10 µs) 

 
(b) 20 cycles (100 µs) 

 
(c) 30 cycles (150 µs) 

Figure 6: Nondimensional temperature distributions in the 
substrate after various intervals of time. 

 
Figure 7: Computed temperature difference along the centerline 
of the substrate between adiabatic and isothermal boundary 
condition at the bottom surface at quasi-steady state. 

As mentioned earlier, the baseline calculations (reported 
above) were conducted using isothermal boundary conditions at 
the bottom and side boundaries. An isothermal boundary with 
T∞ corresponds to ,s bh h →∞ . To investigate the sensitivity of 
this boundary condition on the computed results, the solution 
was recomputed with an adiabatic boundary condition instead of 
an isothermal boundary condition. An adiabatic boundary 
condition represents the other extreme wherein the heat transfer 
coefficients are zero. Figure 7 shows the difference in the 
temperature along the centerline (axis) of the substrate. Clearly, 
there is no meaningful difference implying that the boundary 
condition has no impact on the results. This may be attributed to 
the fact that the computational domain is much larger than the 
penetration depth. Likewise, the heat transfer coefficient on the 
top of the transducer was changed from 10 W/m2/K to 250 
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W/m2/K, and the maximum change in temperature anywhere on 
the transducer was found to be 5.5 µK. 

One of the critical inputs to the model considered here is the 
interface conductance, CG . For the baseline calculations, a value 
of 200 MW/m2/K was used, in accordance with Cahill [1]. Other 
researchers have suggested a value in the range 160—250 
MW/m2/K [11]. To understand the sensitivity of the extracted 
thermal conductivity to this unknown parameter, computations 
were performed for various values of CG . Figure 8 shows the 
predicted phase lag for various values of  CG  and a thermal 
conductivity of 108 W/m/K. There is clearly some difference in 
the results at intermediate and high modulation frequencies. If 

CG = 250 MW/m2/K is used as the interface conductance, the 
best fit to the experimental data is obtained with a thermal 
conductivity value of 115 W/m/K, rather than 108 W/m/K. On 
the other hand, for the other two values considered, the best fit 
yields 108 W/m/K, although the quality of the fit is better for CG
= 200 MW/m2/K than for CG = 160 MW/m2/K. 

 
Figure 8: Effect of interface conductance on the phase lag. 

 
Finally, all calculations were repeated using the hyperbolic 

heat conduction equation. The effective (or average) relaxation 
time-scale, τ , which appears as an input in the hyperbolic heat 
conduction equation was estimated using the following 
relationship [19]: 
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where , pcω  is the spectral specific heat capacity of silicon, and 
and , pωυ  is the spectral group velocity of the phonons. Both of 
these quantities can be computed directly for any polarization p 
and frequency ω using dispersion relationships of silicon, as 
explained elsewhere [8,20]. The value of the effective relaxation 
time-scale using Eq. (13) and frequency and polarization 
dependent time-scale expressions proposed by Holland [21,22] 

was found to be about 0.0365 ns. The largest difference in 
temperature as predicted by the two models (Fourier versus 
Hyperbolic) is manifested at the highest modulation frequency 
(200 MHz) and it occurs on the surface of the substrate, as shown 
Fig. 9. This is understandable since at high frequency, quasi-
ballistic effects are expected to be the strongest and 
consequently, some difference is expected between the two 
models. However, even for 200 MHz, the cycle time is 5 ns, 
which is significantly larger than the estimated effective 
relaxation time scale. This implies that the hyperbolic heat 
conduction equation is expected to behave similar to the Fourier 
heat conduction equation in this particular case, as is evident 
from the fact that 0.05 K (out of about 2.1 K rise) was the largest 
temperature difference observed between the two models. The 
phase lag calculated using the two models was found to be 
identical, and therefore, the resulting thermal conductivity did 
not change. Again, this is to be expected since the relaxation 
time-scale used in the calculations is significantly smaller than 
the cycle time for any modulation frequency considered. The 
choice of the effective relaxation time-scale requires further 
investigation. 

 
Figure 9: Computed temperature difference along the centerline 
of the substrate between the Fourier heat conduction and 
Hyperbolic heat conduction equations with a modulation 
frequency of 200 MHz and after 30 cycles. 
 
SUMMARY AND CONCLUSIONS 
 
Calculations were conducted both analytically and numerically 
to extract the thermal conductivity of a silicon substrate from 
FDTR experimental data. The analytical calculations used 
Hankel transforms of the Fourier heat conduction equation in 
frequency domain along with the Feldman algorithm to treat 
multiple finite-sized layers. The numerical calculations were 
conducted in time domain using the finite-volume method and a 
backward Euler time advancement scheme. Both the Fourier heat 
conduction equation and the hyperbolic heat conduction 
equation were explored for numerical solutions. The numerical 
solutions enable use of more realistic boundary conditions, 
namely convective heat loss at the surfaces of the substrate and 
transducer. The calculations were conducted in the range of 
modulation frequency going from 200 kHz to 200 MHz for 22 
different frequencies. The phase lag between the modulated 
pump laser signal and the temperature of the transducer at the 
center of the laser beam was calculated in each case and a plot of 
phase lag versus frequency was generated. This plot was 
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compared to the same plot measured experimentally, and the 
thermal conductivity was adjusted to obtain the best fit. The 
extracted thermal conductivity was found to be in the range 108-
115 W/m/K depending on the choice of boundary conditions and 
the interface conductance between the transducer and the 
substrate used in the calculations. This value is slightly different 
from the value of 99 ± 6 W/m/K reported earlier for the same 
experimental dataset. Parametric studies revealed that the 
extracted thermal conductivity is more sensitive to the interface 
thermal conductance than the boundary conditions at the 
surfaces of the substrate/transducer. For this particular case, the 
hyperbolic heat conduction equation yielded identical results as 
the Fourier heat conduction equation. 
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