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Abstract—This paper investigates the problem of best arm
identification (BAI) in stochastic multi-armed bandits in the
fixed confidence setting. A novel formulation based on sequential
hypothesis testing is provided, and an algorithm for BAI is
proposed that, in spirit, follows the structure of the canonical
sequential probability ratio test (SPRT). The algorithm has three
features: (1) its sample complexity is asymptotically optimal, (2) it
is guaranteed to be 6-PAC, and (3) it addresses the computational
challenge of the state-of-the-art approaches. Specifically, the
existing approaches rely on Thompson sampling for dynamically
identifying the best arm and a challenger. This paper shows
that identifying the challenger can be computationally expensive
and demonstrates that the SPRT-based approach addresses that
computational weakness.

I. INTRODUCTION
A. Relevant Literature

In this paper, we consider the problem of best arm identifi-
cation (BAI) in stochastic multi-armed bandits (MABs). The
BAI problem is studied, broadly, under two settings: the fixed
budget setting and the fixed confidence setting. The objective
in the fixed budget setting is to identify the arm with the largest
mean within a pre-specified sampling budget while minimizing
the decision error probability. On the other hand, in the fixed
confidence setting, the learner identifies the best arm while
ensuring a guarantee on the error probability, and the objective
is to minimize the sample complexity.

The BAI problem was first investigated in [1], which fo-
cused on the fixed budget setting. More studies on this setting
can be found in [2] and [3]. Representative studies in the
fixed confidence setting can be found in [4]-[7]. Algorithms
in this setting can be classified into two categories: non-
Bayesian algorithms and Bayesian algorithms. Some of the
non-Bayesian approaches to BAI in stochastic MABs include
confidence interval-based approaches (see [4] and [7]) and
successive elimination-based approaches (see [8]).

In the confidence interval-based approach, the learner com-
putes the sample mean of each arm as an empirical estimate
for it, and a confidence interval around these estimates. the
true means lie in these intervals with a high probability. The
rationale behind this strategy is to gather more evidence until
there is no overlap among the confidence intervals, and then
the learner decides the best arm based on the empirical esti-
mates. The successive elimination-based strategy, on the other
hand, involves eliminating the potentially suboptimal arms in
each round and sampling from all other arms until only one
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arm remains to be eliminated. The state-of-the-art in the non-
Bayesian setting is the track and stop strategy of [6], which
tracks the optimal allocation of arms, and selects the next
action based on the estimated optimal allocation computed
at the current time instant. This algorithm is asymptotically
optimal up to a constant factor and faces the computational
challenge of computing the optimal allocation at each time
instance.

While non-Bayesian approaches have been investigated ex-
tensively, the Bayesian setting is far less investigated. The first
Bayesian algorithms were introduced in [9], based on a top-
two design philosophy. Among them, the top-two Thompson
sampling (TTTS) algorithm has received more attention due
to its simplicity and optimality properties. Owing to the sim-
plicity of the top-two design principle, an improvement of the
expected improvement algorithm was proposed in [10], and it
was shown to be asymptotically optimal up to a constant factor.
The sample complexity of TTTS in the Gaussian setting was
later analyzed in [11], where it was shown to be asymptotically
optimal.

B. Contribution

Despite its simplicity, the TTTS algorithm faces a computa-
tional challenge. Specifically, for dynamically identifying the
top two arms, it generates random samples from the posterior
distributions of the rewards. The coordinate with the largest
value in the first sample is deemed as the coordinate of the best
arm. For identifying the second arm (the challenger), TTTS
keeps generating more samples until the coordinate with the
largest value is distinct from the index already identified as
the best arm. The computational challenge of TTTS stems
from the following behavior: after enough explorations, the
posterior distribution of the average reward converges to the
true model, and the largest coordinate of any random sample
will be pointing to the best arm. This significantly increases
the delay for encountering a challenger.

In this paper, we propose a sequential hypothesis testing
framework for formulating and solving the BAI problem in
the fixed confidence setting. In this framework, we design
a BAI algorithm that mitigates the computational difficulty
of TTTS while maintaining the optimality guarantees. The
combination of arm selection and stopping rules are, in spirit,
similar to the sequential probability ratio test (SPRT) [12]. The
arm selection rules involve dynamically updating generalized
likelihood ratios that compare the relative likelihood of dif-
ferent arms for being among the best arms. We refer to this
algorithm by the top-two SPRT (TT-SPRT). While achieving
the same optimality guarantees as those of TTTS, TT-SPRT
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does not face the delay that TTTS faces for identifying
the challengers. To establish this, we analyze the number
of samples that TTTS should generate for encountering the
challenger. TT-SPRT, on the other hand, does not require
gathering additional samples for identifying the challenger.
To establish the optimality of TT-SPRT, we provide an upper
bound on its sample complexity and show that it matches the
universal lower bound asymptotically.

II. BAI IN STOCHASTIC BANDITS

Consider a K-armed Gaussian stochastic MAB, such that
arm i € [K] £ {1,---,K} generates rewards according
to the Gaussian distribution A/ (y;, 0?), which we denote by
fi(- | 1;). The vector of mean values p 2 [u1,...,pux] is
unknown, and the mean values are assumed to be distinct.
The arm with the largest mean value is denoted by

I* £ argmax y; . (1
1€[K]
Furthermore, the gap between the means of the best arm I*
and any other arm ¢ € [K] \ {I*} is denoted by

A= e — i )

and the smallest gap among all possible pairs is represented
by

Amin £ min |p; — :uj‘ . €)]

i#]

The value of the variance o2 is assumed to be known. At
each time instant n € N, the learner selects and samples an
arm, denoted by I,,, and nature generates a random reward
denoted by Y, ;,. The sequence of arm selections and the
corresponding rewards obtained up to time n are denoted by

In é {Ilv"' 7In}7 and yn é {Yl,lla"' 7Yn,ln} . (4)

Furthermore, the sequence of rewards accumulated from arm
i € [K] up to time n is denoted by

VrE{Ye, =il e n]}. (5)

The objective of the learner is to identify the arm with the
largest mean using as few samples as possible. Any sequential
BAI algorithm has a stochastic stopping time, at which the
algorithm identifies an arm as the best arm. Let 7 denote the
stochastic stopping time and I, denote the arm identified as
the best arm at the stopping time. In this paper, we consider
the fixed confidence setting, in which the learner’s objective
is to identify the best arm [* with a pre-specified confidence
level. We use two notions of optimality. First, we require the
BAI algorithm to have a terminal decision I, such that the
probability of error falls below a pre-specified guarantee d,
which we call the 6-PAC guarantee. Secondly, we require that
the average sample complexity required by the algorithm in
order to reach a confident decision should match the universal
lower bound asymptotically, which we call S-optimality. Both
these notions are specified in Section IV.

III. Tor-Two SPRT FOR BAI

We provide an SPRT-based algorithm for BAI, referred to
as top-two (TT)-SPRT. We will describe the specifics of arm
selection strategy and stopping rule in this section, and provide
the attendant performance guarantees in Section IV.

A. Posing BAI as Hypothesis Testing

We propose to view and analyze the BAI problem as a
collection of binary composite hypothesis testing problems.
Specifically, at each time instance n € N, for any distinct pair
of arms (i,7) € [K] x [K], we specify the binary composite
hypothesis test

R T ©)

which aims to determine whether arm ¢ has a larger mean
compared to arm j. Thus, we have (12( ) different hypotheses.
For each pair of arms (i, j), looking at the sequence of rewards
drawn from these two arms until time instant n, i.e., J;* and
Y7, this test compares the order of the two mean values y;
and p;. Such a test, even though being closely related to
the sequential hypothesis testing problem, is distinct from the
objective of the BAI problem. First, the objective of solving
the hypothesis test in (6) is reaching a terminal decision about
the true model. In the BAI problem, on the other hand, we are
not interested in ordering all the arms and we need to identify
only the best arm. Secondly, we need to dynamically select
the arms over time, a decision that does not exist in binary
hypothesis testing.

We consider a generalized likelihood ratio test for forming
the arm selection and BAI decisions. Specifically, at time n
and corresponding to each pair (4, j) we define the generalized
log-likelihood ratio (GLLR)

sup, P(Y" | Hi ;)

sup, P(V™ [ H;.i) -

It can be readily verified that A,,(7,j) can be simplified to
max FiQo | ) £ (7 | 1)

An(i,§) 2 log “22 :
(i, 7) = log max FO7 ()07 1)

Ay (i, §) £ log (7

®)

As shown in [6], when f; belongs to the exponential family
of distributions, i.e., fi(y | pi) = exp(uiy — b(p;)), where
b: R — R is a convex, twice-differentiable function of p;,
A, (i, j) takes a closed-form specified in the following lemma.
To specify the closed form, we define T}, ; as the number of
times that arm ¢ € [K] is pulled up to time n, and define the
sample mean

(1>

pni 2 Sy, ©)

X3 yey;t
as an empirical estimate of p;. Accordingly, we define the
weighted average of the empirical means of arms ¢ and j as
,Uz A Tn,iﬂn,i +Tn,j/~Ln,j
n,%,9 Tn;i +Tn,_]

(10)
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Lemma 1 ( [6]). Under the exponential family of distributions,
the GLLR defined in (8) has a closed form given by

A (i, 5) = | T iDL (pn il bnsi ) + T DKL (R, | i )

X ]l{un,,i>unﬁj} ) (11)

where Dy (i;||pe;) denotes the Kullback-Leibler (KL) diver-
gence between two distributions with parameters ji; and p;.

Based on this lemma, for Gaussian distributions, the closed
form in (11) simplifies to:

(,Un,i - ,“n,j)2

2 1 1
20 (TnTi + Th,j

B. Sampling Strategy

A (i, j) = (12)

) ’ H{U'n,i>,un,j} .

At each instant, the TT-SPRT identifies the arm that has a
positive log-likelihood ratio with respect to every other arm.
Note that we have exactly one such arm, which we refer to as
the fop arm. We denote the top arm by I, i.e.,

I =i suchthat A,(i,5) >0 Vje[K]\{i}. (13)

In the Gaussian setting the top arm has the largest sample
mean [i,, ; at time n. Hence,

(14)

I = argmax fin; -
i1€[K]

Besides the top arm, we also define the challenger arm as the
one that is the closest competitor of the fop arm for being
the best arm. The challenger arm at time n is the arm that
minimizes the log-likelihood ratio computed with respect to
the top arm IT'. We denote the challenger arm at time n by
I3 and it is given by

I} % argmin A,(I7,5) . (15)

JEKN{IT}
Based on the choices of the top and challenger arms, at time n,
our sampling strategy selects one of the two arms based on a
Bernoulli random variable D,, ~ Bern(8), where § € (0,1)
is a tunable parameter. Specifically, our action at time n + 1
is specified by

In+1 é {

C. Stopping Rule

(16)

We adopt a thresholding-based stopping criterion, where we
design the threshold in a way that the algorithm meets the
0-PAC guarantee. At each instant of time, we evaluate the
GLLR between the top-two arms [}* and I3'. The procedure
stops as soon as the GLLR A, (I, I}) exceeds a threshold
cn,s. wWhich is specified in Section IV. This threshold will be
selected to meet the guarantee on the desired confidence level
1 — 4. Specifically, the stopping rule is

Téinf{neN:An(If,Ig) > cn,g} . (17)

Hence, the TT-SPRT algorithm stops sampling and identifies
an arm as soon as it has gathered sufficient evidence that it
can distinguish the top arm I* from the challenger I5'. Note
that the stopping criterion is different from that of the SPRT’s,
which uses an upper and a lower threshold that are designed
based on the required Type-I and Type-II error guarantees.
In the BAI problem, we require a guarantee on the overall
probability of error. Hence, instead of specifying different
confidence levels for every possible incorrect decision, we
have a guarantee on the aggregate probability of error, i.e.,
P(r < 400, I, # I*). Thus, it suffices to have one threshold
cn,5, wWhich can be controlled by §. The choice of ¢, s as a
function of § and n and the attendant performance guarantees
will be discussed in the next section. Specifically, we will
analyze the sample complexity and the performance in the
probably approximately correct (PAC) learning framework.

IV. MAIN RESULTS

In this section, we establish the optimality of the TT-
SPRT algorithm. To furnish context, we first briefly review
the state-of-the-art algorithm and establish a result that shows
its computational weakness. This computational weakness is
the key motivation for TT-SPRT.

A. Challenger Identification in Top-Two Thompson Sampling

The TTTS algorithm [9], is a Bayesian algorithm in which
the reward mean values are assumed to have the prior dis-
tribution A(0, x?). Based on this prior, at each time n and
based on )", the learner computes a posterior distribution
II,, € RE — R. Specifically, for the average reward realiza-
tion [

(i | V") 2 Pl = | V") .

The marginal posterior reward distribution of arm i € [K] is
Gaussian with mean [, ; and variance 1]72”- given by

(18)

N 1
n,g — y 19
Hnt = o2 2 Zy 19)
k) yey:L
2 A o’
s 20
T]n,z Tn,i + 0_2/512 ( )

While the TTTS is devised for the setting with a Gaussian prior
distribution for the rewards, the the sample complexity analysis
for the algorithm holds for the asymptotic regime of k — +o00.
This assumption renders the prior distributions uninformative,
and the setting becomes equivalent to that of the non-Bayesian
counterpart, i.e., when the means corresponding to each arm
is unknown, and we have no prior distribution over the arm
means. Thus, the posterior mean corresponding to each arm
i € [K] defined in (19) reduces to that of the sample mean,
i.e., fin,i = Un,i, and the setting for both TTTS as well as TT-
SPRT becomes equivalent. As a result, II,, denotes the product
of the K Gaussian posteriors, N (i, i, 05 ;) for all i € [K],
where we have defined 02 ; £ 02 /T, ;.

The arm selection strategy of the TTTS algorithm works
as follows. At each time n, a random K-dimensional sample
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0" = (07,---0%) is drawn from the posterior distribution
II,,. The coordinate with the largest value is defined as the
index of the top arm, denoted by JJ' £ arg mMax,c ) 07
In order to find a challenger (the closest competitor to J7*),
the algorithm continues sampling the posterior II,, until a
realization from II,, is encountered such that the index of its
largest coordinate is distinct from J7'. This is considered the
challenger arm and its index is denoted by J3'. Encountering a
challenger arm requires generating enough samples from II,,.
As n increases and the posterior distribution IT,, points to more
confidence about the best arm, the number of samples required
to encounter a challenger increases. We define a sample s
generated from II, by 67 = ( w150, 00 ). By design,
clearly, J5 £ arg max;¢ g U5, and J3' # Ji'. Once Ji' and
J3 are identified, the TTTS selects one of them based on a
Bernoulli random variable parameterized by 8 € (0,1). As n
increases and II,, converges, the number of samples required
for encountering a challenger also increases, and this imposes
a computational challenge, especially for large n. In the next
theorem, we show that the number of samples required for
encountering a challenger scales at least exponentially in /7.
For this purpose, we define

Ttrrs = inf{s e N: Ji e [K], 00, > 07 5}, (1)

as the number of posterior samples required for finding a
challenger at time n.

Theorem 1. In the TTTS algorithm [9], there exists Ny €
N such that at any time n > Ny, the average number of
posterior samples required in order to find a challenger is

lower-bounded as
n
2 — C; , 22
e, exp (\/ K ,L) (22)

E[T7rrs] > min

where we have defined

A (Az - Amin/2)2
Cz,L - 452
We observe that the lower bound increases exponentially in
\/ﬁ, and thus, diverges for large values of n, i.e., when the
confidence required on the decision quality is large.

B. 6-PAC Guarantee

Next, we present the results related to the optimality of TT-
SPRT. We first state the result characterizing its optimality
with respect to the decision confidence, and then analyze the
average sample complexity of TT-SPRT. To characterize the
decision confidence, we use the notion of §-PAC defined next.

Definition 1 (§-PAC). We say that a BAI algorithm is 5-PAC
with a confidence level § € (0,1), if it guarantees that

P{r <400, I, ="} >1-4§,

(23)

(24)

where P denotes the measure induced by the interaction of the
BAI algorithm with the bandit instances.

For proving the §-PAC guarantee we leverage an existing
result in [11] that proves that any arm selection strategy

coupled with the stopping rule specified in (17) and a properly
chosen threshold ¢, s ensures 0-PAC guarantee. With appro-
priate adjustments, this result ensures 6-PAC guarantee for the
TT-SPRT algorithm as well. For completeness, this result is
presented in the following theorem.

Theorem 2. The stopping rule in (17) with the choice of the
threshold

Cn.s = 4log(4 +logn) + Qf(l()g(([(_l)/&)) . (29

2

where we have defined f(x) £ x + logx, coupled with any
arm selection strategy is §-PAC.

Proof. Follows similarly to [11, Theorem 2]. [ |

Next, we analyze the sample complexity of TT-SPRT. First,
we define a few quantities that are instrumental to stating the
result.

C. Sample Complexity

To analyze the sample complexity, that is the expected value
of the stochastic stopping time, we start by defining the notion
of problem complexity. Problem complexity characterizes the
level of difficulty that an algorithm faces to identify the best
arm with sufficient fidelity. It is an instance-dependent quantity
and it is defined as
(pere — pa)?

max min —————
whiwl, =g i#l* 202(1/w; +1/8)

where w? 2 [w? ... wWY] denotes a K-dimensional prob-

ability simplex satisfying w?* = (. In the Gaussian bandit
setting, the optimal sampling proportions that maximize (26)
are obtained by solving [10] and [11]:

s 2 (26)

(e —pi)? (e = py)? i, g x
Pyl eyp o SR

To show that TT-SPRT achieves the optimal sample complex-
ity, we provide an upper bound on its sample complexity,
which matches the following known information-theoretic
lower bound on the sample complexity of any BAI algorithm.

27)

Lemma 2 (Lower bound [11]). Under any §-PAC strategy that
almost surely satisfies =~ — 3, we have

Bl 1
log(1/0) = T'y

lim inf

6—0 (28)

The universal lower bound in Lemma 2 provides the min-
imum number of samples that any J-PAC BAI algorithm
requires asymptotically, provided that 3 fraction of measure-
ments is allocated to the best arm. We define the notion
of [-optimality, which was first introduced in establishing
optimality guarantees for the top-two algorithms for BAI
in [10], and was adopted later for establishing the optimality
of the TTTS algorithm [11].
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Fig. 1. Average number of posterior samples versus n

Definition 2 (-optimality). A BAI strategy is called asymp-
totically (-optimal, if it satisfies:

E[7] 1

[ S R
log(1/0) — I's

Finally, we show that the TT-SPRT algorithm is S-optimal,
i.e., its sample complexity matches the universal lower bound
provided in Lemma 2 asymptotically, while satisfying the
condition on the measurements allocated to the best arm I™*.

Tn,[* n—o00

8 as., and limsup . (29)

5—0

Theorem 3. The TT-SPRT algorithm, which consists of the
sampling rule in (16) and stopping rule in (17), is asymptoti-
cally B-optimal, i.e., it satisfies:

E[7] 1

— <

a.s., and limsup log(1/0) = T% .
B

T, I* —
n, n—00 ﬁ
n 5—0

V. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to com-
pare the performance of TT-SPRT against that of TTTS as
the state-of-the-art algorithm. For all the experiments, we
use a Gaussian bandit model in which we have set pu £
[5,4.5,1,1,1] and 02 = 1. This bandit model has also been
used in [10] for comparing the empirical performance of BAI
algorithms. We set 8 = 0.98 for choosing between the top two
arms in TT-SPRT. Furthermore, all experiments are averaged
over 1000 independent Monte Carlo trials.

In order to show the computational difficulty of obtaining a
challenger in TTTS, in Figure 1 we plot the average number
of posterior samples required by TTTS to identify a challenger
and compare ir with the lower bound in Theorem 1. It is
observed that the actual number of samples required by TTTS
is considerably more than the lower bound.

Next, we compare the sample complexities of TT-SPRT and
TTTS. We note that a more recent algorithm called T3C was
also proposed in [11]. However, its performance was shown
to be nearly comparable to, if not worse than that of TTTS.
Hence, we restrict our comparison only to TTTS. For this
comparison, we set § = 1072, The sample complexity for TT-
SPRT in this setting is 73.741, which is about 10% lower than
that of TTTS, which is 81.655. Figure 2 depicts the cumulative

0 100 200 300 400 500 600

T

Fig. 2. Empirical CDF

distribution functions (CDFs) of the stopping time 7 for TT-
SPRT and TTTS. The improvement in the average sample
complexity of TT-SPRT is a result of the fact that a large
fraction of the realizations of the stopping time take smaller
values, compared to the realizations of TTTS. Specifically. we
observe that 81% of the realizations for TT-SPRT are below
100, whereas only 65.9% of those corresponding to TTTS
are below 100. This indicates that TT-SPRT requires fewer
number of samples in order to distinguish the best arm from
the second arm.

VI. CONCLUSIONS

In this paper, we have investigated the problem of best
arm identification in stochastic multi-armed bandits. We have
proposed a sequential hypothesis testing framework to for-
malize and analyze this problem. We have characterized the
arm selection and terminal decision rules based on gener-
alized likelihood ratio tests. The decisions rules (dynamic
arm selection and stopping time) have three main properties:
(1) they achieve optimality in the probably approximately
correct learning framework, (2) they asymptotically achieve
the optimal sample complexity, and (3) they address the
computational shortcoming of the state-the-art-of approaches.
We have analytically characterized the optimality properties,
and compared with the state-of-the-art both analytically and
numerically.
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