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Speaker-wire vortices in stratified anabatic
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Stationary longitudinal vortical rolls emerge in katabatic and anabatic Prandtl slope
flows at shallow slopes as a result of an instability when the imposed surface buoyancy
flux relative to the background stratification is sufficiently large. Here, we identify the
self-pairing of these longitudinal rolls as a unique flow structure. The topology of the
counter-rotating vortex pair bears a striking resemblance to speaker-wires and their
interaction with each other is a precursor to further destabilization and breakdown of the
flow field into smaller structures. On its own, a speaker-wire vortex retains its unique
topology without any vortex reconnection or breakup. For a fixed slope angle α = 3◦ and
at a constant Prandtl number, we analyse the saturated state of speaker-wire vortices and
perform a bi-global linear stability analysis based on their stationary state. We establish
the existence of both fundamental and subharmonic secondary instabilities depending on
the circulation and transverse wavelength of the base state of speaker-wire vortices. The
dominance of subharmonic modes relative to the fundamental mode helps to explain the
relative stability of a single vortex pair compared to the vortex dynamics in the presence of
two or an even number of pairs. These instability modes are essential for the bending and
merging of multiple speaker-wire vortices, which break up and lead to more dynamically
unstable states, eventually paving the way for transition towards turbulence. This process
is demonstrated via three-dimensional flow simulations with which we are able to track
the nonlinear temporal evolution of these instabilities.

Key words: buoyancy-driven instability, stratified flows, vortex instability

1. Introduction

The Prandtl model for katabatic and anabatic slope flows serves as a canonical model to
comprehend the main dynamics of stably stratified flows around complex terrain, such
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Figure 1. Base flow profiles for slope flows under Prandtl’s model. (a) Sketch of slope flow geometry and
the rotated coordinate system. (b) Longitudinal vortex pairs (speaker-wire vortices) arising as instability of
the laminar anabatic (up-slope) Prandtl flow U , with definition of coordinate axes, roll separation ay, and
speaker-wire vortex separation by, which is equivalent to the transverse wavelength of the (primary) linear
instability. (c) Two-dimensional view of three speaker-wire vortex pairs, with indications of the roll separation
ay and vortex (pair) separation by.

as mountains and valleys (Prandtl 1942, 1952). The Prandtl model possesses analytical
one-dimensional (1-D) laminar flow solutions that are exponentially damped sinusoidal
velocity and buoyancy profiles along the slope-normal direction (Shapiro & Fedorovich
2004; Fedorovich & Shapiro 2009). The solution gives rise to a strong near-surface jet
along the slope direction capped by a weak reverse flow, as illustrated in figure 1.
In recent studies, we have investigated the linear stability of the Prandtl model for

katabatic (Xiao & Senocak 2019) and anabatic (Xiao & Senocak 2020b) slope flows, as
well as the extended version of the Prandtl model with ambient winds (Xiao & Senocak
2020a), and discovered the existence of a stationary roll instability at small slope angles,
and a travelling wave instability at steeper slopes. These studies have also helped to
establish the importance of the dimensionless stratification perturbation parameter in
controlling the dynamics of stably stratified slope flows.
In the present investigation, we are interested in the progression of stationary roll

instabilities in anabatic slope flows towards dynamically more unstable states. Despite
accumulating experimental and numerical results in understanding turbulence structure in
neutral and unstable flows, the transition to turbulence under stable conditions still leaves
open many significant questions.
Vortex pairing, which in its simplest form is a purely two-dimensional (2-D) dynamics

where neighbouring vortices merge with each other, has been studied experimentally while
observing shear-layer growth (Winant & Browand 1974). In related experiments, Miksad
(1972) demonstrated that 2-D vortex structures are susceptible to three-dimensional (3-D)
instabilities. These 3-D vortex instabilities are responsible for the creation of irregular
flow at smaller scales which, however, do not impact significantly the large-scale vortex
structures (Browand & Weidman 1976). The vortex instabilities are thus crucial for the
transition from 2-D to 3-D flows, and they continue to shape the features of the turbulent
flow that develops further downstream. The simultaneous existence of stratification and
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Speaker-wire vortices in stratified anabatic slope flows

bounding surface(s) is expected to complicate the picture further, as outlined above.
However, there have been few theoretical approaches to adequately model vortex dynamics
under these additional flow conditions that are encountered frequently in real life.
For configurations without solid boundaries, Crow (1970) conducted a stability analysis

for a pair of parallel counter-rotating vortices in neutrally stable as well as quiescent
ambient air, and found sinusoidal symmetric bending of each vortex, which eventually
led to the reconnection and vortex ring formation at locations where the distance between
the neighbouring vortices became minimal. The linear stability of counter-rotating vortex
arrays in homogeneous fluid as introduced byMallier &Maslowe (1993) has been analysed
in a numerical study limited to two spatial dimensions by Dauxois, Fauve & Tuckerman
(1996), which has been later extended to three dimensions by Julien, Chomaz & Lasheras
(2002). These works, however, only focused on fundamental instabilities with the same
wavelength as the base vortex array. The 3-D long-wave instabilities of well-separated
vortex arrays have been studied by Robinson & Saffman (1982), which utilized the same
approach as Crow (1970) and focused on cooperative modes due to mutual induction only.
This analysis has been extended to study vortex instability in rotating and stratified fluids
by Deloncle, Billant & Chomaz (2011).
Elliptic instabilities, which lead to anti-symmetric deformation of vortex cores, were

observed for vortices with non-circular streamlines (Pierrehumbert 1986; Schmid &
Henningson 2001; Hattori et al. 2021) and are caused by resonance of inertial vortex
waves with the local flow strain; however, they are suppressed by the presence of stable
stratification, as shown by Miyazaki & Fukumoto (1992). On the other hand, Le Dizès &
Billant (2009) have shown that a single vertical columnar vortex can be unstable at stably
stratified conditions due to the propagation and resonance of internal gravity waves, which
is termed a radiative instability. The dynamics of short-wavelength elliptic instability of
co-rotating and counter-rotating vortex pairs in the presence of axial flows has been studied
with direct numerical simulations by Roy et al. (2008), who found that axial flows tend to
weaken the nonlinear dynamics of the elliptic instability.
Another type of vortex instability that exists in rotating flows under stably stratified

conditions is the so-called zig-zag instability, which was first discovered and analysed
by Billant & Chomaz (2000) and Billant (2010), and should not be confused with the
zig-zag instabilities coined in Clever & Busse (1974) to describe 3-D instabilities of
steady convection rolls. The former type of zig-zag instabilities are caused by additional
self-induction as well as mutual induction among well-separated vortices due to a
background density gradient that is aligned with the main columnar vortex, and they lead
to symmetric vortex bending in well-separated co-rotating vortex pairs and anti-symmetric
bending in counter-rotating pairs.
Besides studying the dynamics of the above-mentioned model vortices that arise

as approximate or exact solutions of the Navier–Stokes equations, a second line of
investigation has focused on stability analysis for roll structures that emerge as primary
instability due to thermal convection or shear. Corcos & Sherman (1984) have identified
that instabilities of vortices, which themselves arise as a primary instability in a 1-D
shear layer, are responsible for vortex mergers and turbulence transition. The stability
of convection rolls that form on flat as well as inclined heated surfaces in the absence
of any stratification effects has been studied by Clever & Busse (1974, 1977) and Busse
& Clever (1979), which led to the discovery of the famous ‘Busse balloon’ within the
parameter space spanned by the horizontal wavenumber and Rayleigh number where
these convection rolls are dynamically stable. Similar stability analysis has been carried
out for Görtler vortices under neutrally stratified conditions, and fundamental as well as
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subharmonic instability modes have been discovered by Hall & Horseman (1991) and
Li & Malik (1995). Like the results by Pierrehumbert & Widnall (1982) for co-rotating
Stuart vortices, Li & Malik (1995) found that the fundamental modes cause a synchronous
displacement of adjacent Görtler vortices, whereas the subharmonic modes lead to either
merging or separation of two neighbouring vortices. All the research listed above has
focused on the dynamics of elementary configurations with no more than two vortices,
which are either counter-rotating (single vortex pair) or co-rotating (subharmonic mode of
vortex array). However, the stability of stratified vortex configurations in the presence of a
solid boundary involving more than two vortices, whether of the same sense of rotation or
not, has found little attention so far.
In the present work, we expand our investigation of Prandtl’s stratified slope flows with

stability analysis of the steady vortex pair arrays that arise as the saturated steady state of
the primary instability under an anabatic heating condition at shallow slopes. From now
on, each counter-rotating vortex pair will be designated as a speaker-wire vortex, and the
motivation behind this terminology will be explained in more detail later. There are several
major differences between the instabilities of these speaker-wire vortices under Prandtl’s
model and the other well-known vortex instabilities that we have mentioned above, such
as Crow’s instability, elliptic instability, zig-zag instability, secondary convection rolls
and Görtler instabilities. Most importantly, the flow configuration described by Prandtl’s
model includes the following key components: first, a constant vertical stable stratification
that is at an oblique angle to the longitudinal rolls aligned with the streamwise direction,
and second, a solid wall boundary with its associated boundary layer of the Prandtl base
flow. The simultaneous presence of both features makes an analytical treatment very
challenging and, to the best of our knowledge, is absent in the published literature. As
discovered in our earlier works (Xiao & Senocak 2019, 2020b), the primary roll instability
of Prandtl’s base flow consists of a pair of two counter-rotating vortices, hence any
subharmonic secondary instability must involve at least two such pairs and four vortices in
total, which is larger than the typical number of vortices (1 or 2) in base flow configurations
that have been investigated in the current literature on stability analysis. Similar to the
approach that we have pursued in Xiao & Senocak (2019), we apply linear bi-global
stability analysis to identify the different modes that can destabilize the base flow vortices.
Further, we conduct analyses to determine how these modes may depend on external flow
conditions and their role in the turbulence transition of slope flows.

2. Properties of speaker-wire vortices

2.1. Governing equations
Let us consider the idealized Prandtl slope flow configuration as shown in figure 1(a),
where α is the slope angle, and gravity g acts downwards in the vertical direction.
A constant positive buoyancy flux BS is imposed at the surface. We consider a rotated
Cartesian coordinate system whose x axis is aligned with the planar inclined surface. The
direction normal to the slope surface is represented by the z component of the position
vector, whereas the cross-flow transverse direction is aligned with the y coordinate. Let u
be the along-slope (longitudinal), v the cross-slope (transverse), and w the slope-normal
velocity components, such that u = ui = [u, v,w] is the velocity vector. The normalized
gravity vector in the rotated coordinate system is then given by gi = (g1, g2, g3) =
[sinα, 0, cosα].
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Speaker-wire vortices in stratified anabatic slope flows

The potential temperature, buoyancy and Brunt–Väisälä frequency are denoted by
Θ , b and N, respectively, where N, which is assumed to be constant under Prandtl’s
model, is related to the potential temperature as N = √

(g/Θr)(∂Θe/∂z′) and quantifies
the background stratification, with z′ denoting the vertical height with respect to the
horizontal. The buoyancy is defined as a perturbation potential temperature as b = g(Θ −
Θe)/Θr, where Θr is a reference potential temperature, and Θe is the environmental
(ambient) potential temperature. The kinematic viscosity and thermal diffusivity of the
fluid are denoted by ν and β, respectively, and they are assumed to be constant. The
transport equations for momentum with a Boussinesq approximation and buoyancy fields
are written as

∂u
∂t

+ ∇ · (u ⊗ u) = − 1
ρ

∇p + bnα + ν �u, (2.1)

∂b
∂t

+ ∇ · (bu) = β �b − N2(nα · u), (2.2)

where nα = (sinα, 0, cosα) is the slope-normal unit vector. The conservation of mass
principle is imposed by a divergence-free velocity field:

∇ · u = 0. (2.3)

We impose a positive buoyancy flux Bs at the no-slip bottom surface, and impose
periodic boundary conditions on the lateral boundaries. The top boundary satisfies the
free-slip condition, which means that the normal gradients of buoyancy and slope-normal
as well as the transverse velocity components are zero, whereas the vertical velocity
component is set to zero.
For the 1-D laminar flow problem, Shapiro & Fedorovich (2004) extended the exact

solution of Prandtl (1942) to include a constant surface flux instead of a constant buoyancy,
and the following characteristic flow scales have been introduced in Fedorovich & Shapiro
(2009):

l0 = Pr−1/4ν1/2N−1/2 sin−1/2 α, (2.4)

u0 = Pr1/4ν−1/2N−3/2Bs sin−1/2 α, (2.5)

b0 = Pr3/4ν−1/2N−1/2Bs sin−1/2 α, (2.6)

where Pr = ν/β is the Prandtl number. A time scale t0 := l0/|u0| = √
νβ NB−1

s and
shear scale S0 := |u0|/l0 = √

Pr/ν N−1Bs can also be defined from the above scales.
We observe from (2.4)–(2.6) that the length scale characterizing the laminar boundary
layer thickness is independent of the surface flux Bs, whereas the magnitude of both the
reference velocity and buoyancy scale varies linearly with Bs. For all 3-D Navier–Stokes
simulations, we use rectangular mesh elements and ensure in the discretization at least
two points to resolve the length scale l0 along both vertical and lateral directions.
Subsequently, these characteristic scales will be applied to normalize all flow equations
and quantities presented herein. Specifically, the stratification perturbation number Πs as
introduced in Xiao & Senocak (2019) can be regarded as the imposed surface buoyancy
flux Bs normalized by the background stratification scale βN2. This unique parameter is
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determined from the given external flow parameters as

Πs ≡ Bs

βN2 . (2.7)

As can be seen from the previous work on slope flows by Fedorovich & Shapiro (2009),
there exists a simple relation between the Reynolds number Re based on the flow scales
defined above and the parameter Πs, which is given by Re = Πs sin(α)/Pr. We should
note that a Reynolds number does not arise naturally in Prandtl slope flows because there
is no external length or velocity scale imposed on the flow, whereas Πs arises naturally
from an application of the Buckingham-π theorem. Furthermore, the significance of Πs is
not confined to stratified slope flows only. In Xiao & Senocak (2022), we have shown that
Πs emerges as an independent dimensionless parameter in open channel flows stratified
simultaneously by a surface cooling flux and an independent ambient stratification.

2.2. Longitudinal rolls and mode selection for the transverse wavelength
The 1-D laminar Prandtl flow profile is susceptible to multiple types of linear instabilities
when the surface buoyancy flux magnitude relative to the ambient stratification is
sufficiently large, as characterized by the dimensionless number Πs = Bs/(βN2) (cf. Xiao
& Senocak 2020b). As shown in Xiao & Senocak (2020b), at shallow slopes such as
α = 3◦, the most dominant linear instability is a stationary mode leading to longitudinal
vortices aligned along the streamwise direction within the main up-slope flow. For each
Πs, there exists an optimal wavelength λmax(Πs) that decreases with increasing Πs
where the instability attains its maximal growth rate. Thus at a specified Πs and for
a given simulation domain with transverse length Y that is an integer multiple of this
optimal wavelength, i.e. Y = nλmax(Πs), n ∈ N, the longitudinal rolls that arise as a result
of linear instability have exactly this optimal transverse wavelength because modes of
different wavelengths are out-competed due to their lower growth rates. Similarly, for
any other arbitrary transverse domain length Y , the emerging longitudinal roll instability
has wavelength λy = (1/N)Y , i.e. an integer fraction of the transverse length Y , and also
possesses the maximal growth rate among all modes that fits an integer number of times
into Y . Hence, by specifying the stratification perturbation Πs and the transverse domain
size Y in a simulation, we have predetermined both the wavelength λy of the emerging
longitudinal rolls and the number N of full rolls that are contained along the transverse
extent. We will make use of this technique throughout this study to generate vortex pairs
with a desired wavelength λy, which also equals the distance between adjacent vortex pairs
(see figures 1b and 1c).

2.3. Speaker-wire vortex structure at the saturated state
The 2-D version of the slope flow equations (2.1)–(2.3) where the along-slope direction is
ignored, with imposed buoyancy flux Bs at the no-slip bottom surface, can be solved via
any time-stepping method to arrive at the steady vortices that arise as a saturated linear
instability for slope angles less than 9◦ when Πs is sufficiently large (Xiao & Senocak
2020b). To reproduce conditions of the local linear stability analysis presented in Xiao
& Senocak (2020b), the initial flow field is set to be the laminar Prandtl flow profile
superposed with a weak sinusoidal disturbance varying along the transverse y direction.
The evolution of the flow field is tracked until a quasi-steady state is reached, which
produces stationary vortex structures as a result of nonlinear saturation of the growing
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z

y y

(a) (b)

Figure 2. Speaker-wire vortices as a result of linear instability of the laminar anabatic Prandtl slope flow at
α = 3◦, with Πs = 2.0 and initial transverse wavenumber ky = 1.22: (a) during the linear growth phase of
initial harmonic disturbances; and (b) in steady state after nonlinear saturation. The blue lines are streamwise
vorticity magnitude contours, whereas the black arrows represent the velocity field projected onto the transverse
yz plane.

initial disturbance at sufficiently large Πs value. We would like to point out that despite the
existence of vortex instabilities of the saturated speaker-wire vortices as described below,
these will be triggered only when very specific types of initial disturbances with the proper
wavelengths, such as those close to the strongest eigenmodes, are already present within
the flow field. In our simulations, we used regular rectangular mesh elements that mostly
suppress noisy numerical errors, thus allowing for the base vortices to develop and saturate
without being subject to vortex instabilities as described below.
A comparison between the vortex structure during the linear growth phase and the final

steady state is shown in figures 2(a) and 2(b). It is evident that even though the total number
of vortex pairs (i.e. two) along the transverse direction has remained the same throughout,
the originally uniformly distributed vortices have coalesced into one of their neighbours
that has an opposite sense of rotation while moving away from their other neighbour, thus
creating two counter-rotating pairs that are clearly separated from each other. We will refer
to these vortex pairs as a speaker-wire vortex system, or more simply a speaker-wire vortex,
due to their striking resemblance to actual speaker-wires. The anti-parallel neighbour of a
given vortex (longitudinal roll) within the same speaker-wire vortex (pair) will be called
its sister roll.
A measure of the nonlinear modification of the original uniform vortex structure is the

width-to-spacing ratio r = ay/by between sister roll separation ay and speaker-wire vortex
(pair) separation by, as shown earlier in figure 1(b). For the initial disturbance varying
harmonically along the y direction, r = r0 = 1/2, and for the increased vortex separation
as shown in figure 2(b), the value of r has decreased below r0. Clearly, the smaller the
value of r, the more inhomogeneous the nonlinearly saturated vortices have become.
This observation motivates the introduction of the vortex packing ratio (VPR) defined
as VPR = 2r = 2ay/by × 100%, which measures how close two adjacent speaker-wire
vortices are from each other. During the linear growth phase, the rolls are distributed
uniformly along the transverse direction with r = 1/2, thus VPR = 100% is maximal.
When the rolls start to coalesce into pairs to form speaker-wire vortices, the VPR decreases
due to clustering of two rolls within a pair. In the following, base speaker-wire vortices
with VPR 70% or above will be regarded as tightly packed, those with VPR between 50%
and 60% are called intermediately packed, and configurations whose VPR is less than
50% are classified as loosely packed.
Figure 3(a) shows the width-to-spacing ratio r as a function of the transverse wavelength
λy of the primary roll instability, which equals the vortex separation by, at constant Πs.
The main vorticity magnitude at the vortex centre of the steady state longitudinal rolls as
a function of λy is shown in figure 3(b) for different values of Πs. It should be pointed
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Figure 3. Characteristics of longitudinal vortex rolls for different values of Πs after saturation from linear
instability growth as a function of the transverse wavelength λy of the primary roll instability. (a) Vortex
packing ratio (VPR), which is related to the width-to-spacing ratio r via r = ay/by = 1

2VPR, and by = λy is
the vortex separation. (b) Maximal streamwise vorticity magnitude |ωx| normalized by characteristic shear S0.

out that since the longitudinal rolls are the manifestation of a primary instability, the
roll separation ay and vortex (pair) separation by are functions of the transverse domain
size, which specifies the wavelength λy of the emerging primary instability via the mode
selection mechanism that we describe in § 2.2. Thus at a fixed Πs, the roll separation ay
and vortex (pair) separation by, as well as the centre vorticity, are not independent from
each other; one can specify the value for only one of them by choosing the primary roll
instability mode with the appropriate transverse wavelength λy, which then automatically
fixes the other quantities of the emerging speaker-wire vortex structure. The dynamics
of these speaker-wire vortices is unlike the vortex instabilities presented in the works of
Pierrehumbert & Widnall (1982) and Crow (1970) in which the characteristics of the base
flow vortices such as width and circulation can be specified freely, and these vortices
are not a product of a prior instability. For significantly larger transverse domain sizes as
shown here, the creation of an additional speaker-wire vortex will be favoured, whereas for
smaller transverse domain sizes, there is favourable pressure for two existing speaker-wire
vortices to merge into one. Thus the mode selection mechanism described earlier, in § 2.2,
aims to modify the number of flow vortices that fit within the specified transverse domain
size to arrive at a mode with larger growth rate at a different wavelength λy, which is
an integer fraction of the transverse domain extent. This can also be regarded as a 2-D
instability of the speaker-wire vortices, which will be explained in more detail in the
following sections.

3. Linear secondary instability analysis of speaker-wire vortices

Let (U,V,W,B) be the flow field in 2-D space of the steady longitudinal rolls, and
assuming that disturbances to this base flow are waves of the form

q(x, y, z, t) = [û( y, z), v̂( y, z), ŵ( y, z), p̂( y, z), b̂( y, z)] exp(ikxx + ωt), (3.1)

then the resulting linearized equations have the following form:

ikxû + ∂v̂

∂y
+ ∂ŵ

∂z
= 0, (3.2)
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ωû + iUkxû + ∂U
∂y

v̂ + ∂U
∂z

ŵ + ∂ û
∂y

V + ∂ û
∂z

W

= −ikxp̂ − Pr
Πs

sinα

(
−k2x û + ∂2û

∂y2
+ ∂2û

∂z2
+ b̂

)
, (3.3)

ωv̂ + iUkxv̂ + ∂V
∂y

v̂ + ∂V
∂z

ŵ + ∂v̂

∂y
V + ∂v̂

∂z
W

= − p̂
∂y

− Pr
Πs

sinα

(
−k2x v̂ + ∂2v̂

∂y2
+ ∂2v̂

∂z2

)
, (3.4)

ωŵ + iUkxŵ + ∂W
∂y

v̂ + ∂W
∂z

ŵ + ∂ŵ
∂y

V + ∂ŵ
∂z

W

= −∂ p̂
∂z

− Pr
Πs

sinα

(
−k2x ŵ + ∂2ŵ

∂y2
+ ∂2ŵ

∂z2
+ b̂ cotα

)
, (3.5)

ωb̂ + iUkxb̂ + ∂B
∂y

v̂ + ∂B
∂z

ŵ + ∂ b̂
∂y

V + ∂ b̂
∂z

W

= −sinα

Πs

(
−k2x b̂ + ∂2b̂

∂y2
+ ∂2b̂

∂z2
− (û + ŵ cotα)

)
, (3.6)

where û, v̂, ŵ, p̂, b̂ are flow disturbances varying along the slope-normal and transverse
directions normalized by the flow scales given in (2.4)–(2.6). The slope angle is fixed at
α = 3◦, whereas the normalized base flow field describing the steady vortices is denoted
by (U,V,W,B) and is obtained via the simulation procedure described above.
The linearized equations for bi-global stability analysis can be written as a generalized

eigenvalue problem as

A(kx) q̂( y, z) = ωB(kx) q̂( y, z). (3.7)

The 2-D complex disturbance vector

q̂( y, z) = [û( y, z), v̂( y, z), ŵ( y, z), p̂( y, z), b̂( y, z)]T (3.8)

varies in the slope-normal (z) and transverse (y) directions, where (û, v̂, ŵ) are the
along-slope, cross-slope (transverse) and slope-normal disturbance velocity components.
As a bi-global stability analysis, the slope-normal and transverse dimensions are fully
resolved, and the disturbance variation along the streamwise direction is approximated
by only one single Fourier mode with wavenumber kx. When kx is zero, then the
corresponding mode is 2-D without any streamwise variation, whereas a positive kx
implies a full 3-D disturbance. The appropriate boundary conditions for this problem are
no-slip for disturbance velocities at z = 0 and z → ∞, and for buoyancy disturbance,
∂ b̂/∂z|0 = 0 and b̂|z→∞ = 0 are imposed. The slope-normal derivative of pressure
disturbance p̂ is also set to zero at both z = 0 and z → ∞. On both transverse boundaries
y = 0 and y = λy = by, periodic conditions are imposed for all variables. The generalized
eigenvalue problem (3.7) is discretized via spectral elements in the transverse plane,
which is available in Nektar++ (Cantwell et al. 2015). For a base flow containing two full
transverse spatial periods, i.e. two speaker-wire vortices, around 150 degrees of freedom
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are used for discretization in each transverse direction, and the resulting generalized
eigenvalue problem is solved with the modified Arnoldi algorithm as implemented in
Nektar++. Linear stability of the problem is associated with the real part of the eigenvalues
ω, where Re(ω) > 0 represents a positive exponential growth for the corresponding
eigenmode, thus an unstable mode. The imaginary part of ω is the temporal oscillation
frequency for the corresponding eigenmode, and Im(ω) = 0 represents a stationary mode.
We have conducted additional numerical studies to verify that the computed eigenvalues
are robust with respect to further mesh refinements by increasing the order of each
rectangle mesh element from 4 to 8, i.e. they change by less than 0.5%. We also ran
eigenvalue analysis for the 1-D Prandtl base flow using the same vertical boundary
conditions, and were able to obtain the same numerical results as the separate in-house
code that is described in Xiao & Senocak (2019). This provides sufficient support that the
computed eigenvalues are not of a spurious nature.

3.1. Instabilities of anabatic speaker-wire vortices at 3◦ slope
To investigate the secondary linear instability of speaker-wire vortices, eigenvalues with
the highest maximal real values for a range of streamwise wavenumbers kx are computed
for different vortex separation values by and stratification perturbation parameter Πs of the
base flow at the constant slope angle α = 3◦. We also assume a constant Prandtl number
Pr = 0.71 for all cases.
We observe from figure 3 that the vortex separation by has a profound effect on the

structure of the base flow when all other flow parameters are held constant, changing
both the circulation as well as vortex separation. Hence we expect that the secondary
instabilities arising from these base flow vortices will also be qualitatively different
depending on by. In total, even at constant slope angle and Prandtl number, three
independent parameters determine the growth rates and oscillation frequencies of the
secondary instability, which are the stratification parameter Πs, the streamwise instability
wavenumber kx = 2π/λx, and the transverse base flow wavenumber ky = 2π/λy, where
λy = by equals the width of the base speaker-wire vortex. In the following, we will present
separately and discuss the results of the stability analysis for base speaker-wire vortices
with different vortex separation values by. In our numerical investigations over many
values for the separation by, we have found that the qualitative behaviour of the vortex
dynamics can be classified into three categories, which can be labelled as tightly packed,
intermediately packed and loosely packed.
To illustrate the nonlinear effects of different vortex instabilities, the full set of

Navier–Stokes equations (2.1) and (2.2) has been solved in two as well as three dimensions
using Nektar++5.0.0. The same number of spectral elements degrees of freedom as for
the bi-global linear stability analysis were used to resolve the transverse yz plane, and
16 Fourier modes were used for the along-slope x direction in the 3-D simulations. The
resulting animations are available as supplementary movies at https://doi.org/10.1017/jfm.
2022.508.

3.1.1. Case I: tightly packed speaker-wire vortices
Subharmonic mode. We begin our explorations by distinguishing between the
subharmonic instabilities of the base vortices (i.e. those modes whose transverse
wavelength spans twice the transverse wavelength of the primary vortex instability)
and the fundamental instabilities with the same transverse wavelength as the
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Speaker-wire vortices in stratified anabatic slope flows

primary mode. For speaker-wire vortices with vortex (pair) separation by = 3.1, we can see
from figure 3(a) that the VPR is over 70%. As figure 3(a) shows, the VPR decreases with
increasing vortex separation by of the base speaker-wire vortices, which is equivalent to the
primary transverse wavelength λy. The base flow used for modal analysis consists of two
speaker-wire vortices arising from the primary linear instability mode, i.e. the transverse
domain size is twice the wavelength of the primary vortex instability as described in Xiao
& Senocak (2020b).
The growth rates of the most unstable secondary modes for streamwise or longitudinal

wavenumbers kx within the range [0, 1.0] are shown for three different values Πs =
1.9, 2.1, 2.3 in figure 4(a). As expected, the growth rate of any mode at a fixed streamwise
wavenumber kx grows with increasing Πs due to an increase in the surface heat flux.
It turns out that all the secondary instability modes with the largest eigenvalues have
a transverse wavelength that is exactly equal to the total transverse extent of the base
flow, i.e. twice the width by between adjacent base flow speaker-wire vortices, as can
be seen in the 2-D transverse contour plot for the streamwise vorticity ωx shown in
figure 4(c), suggesting that they are indeed subharmonic instabilities. The 2-D modes have
zero longitudinal wavenumbers, i.e. kx = 0, and thus are constant along the streamwise
direction. For the 3-D modes with kx > 0, we can see from figure 4(a) that the growth rates
reach a maximal value slightly exceeding the 2-D growth rate at an optimal wavenumber
kx ≈ 0.4, and from that point on, they remain nearly constant to decrease very slowly to the
2-D growth rate at kx = 0. Due to the fact that there is very little variation in growth rate
as a function of the streamwise wavenumber for values less than kx ≈ 0.4 corresponding
to the strongest mode, we can conclude that extremely long-wave or even 2-D structures
that are known to appear in stably stratified channel flows (Garcia-Villalba & Del Alamo
2011) can manifest themselves when the base vortices are destabilized. All 3-D modes
with positive longitudinal wavenumbers kx > 0 are oscillatory with frequency increasing
monotonically with growing kx, as shown in figure 4(b). The 2-D mode with kx = 0 is
stationary, i.e. with zero imaginary part of its eigenvalue. At small wavenumbers kx, the
oscillation frequencies of the 3-D mode decay asymptotically to zero with decreasing kx
to converge to the stationary 2-D mode at kx = 0. As figure 4(b) shows, the normalized
frequencies of all three cases shown here appear to obey a simple linear dispersion relation
given by Im(ω) = ηkx, where η ≈ 0.327 is determined empirically to fit all three curves.
The accuracy of this fit shows that the group speed of the strongest subharmonic vortex
instabilities given by c = ∂(Im(ω))/∂kx = η is nearly constant and equals η.
Existence of both 2-D and 3-D subharmonic vortex instabilities has also been identified

in the study of co-rotating Stuart vortex arrays by Pierrehumbert & Widnall (1982) or
as secondary instabilities in a shear layer by Corcos & Sherman (1984), where they are
shown to be responsible for the merging of neighbouring vortices. Similarly, as visualized
in figure 4(d), the 3-D secondary subharmonic modes of the speaker-wire vortices act
by bending adjacent speaker-wire vortices in opposite directions so as to facilitate their
reconnection. As shown in figure 4(e), the effect of the 2-D subharmonic mode is to
strengthen one roll while weakening its sister roll within the same speaker-wire vortex,
with the aim of halving the total number of vortices present within the domain. Depending
on the range of permissible streamwise wavelength, which itself depends on the length
of the domain, the strongest subharmonic mode is either purely 2-D or 3-D. When the
streamwise domain length is Lx, a mode with wavenumber within 2π/Lx of the optimal
wavenumber kO will manifest itself. Thus, for large values of Lx, a 3-D mode with
wavelength close to the optimal wavelength will be favoured; however, in the case when
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Figure 4. Characteristics of the subharmonic mode for tightly packed speaker-wire vortices at different values
of Πs as a function of the longitudinal wavenumber kx = 2π/λx: (a) growth rate Re(ω); (b) oscillation
frequency Im(ω), along with the linear dispersion relation Im(ω) = ηkx (η ≈ 0.327). (c) Contours of
streamwise vorticity for the instability mode (thin lines) at Πs = 1.9 on the yz plane in relation to the base flow
(thick lines). (d) Streamwise vorticity contours of base speaker-wire vortices perturbed by 3-D subharmonic
instability at Πs = 2.3. (e) Streamwise vorticity contours of base speaker-wire vortices perturbed by 2-D
subharmonic instability. All shown contours are at 5% of the maximal vorticity magnitude. Video of the
evolution of the 2-D subharmonic instability for tightly-packed vortices is available as supplementary movie 1.

the streamwise domain length is less than 2πkO, the 2-D subharmonic mode will come
out the strongest.
Fundamental mode. The fundamental secondary instability has, by definition, a

transverse wavelength equalling the transverse wavelength λy of the primary instability,
or one-half of the wavelength of a subharmonic mode. Thus the base flow used in the
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Speaker-wire vortices in stratified anabatic slope flows

present analysis consists of only one single speaker-wire vortex that rises from the primary
linear instability mode in order to ensure that the maximal transverse wavelength λy of the
eigenmodes computed here cannot exceed the transverse wavelength of the primary vortex
instability.
The growth rates and oscillation frequencies of the most unstable modes for streamwise

wavenumbers kx within the range [0, 1.0] are shown for three different values Πs =
2.9, 3.0, 3.05 in figures 5(a) and 5(b). As shown in figure 5(c), the transverse wavelength
of the fundamental mode is approximately 3, thus equal to the base vortex separation by.
Compared with the subharmonic mode that we discussed previously and visualized in
figure 4(a), the growth rates of these fundamental modes are around five times smaller
despite possessing larger normalized surface fluxes, which is also indicated by the larger
Πs values in their base flows. At the lower values of Πs, as displayed for the subharmonic
modes in figure 4(a), there exist no unstable fundamental modes. This signifies that there
is a clear separation between the fundamental and subharmonic modes, and that the
fundamental modes are inherently weaker than their subharmonic counterparts, whose
transverse wavelength is twice as large. The flow-physical implication of this clear gap
between the subharmonic and fundamental modes is that the most dominant vortex
dynamics is the merger or reconnection of two adjacent speaker-wire vortices involving
four rolls in total, rather than reconnection within a single vortex pair.
Figure 5(a) shows that with increasing normalized surface heat flux Πs, the growth

rate of the strongest mode at the large as well as smallest streamwise wavenumbers kx
also grows. However, for intermediate wavenumber values 0.05 < kx < 0.2, the growth
rates are higher for lower Πs. Similar to what we have observed in the case of
subharmonic modes, there exist stationary 2-D fundamental modes that do not vary along
the streamwise along-slope direction; their growth rates are shown in figure 5(a) as the
values at the wavenumber kx = 0. In contrast to the subharmonic modes, the strongest 3-D
fundamental modes (kx > 0) have lower growth rates than their 2-D counterparts for all
values of kx.
All the 3-D fundamental modes are oscillatory, and their frequencies increase

monotonically with the streamwise wavenumber kx, as shown in figure 5(b). At small
wavenumbers kx, the frequency of the 3-D fundamental mode decays asymptotically
to zero to become the stationary 2-D mode at kx = 0. It can be seen that for larger
wavenumbers with kx > 0.35, the normalized frequencies of the strongest fundamental
modes at the three values for Πs shown here fit approximately a simple linear dispersion
relation given by Im(ω) = ζkx, where ζ ≈ 0.25 is determined empirically to fit all three
curves. At lower wavenumbers kx < 0.2, the fundamental mode from another branch of
the spectrum with higher frequency becomes stronger than the dominant mode at larger
wavenumbers, which manifests itself in an abrupt jump of the oscillation frequency Im(ω)

of the strongest fundamental mode as a function of kx, as shown in figure 5(b).
Fundamental instabilities of longitudinal rolls, i.e. modes that have the same transverse

wavelength as the base vortices, have been studied extensively in previous works as well.
The most prominent representative of such a mode is the Crow instability for a pair of
vortices suspended in unstratified air (Crow 1970). Fundamental modes have also been
identified as instabilities of Rayleigh–Bénard convection rolls, which aim to distort the
structure and spacing of the rolls to bring them closer to the optimal wavelength (Clever
& Busse 1974). More recently, fundamental vortex instabilities have also been found
in strongly stratified fluids such as the so-called zig-zag instability studied in Billant
(2010). Similar to the fundamental vortex instabilities discovered in Pierrehumbert &
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Figure 5. Characteristics of the fundamental mode for tightly packed speaker-wire vortices at different values
of Πs as a function of the longitudinal wavenumber kx: (a) growth rate Re(ω); (b) oscillation frequency Im(ω),
along with the linear dispersion relation Im(ω) = ζkx (ζ ≈ 0.25). (c) Streamwise vorticity contours of two
adjacent rolls from neighbouring speaker-wire vortices at Πs = 3.05 on the transverse yz plane. (d) Streamwise
vorticity contours of base speaker-wire vortices perturbed by the fundamental instability at Πs = 3.05. All
contours are displayed at 5% of the maximal vorticity magnitude.

Widnall (1982), we expect that the main effect of the fundamental modes is to cause
parallel displacement and symmetric distortion of all vortices. As visualized in figure 5(d),
the 3-D fundamental mode causes sinusoidal bending and distortion of each speaker-wire
vortex. However, unlike the well-known symmetric Crow instability (Crow 1970), which
bends two sister rolls towards each other to facilitate their connection, the fundamental
mode for speaker-wire vortices can only bend both vortices within a pair along the same
direction, as shown in figure 5(d).
Coherent nature of single speaker-wire vortex. We observe from figures 4(d)

and 5(d), in both subharmonic and fundamental modes, that the two rolls within the
same speaker-wire vortex always bend in the same direction, thus preventing a vortex
reconnection or merger. This means that a single pair of vortices can remain in its basic pair
structure even after the initial onset of instabilities, thus justifying their designation as a
unique coherent vortex structure. Similar vortex structures that remain stable and coherent
over large wavelengths have been observed in the Langmuir vortices on the surface of seas
and oceans, as described in Craik & Leibovich (1976).
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3.1.2. Case II: intermediately packed speaker-wire vortices
Subharmonic and fundamental modes. For a larger speaker-wire vortex separation
by = 4.1, we observe from figure 3 that the VPR of speaker-wire vortices is decreasing to
around 60%. This indicates that relative to the previous vortex configuration (i.e. Case I)
with a smaller transverse vortex wavelength, the two speaker-wire vortices move tighter
towards each other after reaching the end of their linear growth phase, leading to a clearer
separation of adjacent speaker-wire vortices.
To uncover both subharmonic and fundamental instabilities of the base speaker-wire

vortices, we used two sets of base flows for modal analysis, consisting of two pairs and one
pair of speaker-wire vortices arising from the primary linear instability mode, respectively.
The growth rates of the most unstable secondary modes for streamwise wavenumbers
kx within the range [0, 0.8] are shown for three different values Πs = 2.25, 2.4, 2.5
in figure 6(a). In contrast to the previous configuration (Case I) with closely spaced
speaker-wire vortices, there are no unstable 2-D modes, i.e. modes with a positive growth
rate at kx = 0. As expected, the maximal growth rate of the secondary instability is larger
for the higher value Πs = 2.4 than for the smaller value Πs = 2.25, and the optimal
streamwise wavenumber with maximal growth is also larger for Πs = 2.4. Figure 6(a) also
shows that the subharmonic mode for Πs = 2.25 attains its maximal growth rate at a larger
streamwise wavenumber, kx ≈ 0.4, than its fundamental counterpart, which is strongest at
the wavenumber kx ≈ 0.1, hence the unstable subharmonic modes tend to have a clearly
smaller streamwise wavelength than the fundamental ones.
A comparison between subharmonic and fundamental modes at the same value Πs =

2.25 also shows that in contrast to the base configuration with smaller vortex separation
as described above, the subharmonic mode does not achieve a larger maximal growth
rate than its fundamental counterpart. This implies that in contrast to the previous base
vortex configuration with a smaller vortex separation by, the fundamental instability is
of equal importance to the subharmonic mode. Thus, in addition to the merger between
neighbouring speaker-wire vortices due to the subharmonic mode, we would also expect
to see the effect of the fundamental mode during flow transition, which could be a parallel
translation of all vortices or (anti-)symmetric bending of sister rolls as described by
Pierrehumbert & Widnall (1982) and Corcos & Sherman (1984). Due to symmetry, this
transverse translation is equally likely to move along the positive or negative y direction,
depending on the nature of the initial disturbance.
We observe from figure 6(b) that the normalized frequencies of the most dominant

subharmonic modes at the three values for Πs shown here appear to fit a linear
dispersion relation given by Im(ω) = ηkx, where η ≈ 0.124 is determined empirically to
match approximately all three curves. The accuracy of this linear relation demonstrates
that the group speed of the strongest subharmonic vortex instabilities given by
c = ∂(Im(ω))/∂kx = η is nearly constant and equals η. It should be noticed that this value
for η ≈ 0.124 is roughly three times as small as its value for Case I with η ≈ 0.327. This
means that the subharmonic instability waves travel far more slowly on base vortices with
an intermediate vortex separation than on more closely packed speaker-wire vortices.
As shown in figure 6(c), the transverse wavelength of the subharmonic mode is

approximately the transverse domain length, hence twice the base speaker-wire vortex
separation by. Figure 6(d) shows that 3-D secondary subharmonic modes bend both sister
rolls within the same speaker-wire vortex in the same direction, but pull neighbouring rolls
in adjacent speaker-wire vortices in opposite directions. Thus the reconnection and merger
between rolls from different speaker-wire vortices is facilitated over a merger within a
single speaker-wire vortex.
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Figure 6. Characteristics of the subharmonic mode for intermediately packed speaker-wire vortices at different
values Πs = 2.25, 2.4, 2.5 as a function of the longitudinal wavenumber kx: (a) growth rates Re(ω) of 3-D
modes, along with the fundamental mode at Πs = 2.4 for comparison; (b) oscillation frequency Im(ω), along
with the linear dispersion relation ηkx (η ≈ 0.124). (c) Contours on the transverse yz plane of streamwise
vorticity for the 3-D subharmonic instability (thin lines) at Πs = 2.4 in relation to the base flow (thick lines).
(d) Streamwise vorticity contours of base speaker-wire vortices perturbed by the subharmonic instability at
Πs = 2.4. All contours are shown at 5% of the maximal vorticity magnitude.

The growth rates and oscillation frequencies of the strongest fundamental modes on base
vortices with intermediate vortex separation are displayed in figures 7(a) and 7(b). They
confirm the previous observation that the fundamental instability is a long-wave mode,
which attains its maximum growth rate at wave streamwise numbers kx < 0.1 compared
to the optimal frequency of the subharmonic mode at around kx ≈ 0.4. Figure 7(b) shows
that the oscillation frequencies of the most dominant fundamental modes at the three
different values for Πs shown here seem to follow the linear dispersion relation given
by Im(ω) = ζkx, with ζ ≈ 0.142 being slightly larger than the value η ≈ 0.124 for the
subharmonic modes. This value η ≈ 0.124 is roughly one-half of its value at the lesser base
vortex separation discussed above with η ≈ 0.25, which indicates that the fundamental
modes travel half as fast on base vortices with an intermediate vortex separation than on
more densely packed base vortices.
As figure 7(c) shows, the transverse wavelength of the fundamental mode is

approximately 4 and equals the base speaker-wire vortex separation by. Figure 7(d)
indicates that the 3-D fundamental mode bends all rolls within a speaker-wire vortex in the
same direction. Thus the mode cannot generate a merger or reconnection of the two rolls
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Figure 7. Characteristics of the fundamental mode for intermediately packed speaker-wire vortices at different
values of Πs as a function of the longitudinal wavenumber kx: (a) growth rate Re(ω); (b) oscillation frequency
Im(ω), along with the linear relation ζkx (ζ = 0.142). (c) Streamwise vorticity contours of two adjacent rolls
from neighbouring speaker-wire vortices on the transverse plane for the 3-D fundamental instability at Πs =
2.4. (d) Streamwise vorticity contours of two rolls from neighbouring speaker-wire vortices perturbed by the
fundamental instability at Πs = 2.4. All shown contours are at 5% of the maximal vorticity magnitude.

within a single speaker-wire vortex. The effect of the 2-D fundamental mode is to cause a
parallel translation of all rolls similar to fundamental Stuart vortex instabilities described
in Pierrehumbert & Widnall (1982), and will not be displayed explicitly here.

3.1.3. Case III: loosely packed speaker-wire vortices
Subharmonic and fundamental modes. For an even larger speaker-wire vortex
separation by = 5.0, figure 3(a) shows that the VPR decreases further, to around 50%.
This indicates that beyond the linear growth phase of the primary instability, the respective
centres of the two vortices within each speaker-wire pair are moving further towards each
other such that the width of each speaker-wire vortex is smaller than one-half of the
distance by between adjacent speaker-wire vortices. The implication of this tightening of
each speaker-wire vortex is that there is now sufficient space between two pairs to fit in an
additional speaker-wire vortex.
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To compute subharmonic and fundamental instabilities for this base speaker-wire vortex
configuration, we used two sets of base flows for modal analysis: two speaker-wire vortices
for the subharmonic mode and one single pair for the fundamental mode, all with the pair
spacing by = 5.0. The growth rates of the most unstable secondary modes for streamwise
wavenumbers kx within [0, 0.8] are shown for different values Πs = 2.2, 2.3, 2.4 in
figure 8(a), which indicates that the most dominant modes are subharmonic. As for
the other cases, the maximal growth rate of the secondary instability is larger for the
higher value Πs = 2.4 than for the smaller value Πs = 2.3, and the optimal streamwise
wavenumber kx with maximal growth rate is also larger for Πs = 2.4 than for Πs = 2.3.
Comparison with the growth rate of the 3-D fundamental mode at Πs = 2.4 in

figure 8(a) shows that the subharmonic mode at the same Πs value achieves a clearly
larger growth rate for all streamwise wavenumbers kx. This assertion is supported further
when we compare the growth rates for fundamental modes at Πs = 2.35, 2.4, 2.45 shown
in figure 9(a) against the growth rates shown in figure 8(a) for subharmonic modes.
This means that similar to Case I with the smallest vortex separation (by = 3.1), but in
contrast to Case II with an intermediate spacing of the speaker-wire vortices (by = 4.1),
there exists a gap between the subharmonic and fundamental modes when all other base
flow parameters are the same. Thus we would expect to see the dominant effect of the
subharmonic mode at Πs ≈ 2.4 during flow transition. However, as will be shown later,
this behaviour can change at larger Πs values.
The oscillation frequencies of the strongest subharmonic modes for base vortices with

large vortex separation are displayed in figure 8(b), showing that the frequencies of the
most dominant fundamental modes at the three different values for Πs displayed here
appear to fit a linear dispersion relation given by Im(ω) = κ + ηkx with κ ≈ 0.014,
η ≈ 0.32. This shows that in contrast to the previous configurations with smaller
base vortex separations, even the 2-D subharmonic instability (kx = 0) is oscillatory
with frequency κ . The group velocity η for the subharmonic modes is approximately
the same as the corresponding value for subharmonic modes at small base vortex
separation, which is η ≈ 0.327, clearly larger than the value at intermediate base vortex
separation.
As shown in figure 8(c), the transverse wavelength of the subharmonic mode is

approximately 10, hence twice the value of the base speaker-wire vortex separation by.
Figure 8(d) shows that 3-D subharmonic modes bend both sister rolls within the
same speaker-wire vortex in the same direction, but pull neighbouring rolls in adjacent
speaker-wire vortices in opposite directions. Thus the reconnection and merger between
rolls from different speaker-wire vortices is facilitated over a merger within a single
speaker-wire vortex. The effect of the 2-D subharmonic mode is displayed in figure 8(e): it
can be seen that one pair of neighbouring speaker-wire vortices moves closer towards each
other in the precursor to a merger, while at the same time distancing themselves from their
other neighbours and increasing the in-between space where additional vortices can be
formed. This can be seen in the animations of the evolution of subharmonic instabilities
obtained via numerical integration of the 3-D Navier–Stokes equations (2.1) and (2.2),
available as supplementary movies 2 and 3.
As displayed in the movies, the nonlinear dynamics subharmonic instability for

well-separated base vortices is different to a mere merger that occurs for vortices that
are more closely packed. As predicted by linear stability analysis, the subharmonic mode
manifests itself initially by bending neighbouring pairs in opposite directions. However,
at later times, novel vortices emerge in the free space between the pairs, and those newly
created vortices will merge later with one of the original base vortices. When the spacing
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Figure 8. Characteristics of the subharmonic mode for loosely packed speaker-wire vortices at different values
of Πs as a function of the longitudinal wavenumber kx: (a) growth rate Re(ω); (b) oscillation frequency Im(ω),
along with the linear relation κ + ηkx (κ = 0.014, η = 0.32). (c) Contours of streamwise vorticity on the
transverse plane for the subharmonic instability mode (thin lines) at Πs = 2.4 in relation to the base flow (thick
lines). (d) Streamwise vorticity contours of base speaker-wire vortices perturbed by the subharmonic instability
at Πs = 2.4. (e) Streamwise vorticity contours of base speaker-wire vortices perturbed by 2-D subharmonic
instability. Videos of the evolution of the 3-D and 2-D subharmonic instabilities for the loosely packed vortices
are available in supplementary movies 2 and 3. All contours are displayed at 5% of the maximal vorticity
magnitude.

between base vortices is small, then this phenomenon of vortex creation cannot occur due
to the lack of free spacing, hence the only dynamics is the merger of adjacent speaker-wire
vortices. This supports our main message that the vortex instability dynamics is strongly
dependent on the spacing between adjacent pairs, which is quantified by the vortex packing
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Figure 9. Characteristics of the fundamental mode for loosely packed speaker-wire vortices at different values
of Πs as a function of the longitudinal wavenumber kx: (a) growth rate Re(ω); (b) oscillation frequency
Im(ω) and the linear dispersion relation Im(ω) = ζkx (ζ = 0.305). (c) Streamwise vorticity contours of two
adjacent rolls from neighbouring speaker-wire vortices on the transverse yz plane for the fundamental instability
(thin lines) at Πs = 2.4. (d) Streamwise vorticity contours of base speaker-wire vortices perturbed by the
fundamental instability at Πs = 2.4. Videos of the evolution of the 3-D and 2-D fundamental instabilities for
the loosely packed vortices are available in supplementary movies 4 and 5. All contours are shown at 5% of
the maximal vorticity magnitude.

ratio (VPR) introduced above. However, linear stability analysis by itself can only predict
the initial onset of vortex instability, and the subsequent nonlinear evolution of the vortices
is shown in the supplementary movies.
The growth rates and oscillation frequencies for the strongest fundamental modes on

loosely packed base vortices with large vortex separation are displayed in figures 9(a)
and 9(b). In contrast to base vortices with intermediate vortex separation discussed above,
the fundamental instability attains its maximum growth rate at higher wave streamwise
numbers kx ≈ 0.4 compared to the most dangerous frequency of the subharmonic mode at
around kx ≈ 0.2. As shown in figure 9(b), the frequencies of the strongest fundamental
modes at the three different values for Πs displayed here follow closely the linear
dispersion relation given by Im(ω) = ζkx with ζ ≈ 0.305, which is only slightly smaller
than the value η ≈ 0.32 for the subharmonic modes. This would indicate that the
fundamental modes travel at around the same speed as their subharmonic counterparts.
As displayed in figure 9(c), the transverse wavelength of the fundamental mode is

approximately 5, which equals the base speaker-wire vortex separation by. Figure 9(d)
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indicates that 3-D fundamental instabilities bend all rolls within speaker-wire vortices
along the same direction. Thus by themselves they cannot generate the dynamics for
merger within a single speaker-wire vortex. The effect of the 2-D fundamental mode
is to cause a parallel translation of all rolls similarly as fundamental Stuart vortex
instabilities described in Pierrehumbert & Widnall (1982), and will not be displayed
explicitly here.

3.2. Effect of speaker-wire vortex spacing on instability
As we have seen from the previous presentations of instabilities for different speaker-wire
vortex configurations, the distance by between adjacent speaker-wire vortices is crucial
in determining which kind of modes are favoured to destabilize the vortices. For both
small and large values of by, our prior analysis suggests that subharmonic modes, i.e.
those with transverse wavelength λy = 2by, are clearly stronger than their fundamental
counterparts with half the wavelength λy = by. However, when by takes on an intermediate
value, both fundamental and subharmonic modes may have similar growth rates at smaller
stratification numbers Πs.
To investigate the influence of vortex separation by on secondary instability properties

in a more systematic way, we have prepared a series of base flows containing speaker-wire
vortices with vortex separation by within the range [3.0, 5.2] and computed their most
unstable subharmonic as well as fundamental modes. For the study of subharmonic
modes, we chose the stratification number Πs = 1.9 for all base flow configurations that
differ only by their vortex separation by. The growth rates and oscillation frequencies
of the most unstable 3-D subharmonic modes with different streamwise wavenumbers
kx = 0.22, 0.33, 0.44 as a function of by are shown in figures 10(a) and 10(b). These results
corroborate our earlier observations about the dependence of the subharmonic mode on
vortex separation by: the subharmonic instability assumes its strongest growth rate when
by is the smallest, and becomes weaker when by is increased until reaching its minimum,
which is negative, at an intermediate value by ≈ 4.2. From that point onwards, the
subharmonic instability starts to get stronger again with further increases in by; however,
at the largest by = 5.1 shown here, even though again at a positive growth rate, it never
regains its peak strength at the smallest vortex separation by = 3.1. Figure 10(b) shows
that in contrast to the growth rate, the oscillation frequency of the strongest subharmonic
mode at a given wavenumber kx generally grows monotonically with vortex separation by
for all by ≤ 4.5. For larger vortex separation values by, the oscillation frequency stagnates
visibly at its value for the vortex separation by = 4.5.
To study the fundamental instability modes, we have chosen the stratification number

Πs = 2.85 for all base flow configurations. The growth rates and oscillation frequencies
of the most unstable 3-D fundamental modes at three different streamwise wavenumbers
kx = 0.41, 0.66, 0.84 as a function of by are shown in figures 11(a) and 11(b). These results
show that in contrast to the subharmonic modes, the fundamental instability increases in
strength with growing vortex separation by, starting with negative growth rates at by = 3.1,
and becoming positive for by > 4.0. A physical explanation for this could be that at larger
distances between adjacent speaker-wire vortices, the influence between vortices within a
pair outweighs the effect of the more distant vortices at a different vortex pair. Figure 11(b)
shows that the oscillation frequency of the strongest fundamental mode also grows with
increasing by throughout the entire range as displayed here.
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Figure 10. Characteristics of the subharmonic secondary instability for different streamwise wavenumbers kx
at Πs = 1.9 as a function of the vortex separation by (which is also the transverse wavelength of the base
vortices): (a) growth rate; (b) oscillation frequency.
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Figure 11. Characteristics of the fundamental secondary instability for different streamwise wavenumbers kx at
Πs = 2.85 as a function of the base vortex separation by: (a) growth rate compared to primary linear instability;
(b) oscillation frequency.

4. Conclusions

We have carried out a linear bi-global stability analysis for stationary longitudinal rolls
that emerge as a primary instability from the laminar 1-D anabatic Prandtl slope flow at
low angles. We have identified the pair of counter-rotating rolls as unique flow structures,
and designated them as speaker-wire vortices. Despite the apparent resemblance of the
longitudinal rolls in our study to other well-known counter-rotating vortex pairs reported
in the literature, our base flow configuration has multiple distinctly unique features. First,
it includes an independent background stratification that is at an oblique angle to the
heated solid slope surface. Second, the rolls in our base flow configuration have three
non-zero velocity components even though the flow field itself has zero gradient along the
streamwise direction. As a result, it is not surprising that the instability dynamics of these
speaker-wire vortices are also distinct from the hitherto known vortex pair instabilities.
Our results for secondary instabilities of speaker-wire vortices have shown that the

vortex packing ratio (VPR), or equivalently, the vortex separation by, i.e. the distance
between two adjacent speaker-wire vortices, plays a major role in determining which
stability mode is the most significant in destabilizing the vortices under anabatic slope
flow conditions. The growth rate of the most dominant subharmonic mode as a function
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of vortex spacing by has a parabola-like shape: it is maximal at the lowest values by ≤ 3.1,
then gradually decreases to its minimum at by ≈ 4.4 when the base vortex configuration
is the most stable, but starts increasing again for larger by. In contrast, the growth
rate of the strongest fundamental mode increases with larger vortex separation by. For
closely-packed as well as sparsely-packed vortex configurations, i.e. those with VPR over
70% or less than 50%, the subharmonic secondary instability is far more dominant than
the fundamental modes, which become unstable only at higher normalized surface heat
flux values. On the other hand, when the VPR drops to 60% at an intermediate vortex
separation by ≈ 4.1, the long-wave fundamental mode may become roughly equal to the
strongest subharmonic mode. For all the subharmonic and fundamental instability modes
computed for speaker-wire vortices of different VPR and vortex separation values, we have
found that rolls within the same speaker-wire vortex always bend in the same direction,
hence keeping the same distance towards each other even after being destabilized. The
implication of this dynamic is that in speaker-wire vortices, reconnections are possible
only when at least two speaker-wire vortices (i.e. four vortex rolls) are present, whereas
two rolls within a single speaker-wire vortex are unlikely to reconnect with each other even
after the onset of instabilities. This dynamic is in contrast to most other well-known vortex
instabilities such as the Crow instability, the elliptic instability or the zig-zag instability,
which has led us to identify the speaker-wire vortex as a novel coherent vortex unit.
The subharmonic and fundamental modes in speaker-wire vortices come in both 3-D

and 2-D types. The 2-D subharmonic mode for closely packed base vortex configurations
acts to weaken every second vortex, eventually destroying them and freeing up vortex-free
space between the remaining rolls. On the other hand, for sparsely-packed base vortex
configurations, the 2-D subharmonic mode moves two adjacent speaker-wire vortices
closer towards each other as a precursor to a vortex merger, which simultaneously creates
additional space between two other vortices in which additional vortices can be formed,
resulting in a more densely packed vortex array. The physical interpretation of this dynamic
would be that these 2-D instabilities aim at generating a vortex configuration that has
an optimal intermediate distance between the speaker-wire vortices, and is neither too
densely nor too sparsely packed. The 2-D fundamental mode, which can play a meaningful
role at an intermediate base vortex distance by ≈ 4.1 only by not being dominated by its
subharmonic counterpart, has the net effect of displacing all base speaker-wire vortices
along the transverse direction at the same speed.
The 3-D secondary instability modes, i.e. those that vary along the streamwise or

equivalently the along-slope direction, have been shown to cause streamwise sinusoidal
bending of each vortex in the base configuration. The 3-D subharmonic mode,
whose transverse wavelength is twice the base vortex separation, moves two adjacent
speaker-wire vortices closer to each other, and also bends the two neighbouring rolls
belonging to different speaker-wire vortices along opposite directions. As a result, the
segments on each roll that are bent towards their neighbour from the adjacent speaker-wire
vortex have the smallest distance to the corresponding segment in its neighbouring vortex,
eventually getting close enough to become sites of a vortex reconnection and thus ripped
from its sister roll in the original speaker-wire vortex. For tightly packed base vortex
configurations, the growth rates of 3-D subharmonic modes remain nearly constant for all
streamwise wavenumbers smaller than that of the most dominant mode, thus revealing the
presence of potential long-wave instabilities. The 3-D fundamental mode, with a transverse
wavelength equivalent to the vortex separation of the base speaker-wire vortices, bends
all rolls in all speaker-wire vortices along the same direction, thus the distances between
them remain the same as in the original base configuration before the onset of instability.
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Thus the fundamental mode by itself cannot be the mechanism leading to vortex
reconnection. Instead, after a sufficiently long time, the subharmonic instability will
eventually manifest itself by either moving two neighbouring speaker-wire vortices
towards each other (densely packed case) or creating new vortices between two pairs
(thinly packed case), resulting in the reconnection between two adjacent rolls that are not
from the same speaker-wire vortex as in the base configuration as described above.
One of the most poignant findings uncovered in our study is that for all fundamental and

subharmonic speaker-wire vortex instabilities, the sister rolls within a single speaker-wire
vortex always bend in the same direction, thus keeping the distance from each other and
preventing reconnection between them.
This implies that the only possible vortex reconnection dynamics under Prandtl’s

anabatic slope flow model requires four vortex rolls in two speaker-wire vortices, whereas
one single speaker-wire vortex is able to maintain its two-roll structure even after the onset
of vortex instabilities. The sensitivity of vortex dynamics with respect to the base vortex
separation, which characterizes the degree of vortex array density along the transverse
direction, is also a distinct feature not observed in other secondary instabilities such
as those occurring in convective boundary layers Hence the speaker-wire vortex system
described in this work merits its designation as a novel coherent flow structure whose
dynamics may have profound impact on turbulent transitions in stably stratified boundary
layers.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.508.
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