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ABSTRACT

The paper considers the problem of estimating a covariate pa-
rameter shared by multiple statistical models. Under the ob-
jective of estimating the parameter with target reliability with
the fewest number of samples from these models, a funda-
mental question is how to glean samples from the statistical
models. This question is especially important when the mod-
els are not equally descriptive or informative about the pa-
rameter, each being the most informative only for a specific
regime of the parameter. This paper provides 1) an active
sampling framework that specifies how the samples should be
collected from different models over time in a data-adaptive
fashion; 2) a stopping criterion specifying when the collected
data is informative enough to form a reliable estimate for the
covariate parameter; and 3) a terminal estimation rule. These
rules, collectively, are shown to admit certain optimality guar-
antees. Numerical evaluations are provided to compare the
performance with relevant existing approaches.

Index Terms— Active sampling, sequential estimation.

1. INTRODUCTION

Consider the canonical estimation problem in which a covari-
ate parameter § € © is embedded in two data streams with
probability measures Py (- | 6) and Py(- | 6). Assume that we
have the freedom to collect data from any of these two mod-
els in order to estimate €. A fundamental question pertains to
which of the two data streams should we sample from in or-
der to form a sufficiently reliable estimate of 6 with the fewest
number of samples possible. If one can determine, a priori,
that one of the two distributions is expected to be more infor-
mative for the entire range of 6, then the decision is trivial:
always sample from that distribution. In general, however, it
is often the case that each model is a more reliable model for
a particular regime of . For instance, consider

for 6 € (0,1). It can be readily verified that when 6 €
(0,1/2), model P; is a more reliable source of estimating 6,
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and when 6 € (1/2,1), model P5 is more reliable. In such
circumstances, pre-selecting and exclusively sampling from
one of the two sequences is strongly sub-optimal, and one
needs to design a mechanism that can dynamically switch be-
tween the two streams. In this paper we consider a general
setting in which we have K models and design a sequential
and data-adaptive mechanism for actively selecting the infor-
mation sources over time such that an overall notion of opti-
mality is ensured.

Designing such a mechanism involves co-designing the
sampling and estimation processes. A closely related ap-
proach to designing such coupled sampling and decision-
making process is controlled (active) sensing, originally de-
veloped by Chernoff for binary composite hypothesis testing
through incorporating a controlled information gathering
process that dynamically decides about taking one of a fi-
nite number of possible actions at each time [1]. Under the
assumption of uniformly distinguishable hypotheses and hav-
ing independent control actions, Chernoff’s rule decides in
favor of the action with the best immediate return according
to proper information measures and achieves optimal perfor-
mance in the asymptote of a diminishing rate of erroneous
decisions. Chernoft’s rule, specifically, at each time, identi-
fies the most likely decision based on the collected data and
takes the action that reinforces the decision. Extensions of
the Chernoff’s rule to various settings are studied in [2-5] in-
cluding the more recent studies that are relevant to the scope
of this paper in [6—16].

Unlike the rather extensive literature on active sampling
design mechanisms for detection and classification problems,
those for parameter estimation is far less investigated. The
existing studies relevant to the scope of this paper include
[17-20]. Specifically, [17] assigns a fixed sampling cost
for collecting each measurement. It models the trade-off
between collecting more measurements to improve the esti-
mation fidelity, and stopping the sampling process to increase
the agility using a cost function that linearly aggregates the
costs associated with sampling and estimation. An asymp-
totically optimal sequential procedure is then prescribed for
minimizing the unified cost function. This work was later
generalized to the setting of multiple controls in [18], where
each control depends on a control-specific parameter which
was assumed to be different for every control. This frame-
work was further extended to the case of models sharing a
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common unknown parameter in [19]. The models investi-
gated in [17-19] optimize a cost function (linear combination
of delay and estimation costs) that cannot provide an explicit
guarantee on the estimation quality. To address this with
an explicit emphasis on the estimation cost, a more natural
formulation has been considered in [20], where the aim is to
reduce the average sample complexity, such that the estima-
tion cost falls below a pre-prescribed threshold. However,
the setting in [20] considers only one data stream, in which
the notion of actively sampling the information sources is
not relevant. Our contribution is a generalization of [20] for
multiple information streams, with the emphasis on designing
an active sampling procedure.

2. ACTIVE SAMPLING FOR ESTIMATION

2.1. Data Model

Consider K information sources {51, ..., Sk}. Source S;,
fori € [K] = {1,---, K} generates a time series consisting
of independent and identically distributed (i.i.d.) random vari-
ables denoted by X% 2 {X/ : t € N}. The samples in X*
are generated according to a statistical model with the proba-
bility density function (pdf) f;(- | ), where § € © C R™ is
an unknown parameter and © is a compact set.

In this paper we consider the canonical Bayesian pa-
rameter estimation problem, in which the objective is to
form a reliable estimate for 6 by collecting samples from
{x1, ..., XK} We denote the prior pdf of 6 by 7. To cap-
ture the fidelity of an estimate U, we adopt the quadratic
estimation cost function denoted by £(0,U) = ||U — 0]3.

2.2. Active Sampling

We consider a fully sequential data-acquisition mechanism,
according to which we select one source at-a-time to collect
a sample from. The objective is to identify an optimal se-
quence of source selections, such that with the fewest number
of samples, on an average, we can form a sufficiently accurate
estimate for 6. It is imperative to note that different sources
have potentially distinct statistical models, rendering differ-
ent estimation qualities. In general, we will not have a source
whose estimation quality will be dominantly stronger than all
other sources for the entire range of #. If that happens, e.g.,
source S; offers the most reliable model for estimating 6 for
all possible values of 6, then a trivial sampling decision is
to collect all the samples from S;. Otherwise, an effective
sampling strategy should be able to explore different sources
in order to converge to and sample from the sources that are
deemed the stronger sources.

Based on this pivotal premise, the key question is what
order of sampling results in forming a reliable estimate with
the fewest number of samples. To formalize this, we con-
sider the following general sampling model that dynamically
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selects the sources over time. Samples are collected sequen-
tially, such that at any time ¢ and based on the information
accumulated up to that time, the sampling procedure takes
one of the following actions:

A1) Exploration: Due to lack of sufficient confidence,
forming an estimate is deferred, and one more sample
is taken.

As) Stopping: Data collection-acquisition is terminated, in-
dicating that there is sufficient data to form a reliable
estimate for 6.

As) Estimation: After stopping, an estimate is formed.

This process can be expressed uniquely by the data-adaptive
rule for selecting sources over time, a stopping rule, and a fi-
nal detection decision rule. To formalize the exploration pro-
cess, define ¢p : N — [K], where () returns the index of
the source to be selected at time ¢. We also denote the sample
collected from sensor Sy, ;) by Y;. Accordingly, we define

Yt £ (Yla"' 7th)v and W £ (1/}(1)’ ’w(t)) (2)

The information accumulated generates a o-algebra denoted
by {F; : t € N} where F; = o(Y* ?!). We define
N € N as the stopping time of the sampling process that
is JFi-measurable. Finally, we define ét as the estimate
of 6 at time t. Based on these decision rules, we define
A2 (N RULR 6 N) to specify the sampling strategy and the
decisions involved.

2.3. Formulation

The two key figures of merit involved are the average sam-
pling complexity N and the quality of the estimate. There
exists an inherent tension between these two, as improving
one penalizes the other one. In this subsection, we provide
a formulation that explicitly captures this dichotomy and re-
solves the tension between them in a natural way. To proceed,
we note that it can be readily verified that the posterior distri-
bution of # at time ¢ is given by

m(0)
ﬂt(e) = i

fea®

Based on this, for any given ¢, we define the average posterior
cost function as

fw(i)(l"i \ 9)

.::# ﬁzﬁ

3)

Jo@y (i [v) dv

i=1

C, | Fr) 2 Ee[0(6:,0) ] F] 4)

where E; denotes expectations with respect to 7;. Based on
these, we aim to find a sampling strategy A that minimizes [V,
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such that the estimation cost does not exceed a pre-specified
threshold 3 > 0, i.e.,

P(g) & mAin E[N] s
8) = st. Cly | Fy)<B ©)

In order to compare the performance of any strategy A, we
consider a Bayesian counterpart of P(3). For this purpose
the delay and estimation costs are integrated into a unified
cost function denoted by

J(A| Fn) £ E[N]+c5-ClOn | Fn) . (6)
It can be readily verified that for any 3, there exists the con-
stant cg such that a solution to (5) can be found by equiv-
alently solving mina J(A | Fu). By leveraging this re-
lationship, we use the notion of weak-asymptotic pointwise
optimality (w-APQO), which was first introduced in [17], for
assessing the relative efficiency of any solution A.

Definition 2.0. A sequential procedure A is called w-APO if
for any other A, and for any e > 0 we have

J(A | Fn)
P{Mgl‘i’E}‘)l, as Cﬁ‘)OO. (7)

3. COST-AWARE ACTIVE ESTIMATION

In this section, we formalize a cost-aware active estima-
tion (CAE) framework for active sampling and estimation.
To specify different decision rules, we define \;(z | §) =
log fi(x | @) as the log-likelihood associated with the
distribution of source S; for i € [K]. We assume that
E;[[Ai(z | )]] < +oc for all # € O. Furthermore, we
assume that )\ (z | 0) is twice differentiable everywhere in 6
such that -2 502 " \i (x™; 0) exists and is bounded. Accordingly,
we denote the Fisher information (FI) associated with source
Si by

7,0) 2 —E {62

S i0)] ®)

Finally, we assume that the likelihood functions under two
sufficiently distinguishable parameters € and ¢ are also dis-
tinguishable, that is,

Eq[sup{Xi(z;0) — Ni(z;9) : |0 =9 > e}] < 0. (9

3.1. Decision Rules

Estimator. We start by fixing the stopping time N and
the sampling sequence /. We first specify an estimator
that minimizes the average posterior estimation cost func-
tion C(y | Fy) for any given N and ¢/"V. Assuming that

E[N] < 400 we can write

Clln | Fn) = lzf On,0 Myn=t} |]:t‘| (10)
t=0

-2 E [60x.0) | P 1y (D)

me]Et[ (b, )|]—“t} Ty - (12)

=0

Note that the indicator function 1y—; can be factored out
since it is Fz-measurable. The optimum Bayes estimator sat-
isfies

ét = argigf]Ef |: (9,‘, ) |.Ff:| 5 (13)

and under the mean-square error (MSE) criterion it is well-
known that the optimum Bayesian estimator is
v = E0] F] (14)

Hence, by denoting the conditional average cost by C, £
E: [0(v4,0) | Ft], from (10)-(12) we have

Cln | Fn) > thn{N:t} =Cy.
t=0

15)

Hence, for any arbitrary stopping time N, if we apply the
optimum Bayes estimator at the stopping time, the conditional
expected cost C(Ay | F) matches the lower bound C. We
adopt the Bayes estimator in (14) as our estimator.

Active Sampling Rule. The source selection and sampling
rule follows Chernoff’s principle for sequential design of
experiments for binary composite hypothesis testing through
incorporating a controlled information gathering process that
dynamically decides about taking one of a finite number of
possible actions at each time [1]. Under the assumption of
uniformly distinguishable hypotheses and having indepen-
dent control actions, Chernoff’s rule decides in favor of the
action with the best immediate return according to proper
information measures and achieves optimal performance in
the asymptote of a diminishing rate of erroneous decisions.
Chernoft’s rule, specifically, at each time, identifies the most
likely decision on the collected data and takes the action that
reinforces the decision.

In the context of the estimation problem considered in this
paper, at each time-step ¢ € N, we wish to identify the most
informative source that is expected to reduce the estimation
costs by the largest margin. As a relevant measure for com-
paring the informativeness of different sources, we adopt the
FI measure. More specifically, at any given instant ¢ € N,
based on v;_; as the the most updated estimate of 6 given
Fi—1, we select the source with the highest FI measure, i.e.,
we select source

P(t) = argmax Z;(v4—1) ,
ie[K)

(16)
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and any tie is resolved by tossing a fair coin.

Stopping Rule. Finally, given the estimators and the sam-
pling rules, we specify the stopping rule. This rule is di-
rectly driven by the decision quality constraint specified in
the formulation of problem P(3) in (5). Specifically, based
on P(B), we are interested in minimizing the number of sam-
ples such that the average posterior estimation cost falls below
the target level. Based on this, we set the stopping time as the
first time that the cost C(0 | Fy) falls below £, i.e.,

N 2 inf {neN: Clly|Fn) < B}. (7

3.2. Performance Guarantee

Next, we show that the combination of the decision rules
specified in the previous subsection, collectively, admit
w-APO optimality, formalized in the following theorem.

Theorem 3.1. The combination of the estimator in (14), ac-
tive sampling rule in (16), and the stopping rule in (17), is
w-APO.

It is noteworthy that although this theorem is showing asymp-
totic optimality, in certain regimes the specific rules admit
stronger optimality properties. For instance, in the special
case of K = 1, i.e., only one information source, our frame-
work and proposed algorithm reduces to that of [20], in which
case stronger optimality properties are established.

4. NUMERICAL EXPERIMENT

A simple setup consisting of two sensors is considered. Each
sensor generates i.i.d. random measurements according to ex-
ponential and Erlang-2 models:

Sensor1: X |6 ~

X0 ~

exp(z | 0), (18)
Sensor 2 : Erlang(x;2160) .  (19)
The prior distribution of 6 is also exponential with parameter
a. Subsequently, the posterior distribution of # at time ¢ is
Gamma(0, 2t — v; + 1, y¢), where we have defined

t t
Y =a+ sz‘ , and = Z Leyy=1y - (20)
=1

i=1

~¢ counts the number of times that the sampling action selects

sensor S;. The MMSE estimate and the associated average

posterior cost function are given by
A 27l — Yt —+ 1

A 2t — 1
0p=—— and C(0; | F) = #
Yt Yi

.21

Figure 1 shows the variations of the average sample com-
plexity E[N] versus the estimation cost constraint 3 for the
choices of 8 = 0.5 and ¢ = 2. This figure compares the
performance of three approaches to sensor selection:
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Fig. 1. Average sample complexity versus varying levels of
prescribed tolerance 3

1. The baseline model is a random selection of the sen-
sors, according to which at each time one of the sensors
is selected with probability 3 for sampling.

2. The performance of the approach of [19]. This ap-
proach involves a tuning parameter c the controls the
tradeoff between average delay and estimation perfor-
mance and does not have an explicit performance guar-
antee on the estimation quality (a counterpart of 5 in
our model). In order to facilitate comparisons, for any
given (3, we determine what choices of ¢ yields an es-
timation cost 5 for [19], and use that to generate the
E[N] versus S curve.

3. Finally, we plot the curve of the active estimation ap-
proach of this paper.

As the comparisons show, our proposed approach yields a
(considerable) performance improvement for the smaller val-
ues of 3, which is the more important regime accounting for
high-accuracy estimation. As (3 increases, expectedly, the gap
among the three methods diminishes.

5. CONCLUSION

In this paper, we have investigated an active estimation frame-
work for estimating a covariate parameter shared by multi-
ple statistical models. This framework provides a co-design
for actively sampling the models over time and estimating
the covariate parameter. The main observation is that when
collecting the samples sequentially over time, a combination
of forming a maximum likelihood estimate of the covariate
parameter and subsequently selecting the model that has the
largest Fisher information measure associated with the esti-
mate renders an asymptotically optimal rule. The stopping
rule of this framework consist of comparing the posterior av-
erage estimation cost with a pre-specified threshold that con-
trols the estimation fidelity.
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