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ABSTRACT

This paper formalizes a graph-constrained group testing (GT)
framework for isolating up to k defective items from a pop-
ulation of p. In contrast to traditional group testing ap-
proaches, an underlying graphical model imposes constraints
on how the items can be grouped for testing. The exist-
ing theories on graph-constrained GT consider one-stage,
non-adaptive frameworks that can isolate the defective items
perfectly with ©(k2M? log(p/k)) tests, where M is the mix-
ing time associated with the graph. This paper, in contrast,
formalizes an adaptive, two-stage framework that requires
O(kM?log(p/k)) tests, that is, a factor k smaller than that
of the one-stage (non-adaptive) frameworks. The theoretical
results established for the two-stage framework are also eval-
uated empirically. Furthermore, this framework is extended
to address the problem of anomaly detection in the network,
where based on the samples from probability distributions
conforming to a location-scale family, the decision rules for
detecting a defective vertex are characterized.

Index Terms— Adaptive, graph constraints, group test-
ing.

1. INTRODUCTION

Group testing conducts pooled tests to identify defective
items in a population [1]. Compared with testing the items
individually, group testing approaches can provide substantial
savings in the number of tests for isolating the defective items.
For instance, using a non-adaptive group testing framework,
klog  tests are sufficient to isolate k defectives from p items
under a vanishing error criterion [2]. Due to their scalability
and significant savings in cost and latency, group testing algo-
rithms have been studied in a wide range of domains, includ-
ing healthcare [3], sensor fault diagnosis [4—6], and recently,
for rapid and scalable testing procedures for COVID-19 [7].

In conventional group testing approaches, selecting the
items to be pooled for a test is unrestricted. However, in prac-
tice, such a selection can face constraints imposed by inher-
ent context-dependent relationships, rendering restrictions on
pooling. A graphical model can be used to model the underly-
ing relationships and properly capture the context-dependent
restrictions or preferences in pooling. For instance, in the
context of infection spread in a population, it may be pre-
ferred to pool samples from members known to have more
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frequent inter-personal interactions (such as family members
and co-workers) over pooling arbitrarily [8]. A different rele-
vant application of graph-constrained group testing is in net-
work tomography, where the patterns of data traffic conform
to the network connectivity, rendering constraints on pool-
ing and are used to isolate congestion in the network [9]. In
such settings, the constraints on pooling can be represented
by graphical models [10].

A group testing algorithm’s performance is characterized
by the number of pooled tests sufficient for correctly isolat-
ing the defective items [2, 11]. When the design and out-
come of a test is informed by the outcomes of previously con-
ducted tests, the group testing framework is adaptive [12],
and otherwise, it is non-adaptive [13]. In addition to the
fully adaptive and non-adaptive frameworks, multi-stage test-
ing frameworks incorporate limited adaptivity in group test-
ing. In such frameworks, the tests are carried out in multiple
stages. In each stage, the tests are non-adaptive, while each
stage’s outcome informs the design of the subsequent ones,
rendering adaptivity across the stages. Such limited adaptiv-
ity can translate into significant gains over non-adaptive group
testing [14—16]. An example of a multi-stage approach is a
simple two-stage approach, in which the first stage is non-
adaptive and the second stage depends on the first stage’s out-
come and consists of testing items isolated in the first stage
individually [14, 15]. The interplay between the number of
stages and the number of tests is investigated in [17] for two-,
three-, and four-stage procedures. Besides adaptivity, group
testing frameworks can also be broadly categorized as noise-
less [11] and noisy [13]. In the noisy settings, tests can have
erroneous outcomes.

In this paper, we formalize a two-stage graph-constrained
group testing framework for isolating %k defectives from a
population of p items. Similar to the single-stage approach
of [10], our design relies on a random walk for pooling,
with the distinction that we use a more general random walk
instead of the uniform random walk of [10]. Our analysis
reveals that with M as the random walk’s mixing time, we
can isolate up to k defective objects with ©(kM?log(p/k))
tests under the zero-error criterion. This indicates a factor
of k£ improvement over the existing one-stage, non-adaptive,
graph-constrained group testing framework [10]. Further-
more, our results show that the number of tests with two-stage
group testing is approximately linear in k, which is the op-
timal scaling rate [1]. As an application, we also investigate
applying our framework to anomaly detection in networks.

Anomaly detection is a widely studied problem of interest
in networks [18, 19] and we also illustrate the application of
our two-stage group testing framework to network anomaly
detection. Group testing approaches for detecting anomalous
sensors are investigated in [4,5,20]. In [4], a sensor net-
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work for a dynamic linear system is considered, and heuristic
tests for detecting different faults in an arbitrary group of sen-
sors are characterized. Algorithms based on using broadcast
queries to detect dead sensors in a network are studied in [5].
In [20], a distributed group testing framework is designed for
leveraging an unspecified similarity criterion to detect anoma-
lies based on the similarity between the measurements col-
lected by neighboring vertices. In this paper, we apply the
theoretical results to an anomaly detection case study.

2. NETWORK MODEL

Consider a network represented by a weighted, undi-
rected, and connected graph G £ (V,E), where V £
{1,...,p} is the set of vertices and F is the set of edges.
We assume that the graph is d-regular, that is, all its vertices
have degree d. We use the notation (u,v) € E to denote the
edge connecting vertices u and v, and denote the neighbors
of u € V by N,. The weight associated with edge (u,v) is
denoted by w,, € R,. In practice, the weight w,, reflects
the attributes that define the relationship between vertices
u and v, e.g., proximity in wireless sensor networks or the
likelihood of interaction between two human subjects in an
epidemiological context. When (u,v) & E, we set w,,, = 0.
The network, however, can contain up to k defective vertices.
We denote the set of defective vertices by F.

3. TWO-STAGE GROUP TESTING FRAMEWORK

Our goal is to characterize a graph-constrained two-stage
testing framework that enables isolating the defective vertices
F. Our framework builds on the two-stage framework in [14]
by including graphical constraint on pooling.

Stage 1. In the first stage, we conduct m tests in parallel,
such that in each test, up to ¢ vertices are tested. A ran-
dom walk determines the pool of vertices to be tested over
the graph, and the test outcome is a binary decision deter-
mining whether the pool contains a defective vertex or not.
By leveraging the outcomes of the m tests performed in this
stage, the objective is to identify 2k vertices such that they
form a superset of F.

Stage 2. In the second stage, we individually test the 2k iso-
lated vertices to identify the set JF.

Therefore, the number of tests for localizing the defective ver-
tices is

mEm+2%k. 6))

The group testing framework’s efficiency in terms of the num-
ber of tests to be conducted hinges on the number of pooled
tests in the first stage, i.e., m. In order to keep m small, as our
analysis will show, the set of m random walks should collec-
tively reach all parts of the graph reasonably fast. Next, we
provide the key definitions and principles that characterize the
random walk mechanism.

3.1. Test Structure

We start by formalizing a generic random walk process
over the graph that furnishes the definitions and notations
used in the analysis of group testing mechanism.

3.1.1. Random Walk Design

The set of vertices to be sampled in any pooled test in the
first stage is determined by the vertices visited by a random
walk of length /. The origin of the random walk is selected
uniformly at random. Any vertex may be visited more than
once during a random walk, and the random walks of differ-
ent tests are allowed to cross paths. We define ® asap x p
transition matrix that models a sequential random walk on G.
The value of ® at coordinate (4, j), denoted by [®];;, is given
by [®];; = ¢ij, Where ¢;; is the probability that the random
walk transitions from the current vertex ¢ to vertex j, when
(i,7) € E. We also define

A A .
= max ¢;; n = min ¢;;, R
(bmax (Z7J)EE ¢’L]7 ¢mll’l (Z.])€E¢74]7

A (bmax
= .2
¢min ( )

Finally, we assume that the random walk is positive recur-

rent and can be initialized randomly. Define v £ [vy, ..., 1]
as the stationary probability distribution of the random walk
where v; is the probability that the random walk is at vertex
¢ € V when initialized according to the stationary distribu-

tion. We also define \ £ mingey v,. The mixing time M
quantifies the length of time after which the distribution of
the vertices visited by any random walk on G becomes point-
wise close to the stationary distribution v, and it is formally
defined in Definition 1.

Definition 1 (S-mixing time). Consider a random walk W
that starts at vertex u € V and terminates at time T € N. The
distribution of the terminating vertex is given by v,,. Then,
the B-mixing time M is the smallest integer t, such that for
all T > t we have

Vg =Vl <8 3)

The set of vertices visited by m random walks can be formal-
ized by a Boolean test matrix defined as follows.

Definition 2 (Test matrix). For performing m pooled tests on
a graph with p vertices, we define T as a binary matrix of
dimension m X p whose elements are set according to:

if vertex v is included in test ¢
otherwise ’

“)
Clearly, the non-zero elements in a row ¢ of T represent the
set of vertices pooled in test t. We define V; C V as the set
of vertices sampled during test ¢ and V; constitutes an edge-
bounded and connected subgraph of G, in which |V;| < £
We can isolate the set of 2k vertices for individual testing in
the second stage if the test matrix 7" satisfies certain proper-
ties [14].

3.1.2. Test Matrix Construction

We aim to assess the number of independent tests m such
that 7' satisfies the required properties that are essential for
successfully isolating F in a two-stage testing framework.
The following definition is instrumental for characterizing the
successful isolation of defective vertices.

5495

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on September 12,2022 at 22:45:03 UTC from IEEE Xplore. Restrictions apply.



Definition 3. A Boolean matrix T of size m X pis an (a, b, p)-
selector matrix for integers 1 < b < a < p if any submatrix
of T obtained by choosing a out of p arbitrary columns of T
contains at least b distinct rows of the identity matrix 1,.

We note that for the two-stage group testing framework,
the condition on T being a (2k, k + 1, p)-selector matrix is
sufficient to isolate F perfectly [14]. Existing studies on
graph-constrained group testing that use a random walk de-
sign, leverage the fact that matrix 7' being k-disjunct is a
sufficient condition for isolating up to k defectives using one-
stage, non-adaptive group testing [21]. In this context, we
remark that a (k + 1,k + 1, p)-selector matrix is equivalent
to a k-disjunct matrix [22].

3.1.3. Decision Rules

Fort € {1,...,m}, the outcome of test ¢ is binary and it
flags the set V; as anomalous if it contains at least one defec-
tive vertex. The outputs of the tests are formalized as follows.

Definition 4 (Decision rules). Testt € {1,...,m} pools the
measurements from the vertices in Vi, and forms a binary de-
cision, denoted by A\, according to

{1 if the test decides F NV # ¢
Ay = 0

if the test decides F NV = ¢ ~
Accordingly, we also define A £ [Aq,...
cision vector.

)
;AT as the de-

In this paper, we focus on noiseless group testing where the
defective vertices can be isolated correctly when the decisions
in A are error-free. The performance of a pooled test is quan-
tified by the probability that the outcome A, is erroneous. For
this purpose, we define N (A) as the number of erroneous de-
cisions in A. The likelihood of incorrect outcomes in A is
context-dependent and we will specify the structure of pooled
tests for anomaly detection in Section 4. Therefore, in gen-
eral, the accuracy of the group testing design is assessed by
the likelihood that m random walks render a test matrix 7'
that is a selector matrix with appropriate parameters and the
sample complexity of pooled tests.

3.2. Two-stage Group Testing Algorithm

The two stages of group testing for successful isolation of
defective vertices are described below.

Stage 1. We conduct m parallel pooled tests that are encoded
by a test matrix 7. If T is a (2k, k + 1, p)-selector matrix, the
outcomes of the tests and 7" are jointly decoded to identify a
superset of F that consists of 2k vertices.

Stage 2. Each of the 2k selected vertices are tested individu-
ally, leading to the identification of defective vertices F.

The efficiency of the framework is primarily determined by
Stage 1, i.e., the number of tests, m, for selector matrix con-
struction, and the number of samples, n, for error-free out-
comes in A with a high likelihood. These aspects are repre-
sented compactly by a binary random variable P defined as

D2 1 Tis(2k,k+ 1,p)-selector & N(A) =0
- 0 otherwise

Therefore, the objective is to appropriately select m and n,
such that, we have P(P = 1) > 1 — ¢ for some € € [0,1/2).
Next, we provide the conditions on the test matrix design
and m that enable 7" to be a selector matrix. Subsequently,
we also compare the total number of tests m with the known
information-theoretic lower bound to evaluate the perfor-
mance of the two-stage framework.

Theorem 1 (Selector Matrix). When the mixing time constant
B for M is set as = %, and if the parameters satisfy

=0 () m-0(:2).

1
d=Q(kM’R), m=0 <M2 (k‘logz + log )) ,
€
then T is a (2k, k + 1, p)-selector matrix with a probability of
atleast 1 — e > 0.

From Theorem 1, we note that the number of tests, m, for
constructing the selector matrix with high probability scales
as O(kM? log(p/k)). Therefore, the total number of tests 7
scales as ©(kM?1log(p/k) + k), which is smaller than that
for one-stage group testing in [10] (approximately) by a fac-
tor k. We also note that m has quadratic dependence on the
mixing time M of the random walk, which can be the dom-
inating factor if the graph is loosely-connected. Therefore, a
desirable property for the graph-constrained random walk is
being able to rapidly mix (i.e., M being logarithmic in p) to
avoid bottlenecks in the coverage of vertices [23]. We also re-
mark that for a fully connected network (M=1), the number
of tests m achieve the information-theoretic lower bound of
klog p/k in the asymptote of large p [1].

4. APPLICATION: ANOMALY DETECTION

In this section, we discuss the application of the group
testing framework in Section 3 to anomaly detection. For this
purpose, we start by formalizing the data model. We assume
that each vertex is equipped with a sensing unit and formally,
a vertex u collects a set of n identically distributed measure-
ments denoted by Y £ [Y,l,... Y"]. When a subset of
vertices U C V are selected to be pooled, we denote the set
of measurements collected by Y (U, n). When the set U does
not contain any defective items, we denote the joint pdf of
Y (U, n) by f&. If vertex u is affected, the distribution of Y,?
alters to an alternative distribution. If the set of vertices U
contains at least one defective vertex, we denote the distribu-
tion of the set of measurements Y (U, n) by ¢g7'. Finally, we
define €;; as the prior likelihood that the set of vertices U con-
sists of at least one defective vertex. Furthermore, we assume
that the pdfs f7; and gf; belong to the same location-scale
family with equal scaling parameter and infinite support [24].
We next provide the definitions and notations to characterize
the performance of a pooled test.

Pooled Test Structure: Note that the rule A; conforms to the
rule for the following hypothesis test:

HY = Y(Vi,n) ~ f3, ©
Hi Y (Vi,n) ~ gt

'In practice, the distribution g{; is a mixture of pdfs corresponding to
different realizations of defective vertices in set U.
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To formalize the likelihood of erroneous decisions, we de-
note the true hypothesis by T € {H? H!}, and the deci-
sion by D € {H?,H}}. We also define the decision vec-
tor 86;(Y (Vz,m)) = [69(Y (Vi,n)), 6} (Y (Vz,n))] for the test
conducted on the set of vertices V; with n measurements per
vertex, where 0; (Y (Vi,n)) 2 Ly (v, n)p=ni}- We define
Pe(d:) as the aggregate probability of making an incorrect
decision on the true model of Y (V, n), i.e.,

Pe(d:) = P(T = H})P(D = H; | T = HY)
+P(T=H)P(D=HY | T=H]). (7)

Accordingly, we denote the associated error exponent as the
number of samples 7 grows by ¥ (8;) 2 — lim,, 00 %

We also define ¥ as the minimum error exponent among the

error exponents of the m tests in test matrix 7, i.e.,

¥(T)£ min }z/ft(ét) : (8)

te{l,...,m

Performance Guarantees: The following theorem specifies
the decision rule that minimizes P(d;), its corresponding er-
ror exponent, and the sufficient number of samples n to en-
sure N(A) = 0 with high likelihood. For this purpose, we
denote the Chernoff information between two pdfs f and g by

C(f.g) = minge(o,1) [ [ (x)g' () d.

Theorem 2. The decision rule &, that minimizes P¢(d;) for a
pooled test on a set of vertices V; is the maximum-a-posteriori
(MAP) rule, and it is given by

_ 1 gy, (Y (Vi,n)) ev,
(Y (Viyn)) = ¥, (Y (Ve,n)) I—ev, . (9)
0 otherwise

The error exponent for 8y is given by ¥1(8;) = C(fy}, gy, )-
Furthermore, for € € (0,1/2), we have P(N(A) > 0) < ¢
when

1 m
n:Q<\II(T) 10g6> , (10)

where m is determined according to Theorem 1.

The proof of 1;(8;) follows from the Chernoff-Stein Lemma
for binary Bayesian hypothesis testing [25]. Therefore, the
number of pooled tests, m, determined from Theorem 1 and
number of samples, n, from Theorem 2 ensure the success
of two-stage group testing framework for anomaly detection
with high likelihood.

5. NUMERICAL RESULTS

We randomly generate testing matrices according to the
conditions in Theorem 1 and evaluate the empirical likelihood
of the testing matrix being a (2k, k+1, p)-selector matrix. For
comparison with the one-stage framework, we perform simi-
lar experiments for a (k + 1,k + 1, p)-selector matrix. Fig-
ures 1 and 2 plot the success rate of forming a (2k, k + 1, p)-
selector matrix and a (k + 1,k + 1, p)-selector matrix, re-
spectively, over 1000 random realizations. For our results,

i
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Fig. 1. Empirical likelihood of forming a (2k,k + 1,p)-
selector matrix versus the length of random walk.

«”

Success rate

T2 4 6 8 10
Length of random walk

Fig. 2. Empirical likelihood of forming a (k + 1,k + 1, p)-
selector matrix versus the length of random walk.

we set p = 100, k = 2, d = 40. We notice that in both
cases, the likelihood of forming the test matrix with the de-
sired properties increases up to a certain length followed by a
sharp decline for (2k, k + 1, p)-selector matrix as the length
is further increased, whereas, (k+ 1, k + 1, p)-selector matrix
construction is comparatively more robust to variation in the
length of the random walk. This indicates that there is an up-
per limit on ¢ beyond which the likelihood of successful selec-
tor matrix construction diminishes, which is consistent with
the implications of Theorem 1 Comparing Figures 1 and 2
reveals that constructing a (k + 1,k + 1, p)-selector matrix
requires a substantially larger number of tests compared with
a (2k, k + 1, p)-selector matrix to achieve a similar success
rate. This observation illustrates the gain offered by adopting
a two-stage approach over a one-stage approach.

6. CONCLUSIONS

We have formalized a two-stage adaptive approach for
graph-constrained group testing. Motivated by practical sce-
narios, the test design has been characterized by constraints
imposed by a graphical model. Asymptotically optimal suf-
ficient conditions on the design parameters have been estab-
lished. The main observation is that introducing limited adap-
tivity improves the number of tests by a factor k, that is, the
upper bound on the number of defective items that we aim
to isolate. We have also investigated the application of this
group-testing framework to anomaly detection over networks
and have characterized the optimal pooled test and its sample
complexity.
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