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AbstractÐThis paper investigates the problem of best arm
identification (BAI) in stochastic multi-armed bandits in the
fixed confidence setting. A novel formulation based on sequential
hypothesis testing is provided, and an algorithm for BAI is
proposed that, in spirit, follows the structure of the canonical
sequential probability ratio test (SPRT). The algorithm has three
features: (1) its sample complexity is asymptotically optimal, (2) it
is guaranteed to be δ-PAC, and (3) it addresses the computational
challenge of the state-of-the-art approaches. Specifically, the
existing approaches rely on Thompson sampling for dynamically
identifying the best arm and a challenger. This paper shows
that identifying the challenger can be computationally expensive
and demonstrates that the SPRT-based approach addresses that
computational weakness.

I. INTRODUCTION

A. Relevant Literature

In this paper, we consider the problem of best arm identifi-

cation (BAI) in stochastic multi-armed bandits (MABs). The

BAI problem is studied, broadly, under two settings: the fixed

budget setting and the fixed confidence setting. The objective

in the fixed budget setting is to identify the arm with the largest

mean within a pre-specified sampling budget while minimizing

the decision error probability. On the other hand, in the fixed

confidence setting, the learner identifies the best arm while

ensuring a guarantee on the error probability, and the objective

is to minimize the sample complexity.

The BAI problem was first investigated in [1], which fo-

cused on the fixed budget setting. More studies on this setting

can be found in [2] and [3]. Representative studies in the

fixed confidence setting can be found in [4]±[7]. Algorithms

in this setting can be classified into two categories: non-

Bayesian algorithms and Bayesian algorithms. Some of the

non-Bayesian approaches to BAI in stochastic MABs include

confidence interval-based approaches (see [4] and [7]) and

successive elimination-based approaches (see [8]).

In the confidence interval-based approach, the learner com-

putes the sample mean of each arm as an empirical estimate

for it, and a confidence interval around these estimates. the

true means lie in these intervals with a high probability. The

rationale behind this strategy is to gather more evidence until

there is no overlap among the confidence intervals, and then

the learner decides the best arm based on the empirical esti-

mates. The successive elimination-based strategy, on the other

hand, involves eliminating the potentially suboptimal arms in

each round and sampling from all other arms until only one
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arm remains to be eliminated. The state-of-the-art in the non-

Bayesian setting is the track and stop strategy of [6], which

tracks the optimal allocation of arms, and selects the next

action based on the estimated optimal allocation computed

at the current time instant. This algorithm is asymptotically

optimal up to a constant factor and faces the computational

challenge of computing the optimal allocation at each time

instance.

While non-Bayesian approaches have been investigated ex-

tensively, the Bayesian setting is far less investigated. The first

Bayesian algorithms were introduced in [9], based on a top-

two design philosophy. Among them, the top-two Thompson

sampling (TTTS) algorithm has received more attention due

to its simplicity and optimality properties. Owing to the sim-

plicity of the top-two design principle, an improvement of the

expected improvement algorithm was proposed in [10], and it

was shown to be asymptotically optimal up to a constant factor.

The sample complexity of TTTS in the Gaussian setting was

later analyzed in [11], where it was shown to be asymptotically

optimal.

B. Contribution

Despite its simplicity, the TTTS algorithm faces a computa-

tional challenge. Specifically, for dynamically identifying the

top two arms, it generates random samples from the posterior

distributions of the rewards. The coordinate with the largest

value in the first sample is deemed as the coordinate of the best

arm. For identifying the second arm (the challenger), TTTS

keeps generating more samples until the coordinate with the

largest value is distinct from the index already identified as

the best arm. The computational challenge of TTTS stems

from the following behavior: after enough explorations, the

posterior distribution of the average reward converges to the

true model, and the largest coordinate of any random sample

will be pointing to the best arm. This significantly increases

the delay for encountering a challenger.

In this paper, we propose a sequential hypothesis testing

framework for formulating and solving the BAI problem in

the fixed confidence setting. In this framework, we design

a BAI algorithm that mitigates the computational difficulty

of TTTS while maintaining the optimality guarantees. The

combination of arm selection and stopping rules are, in spirit,

similar to the sequential probability ratio test (SPRT) [12]. The

arm selection rules involve dynamically updating generalized

likelihood ratios that compare the relative likelihood of dif-

ferent arms for being among the best arms. We refer to this

algorithm by the top-two SPRT (TT-SPRT). While achieving

the same optimality guarantees as those of TTTS, TT-SPRT
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does not face the delay that TTTS faces for identifying

the challengers. To establish this, we analyze the number

of samples that TTTS should generate for encountering the

challenger. TT-SPRT, on the other hand, does not require

gathering additional samples for identifying the challenger.

To establish the optimality of TT-SPRT, we provide an upper

bound on its sample complexity and show that it matches the

universal lower bound asymptotically.

II. BAI IN STOCHASTIC BANDITS

Consider a K-armed Gaussian stochastic MAB, such that

arm i ∈ [K] ≜ {1, · · · ,K} generates rewards according

to the Gaussian distribution N (µi, σ
2), which we denote by

fi(· | µi). The vector of mean values µ ≜ [µ1, . . . , µK ] is

unknown, and the mean values are assumed to be distinct.

The arm with the largest mean value is denoted by

I⋆ ≜ argmax
i∈[K]

µi . (1)

Furthermore, the gap between the means of the best arm I⋆

and any other arm i ∈ [K] \ {I⋆} is denoted by

∆i ≜ µI⋆ − µi , (2)

and the smallest gap among all possible pairs is represented

by

∆min ≜ min
i ̸=j

|µi − µj | . (3)

The value of the variance σ2 is assumed to be known. At

each time instant n ∈ N, the learner selects and samples an

arm, denoted by In, and nature generates a random reward

denoted by Yn,In . The sequence of arm selections and the

corresponding rewards obtained up to time n are denoted by

In ≜ {I1, · · · , In}, and Yn ≜ {Y1,I1 , · · · , Yn,In} . (4)

Furthermore, the sequence of rewards accumulated from arm

i ∈ [K] up to time n is denoted by

Yn
i ≜ {Yℓ,Iℓ : Iℓ = i, ℓ ∈ [n]} . (5)

The objective of the learner is to identify the arm with the

largest mean using as few samples as possible. Any sequential

BAI algorithm has a stochastic stopping time, at which the

algorithm identifies an arm as the best arm. Let τ denote the

stochastic stopping time and Îτ denote the arm identified as

the best arm at the stopping time. In this paper, we consider

the fixed confidence setting, in which the learner’s objective

is to identify the best arm I⋆ with a pre-specified confidence

level. We use two notions of optimality. First, we require the

BAI algorithm to have a terminal decision Îτ such that the

probability of error falls below a pre-specified guarantee δ,

which we call the δ-PAC guarantee. Secondly, we require that

the average sample complexity required by the algorithm in

order to reach a confident decision should match the universal

lower bound asymptotically, which we call β-optimality. Both

these notions are specified in Section IV.

III. TOP-TWO SPRT FOR BAI

We provide an SPRT-based algorithm for BAI, referred to

as top-two (TT)-SPRT. We will describe the specifics of arm

selection strategy and stopping rule in this section, and provide

the attendant performance guarantees in Section IV.

A. Posing BAI as Hypothesis Testing

We propose to view and analyze the BAI problem as a

collection of binary composite hypothesis testing problems.

Specifically, at each time instance n ∈ N, for any distinct pair

of arms (i, j) ∈ [K] × [K], we specify the binary composite

hypothesis test

Hi,j : µi > µj , (6)

which aims to determine whether arm i has a larger mean

compared to arm j. Thus, we have
(

K
2

)

different hypotheses.

For each pair of arms (i, j), looking at the sequence of rewards

drawn from these two arms until time instant n, i.e., Yn
i and

Yn
j , this test compares the order of the two mean values µi

and µj . Such a test, even though being closely related to

the sequential hypothesis testing problem, is distinct from the

objective of the BAI problem. First, the objective of solving

the hypothesis test in (6) is reaching a terminal decision about

the true model. In the BAI problem, on the other hand, we are

not interested in ordering all the arms and we need to identify

only the best arm. Secondly, we need to dynamically select

the arms over time, a decision that does not exist in binary

hypothesis testing.

We consider a generalized likelihood ratio test for forming

the arm selection and BAI decisions. Specifically, at time n
and corresponding to each pair (i, j) we define the generalized

log-likelihood ratio (GLLR)

Λn(i, j) ≜ log
sup

µ
P(Yn | Hi,j)

sup
µ
P(Yn | Hj,i)

. (7)

It can be readily verified that Λn(i, j) can be simplified to

Λn(i, j) ≜ log

max
µi>µj

fi(Yn
i | µi)fj(Yn

j | µj)

max
µj>µi

fi(Yn
i | µi)fj(Yn

j | µj)
. (8)

As shown in [6], when fi belongs to the exponential family

of distributions, i.e., fi(y | µi) = exp(µiy − b(µi)), where

b : R 7→ R is a convex, twice-differentiable function of µi,

Λn(i, j) takes a closed-form specified in the following lemma.

To specify the closed form, we define Tn,i as the number of

times that arm i ∈ [K] is pulled up to time n, and define the

sample mean

µn,i ≜
1

Tn,i

∑

y∈Yn
i

y , (9)

as an empirical estimate of µi. Accordingly, we define the

weighted average of the empirical means of arms i and j as

µn,i,j ≜
Tn,iµn,i + Tn,jµn,j

Tn,i + Tn,j

. (10)
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Lemma 1 ( [6]). Under the exponential family of distributions,

the GLLR defined in (8) has a closed form given by

Λn(i, j) =
[

Tn,iDKL(µn,i∥µn,i,j) + Tn,jDKL(µn,j∥µn,i,j)
]

× 1{µn,i>µn,j} , (11)

where DKL(µi∥µj) denotes the Kullback-Leibler (KL) diver-

gence between two distributions with parameters µi and µj .

Based on this lemma, for Gaussian distributions, the closed

form in (11) simplifies to:

Λn(i, j) =
(µn,i − µn,j)

2

2σ2

(

1
Tn,i

+ 1
Tn,j

) · 1{µn,i>µn,j} . (12)

B. Sampling Strategy

At each instant, the TT-SPRT identifies the arm that has a

positive log-likelihood ratio with respect to every other arm.

Note that we have exactly one such arm, which we refer to as

the top arm. We denote the top arm by In1 , i.e.,

In1 = i such that Λn(i, j) > 0 ∀ j ∈ [K] \ {i} . (13)

In the Gaussian setting the top arm has the largest sample

mean µn,i at time n. Hence,

In1 = argmax
i∈[K]

µn,i . (14)

Besides the top arm, we also define the challenger arm as the

one that is the closest competitor of the top arm for being

the best arm. The challenger arm at time n is the arm that

minimizes the log-likelihood ratio computed with respect to

the top arm In1 . We denote the challenger arm at time n by

In2 and it is given by

In2 ≜ argmin
j∈[K]\{In

1
}

Λn(I
n
1 , j) . (15)

Based on the choices of the top and challenger arms, at time n,

our sampling strategy selects one of the two arms based on a

Bernoulli random variable Dn ∼ Bern(β), where β ∈ (0, 1)
is a tunable parameter. Specifically, our action at time n + 1
is specified by

In+1 ≜

{

In1 , if Dn = 1
In2 , if Dn = 0

. (16)

C. Stopping Rule

We adopt a thresholding-based stopping criterion, where we

design the threshold in a way that the algorithm meets the

δ-PAC guarantee. At each instant of time, we evaluate the

GLLR between the top-two arms In1 and In2 . The procedure

stops as soon as the GLLR Λn(I
n
1 , I

n
2 ) exceeds a threshold

cn,δ , which is specified in Section IV. This threshold will be

selected to meet the guarantee on the desired confidence level

1− δ. Specifically, the stopping rule is

τ ≜ inf
{

n ∈ N : Λn(I
n
1 , I

n
2 ) > cn,δ

}

. (17)

Hence, the TT-SPRT algorithm stops sampling and identifies

an arm as soon as it has gathered sufficient evidence that it

can distinguish the top arm In1 from the challenger In2 . Note

that the stopping criterion is different from that of the SPRT’s,

which uses an upper and a lower threshold that are designed

based on the required Type-I and Type-II error guarantees.

In the BAI problem, we require a guarantee on the overall

probability of error. Hence, instead of specifying different

confidence levels for every possible incorrect decision, we

have a guarantee on the aggregate probability of error, i.e.,

P(τ < +∞, Îτ ̸= I⋆). Thus, it suffices to have one threshold

cn,δ , which can be controlled by δ. The choice of cn,δ as a

function of δ and n and the attendant performance guarantees

will be discussed in the next section. Specifically, we will

analyze the sample complexity and the performance in the

probably approximately correct (PAC) learning framework.

IV. MAIN RESULTS

In this section, we establish the optimality of the TT-

SPRT algorithm. To furnish context, we first briefly review

the state-of-the-art algorithm and establish a result that shows

its computational weakness. This computational weakness is

the key motivation for TT-SPRT.

A. Challenger Identification in Top-Two Thompson Sampling

The TTTS algorithm [9], is a Bayesian algorithm in which

the reward mean values are assumed to have the prior dis-

tribution N (0, κ2). Based on this prior, at each time n and

based on Yn, the learner computes a posterior distribution

Πn ∈ R
K → R. Specifically, for the average reward realiza-

tion µ̃:

Πn(µ̃ | Yn) ≜ P(µ = µ̃ | Yn) . (18)

The marginal posterior reward distribution of arm i ∈ [K] is

Gaussian with mean µ̃n,i and variance η2n,i given by

µ̃n,i ≜
1

Tn,i + σ2/κ2

∑

y∈Yn
i

y , (19)

η2n,i ≜
σ2

Tn,i + σ2/κ2
. (20)

While the TTTS is devised for the setting with a Gaussian prior

distribution for the rewards, the the sample complexity analysis

for the algorithm holds for the asymptotic regime of κ → +∞.

This assumption renders the prior distributions uninformative,

and the setting becomes equivalent to that of the non-Bayesian

counterpart, i.e., when the means corresponding to each arm

is unknown, and we have no prior distribution over the arm

means. Thus, the posterior mean corresponding to each arm

i ∈ [K] defined in (19) reduces to that of the sample mean,

i.e., µ̃n,i = µn,i, and the setting for both TTTS as well as TT-

SPRT becomes equivalent. As a result, Πn denotes the product

of the K Gaussian posteriors, N (µn,i, σ
2
n,i) for all i ∈ [K],

where we have defined σ2
n,i ≜ σ2/Tn,i.

The arm selection strategy of the TTTS algorithm works

as follows. At each time n, a random K-dimensional sample
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θn
≜ (θn1 , · · · θnK) is drawn from the posterior distribution

Πn. The coordinate with the largest value is defined as the

index of the top arm, denoted by Jn
1 ≜ argmaxi∈[K] θ

n
i .

In order to find a challenger (the closest competitor to Jn
1 ),

the algorithm continues sampling the posterior Πn until a

realization from Πn is encountered such that the index of its

largest coordinate is distinct from Jn
1 . This is considered the

challenger arm and its index is denoted by Jn
2 . Encountering a

challenger arm requires generating enough samples from Πn.

As n increases and the posterior distribution Πn points to more

confidence about the best arm, the number of samples required

to encounter a challenger increases. We define a sample s
generated from Πn by θn

s ≜ (θns,1, · · · , θns,K). By design,

clearly, Jn
2 ≜ argmaxi∈[K] θ

n
s,i, and Jn

2 ̸= Jn
1 . Once Jn

1 and

Jn
2 are identified, the TTTS selects one of them based on a

Bernoulli random variable parameterized by β ∈ (0, 1). As n
increases and Πn converges, the number of samples required

for encountering a challenger also increases, and this imposes

a computational challenge, especially for large n. In the next

theorem, we show that the number of samples required for

encountering a challenger scales at least exponentially in
√
n.

For this purpose, we define

Tn
TTTS ≜ inf{s ∈ N : ∃i ∈ [K], θns,i > θns,Jn

1

} , (21)

as the number of posterior samples required for finding a

challenger at time n.

Theorem 1. In the TTTS algorithm [9], there exists N0 ∈
N such that at any time n > N0, the average number of

posterior samples required in order to find a challenger is

lower-bounded as

E[Tn
TTTS] ≥ min

i∈[K]\{I⋆}
2 exp

(
√

n

K
Ci,L

)

, (22)

where we have defined

Ci,L ≜
(∆i −∆min/2)

2

4σ2
. (23)

We observe that the lower bound increases exponentially in√
n, and thus, diverges for large values of n, i.e., when the

confidence required on the decision quality is large.

B. δ-PAC Guarantee

Next, we present the results related to the optimality of TT-

SPRT. We first state the result characterizing its optimality

with respect to the decision confidence, and then analyze the

average sample complexity of TT-SPRT. To characterize the

decision confidence, we use the notion of δ-PAC defined next.

Definition 1 (δ-PAC). We say that a BAI algorithm is δ-PAC

with a confidence level δ ∈ (0, 1), if it guarantees that

P{τ < +∞, Îτ = I⋆} > 1− δ , (24)

where P denotes the measure induced by the interaction of the

BAI algorithm with the bandit instances.

For proving the δ-PAC guarantee we leverage an existing

result in [11] that proves that any arm selection strategy

coupled with the stopping rule specified in (17) and a properly

chosen threshold cn,δ ensures δ-PAC guarantee. With appro-

priate adjustments, this result ensures δ-PAC guarantee for the

TT-SPRT algorithm as well. For completeness, this result is

presented in the following theorem.

Theorem 2. The stopping rule in (17) with the choice of the

threshold

cn,δ ≜ 4 log(4 + log n) + 2f

(

log((K − 1)/δ)

2

)

, (25)

where we have defined f(x) ≜ x + log x, coupled with any

arm selection strategy is δ-PAC.

Proof. Follows similarly to [11, Theorem 2]. ■

Next, we analyze the sample complexity of TT-SPRT. First,

we define a few quantities that are instrumental to stating the

result.

C. Sample Complexity

To analyze the sample complexity, that is the expected value

of the stochastic stopping time, we start by defining the notion

of problem complexity. Problem complexity characterizes the

level of difficulty that an algorithm faces to identify the best

arm with sufficient fidelity. It is an instance-dependent quantity

and it is defined as

Γ⋆
β ≜ max

ωβ :ωβ

I⋆
=β

min
i ̸=I⋆

(µI⋆ − µi)
2

2σ2(1/ωi + 1/β)
, (26)

where ωβ ≜ [ωβ
1 , · · · , ωβ

K ] denotes a K-dimensional prob-

ability simplex satisfying ωβ
I⋆ = β. In the Gaussian bandit

setting, the optimal sampling proportions that maximize (26)

are obtained by solving [10] and [11]:

(µI⋆ − µi)
2

1/ωβ
i + 1/β

=
(µI⋆ − µj)

2

1/ωβ
j + 1/β

, ∀ i, j ∈ [K] \ {I⋆} . (27)

To show that TT-SPRT achieves the optimal sample complex-

ity, we provide an upper bound on its sample complexity,

which matches the following known information-theoretic

lower bound on the sample complexity of any BAI algorithm.

Lemma 2 (Lower bound [11]). Under any δ-PAC strategy that

almost surely satisfies
Tn,I⋆

n
→ β, we have

lim inf
δ→0

E[τ ]

log(1/δ)
≥ 1

Γ⋆
β

. (28)

The universal lower bound in Lemma 2 provides the min-

imum number of samples that any δ-PAC BAI algorithm

requires asymptotically, provided that β fraction of measure-

ments is allocated to the best arm. We define the notion

of β-optimality, which was first introduced in establishing

optimality guarantees for the top-two algorithms for BAI

in [10], and was adopted later for establishing the optimality

of the TTTS algorithm [11].
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Fig. 1. Average number of posterior samples versus n

Definition 2 (β-optimality). A BAI strategy is called asymp-

totically β-optimal, if it satisfies:

Tn,I⋆

n

n→∞−−−−→ β a.s. , and lim sup
δ→0

E[τ ]

log(1/δ)
≤ 1

Γ⋆
β

. (29)

Finally, we show that the TT-SPRT algorithm is β-optimal,

i.e., its sample complexity matches the universal lower bound

provided in Lemma 2 asymptotically, while satisfying the

condition on the measurements allocated to the best arm I⋆.

Theorem 3. The TT-SPRT algorithm, which consists of the

sampling rule in (16) and stopping rule in (17), is asymptoti-

cally β-optimal, i.e., it satisfies:

Tn,I⋆

n

n→∞−−−−→ β a.s. , and lim sup
δ→0

E[τ ]

log(1/δ)
≤ 1

Γ⋆
β

.

(30)

V. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to com-

pare the performance of TT-SPRT against that of TTTS as

the state-of-the-art algorithm. For all the experiments, we

use a Gaussian bandit model in which we have set µ ≜

[5, 4.5, 1, 1, 1] and σ2 = 1. This bandit model has also been

used in [10] for comparing the empirical performance of BAI

algorithms. We set β = 0.98 for choosing between the top two

arms in TT-SPRT. Furthermore, all experiments are averaged

over 1000 independent Monte Carlo trials.

In order to show the computational difficulty of obtaining a

challenger in TTTS, in Figure 1 we plot the average number

of posterior samples required by TTTS to identify a challenger

and compare ir with the lower bound in Theorem 1. It is

observed that the actual number of samples required by TTTS

is considerably more than the lower bound.

Next, we compare the sample complexities of TT-SPRT and

TTTS. We note that a more recent algorithm called T3C was

also proposed in [11]. However, its performance was shown

to be nearly comparable to, if not worse than that of TTTS.

Hence, we restrict our comparison only to TTTS. For this

comparison, we set δ = 10−3. The sample complexity for TT-

SPRT in this setting is 73.741, which is about 10% lower than

that of TTTS, which is 81.655. Figure 2 depicts the cumulative

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TTTS

TT-SPRT

Fig. 2. Empirical CDF

distribution functions (CDFs) of the stopping time τ for TT-

SPRT and TTTS. The improvement in the average sample

complexity of TT-SPRT is a result of the fact that a large

fraction of the realizations of the stopping time take smaller

values, compared to the realizations of TTTS. Specifically. we

observe that 81% of the realizations for TT-SPRT are below

100, whereas only 65.9% of those corresponding to TTTS

are below 100. This indicates that TT-SPRT requires fewer

number of samples in order to distinguish the best arm from

the second arm.

VI. CONCLUSIONS

In this paper, we have investigated the problem of best

arm identification in stochastic multi-armed bandits. We have

proposed a sequential hypothesis testing framework to for-

malize and analyze this problem. We have characterized the

arm selection and terminal decision rules based on gener-

alized likelihood ratio tests. The decisions rules (dynamic

arm selection and stopping time) have three main properties:

(1) they achieve optimality in the probably approximately

correct learning framework, (2) they asymptotically achieve

the optimal sample complexity, and (3) they address the

computational shortcoming of the state-the-art-of approaches.

We have analytically characterized the optimality properties,

and compared with the state-of-the-art both analytically and

numerically.
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