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ABSTRACT

The Fourier heat conduction and the hyperbolic heat conduction
equations were solved numerically to simulate a frequency-
domain thermoreflectance (FDTR) experimental setup.
Numerical solutions enable use of realistic boundary conditions,
such as convective cooling from the various surfaces of the
substrate and transducer. The equations were solved in time
domain and the phase lag between the temperature at the center
of the transducer and the modulated pump laser signal were
computed for a modulation frequency range of 200 kHz to 200
MHz. It was found that the numerical predictions fit the
experimentally measured phase lag better than analytical
frequency-domain solutions of the Fourier heat equation based
on Hankel transforms. The effects of boundary conditions were
investigated and it was found that if the substrate (computational
domain) is sufficiently large, the far-field boundary conditions
have no effect on the computed phase lag. The interface
conductance between the transducer and the substrate was also
treated as a parameter, and was found to have some effect on the
predicted thermal conductivity, but only in certain regimes. The
hyperbolic heat conduction equation yielded identical results as
the Fourier heat conduction equation for the particular case
studied. The thermal conductivity value (best fit) for the silicon
substrate considered in this study was found to be 108 W/m/K,
which is slightly different from previously reported values for
the same experimental data.

INTRODUCTION

The ability to control and manipulate heat transport at the
nanoscale is important for the advancement of thermal
management strategies in electronic and optoelectronic devices.
In the past decade, noncontact optical pump probe techniques
based on thermoreflectance have been used extensively for the
study of heat transport at very small time and length scales. The
two most commonly used techniques are the Time Domain
Thermo-Reflectance (TDTR) technique and the Frequency
Domain Thermo-Reflectance (FDTR) technique. In TDTR, the
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sample is heated using a pulsed laser that is modulated, and the
surface is probed using a time-delayed laser that measures the
change in the reflectivity of the surface caused by the change in
temperature of the sample [1-3]. In FDTR, the sample is, instead,
heated using a modulated continuous wave pump laser beam
resulting in surface temperature (reflectivity) oscillations, which
are then monitored using a probe laser. The lag in phase between
the pump and probe laser signals is recorded. In either method,
the surface of the target material (whose thermal properties are
sought) is covered with an ultrathin metallic layer, often referred
to as the transducer.

Extraction of the thermal conductivity of the substrate from
measured thermoreflectance data requires use of a thermal
transport model. Since both TDTR and FDTR experiments
measure surface temperature (or some indicator of it), while
thermal conductivity is a volumetric property, the two quantities
can only be related though a thermal transport model.
Furthermore, the presence of the transducer complicates matters,
since the heat must now transfer through multiple layers and the
imperfect contact between the two layers. The most common
model used for this purpose is based on the solution of the
Fourier heat conduction equation in frequency domain. This was
brought to the limelight by Cahill [1]. Multiple layers are treated
using the well-known Feldman algorithm [4]. Interfaces between
layers are treated as artificial layers whose thermal properties are
adjusted to reproduce measured interface conductance values.

The thermal conductivity extracted from FDTR experiments
using such a Fourier law based model has been found to change
when the modulation frequency of the pump laser is changed [1-
3,5]. This behavior is attributed to the fact that when the laser
modulation frequency is high, the thermal penetration depth,
which is inversely proportional to the square root of the
modulation frequency, is small, and can often be smaller than the
mean free path of some phonons. As a result, some phonons
hardly scatter. This results is so-called ballistic-diffusive
transport or quasi-ballistic transport. In this regime of transport,
the effective thermal conductivity has been found to be smaller
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than the bulk value—a phenomenon known as thermal
conductivity suppression [5-7].

In an effort to capture ballistic effects and develop a model
that can predict thermal conductivity suppression across all
modulation frequencies, researchers have proposed various
enhancements to Fourier law based models. One class of these
models make use of the hyperbolic heat conduction equation,
which accounts for finite group velocity of the phonons. The
Cattaneo equation, the Cattaneo-Vernotte model, and the dual
phase lag model fall in this category [8,9]. Even though the
hyperbolic heat conduction equation accommodates finite
phonon speed, all phonons, regardless of their type and
frequency, are assumed to have the same speed. In an effort to
remove this deficiency, Ramu and Bowers [10] proposed a two-
band model in which a cut-off frequency is used to classify the
phonons into ballistic and diffusive phonons. The ballistic
phonons are then treated by adding a higher order correction term
to the Fourier law that is derived from the Boltzmann Transport
Equation (BTE) for phonons. In a similar model, Ma [11] treated
non-diffusive effects by introducing an additional term in the
Fourier heat conduction equation that involves the characteristic
ballistic heat transport length as an additional parameter to the
thermal conductivity of the substrate. This characteristic length
is an additional tuning parameter in this model. In the ballistic-
diffusive model proposed by Chen [12], and later expanded to
complex three-dimensional geometry by Mittal and Mazumder
[13,14], the phonon intensity is split into a diffusive component
and a ballistic component. The diffusive component, by virtue of
being more or less isotropic, can be treated using the method of
spherical harmonics, while the ballistic component is treated
using a surface-to-surface exchange formulation.

In principle, the multidimensional phonon BTE
encapsulates the necessary phonon physics, and should be used
as the model to interpret the measured data, as demonstrated by
Ali and Mazumder [15] for TDTR experiments. All of the
aforementioned approximate models were proposed and
exercised to avoid full-fledged (and very time-consuming)
solution to the phonon BTE, and continue to be used for the
extraction of thermal conductivity from both TDTR and FDTR
experimental data. Further, the equations used for this purpose
(to be presented in the next section), employ transform methods
in frequency domain that require certain assumptions. In this
work, we re-assess the efficacy of such models by solving the
governing heat conduction equations numerically in time
domain. This allows us to assess the validity of some of the
assumptions invoked in transform methods. Specifically, the
objective is to answer the following questions: (1) what is the
effect of heat loss from the system? (2) what is the effect of the
finite thickness of the substrate? (3) what is the effect of the
interface conductance between the substrate and the transducer?
In addition to the Fourier heat conduction equation, the
hyperbolic heat conduction equation is also explored in an effort
to capture quasi-ballistic effects.

*E-mail: mazumder.2@osu.edu, Fellow ASME

THEORY AND SOLUTION METHOD

Anaytical Solution: Fourier Heat Conduction

The analytical solution to the Fourier heat conduction equation
with periodic heat flux boundary conditions is obtained by first
transforming the original equation in time domain to an equation
in frequency domain, followed by invoking a Fourier transform.
Details of this procedure are provided elsewhere [16]. In this
case, the frequency domain solution for a single layer is obtained
by taking the Hankel transform of the response due to the laser
beam since the sample is assumed to have cylindrical symmetry.
For a semi-infinite solid being heated by a periodic heat flux
operating at an angular frequency @ , the response of the surface
is given by [16,1],

0

AT:ZﬂAJ-G(p)eXp[—ﬂzpz(wg +w) /2] pdp, (1)
0
where p is the Hankel transform parameter, w, and w, are the

1/€? radius of the pump and the probe beam, respectively, and A4
is the amplitude factor of the heat flux (due to the pump laser).
The quantity AT denotes the weighted (over the radius of the
probe laser beam) average temperature and has both a real and
an imaginary part. The quantity, G(p), in Eq. (1) is given by
G(p) =i ¢ =2, @
k\4rx’p® +q’ a

where £ is the thermal conductivity of the solid (or substrate) and
o its thermal diffusivity.

When the solution is extended to a layered structure using
the Feldman algorithm [4], as proposed in [1], the layers are
numbered starting from »n = 1 being the one closest to the surface
being heated by the laser. The thickness, thermal conductivity,
and thermal diffusivity of each layer are denoted by L, k, , and

a, , respectively. The expression for G(k) , shown in Eq. (2), is

then replaced by
B —B
G(p) =L(ﬁj; Vo =kausu, =47’ p’ +q; . 3)
n\b +b

The quantities B" and B~ are the growth and decay exponents
along the thickness. For an N-layered structure, the furthest layer
only has decay (B, =1) and has no growth (B, =0). The
growth and decay exponents for the other layers are determined
using the following recursive relation starting from the N-th
layer:

B\ 1 [exp(-u,L) 0
B, ) 27, 0 exp(u, L, )

X|:7/n+7n+l }/n_7n+l:| B'-z:l
7/)1_}/n+] yn+7/n+1 Bn_+1
In this method, the interface between layers is treated as an
artificial layer for which the thermal conductivity, thermal

diffusivity and thickness are chosen such that a known thermal
conductance value (=k, / L) is matched, and the thermal mass

4)

is small. However, lateral (radial) conduction within the
interface, which is unphysical, cannot be eliminated.
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Figure 1: Schematic of the computational domain and boundary
conditions.

Numerical Solution: Fourier Heat Conduction

The starting point of the numerical solution is the transient
Fourier heat conduction equation. Under the axisymmetric
assumption, and constant thermophysical properties, this
equation may be written in cylindrical coordinates as [16]
2
pca—T:kVZT:ka f+53[ra—Tj. 5)
ot 0z= ror\ or
where z is in the through-plane direction, and 7 is in the radial or
in-plane direction, as shown in Fig. 1. The boundary conditions

in the section where the laser is shining (7 <7, ) is written as
or
=2
Oz

where ¢, (r) is the radially varying laser heat flux profile, and is

=g, (r)[1+sinwt], (6a)

(¢,0,r<r;)

assumed to be Gaussian in shape [1]. As noted in Eq. (6), the
laser flux also has a temporally varying component with
modulation frequency @ . At the axis of symmetry, the boundary
condition is written as

oT
or
On the top surface outside of the laser spot and the external (side

and bottom) surfaces of the substrate, a Newton cooling
boundary condition was used, namely

=0. (6b)

(1,2,0)

T
Top surface: —ka— =h[T(,0,r>r)-T,], (6¢)
Z1(1,0.r51,)
. oT
Side surface: —k — =h[T(t,z,r;)-T,], (6d)
r (t,z,r5)

oT
Bottom surface: k—
zZ

=h[T(t,z; +z5,7)-T.], (6e)

(tzp+zg,r)

where £, , h_,and h, are the heat transfer coefficients on the top,
side, and bottom surfaces, respectively, and 7, is the ambient
temperature.
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Figure 2: Schematic representation of the stretched mesh used
for computations in the two different regions and their coupling.

For numerical solution of Eq. (5) subject to the boundary
conditions in Eq. (6), the solution domain is first split into two
regions: the transducer and the substrate. The transducer is very
thin, and consequently, may be assumed to have negligible
temperature gradient in the axial or z-direction. Thus, it may be
split into a series of radial control volumes, as shown in Fig. 2.
Applying the finite-volume procedure [17] to these control
volumes, we obtain

ZGAC}T

kpzp(2r;+Ar)  kpzp(2r, = Ar))
. + . _
Ar, +Ar, "

Jj+l

k.z.(2r. + Ar)) k.z.(2r, —Ar))
_{#}Tmn _{# TT,_/‘—I , (D)

+ PrCrzr
Ar/. + Arjf1

Ar, +Ar,,, Ar, +Ar,
2rjArJ old " "
= p,CrZ; A—tTT’/ +2q, ;r,Ar, =2q.. r,Ar,

where g/, is the heat flux on the top surface of the j-th control
volume (or cell) of the transducer, and is given by either Eq. (6a)
or Eq. (6¢) depending on the location of the cell. The density,
thermal conductivity, and specific heat capacity of the transducer
are denoted by p,, k, and c,, respectively, while z, denotes

its thickness. The radius of the j-th cell’s center is denoted by r;
, while the radial span (grid size) is denoted by Ar,. Eq. (7) is
derived using the backward Euler time advancement method
[17], wherein T} ’;’ denotes the temperature of the j-th cell of the
transducer at the previous time step. The heat flux through the

bottom surface of the transducer or the interfacial contact (see
Fig. 2) is denoted by ¢/, and is related to the contact

conductance by the following relation:
4c.; = Ge(Tr ;=T j.p) » (8)

where G, is the contact conductance (in W/m?*K), and T 1op

are the temperatures on the top surface of the substrate. Equation
(8), in fact, serves to connect the transducer to the substrate,
details of which will be discussed shortly. Substitution of Eq. (8)
into Eq. (7), followed by rearrangement yields
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Equation (9) represents a set of N tri-diagonal equations that can
be solved readily using the tridiagonal matrix algorithm [17].

In order to derive similar equations for the cells in the
substrate, the finite-volume procedure is applied again, but now
to the full two-dimensional equation, to yield

ksAz, (2r, + Ar)) N ksAz, (2r, —Ar;) N 4kgrAr,

= PrCrzr

Ar/. + Ar/.+l Ar/. + Ar/._] Az, +Az,
4kSr/.Ar/. 2r/.Ar/. Sk
— —+ pSCSAZk -
Az, + Az, |
k. Az (2r. + Ar, k. Az, (2r. — Ar,
_ M S~ M Ty i (10)
Arj +Ar].+1 A Ar/. + Ar/._1 A
4ksrjArj T 4ksrjArj r
Az, + Az, S Az, + Az, B
2r.Ar,
= psCsAz, jAt - Ts(,[j,k

where thermal properties with subscript “S” denote those of the
substrate. Similar equations may be derived for cells adjacent to
the boundaries. These equations are not presented here for the
sake of brevity. Equation (10), along with similar equations for
the boundary cells, represent a system of five-banded linear
algebraic equations that may be solved using any iterative solver
tailored for banded systems. In this particular case, the Stone’s
strongly implicit method [17] is used.

Equations (9) and (10) are coupled, and are solved using the
following iterative procedure:

1) The temperature on the top surface of the substrate, T ; .,

is first guessed. A reasonable guess may be the temperature
of the ambient, i.e., T, .

2) Equation (9) is then solved using a tridiagonal matrix
algorithm. This yields the temperature of all cells of the
transducer, namely 7} ; .

3) Equation (8) is next used to compute the heat flux through
the interface or contact.

4) The computed value of the flux serves as a boundary
condition for the top surface of the substrate. With this
boundary condition, Eq. (10), along with similar equations
for the boundary cells in the substrate, are solved using the
Stones’s method.

5) Steps 1-4 are repeated until convergence.

6) Once convergence has been attained for the time step in
question, the solution replaces the initial condition, and the
procedure is repeated for the next time step.
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Hyperbolic Heat Conduction Equation

The Fourier law can be derived from the BTE in the limit where
the number of scattering events of the heat carriers, i.e., phonons,
is infinite. This limit may also be manifested by assuming an
infinite group velocity of the phonons. The Fourier heat
conduction equation does not contain any information pertaining
to either the group velocity or the relaxation time-scale of the
phonons. It is incapable of capturing any physical phenomena
where the finite speed of the phonons may be of importance.

To overcome the aforementioned limitations of infinite
wave speed as predicted by the Fourier heat conduction equation,
a modification to Eq. (5) was proposed by Catteneo [8,9], in
which, an additional transient term was introduced:

2 2

az+pc6—T:kV2T:k6{+ﬁi(ra—Tj. (11)

ot ot oz- ror\ or

Equation (11) is a damped wave equation with wave speed
vk / pct , and is referred to as the hyperbolic heat conduction

equation. This equation can also be derived from the BTE by
taking its first moment [8,9]. It assumes that the time scales of
interest are of the same order of magnitude as the relaxation time,
whereas the length scales are much larger than the characteristic
length scale for local thermodynamic equilibrium. This makes
the hyperbolic heat conduction equation nonlocal in time but
local in space. Therefore, the ballistic behavior of phonons is
only partially captured by this model. In addition, the frequency
dependent behavior of phonons cannot be modeled using this
equation.

As far as discretization and the numerical solution of Eq.
(11) is concerned, the procedure is very similar to the one
described in the preceding section. The right hand side is
discretized and spatial boundary conditions are applied in
exactly the same manner as discussed earlier. The second
derivative in time is discretized using the backward Euler
method, as described elsewhere [17]. The numerical solution
also follows the same algorithm outlined for the Fourier heat
conduction equation. Once the temperature distribution has been
computed, the heat fluxes are computed using

pct

r—l+q———kV2 12
ot (12)

rather than the Fourier law, i.e., Eq. (12) is used instead of
q =—kVT . One of the critical additional inputs to the hyperbolic
heat conduction equation [Eq. (11)] is the effective relaxation
time-scale of the phonons, 7. As to how it is determined is
discussed in the next section.

RESULTS AND DISCUSSION

For the purposes of this study, the experimental data reported by
Regner et al. [2] have been used for extraction of the thermal
conductivity. The substrate in this experiment is a silicon block
that is 525 pm thick, i.e., zg= 525 pm. The radial extent of

substrate, 7;, is not known, and was assumed to be also equal to

525 pum for the numerical calculations. The transducer is a
bilayer transducer with 55 nm of gold and 5 nm of chromium,
resulting in z, = 60 nm. The thermophysical properties of
silicon, gold and chromium that were used for calculations are
shown in Table 1. Based on the thicknesses of the gold and
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chromium layers, effective values of the properties of the
transducer were estimated. These are also shown in Table 1.

Table 1: Thermophysical properties of the various materials used
in the calculations.

Transducer
Silicon Gold | Chromium | Effective
Density (kg/m?) 2329 7140 | 19320 18290.8
Specific heat 702 939 | 310 266.6
capacity (J/kg/K)
Thermal conductivity | Calculated | 450 129 155.7
(W/m/K)

For numerical calculations, a 200 x 200 nonuniform mesh
with a stretching factor not exceeding 1.2 was used. This mesh
was found to yield grid independent solutions. The modulation
frequency, which is as an input parameter, was varied between
200 kHz and 200 MHz, and calculations were conducted for 22
different frequencies in this range. Each sinusoidal cycle of the
laser was split into 5000 time steps. This implies that for high
frequencies, a very small time-step size (~ 1 ps) was used to
ascertain accurate temporal solutions. The nominal value of the
interfacial (between the substrate and the transducer) contact
conductance, G,., was taken to be 200 MW/m*/K, as suggested
by Cahill [1], although for a different material pair. A Gaussian
profile was used for the laser heat flux with a 1/¢? radius of 3.5
pum. The laser power was adjusted to attain a temperature rise of
approximately 5 degrees at the center of the laser spot, as
reported in the experimental description [2].
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—20MHz
1 |[——200MHz

Temperature (K)
(3 w @
o (=} (=]
= N «w
——T
—— ‘*—“ =
—

5 10 15 20
Number of Cycles

Figure 3: Computed temperature history at center of transducer
for different frequencies.

For each modulation frequency, the calculations were
advanced in time for several tens of cycles until the system
exhibited quasi-steady behavior. The temperature-time history of
the center of the transducer (origin in Fig. 1) was recorded.
Figure 3 shows a plot of this data for 4 different frequencies. At
low frequency, the transducer receives the laser flux for a longer
period of time and, consequently, heats up more. This time-
domain signal is post-processed to calculate the phase shift or lag
between the pump laser and the computed temperature at the
center of the transducer. The same calculation was repeated for
several different thermal conductivity (of substrate) values. For
each thermal conductivity value, a Phase Lag versus Frequency
plot was generated. The error norms—both L1 norm and L2
norm—between the computed phase lag and the experimentally
measured phase lag were then computed. The extracted (or
desirable) thermal conductivity was chosen to be the one that
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minimized the error norm. In other words, it is a value that best
fits the data over the entire range of frequency considered in this
study. It was found that depending on which norm (L1 or L2) is
used for best fit, the extracted value of thermal conductivity is
slightly different, as discussed shortly.
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Figure 4: Phase lag calculated using the analytical and numerical
models for k£ = 108 W/m/K.

For baseline numerical calculations, the top surface of the
transducer outside of the laser spot was assumed to have heat
loss with A= 10 W/m*K. On the other hand, the far-field

boundaries on the side and bottom were assumed to be
isothermal at the ambient temperature (7, = 300 K), which

essentially corresponds to a very high heat transfer coefficient.
Figure 4 shows a comparison of the phase lag obtained using the
analytical and numerical solutions with experimental data
reported by Regner et al. [2]. The curves shown represent the
best fit to the experimental data using the L2 norm minimization
criterion. For both the numerical model and the analytical model,
the best fit is manifested by a thermal conductivity value of k =
108 W/m/K. However, the fit is closer with the numerical model,
as evident from the figure. If instead, the L1 norm minimization
criterion is used, the best fit is obtained with a thermal
conductivity value of 110 W/m/K. It is evident from Fig. 4 that
in the case of the analytical model, the fit is not as good for
intermediate and high frequencies as for low frequencies. To
address this issue, previous researchers have suggested that,
perhaps, one should consider a frequency-dependent thermal
conductivity [5], while others have suggested using an anistropic
thermal conductivity [18]. Yet others have tried to adjust the
interface thermal conductance to obtain a better fit [11]. The fact
that the numerical solution yields almost perfect fit at all
frequencies, while the analytical model does not, suggests that
this discrepancy maybe due to the assumptions invoked in the
derivation of the analytical solution rather than absence of
necessary physics in the model. These include semi-infinite
media (in the radial direction), the contact surface being treated
as a volume and has lateral conduction, lack of heat loss from the
top of the system, among others.
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Figure 5: Phase lag computed using the numerical model with
two different thermal conductivity values.

The extracted value of thermal conductivity, namely k= 108
W/m/K is significantly smaller than the bulk thermal
conductivity of silicon at 300K, which is about 148 W/m/K. This
reduction in thermal conductivity represents the so-called
thermal conductivity suppression reported in the literature [6,7].
The phase lag versus frequency behavior with the bulk value of
thermal conductivity is shown in Fig. 5. The phase lag is slightly
underpredicted at all frequencies if the bulk value of thermal
conductivity is used. For the same experimental data set, Regner
et al. [2] reported a thermal conductivity of 99 + 6 W/m/K.

The spatiotemporal evolution of the nondimensional
temperature distribution and the heat wave is illustrated in Fig. 6
for a modulation frequency of 200 kHz. For clarity of
visualization only a small portion of the substrate is shown. Since
the penetration depth of the heat wave is inversely proportional
to the inverse square root of the modulation frequency, and 200
kHz is the smallest frequency considered in this study, the
distributions shown in Fig. 6 represent the highest penetration of
the heat wave among all cases considered. After 30 cycles, the
system has almost reached quasi-steady state. Since the substrate
(and computational domain) is of size 525 um in both directions,
and the heat wave has not even penetrated 200 pum in the worst-
case scenario, it is fair to conclude that the computational domain
is large enough for the far-field boundary conditions at the top
and side to have minimal effect on the results. This is
corroborated next using additional calculations.
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Figure 6: Nondimensional temperature distributions in the
substrate after various intervals of time.
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Figure 7: Computed temperature difference along the centerline
of the substrate between adiabatic and isothermal boundary
condition at the bottom surface at quasi-steady state.

o

As mentioned earlier, the baseline calculations (reported
above) were conducted using isothermal boundary conditions at
the bottom and side boundaries. An isothermal boundary with
T, corresponds to h_,h, — . To investigate the sensitivity of

this boundary condition on the computed results, the solution
was recomputed with an adiabatic boundary condition instead of
an isothermal boundary condition. An adiabatic boundary
condition represents the other extreme wherein the heat transfer
coefficients are zero. Figure 7 shows the difference in the
temperature along the centerline (axis) of the substrate. Clearly,
there is no meaningful difference implying that the boundary
condition has no impact on the results. This may be attributed to
the fact that the computational domain is much larger than the
penetration depth. Likewise, the heat transfer coefficient on the
top of the transducer was changed from 10 W/m¥K to 250

6 Copyright © 2020 by ASME


mailto:mazumder.2@osu.edu

W/m?/K, and the maximum change in temperature anywhere on
the transducer was found to be 5.5 uK.

One of the critical inputs to the model considered here is the
interface conductance, G,. . For the baseline calculations, a value
0f 200 MW/m*K was used, in accordance with Cahill [1]. Other
researchers have suggested a value in the range 160—250
MW/m?/K [11]. To understand the sensitivity of the extracted
thermal conductivity to this unknown parameter, computations
were performed for various values of G, . Figure 8 shows the

predicted phase lag for various values of G, and a thermal

conductivity of 108 W/m/K. There is clearly some difference in
the results at intermediate and high modulation frequencies. If
G.= 250 MW/m?K is used as the interface conductance, the
best fit to the experimental data is obtained with a thermal
conductivity value of 115 W/m/K, rather than 108 W/m/K. On
the other hand, for the other two values considered, the best fit
yields 108 W/m/K, although the quality of the fit is better for G-

=200 MW/m*K than for G.= 160 MW/m?/K.
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Figure 8: Effect of interface conductance on the phase lag.

Finally, all calculations were repeated using the hyperbolic
heat conduction equation. The effective (or average) relaxation
time-scale, 7, which appears as an input in the hyperbolic heat
conduction equation was estimated using the following
relationship [19]:

Drmax, p 5
2 ] euslouf 7y do
P o,

Omax, p
2 [ e
»

p (/)mln‘

T

) (13)

2
do

Dw,p

where ¢, , is the spectral specific heat capacity of silicon, and
and v, , is the spectral group velocity of the phonons. Both of

these quantities can be computed directly for any polarization p
and frequency o using dispersion relationships of silicon, as
explained elsewhere [8,20]. The value of the effective relaxation
time-scale using Eq. (13) and frequency and polarization
dependent time-scale expressions proposed by Holland [21,22]
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was found to be about 0.0365 ns. The largest difference in
temperature as predicted by the two models (Fourier versus
Hyperbolic) is manifested at the highest modulation frequency
(200 MHz) and it occurs on the surface of the substrate, as shown
Fig. 9. This is understandable since at high frequency, quasi-
ballistic effects are expected to be the strongest and
consequently, some difference is expected between the two
models. However, even for 200 MHz, the cycle time is 5 ns,
which is significantly larger than the estimated effective
relaxation time scale. This implies that the hyperbolic heat
conduction equation is expected to behave similar to the Fourier
heat conduction equation in this particular case, as is evident
from the fact that 0.05 K (out of about 2.1 K rise) was the largest
temperature difference observed between the two models. The
phase lag calculated using the two models was found to be
identical, and therefore, the resulting thermal conductivity did
not change. Again, this is to be expected since the relaxation
time-scale used in the calculations is significantly smaller than
the cycle time for any modulation frequency considered. The
choice of the effective relaxation time-scale requires further
investigation.
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Figure 9: Computed temperature difference along the centerline
of the substrate between the Fourier heat conduction and
Hyperbolic heat conduction equations with a modulation
frequency of 200 MHz and after 30 cycles.

SUMMARY AND CONCLUSIONS

Calculations were conducted both analytically and numerically
to extract the thermal conductivity of a silicon substrate from
FDTR experimental data. The analytical calculations used
Hankel transforms of the Fourier heat conduction equation in
frequency domain along with the Feldman algorithm to treat
multiple finite-sized layers. The numerical calculations were
conducted in time domain using the finite-volume method and a
backward Euler time advancement scheme. Both the Fourier heat
conduction equation and the hyperbolic heat conduction
equation were explored for numerical solutions. The numerical
solutions enable use of more realistic boundary conditions,
namely convective heat loss at the surfaces of the substrate and
transducer. The calculations were conducted in the range of
modulation frequency going from 200 kHz to 200 MHz for 22
different frequencies. The phase lag between the modulated
pump laser signal and the temperature of the transducer at the
center of the laser beam was calculated in each case and a plot of
phase lag versus frequency was generated. This plot was
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compared to the same plot measured experimentally, and the
thermal conductivity was adjusted to obtain the best fit. The
extracted thermal conductivity was found to be in the range 108-
115 W/m/K depending on the choice of boundary conditions and
the interface conductance between the transducer and the
substrate used in the calculations. This value is slightly different
from the value of 99 £ 6 W/m/K reported earlier for the same
experimental dataset. Parametric studies revealed that the
extracted thermal conductivity is more sensitive to the interface
thermal conductance than the boundary conditions at the
surfaces of the substrate/transducer. For this particular case, the
hyperbolic heat conduction equation yielded identical results as
the Fourier heat conduction equation.
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