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Abstract—In statistical inference, the information-theoretic
performance limits can be often expressed in terms of a notion
of divergence between the underlying statistical models (e.g., in
binary hypothesis testing, the total error probability is related to
the total variation between the models). As the data dimension
grows, computing the statistics involved in decision-making and
the attendant performance limits (divergence measures) face
complexity and stability challenges. Dimensionality reduction
addresses these challenges at the expense of compromising the
performance (divergence reduces due to the data processing
inequality for divergence). This paper considers linear dimen-
sionality reduction such that the divergence between the models
is maximally preserved. Specifically, this paper focuses on the
Gaussian models and characterizes an optimal projection of the
data onto a lower dimensional subspace with respect to four f-
divergence measures (Kullback-Leibler, x2, Hellinger, and total
variation). There are two key observations. First, projections are
not necessarily along the largest modes of the covariance matrix
of the data, and even in some situations can be along the smallest
modes. Secondly, under specific regimes, the optimal design
of subspace projection is identical under all the f-divergence
measures considered, rendering a degree of universality to the
design, independently of the inference problem of interest.

I. INTRODUCTION
A. Motivation

Consider a simple binary hypothesis testing problem in
which we observe an n-dimensional sample X and aim to
discern the underlying model according to:

Hy: X ~P versus Hi: X~Q. (D

The optimal decision rule (in the Neyman-Pearson sense)
involves computing the likelihood ratio %(X ) and the per-
formance limit (sum of type I and type II errors) is related to
the total variation between P and Q. A key practical obstacle
to solving such problems pertains to the computational cost
of finding and performing the statistical tests. This renders a
gap between the performance that is information-theoretically
viable (unbounded complexity) versus a performance possible
under bounded computation power [1] and [2]. Such a gap
grows as the dimension n grows. Besides such a performance
gap, the stability of the statistics is also compromised in high
dimensions.

Dimensionality reduction techniques have become integral
parts of statistical analysis in high dimensions [3]-[6]. Lin-
ear dimensionality reduction methods linearly map the high-
dimensional-data to lower dimensions while ensuring that
desired features of the data are preserved. There exist two
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general approaches to linear dimensionality reduction in one
dataset X that we review next.

B. Related Literature

1) Feature extraction: In one set of approaches, the
objective is to select and extract relevant features in the
data X. These approaches are generally unsupervised. Two
widely-used techniques include principal component analysis
(PCA), and its variations [7]-[9] and multidimensional scaling
(MDS) [10]-[13]. The objective of PCA is to retain as much
variation in the data in a lower dimension by minimizing the
reconstruction error. In contrast, MDS aims to maximize the
scatter of the projection and maximizes an aggregate scatter
metric. There exist extensive variations to both approaches,
and we refer the reader to [6] for more discussions.

2) Class separation: In another set of approaches, the
objective is to maximize between-class variability of the
lower dimensional data. These approaches are supervised. One
approach pertinent to this paper’s scope is linear discriminant
analysis (LDA) that leverages the distinction between given
models and designs a linear projection such that its lower-
dimensional output exhibits maximum separation across dif-
ferent models [14]-[18]. In general, LDA approaches generate
two scatter matrices: within-class and between-class scatter
matrices. The within-class scatter matrix shows the scatter of
the samples around their respective class model. In contrast,
the between-class scatter matrix captures the scatter of the
samples around the mixture mean of all the models. Sub-
sequently, a univariate function of these matrices is formed
such that it increases when the between-class scatter becomes
larger, or the within-class scatter becomes smaller. Examples
of such a function of between-class and within-class matrices
is a classification index that includes the ratio of their determi-
nants, difference of their determinants, and ratio of their traces.
The LDA approaches focus on reducing the dimension to one
and maximizing separability between two classes. There exist,
however, studies that consider reducing to dimensions higher
than one and separation across more than two classes.

C. Contribution

The contribution of this paper has two main distinctions
from the existing literature on LDA. First, LDA generally
focuses on the classification problem for determining the
underlying model of the data. Secondly, motivated by the
complexities of finding the optimal decision rules for classifi-
cation (e.g., density estimation), the existing criteria used for
separation are selected heuristically. In this paper, we select
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f-divergence as a measure of separation between distributions.
Such a choice has three main features: (i) it enables designing
linear mappings for a wider range of inference problems
(beyond classification); (ii) it provides the designs that are
optimal for the inference problem at hand; (iii) it enables
characterizing the information-theoretic performance limits
after linear mapping. Our analyses are focused on Gaussian
models.

The remainder of the paper is organized as follows. In
Section II we provide the linear dimensionality reduction
model and provide an overview of the f-divergence measures
considered in this paper. Section III provides a motivating
operational interpretation for each measure and then charac-
terizes an optimal design of the linear mapping under each.
Although we observe that the design of the linear mapping
has differences under different measures, we have two main
observations: (i) the optimal design of the linear mapping is
not necessarily along the most dominant eigenvalues of the
covariance matrix; (ii) in certain regimes, the linear mapping
design is identical under different f-divergence measures
making the design independent of the inference problem at
hand. Section IV concludes the paper.

II. PRELIMINARIES

Consider two n-dimensional zero-mean Gaussian models
with different structures:

P: N(0,Xp), and Q: N(0,%q), ()

where Xp and Xg are two distinct covariance matrices, and P
and Q denote their associated Gaussian probability measures.
The nature selects one model and generates a random variable
X € R™. We perform linear dimensionality reduction on X
via matrix A € R"*", where r < n, rendering

Y 2A-X. (3)

After linear mapping, the two possible distributions of Y
induced by matrix A are denoted by Po and Qa where

PA : N(O,AE]}»AT) (4)
QA: N(O,AEQAT) '

Motivated by the inference problems that we discuss in
Section III, our objective is to design the linear mapping
matrix A that ensures the two possible distributions of Y,
ie., Po and Qa, are maximally distinguishable. That is, to
design A as a function of the statistical models (i.e., 3p
and Xg) such that relevant notions of distance between Pa
and QA are maximized. We use a number of f-divergence
measures for capturing the distance between P5 and Q4 , each
with a distinct operational meaning under specific inference
problems. For this purpose, we denote the f-divergence of
Qa from Pa by Dy(A) where!

Dy(A) = Ep, [f (jgj)] , )

'We use the shorthand Df(A) for the canonical notation D (Qa || Pa)
for emphasizing the dependence on A and for the simplicity in notations.

where Eg, denotes expectation with respect to Qa and f :
(0, +00) — R is a convex function that is strictly convex at
1 and f(1) = 0. Given the dimensionality reduction model
in (3) the objective is to solve

P max

A€Rrxn Ds(A) ©

for the following choices of the f-divergence measures.
1) Kullback-Leibler (KL) divergence for f(t) = tlogt:

A d
Dii(A) 2 Eg, {log d(gﬂ : (7
2) x2-divergence for f(t) = (t — 1)%
2 Iy (d@A - dIEDA)2
X (A) _/YT : ®)

3) Squared Hellinger distance for f(t) = (1 —/t)2:
2
H*(A) = / (VaQa - VaPx) . ©
Y
4) Total variation distance for f(t) = 5 - [t — 1|:

A 1
drv(A) :§/|dQA—dPA| . (10

III. MAIN RESULTS

In this section, we provide an optimal design of A under
the choices of f-divergence measures specified in Section II.
One key observation is that the optimal choices of A under
different measures have strong similarities. We first note that
by defining A = AZ%P and ¥ = = 2];1/22@21;1/2,
designing A for maximally distinguishing

N(O0,A-2p-AT) versus N(0,A-Eg-AT), D

is equivalent to designing A for maximally distinguishing
N(@O,A-AT) versus N(0,A-XZ-AT). (12)

Hence, without loss of generality, we focus on the setting
¥p = I, and ¥gp = X. Next, we show that determining an
optimal design for A can be confined to the class of semi-
orthogonal matrices.

Theorem 1: Corresponding to any matrix A there exists a
semi-orthogonal matrix A such that D;(A) = D;(A).
This observation indicates that, without loss of generality, we
can reduce the unconstrained problem in (6) to the following
constrained problem:

A-AT=1,. (13)

max

Ds(A) st
AgRmx™ f( ) ®

Design of A under all measures directly relates to analyzing
the eigenspace of matrix X. For this purpose, we denote the
non-negative eigenvalues of 32 ordered in the descending order
by {A\; : @ € [n]}. For an arbitrary permutation function
7 : [n] — [n], we also denote the permutation of {)\; : i € [n]}
with respect to 7 by {A:(;) : i € [n]}. We also denote the
eigenvalues of ASAT ordered in the descending order by
{7 :+ i € [r]}, where for an integer m we have defined
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[m] = {1,...,m}. Throughout the analysis we frequently use
Poincaré separation theorem [19] for finding the row space of
matrix A with respect to the eigenvalues of 3.

Theorem 2 (Poincaré Separation Theorem): Let 3 be a real
symmetric n X n matrix and A be a semi-orthogonal r X n
matrix. The eigenvalues of ¥ denoted by {); : i € [n]} (in
descending order), and the eigenvalues of AX AT denoted by
{v; : ¢ € [r]} (in descending order) satisfy

)‘nf(rfi) S Vi S /\z 5 Vi S [T} - (14)
Finally, we define function h : R™*™ — R"*" as
h(A) =A-Z-AT . (15)

In the remainder of this section, we analyze the optimal
design of A under different f-divergence measures. In each
case, we provide an operational interpretation of the measure
in the dichotomous mode in (4).

A. Kullback-Leibler Divergence

1) Motivation: The KL divergence, being the expected
value of the log-likelihood ratio, captures the performance of a
wide range of inference problems. One specific problem whose
performance is completely captured by the KL divergence
measure is the quickest change-point detection. Consider an
observation process (time-series) {X; : ¢ € N} in which
the observations X; € R™ are generated by a distribution
with probability measure P specified in (2). This distribution
changes to Q at an unknown (random or deterministic) time
K, i.e.,

XtNP t< K

X,~Q t>r (16)

Change-point detection algorithms sample the observation
process sequentially and aim to detect the change point with
the minimal delay after it occurs subject to a false alarm
constraint. Hence, the two key figures of merit capturing the
performance of a sequential change-point detection algorithm
are the average detection delay (ADD) and the rate of false
alarms. Whether the change-point « is random or deterministic
gives rise to two broad classes of quickest change-point
detection problems, namely, the Bayesian setting (« is random)
and minimax setting (x is deterministic). Irrespectively of their
discrepancies in settings and the nature of performance guar-
antees, the ADD in the (asymptotically) optimal algorithms
are in the form [20]

c
ADD ~ ——— | 17
D (Q || P)
which after the mapping induced by matrix A changes to
c
ADD ~ ——— | 18

where c is a constant specified by the false alarm constraints.
Clearly, the the design of A that minimizes the ADD will be
maximizing the disparity between the pre- and post-change
distributions P5 and Qa .

A similar KL divergence maximization appears also in
variational inference, in which the objective involves max-
imizing an evidence lower bound (ELBO), also known as
the variational lower bound, between an intractable posterior
distribution P and a sought distribution Q. As shown in [21],
maximizing ELBO is equivalent to minimizing the KL diver-
gence between P and Q. Optimizing the ELBO has formed
a basis for numerous approximate inference algorithms (e.g.,
mean field approximation) in various probabilistic graphical
models [22].

2) Results and Observations: By noting that A is a semi-
orthogonal matrix and recalling that the eigenvalues of h(A)
are denoted by {~; : i € [r]}, simple algebraic manipulations
simplify the KL divergence defined in (7) and is given by

Dt (A) = % log (1” T )
= zr: gL (i) (20)

where we have deﬁnle:dl
gkL(z) = 1(ac —logz—1) . (21)

2

Hence, by leveraging Theorem 2 the optimal design of interest
Q formalized in (22) can be restated as

max i
0: | ohy 20l (22)
s.t. A—(reiy <7 < N Vi€ 1]

Based on this, an optimal design of A is constructed by
choosing r eigenvectors of 3 as the rows of A. The results
and observations are formalized in the next theorem and
corollaries.

Theorem 3: Define the permutation 7* :
solution to:

[n] = [n] as a

" = argmax Z gk (Ar(i)) - (23)

i=1
Then, for maximizing Dk (A):
1) The eigenvalues of AXAT are given by ; = A= (i)
2) Row ¢ of matrix A is the eigenvector of 3 associated
with the eigenvalue v; = Az« ().
By noting that gk is strictly convex taking its global minima
at x = 1, we have the following additional observations.

Corollary 1: For maximizing D, (A), when A\, > 1, we
have v; = \; for all ¢ € [r], and the rows of A are the
eigenvectors of X associated with its r largest eigenvalues,
ie, {\:i€er]}

Corollary 2: For maximizing Dk (A), when A; < 1, we
have v; = A\,_4; for all ¢ € [r], and the rows of A are the
eigenvectors of 3 associated with its r smallest eigenvalues,
ie, {Nie{n—r+1,...,n}}

Remark 1: We note that when maximizing Dk (A) for
cases when A\, < 1 < )y, finding the best permutations of
eigenvectors involves sorting n eigenvalues and subsequently
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performing r comparisons. This amounts to O(n -log(n) + r)
time complexity instead of the O(n - log(n)) time complexity
involved in the case of Corollaries 1 and 2.

Remark 2: 1t is noteworthy that the optimal design of
A often does not involve being aligned with the largest
eigenvalues of the covariance matrix 3. This is in contrast to
some of the key approaches to linear dimensionality reduction
which generally perform linear mapping along the eigenvec-
tors associated with the largest eigenvalues of the covariance
matrix for the purpose of preserving as much data variation
as possible in the lower dimension. When the eigenvalues of
3} are all smaller than 1, in particular, A will be designed by
choosing eigenvectors associated with the smallest eigenvalues
of X in order to preserve largest separability.

B. X2 Divergence

1) Motivation: x* divergence appears in a wide range of
statistical estimation problems for the purpose of finding lower
bound on the estimation noise variance. For instance, consider
the canonical problem of estimating a latent variable 6 from
the observed data X, and denote two candidate estimates by
p(0) and ¢(@). Define P and Q as the probability distributions
of p(f) and ¢(0), respectively. According to the Hammersly-
Chapman-Robbins (HCR) bound on the estimation quadratic
loss function for any estimator 6 we have

o [Egla(X)] - Eelp(X)]]
varo) 2 s Qe

which for unbiased estimators p and ¢ simplifies to the
Cramér-Rao lower bound

(24)

5 (¢ —»)°
@z o@D
which depends on P and Q through their y? divergence.
Besides the applications to estimation problems, x? is easier
to compute compared to some of the other f-divergence
measures (e.g., total variation). Specifically, for product dis-
tributions x? tensorizes to be expressed in terms of the one-
dimensional components, and it is easier compute compared
to the KL divergence and the TV variation distance. Hence,
a combination of bounding other measures with x? and then
analyzing x? appears in a wide range of inference problems.
2) Results and Observations: For a given matrix A, from
(8) we have the following closed-form expression

(25)

2 ].
X“(A) = -1 (26)
[h(A)|/12(h(A)~1 - L,|

=[[ox(w) -1, 27)

i=1

where we have defined

A 1

s . 28
gx(x) QZ(2 = x) (28)

It indicates that for having a finite 2 divergence, all the
eigenvalues are bounded away from 2 (a singularity point)

and the number of eigenvalues larger than 2 must be even. To
place the emphasis on the key observations, we initially focus
on the case in which for all ¢ € [n] we have \; € (0, ¢], where
€ < 2 is a given constant. Based on this and by following
a similar line of argument as in the case of KL divergence,
designing an optimal A reduces to identifying a subset of the
eigenvalues of X and assigning their associated eigenvalues
as the rows of matrix A. These observations are formalized
next.

Theorem 4: Define the permutation 7* :
solution to:

[n] — [n] as a

*

T = argmgx]:[gx()\ﬂ(i)) .
i=1

(29)

Then for maximizing x2(A):
1) The eigenvalues of AXAT are given by 7; = Are(s).
2) Row ¢ of matrix A is the eigenvector of X associated
with the eigenvalue Ar«(;).

By noting that g, is strictly convex over (0,2) and takes its
global minima at x = 1, we have the following additional
observations.

Corollary 3: For maximizing x?(A), when )\, > 1 we
have ~; = A; for all ¢ € [r], and the rows of A are the
eigenvectors of X associated with its r largest eigenvalues,
ie, {\:i€r]}

Corollary 4: For maximizing y%(A), when A\; < 1 we
have v; = A,,—,4; for all ¢ € [r], and the rows of A are the
eigenvectors of 3 associated with its 7 smallest eigenvalues,
ie, {N:ie{fn—r+1,...,n}}L

C. Squared Hellinger Distance

1) Motivation: Squared Hellinger distance facilitates anal-
ysis in high dimensions, especially when other measures fail
to take closed-form expressions. We will discuss an important
instance of this in the next subsection in the analysis of dty.
Squared Hellinger distance is symmetric, and it is confined in
the range [0, 2].

2) Results and Observations: For a given matrix A we have
the following closed-form expression:

H*(A) =2 — 27‘%(‘”'% (30)

|h(A) + 1|2

- 4

=2-2 & , (3D

11;[1 gH(%‘)

where we have defined
x+1)2

gn(z) = % . (32)

The structure of the results and the key observations are
consistent with the case of KL divergence, as formalized next.
Theorem 5: Define the permutation 7* : [n] — [n] as a
solution to:
T
*
T = arg mT?XZI_[lgH(/\W(i)) . (33)
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Then, for maximizing H2(A):
1) The eigenvalues of AXA T are given by v; = A+ (i)
2) Row ¢ of matrix A is the eigenvector of X associated
with the eigenvalue A« ;).
By noting that gy is strictly convex over taking its global min-
ima at x = 1, we have the following additional observations.

Corollary 5: If A\, > 1, then ; = \; for all ¢ € [r], and
the rows of A are the eigenvectors of 3 associated with its r
largest eigenvalues, i.e., {\; : i € [r]}.

Corollary 6: If Ay <1, then v; = A\,_4; for all i € [r],
and the rows of A are the eigenvectors of ¥ associated with
its r smallest eigenvalues, ie., {\;: i€ {n—r+1,...,n}}

Remark 3: An observation can be made that for the case of
squared Hellinger distance, A\;’s (\; > 1) are equally favored
as that of /\i This is different from the KL divergence favoring
larger eigenvalues (\; > 1) over the smaller ones (/\% < 1.

D. Total Variation

1) Motivation: Total variation appears as the key per-
formance metric in binary hypothesis testing and in high
dimensional inference, e.g., Le Cam’s method for the binary
quantization and testing of the individual dimensions (which is
in essence binary hypothesis testing). In particular, in a simple
binary hypothesis test

Ho : X ~P versus H; : X ~Q, (34)

the minimum total probability of error (sum of type I and
type II error probabilities) is related to the total variation
drv(P || Q). If we define d : X — {Hp,H;1} as a decision
rule, then

nf[B(d = Hy) + Qd = Ho) = 1 —drv(P | Q) . ()

The total variation distance between two Gaussian distribu-
tions does not have a closed-form expression. Hence, unlike
the other settings, an optimal solution to (6) in this context
cannot be obtained analytically. Alternatively, in order to have
intuition into the structure of a near optimal matrix A, we
design A such that it optimizes known bounds on dty(A).
In particular, we use two sets of bounds on dty(A). One set
is due to bounding it by the Hellinger distance, and another
set is due to a recent study that established upper and lower
bounds that are identical up to a constant factor [23].

2) Matching Bounds up to a Constant: As shown in [23],
the total variation of interest is given by

1 drv(A)

Lo { <2 G
100 ™ min{1, />, grv(v:)} — 2
where we have defined
1 2
grv(z) = (x — 1> ) (37)

Since the lower and upper bounds on dtv(A) are identical up
to a constant, they will be maximized by the same design of
A. Next we show that optimizing the bounds lead to a design
for A for which we have observations consistent with those
of the KL divergence and the squared Hellinger distance.

Theorem 6: Define the permutation 7* : [n] — [n] as a

solution to:
T = arg m‘lii,X Z gTV(/\ﬂ'(i)) . (38)
i=1
Then for maximizing the bounds on grv(z) in (36):
1) The eigenvalues of AXAT are given by v; = A= (i)
2) Row ¢ of matrix A is the eigenvector of X associated
with the eigenvalue Ay« (;).
By noting that gty is strictly convex taking its global minima
at x = 1, we have the following additional observations.

Corollary 7: For maximizing the bounds on gty (z) in (36),
when A, > 1 we have ~; = \; for all ¢ € [r], and the rows
of A are the eigenvectors of ¥ associated with its r largest
eigenvalues, i.e., {\; : i € [r]}.

Corollary 8: For maximizing the bounds on gty (z) in (36),
when Ay < 1 we have v; = A,,_,4; for all ¢ € [r], and the
rows of A are the eigenvectors of 3 associated with its r
smallest eigenvalues, i.e., {\;:i€{n—r+1,...,n}t}.

Remark 4: We notice that the evaluation function gty favors
smaller eigenvalues (A\; < 1) over the larger ones ()%_ > 1).
This is in contrast to other forms of f-divergence measures
we have analyzed in the previous subsections.

3) Bounding by Hellinger Distance: Total variation can be
also bounded by the Hellinger distance as follows.

H2(A)
YR
It can be readily verified that these bounds are monotonously
increasing with H?(A) in the interval [0,2]. Hence, they
are maximized simultaneously by maximizing the squared
Hellinger distance discussed in Section III-C.

We note that both sets of bounds lead to the same design
of A when either A\; <1 or A\,, > 1. Otherwise, each will be
selecting a different set of eigenvectors of ¥ to construct A
according to the functions

(r+1)2

%HQ(A) < drv(A) < H(A)/1 (39)

1 2
gn(z) = versus  grv(z) = (a: - 1) . (40)

IV. CONCLUSION

In this paper, we have considered the problem of linear
discriminant analysis (LDA) such that separation is maximized
under f-divergence measures. This approach is motivated by
dimensionality reduction for inference problems, where we
have investigated LDA under Kullback-Leibler, X2, Hellinger,
and total variation measures. We have characterized an optimal
design for the linear transformation of the data onto a lower-
dimensional subspace in each case for Gaussian models. We
have shown that the row space of the mapping matrix lies
in the eigenspace of a matrix associated with the covariance
matrix of the Gaussian models involved. While each f-
divergence measure favors specific eigenvector components,
we have shown that all the designs become identical in certain
regimes making the design of the linear mapping independent
of the inference problem of interest.
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