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Abstract—In statistical inference, the information-theoretic
performance limits can be often expressed in terms of a notion
of divergence between the underlying statistical models (e.g., in
binary hypothesis testing, the total error probability is related to
the total variation between the models). As the data dimension
grows, computing the statistics involved in decision-making and
the attendant performance limits (divergence measures) face
complexity and stability challenges. Dimensionality reduction
addresses these challenges at the expense of compromising the
performance (divergence reduces due to the data processing
inequality for divergence). This paper considers linear dimen-
sionality reduction such that the divergence between the models
is maximally preserved. Specifically, this paper focuses on the
Gaussian models and characterizes an optimal projection of the
data onto a lower dimensional subspace with respect to four f -
divergence measures (Kullback-Leibler, χ2, Hellinger, and total
variation). There are two key observations. First, projections are
not necessarily along the largest modes of the covariance matrix
of the data, and even in some situations can be along the smallest
modes. Secondly, under specific regimes, the optimal design
of subspace projection is identical under all the f -divergence
measures considered, rendering a degree of universality to the
design, independently of the inference problem of interest.

I. INTRODUCTION

A. Motivation

Consider a simple binary hypothesis testing problem in

which we observe an n-dimensional sample X and aim to

discern the underlying model according to:

H0 : X ∼ P versus H1 : X ∼ Q . (1)

The optimal decision rule (in the Neyman-Pearson sense)

involves computing the likelihood ratio dP
dQ (X) and the per-

formance limit (sum of type I and type II errors) is related to

the total variation between P and Q. A key practical obstacle

to solving such problems pertains to the computational cost

of finding and performing the statistical tests. This renders a

gap between the performance that is information-theoretically

viable (unbounded complexity) versus a performance possible

under bounded computation power [1] and [2]. Such a gap

grows as the dimension n grows. Besides such a performance

gap, the stability of the statistics is also compromised in high

dimensions.

Dimensionality reduction techniques have become integral

parts of statistical analysis in high dimensions [3]–[6]. Lin-

ear dimensionality reduction methods linearly map the high-

dimensional-data to lower dimensions while ensuring that

desired features of the data are preserved. There exist two
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general approaches to linear dimensionality reduction in one

dataset X that we review next.

B. Related Literature

1) Feature extraction: In one set of approaches, the

objective is to select and extract relevant features in the

data X . These approaches are generally unsupervised. Two

widely-used techniques include principal component analysis

(PCA), and its variations [7]–[9] and multidimensional scaling

(MDS) [10]–[13]. The objective of PCA is to retain as much

variation in the data in a lower dimension by minimizing the

reconstruction error. In contrast, MDS aims to maximize the

scatter of the projection and maximizes an aggregate scatter

metric. There exist extensive variations to both approaches,

and we refer the reader to [6] for more discussions.

2) Class separation: In another set of approaches, the

objective is to maximize between-class variability of the

lower dimensional data. These approaches are supervised. One

approach pertinent to this paper’s scope is linear discriminant

analysis (LDA) that leverages the distinction between given

models and designs a linear projection such that its lower-

dimensional output exhibits maximum separation across dif-

ferent models [14]–[18]. In general, LDA approaches generate

two scatter matrices: within-class and between-class scatter

matrices. The within-class scatter matrix shows the scatter of

the samples around their respective class model. In contrast,

the between-class scatter matrix captures the scatter of the

samples around the mixture mean of all the models. Sub-

sequently, a univariate function of these matrices is formed

such that it increases when the between-class scatter becomes

larger, or the within-class scatter becomes smaller. Examples

of such a function of between-class and within-class matrices

is a classification index that includes the ratio of their determi-

nants, difference of their determinants, and ratio of their traces.

The LDA approaches focus on reducing the dimension to one

and maximizing separability between two classes. There exist,

however, studies that consider reducing to dimensions higher

than one and separation across more than two classes.

C. Contribution

The contribution of this paper has two main distinctions

from the existing literature on LDA. First, LDA generally

focuses on the classification problem for determining the

underlying model of the data. Secondly, motivated by the

complexities of finding the optimal decision rules for classifi-

cation (e.g., density estimation), the existing criteria used for

separation are selected heuristically. In this paper, we select

2513978-1-5386-8209-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 |

 9
78

-1
-5

38
6-

82
09

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IS

IT
45

17
4.

20
21

.9
51

80
04

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on September 12,2022 at 22:44:39 UTC from IEEE Xplore.  Restrictions apply. 



f -divergence as a measure of separation between distributions.

Such a choice has three main features: (i) it enables designing

linear mappings for a wider range of inference problems

(beyond classification); (ii) it provides the designs that are

optimal for the inference problem at hand; (iii) it enables

characterizing the information-theoretic performance limits

after linear mapping. Our analyses are focused on Gaussian

models.

The remainder of the paper is organized as follows. In

Section II we provide the linear dimensionality reduction

model and provide an overview of the f -divergence measures

considered in this paper. Section III provides a motivating

operational interpretation for each measure and then charac-

terizes an optimal design of the linear mapping under each.

Although we observe that the design of the linear mapping

has differences under different measures, we have two main

observations: (i) the optimal design of the linear mapping is

not necessarily along the most dominant eigenvalues of the

covariance matrix; (ii) in certain regimes, the linear mapping

design is identical under different f -divergence measures

making the design independent of the inference problem at

hand. Section IV concludes the paper.

II. PRELIMINARIES

Consider two n-dimensional zero-mean Gaussian models

with different structures:

P : N (0,ΣP) , and Q : N (0,ΣQ) , (2)

where ΣP and ΣQ are two distinct covariance matrices, and P

and Q denote their associated Gaussian probability measures.

The nature selects one model and generates a random variable

X ∈ Rn. We perform linear dimensionality reduction on X

via matrix A ∈ Rr×n, where r < n, rendering

Y
△

= A ·X . (3)

After linear mapping, the two possible distributions of Y

induced by matrix A are denoted by PA and QA where

PA : N (0,A ·ΣP ·A⊤)
QA : N (0,A ·ΣQ ·A⊤)

. (4)

Motivated by the inference problems that we discuss in

Section III, our objective is to design the linear mapping

matrix A that ensures the two possible distributions of Y ,

i.e., PA and QA, are maximally distinguishable. That is, to

design A as a function of the statistical models (i.e., ΣP

and ΣQ) such that relevant notions of distance between PA

and QA are maximized. We use a number of f -divergence

measures for capturing the distance between PA and QA, each

with a distinct operational meaning under specific inference

problems. For this purpose, we denote the f -divergence of

QA from PA by Df (A) where1

Df (A)
△

= EPA

[

f

(

dQA

dPA

)]

, (5)

1We use the shorthand Df (A) for the canonical notation Df (QA ‖ PA)
for emphasizing the dependence on A and for the simplicity in notations.

where EQA
denotes expectation with respect to QA and f :

(0,+∞) → R is a convex function that is strictly convex at

1 and f(1) = 0. Given the dimensionality reduction model

in (3) the objective is to solve

P : max
A∈Rr×n

Df (A) , (6)

for the following choices of the f -divergence measures.

1) Kullback-Leibler (KL) divergence for f(t) = t log t:

DKL(A)
△

= EQA

[

log
dQA

dPA

]

. (7)

2) χ2-divergence for f(t) = (t− 1)2:

χ2(A)
△

=

∫

Y

(dQA − dPA)2

dPA

. (8)

3) Squared Hellinger distance for f(t) = (1−
√
t)2:

H
2(A)

△

=

∫

Y

(

√

dQA −
√

dPA

)2

. (9)

4) Total variation distance for f(t) = 1
2 · |t− 1|:

dTV(A)
△

=
1

2

∫

|dQA − dPA| . (10)

III. MAIN RESULTS

In this section, we provide an optimal design of A under

the choices of f -divergence measures specified in Section II.

One key observation is that the optimal choices of A under

different measures have strong similarities. We first note that

by defining Ā = AΣ
1/2
P and Σ =

△

= Σ
−1/2
P ΣQΣ

−1/2
P ,

designing A for maximally distinguishing

N (0,A ·ΣP ·A⊤) versus N (0,A ·ΣQ ·A⊤) , (11)

is equivalent to designing Ā for maximally distinguishing

N (0, Ā · Ā⊤) versus N (0, Ā ·Σ · Ā⊤) . (12)

Hence, without loss of generality, we focus on the setting

ΣP = Ir and ΣQ = Σ. Next, we show that determining an

optimal design for A can be confined to the class of semi-

orthogonal matrices.

Theorem 1: Corresponding to any matrix A there exists a

semi-orthogonal matrix Ā such that Df (Ā) = Df (A).

This observation indicates that, without loss of generality, we

can reduce the unconstrained problem in (6) to the following

constrained problem:

Q : max
A∈Rr×n

Df (A) s.t. A ·A⊤ = Ir . (13)

Design of A under all measures directly relates to analyzing

the eigenspace of matrix Σ. For this purpose, we denote the

non-negative eigenvalues of Σ ordered in the descending order

by {λi : i ∈ [n]}. For an arbitrary permutation function

π : [n] → [n], we also denote the permutation of {λi : i ∈ [n]}
with respect to π by {λπ(i) : i ∈ [n]}. We also denote the

eigenvalues of AΣA
⊤ ordered in the descending order by

{γi : i ∈ [r]}, where for an integer m we have defined
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[m] = {1, . . . ,m}. Throughout the analysis we frequently use

Poincaré separation theorem [19] for finding the row space of

matrix A with respect to the eigenvalues of Σ.

Theorem 2 (Poincaré Separation Theorem): Let Σ be a real

symmetric n × n matrix and A be a semi-orthogonal r × n

matrix. The eigenvalues of Σ denoted by {λi : i ∈ [n]} (in

descending order), and the eigenvalues of AΣA
⊤ denoted by

{γi : i ∈ [r]} (in descending order) satisfy

λn−(r−i) ≤ γi ≤ λi , ∀i ∈ [r] . (14)

Finally, we define function h : Rr×n → Rr×r as

h(A)
△

= A ·Σ ·A⊤ . (15)

In the remainder of this section, we analyze the optimal

design of A under different f -divergence measures. In each

case, we provide an operational interpretation of the measure

in the dichotomous mode in (4).

A. Kullback-Leibler Divergence

1) Motivation: The KL divergence, being the expected

value of the log-likelihood ratio, captures the performance of a

wide range of inference problems. One specific problem whose

performance is completely captured by the KL divergence

measure is the quickest change-point detection. Consider an

observation process (time-series) {Xt : t ∈ N} in which

the observations Xt ∈ Rn are generated by a distribution

with probability measure P specified in (2). This distribution

changes to Q at an unknown (random or deterministic) time

κ, i.e.,

Xt ∼ P t < κ

Xt ∼ Q t ≥ κ
. (16)

Change-point detection algorithms sample the observation

process sequentially and aim to detect the change point with

the minimal delay after it occurs subject to a false alarm

constraint. Hence, the two key figures of merit capturing the

performance of a sequential change-point detection algorithm

are the average detection delay (ADD) and the rate of false

alarms. Whether the change-point κ is random or deterministic

gives rise to two broad classes of quickest change-point

detection problems, namely, the Bayesian setting (κ is random)

and minimax setting (κ is deterministic). Irrespectively of their

discrepancies in settings and the nature of performance guar-

antees, the ADD in the (asymptotically) optimal algorithms

are in the form [20]

ADD ∼ c

DKL(Q ‖ P)
, (17)

which after the mapping induced by matrix A changes to

ADD ∼ c

DKL(A)
, (18)

where c is a constant specified by the false alarm constraints.

Clearly, the the design of A that minimizes the ADD will be

maximizing the disparity between the pre- and post-change

distributions PA and QA.

A similar KL divergence maximization appears also in

variational inference, in which the objective involves max-

imizing an evidence lower bound (ELBO), also known as

the variational lower bound, between an intractable posterior

distribution P and a sought distribution Q. As shown in [21],

maximizing ELBO is equivalent to minimizing the KL diver-

gence between P and Q. Optimizing the ELBO has formed

a basis for numerous approximate inference algorithms (e.g.,

mean field approximation) in various probabilistic graphical

models [22].
2) Results and Observations: By noting that A is a semi-

orthogonal matrix and recalling that the eigenvalues of h(A)
are denoted by {γi : i ∈ [r]}, simple algebraic manipulations

simplify the KL divergence defined in (7) and is given by

DKL(A) =
1

2

[

log
1

|h(A)| − r + tr [h(A)]

]

(19)

=

r
∑

i=1

gKL(γi) , (20)

where we have defined

gKL(x)
△

=
1

2
(x− log x− 1) . (21)

Hence, by leveraging Theorem 2 the optimal design of interest

Q formalized in (22) can be restated as

Q :











max
{γi:i∈[r]}

r
∑

i=1

gKL(γi)

s.t. λn−(r−i) ≤ γi ≤ λi ∀i ∈ [r]

. (22)

Based on this, an optimal design of A is constructed by

choosing r eigenvectors of Σ as the rows of A. The results

and observations are formalized in the next theorem and

corollaries.

Theorem 3: Define the permutation π∗ : [n] → [n] as a

solution to:

π∗ = argmax
π

r
∑

i=1

gKL(λπ(i)) . (23)

Then, for maximizing DKL(A):

1) The eigenvalues of AΣA
⊤ are given by γi = λπ∗(i).

2) Row i of matrix A is the eigenvector of Σ associated

with the eigenvalue γi = λπ∗(i).

By noting that gKL is strictly convex taking its global minima

at x = 1, we have the following additional observations.

Corollary 1: For maximizing DKL(A), when λn ≥ 1, we

have γi = λi for all i ∈ [r], and the rows of A are the

eigenvectors of Σ associated with its r largest eigenvalues,

i.e., {λi : i ∈ [r]}.

Corollary 2: For maximizing DKL(A), when λ1 ≤ 1, we

have γi = λn−r+i for all i ∈ [r], and the rows of A are the

eigenvectors of Σ associated with its r smallest eigenvalues,

i.e., {λi : i ∈ {n− r + 1, . . . , n}}.

Remark 1: We note that when maximizing DKL(A) for

cases when λn ≤ 1 ≤ λ1, finding the best permutations of

eigenvectors involves sorting n eigenvalues and subsequently

2515
Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on September 12,2022 at 22:44:39 UTC from IEEE Xplore.  Restrictions apply. 



performing r comparisons. This amounts to O(n · log(n)+ r)
time complexity instead of the O(n · log(n)) time complexity

involved in the case of Corollaries 1 and 2.

Remark 2: It is noteworthy that the optimal design of

A often does not involve being aligned with the largest

eigenvalues of the covariance matrix Σ. This is in contrast to

some of the key approaches to linear dimensionality reduction

which generally perform linear mapping along the eigenvec-

tors associated with the largest eigenvalues of the covariance

matrix for the purpose of preserving as much data variation

as possible in the lower dimension. When the eigenvalues of

Σ are all smaller than 1, in particular, A will be designed by

choosing eigenvectors associated with the smallest eigenvalues

of Σ in order to preserve largest separability.

B. χ2 Divergence

1) Motivation: χ2 divergence appears in a wide range of

statistical estimation problems for the purpose of finding lower

bound on the estimation noise variance. For instance, consider

the canonical problem of estimating a latent variable θ from

the observed data X , and denote two candidate estimates by

p(θ) and q(θ). Define P and Q as the probability distributions

of p(θ) and q(θ), respectively. According to the Hammersly-

Chapman-Robbins (HCR) bound on the estimation quadratic

loss function for any estimator θ̂ we have

varθ(θ̂) ≥ sup
p 6=q

[EQ[q(X)]− EP[p(X)]]
2

χ2(Q ‖ P)
, (24)

which for unbiased estimators p and q simplifies to the

Cramér-Rao lower bound

varθ(θ̂) ≥ sup
p 6=q

(q − p)2

χ2(Q ‖ P)
, (25)

which depends on P and Q through their χ2 divergence.

Besides the applications to estimation problems, χ2 is easier

to compute compared to some of the other f -divergence

measures (e.g., total variation). Specifically, for product dis-

tributions χ2 tensorizes to be expressed in terms of the one-

dimensional components, and it is easier compute compared

to the KL divergence and the TV variation distance. Hence,

a combination of bounding other measures with χ2 and then

analyzing χ2 appears in a wide range of inference problems.

2) Results and Observations: For a given matrix A, from

(8) we have the following closed-form expression

χ2(A) =
1

|h(A)|
√

|2(h(A))−1 − Ir|
− 1 (26)

=

r
∏

i=1

gχ(γi)− 1 , (27)

where we have defined

gχ(x)
△

=
1

√

x(2− x)
. (28)

It indicates that for having a finite χ2 divergence, all the

eigenvalues are bounded away from 2 (a singularity point)

and the number of eigenvalues larger than 2 must be even. To

place the emphasis on the key observations, we initially focus

on the case in which for all i ∈ [n] we have λi ∈ (0, ε], where

ε < 2 is a given constant. Based on this and by following

a similar line of argument as in the case of KL divergence,

designing an optimal A reduces to identifying a subset of the

eigenvalues of Σ and assigning their associated eigenvalues

as the rows of matrix A. These observations are formalized

next.

Theorem 4: Define the permutation π∗ : [n] → [n] as a

solution to:

π∗ △

= argmax
π

r
∏

i=1

gχ(λπ(i)) . (29)

Then for maximizing χ2(A):

1) The eigenvalues of AΣA
⊤ are given by γi = λπ∗(i).

2) Row i of matrix A is the eigenvector of Σ associated

with the eigenvalue λπ∗(i).

By noting that gχ is strictly convex over (0, 2) and takes its

global minima at x = 1, we have the following additional

observations.

Corollary 3: For maximizing χ2(A), when λn ≥ 1 we

have γi = λi for all i ∈ [r], and the rows of A are the

eigenvectors of Σ associated with its r largest eigenvalues,

i.e., {λi : i ∈ [r]}.

Corollary 4: For maximizing χ2(A), when λ1 ≤ 1 we

have γi = λn−r+i for all i ∈ [r], and the rows of A are the

eigenvectors of Σ associated with its r smallest eigenvalues,

i.e., {λi : i ∈ {n− r + 1, . . . , n}}.

C. Squared Hellinger Distance

1) Motivation: Squared Hellinger distance facilitates anal-

ysis in high dimensions, especially when other measures fail

to take closed-form expressions. We will discuss an important

instance of this in the next subsection in the analysis of dTV.

Squared Hellinger distance is symmetric, and it is confined in

the range [0, 2].
2) Results and Observations: For a given matrix A we have

the following closed-form expression:

H
2(A) = 2− 2

|4h(A)| 14
|h(A) + Ir| 12

(30)

= 2− 2

r
∏

i=1

4

√

4

gH(γi)
, (31)

where we have defined

gH(x)
△

=
(x+ 1)2

x
. (32)

The structure of the results and the key observations are

consistent with the case of KL divergence, as formalized next.

Theorem 5: Define the permutation π∗ : [n] → [n] as a

solution to:

π∗ = argmax
π

r
∏

i=1

gH(λπ(i)) . (33)
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Then, for maximizing H2(A):

1) The eigenvalues of AΣA
⊤ are given by γi = λπ∗(i).

2) Row i of matrix A is the eigenvector of Σ associated

with the eigenvalue λπ∗(i).

By noting that gH is strictly convex over taking its global min-

ima at x = 1, we have the following additional observations.

Corollary 5: If λn ≥ 1, then γi = λi for all i ∈ [r], and

the rows of A are the eigenvectors of Σ associated with its r

largest eigenvalues, i.e., {λi : i ∈ [r]}.

Corollary 6: If λ1 ≤ 1, then γi = λn−r+i for all i ∈ [r],
and the rows of A are the eigenvectors of Σ associated with

its r smallest eigenvalues, i.e., {λi : i ∈ {n− r + 1, . . . , n}}.

Remark 3: An observation can be made that for the case of

squared Hellinger distance, λi’s (λi > 1) are equally favored

as that of 1
λi

. This is different from the KL divergence favoring

larger eigenvalues (λi > 1) over the smaller ones ( 1
λi

< 1).

D. Total Variation

1) Motivation: Total variation appears as the key per-

formance metric in binary hypothesis testing and in high

dimensional inference, e.g., Le Cam’s method for the binary

quantization and testing of the individual dimensions (which is

in essence binary hypothesis testing). In particular, in a simple

binary hypothesis test

H0 : X ∼ P versus H1 : X ∼ Q , (34)

the minimum total probability of error (sum of type I and

type II error probabilities) is related to the total variation

dTV(P ‖ Q). If we define d : X → {H0,H1} as a decision

rule, then

inf
d
[P(d = H1) +Q(d = H0)] = 1− dTV(P ‖ Q) . (35)

The total variation distance between two Gaussian distribu-

tions does not have a closed-form expression. Hence, unlike

the other settings, an optimal solution to (6) in this context

cannot be obtained analytically. Alternatively, in order to have

intuition into the structure of a near optimal matrix A, we

design A such that it optimizes known bounds on dTV(A).
In particular, we use two sets of bounds on dTV(A). One set

is due to bounding it by the Hellinger distance, and another

set is due to a recent study that established upper and lower

bounds that are identical up to a constant factor [23].
2) Matching Bounds up to a Constant: As shown in [23],

the total variation of interest is given by

1

100
≤ dTV(A)

min{1,
√

∑r
i=1 gTV(γi)}

≤ 3

2
, (36)

where we have defined

gTV(x)
△

=

(

1

x
− 1

)2

. (37)

Since the lower and upper bounds on dTV(A) are identical up

to a constant, they will be maximized by the same design of

A. Next we show that optimizing the bounds lead to a design

for A for which we have observations consistent with those

of the KL divergence and the squared Hellinger distance.

Theorem 6: Define the permutation π∗ : [n] → [n] as a

solution to:

π∗ = argmax
π

r
∑

i=1

gTV(λπ(i)) . (38)

Then for maximizing the bounds on gTV(x) in (36):

1) The eigenvalues of AΣA
⊤ are given by γi = λπ∗(i).

2) Row i of matrix A is the eigenvector of Σ associated

with the eigenvalue λπ∗(i).

By noting that gTV is strictly convex taking its global minima

at x = 1, we have the following additional observations.

Corollary 7: For maximizing the bounds on gTV(x) in (36),

when λn ≥ 1 we have γi = λi for all i ∈ [r], and the rows

of A are the eigenvectors of Σ associated with its r largest

eigenvalues, i.e., {λi : i ∈ [r]}.

Corollary 8: For maximizing the bounds on gTV(x) in (36),

when λ1 ≤ 1 we have γi = λn−r+i for all i ∈ [r], and the

rows of A are the eigenvectors of Σ associated with its r

smallest eigenvalues, i.e., {λi : i ∈ {n− r + 1, . . . , n}}.

Remark 4: We notice that the evaluation function gTV favors

smaller eigenvalues (λi < 1) over the larger ones ( 1
λi

> 1).

This is in contrast to other forms of f -divergence measures

we have analyzed in the previous subsections.

3) Bounding by Hellinger Distance: Total variation can be

also bounded by the Hellinger distance as follows.

1

2
H

2(A) ≤ dTV(A) ≤ H(A)

√

1− H2(A)

4
. (39)

It can be readily verified that these bounds are monotonously

increasing with H2(A) in the interval [0, 2]. Hence, they

are maximized simultaneously by maximizing the squared

Hellinger distance discussed in Section III-C.

We note that both sets of bounds lead to the same design

of A when either λ1 ≤ 1 or λn ≥ 1. Otherwise, each will be

selecting a different set of eigenvectors of Σ to construct A

according to the functions

gH(x) =
(x+ 1)2

x
versus gTV(x) =

(

1

x
− 1

)2

. (40)

IV. CONCLUSION

In this paper, we have considered the problem of linear

discriminant analysis (LDA) such that separation is maximized

under f -divergence measures. This approach is motivated by

dimensionality reduction for inference problems, where we

have investigated LDA under Kullback-Leibler, χ2, Hellinger,

and total variation measures. We have characterized an optimal

design for the linear transformation of the data onto a lower-

dimensional subspace in each case for Gaussian models. We

have shown that the row space of the mapping matrix lies

in the eigenspace of a matrix associated with the covariance

matrix of the Gaussian models involved. While each f -

divergence measure favors specific eigenvector components,

we have shown that all the designs become identical in certain

regimes making the design of the linear mapping independent

of the inference problem of interest.
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