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ABSTRACT

The paper considers the problem of estimating a covariate pa-

rameter shared by multiple statistical models. Under the ob-

jective of estimating the parameter with target reliability with

the fewest number of samples from these models, a funda-

mental question is how to glean samples from the statistical

models. This question is especially important when the mod-

els are not equally descriptive or informative about the pa-

rameter, each being the most informative only for a specific

regime of the parameter. This paper provides 1) an active

sampling framework that specifies how the samples should be

collected from different models over time in a data-adaptive

fashion; 2) a stopping criterion specifying when the collected

data is informative enough to form a reliable estimate for the

covariate parameter; and 3) a terminal estimation rule. These

rules, collectively, are shown to admit certain optimality guar-

antees. Numerical evaluations are provided to compare the

performance with relevant existing approaches.

Index Terms— Active sampling, sequential estimation.

1. INTRODUCTION

Consider the canonical estimation problem in which a covari-

ate parameter θ ∈ Θ is embedded in two data streams with

probability measures P1(· | θ) and P2(· | θ). Assume that we

have the freedom to collect data from any of these two mod-

els in order to estimate θ. A fundamental question pertains to

which of the two data streams should we sample from in or-

der to form a sufficiently reliable estimate of θ with the fewest

number of samples possible. If one can determine, a priori,

that one of the two distributions is expected to be more infor-

mative for the entire range of θ, then the decision is trivial:

always sample from that distribution. In general, however, it

is often the case that each model is a more reliable model for

a particular regime of θ. For instance, consider

P1(· | θ) ∼ N (0, θ) and P2(· | θ) ∼ N (0, 1− θ) , (1)

for θ ∈ (0, 1). It can be readily verified that when θ ∈
(0, 1/2), model P1 is a more reliable source of estimating θ,
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and when θ ∈ (1/2, 1), model P2 is more reliable. In such

circumstances, pre-selecting and exclusively sampling from

one of the two sequences is strongly sub-optimal, and one

needs to design a mechanism that can dynamically switch be-

tween the two streams. In this paper we consider a general

setting in which we have K models and design a sequential

and data-adaptive mechanism for actively selecting the infor-

mation sources over time such that an overall notion of opti-

mality is ensured.

Designing such a mechanism involves co-designing the

sampling and estimation processes. A closely related ap-

proach to designing such coupled sampling and decision-

making process is controlled (active) sensing, originally de-

veloped by Chernoff for binary composite hypothesis testing

through incorporating a controlled information gathering

process that dynamically decides about taking one of a fi-

nite number of possible actions at each time [1]. Under the

assumption of uniformly distinguishable hypotheses and hav-

ing independent control actions, Chernoff’s rule decides in

favor of the action with the best immediate return according

to proper information measures and achieves optimal perfor-

mance in the asymptote of a diminishing rate of erroneous

decisions. Chernoff’s rule, specifically, at each time, identi-

fies the most likely decision based on the collected data and

takes the action that reinforces the decision. Extensions of

the Chernoff’s rule to various settings are studied in [2–5] in-

cluding the more recent studies that are relevant to the scope

of this paper in [6–16].

Unlike the rather extensive literature on active sampling

design mechanisms for detection and classification problems,

those for parameter estimation is far less investigated. The

existing studies relevant to the scope of this paper include

[17–20]. Specifically, [17] assigns a fixed sampling cost

for collecting each measurement. It models the trade-off

between collecting more measurements to improve the esti-

mation fidelity, and stopping the sampling process to increase

the agility using a cost function that linearly aggregates the

costs associated with sampling and estimation. An asymp-

totically optimal sequential procedure is then prescribed for

minimizing the unified cost function. This work was later

generalized to the setting of multiple controls in [18], where

each control depends on a control-specific parameter which

was assumed to be different for every control. This frame-

work was further extended to the case of models sharing a
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common unknown parameter in [19]. The models investi-

gated in [17–19] optimize a cost function (linear combination

of delay and estimation costs) that cannot provide an explicit

guarantee on the estimation quality. To address this with

an explicit emphasis on the estimation cost, a more natural

formulation has been considered in [20], where the aim is to

reduce the average sample complexity, such that the estima-

tion cost falls below a pre-prescribed threshold. However,

the setting in [20] considers only one data stream, in which

the notion of actively sampling the information sources is

not relevant. Our contribution is a generalization of [20] for

multiple information streams, with the emphasis on designing

an active sampling procedure.

2. ACTIVE SAMPLING FOR ESTIMATION

2.1. Data Model

Consider K information sources {S1, . . . , SK}. Source Si,
for i ∈ [K] , {1, · · · ,K} generates a time series consisting

of independent and identically distributed (i.i.d.) random vari-

ables denoted by X i , {Xi
t : t ∈ N}. The samples in X i

are generated according to a statistical model with the proba-

bility density function (pdf) fi(· | θ), where θ ∈ Θ ⊆ R
m is

an unknown parameter and Θ is a compact set.

In this paper we consider the canonical Bayesian pa-

rameter estimation problem, in which the objective is to

form a reliable estimate for θ by collecting samples from

{X 1, . . . ,XK}. We denote the prior pdf of θ by π. To cap-

ture the fidelity of an estimate U , we adopt the quadratic

estimation cost function denoted by ℓ(θ, U) = ‖U − θ‖22.

2.2. Active Sampling

We consider a fully sequential data-acquisition mechanism,

according to which we select one source at-a-time to collect

a sample from. The objective is to identify an optimal se-

quence of source selections, such that with the fewest number

of samples, on an average, we can form a sufficiently accurate

estimate for θ. It is imperative to note that different sources

have potentially distinct statistical models, rendering differ-

ent estimation qualities. In general, we will not have a source

whose estimation quality will be dominantly stronger than all

other sources for the entire range of θ. If that happens, e.g.,

source S1 offers the most reliable model for estimating θ for

all possible values of θ, then a trivial sampling decision is

to collect all the samples from S1. Otherwise, an effective

sampling strategy should be able to explore different sources

in order to converge to and sample from the sources that are

deemed the stronger sources.

Based on this pivotal premise, the key question is what

order of sampling results in forming a reliable estimate with

the fewest number of samples. To formalize this, we con-

sider the following general sampling model that dynamically

selects the sources over time. Samples are collected sequen-

tially, such that at any time t and based on the information

accumulated up to that time, the sampling procedure takes

one of the following actions:

A1) Exploration: Due to lack of sufficient confidence,

forming an estimate is deferred, and one more sample

is taken.

A2) Stopping: Data collection-acquisition is terminated, in-

dicating that there is sufficient data to form a reliable

estimate for θ.

A3) Estimation: After stopping, an estimate is formed.

This process can be expressed uniquely by the data-adaptive

rule for selecting sources over time, a stopping rule, and a fi-

nal detection decision rule. To formalize the exploration pro-

cess, define ψ : N → [K], where ψ(t) returns the index of

the source to be selected at time t. We also denote the sample

collected from sensor Sψ(t) by Yt. Accordingly, we define

Y t ,
(

Y1, · · · , Yt) , and ψt , (ψ(1), · · · , ψ(t)) . (2)

The information accumulated generates a σ-algebra denoted

by {Ft : t ∈ N} where Ft , σ(Y t, ψt). We define

N ∈ N as the stopping time of the sampling process that

is Ft-measurable. Finally, we define θ̂t as the estimate

of θ at time t. Based on these decision rules, we define

∆ ,
(

N,ψN , θ̂N
)

to specify the sampling strategy and the

decisions involved.

2.3. Formulation

The two key figures of merit involved are the average sam-

pling complexity N and the quality of the estimate. There

exists an inherent tension between these two, as improving

one penalizes the other one. In this subsection, we provide

a formulation that explicitly captures this dichotomy and re-

solves the tension between them in a natural way. To proceed,

we note that it can be readily verified that the posterior distri-

bution of θ at time t is given by

πt(θ) =

π(θ)

t
∏

i=1

fψ(i)(xi | θ)

∫

v∈Θ

π(v)

t
∏

i=1

fψ(i)(xi | v) dv

. (3)

Based on this, for any given t, we define the average posterior

cost function as

C(θ̂t | Ft) , Et

[

ℓ(θ̂t, θ) | Ft
]

, (4)

where Et denotes expectations with respect to πt. Based on

these, we aim to find a sampling strategy ∆ that minimizesN ,
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such that the estimation cost does not exceed a pre-specified

threshold β > 0, i.e.,

P(β) ,

{

min
∆

E[N ]

s.t. C(θ̂N | FN ) ≤ β
. (5)

In order to compare the performance of any strategy ∆, we

consider a Bayesian counterpart of P(β). For this purpose

the delay and estimation costs are integrated into a unified

cost function denoted by

J(∆ | FN ) , E[N ] + cβ · C(θ̂N | FN ) . (6)

It can be readily verified that for any β, there exists the con-

stant cβ such that a solution to (5) can be found by equiv-

alently solving min∆ J(∆ | FN ). By leveraging this re-

lationship, we use the notion of weak-asymptotic pointwise

optimality (w-APO), which was first introduced in [17], for

assessing the relative efficiency of any solution ∆.

Definition 2.0. A sequential procedure ∆ is called w-APO if

for any other ∆̄, and for any ǫ > 0 we have

P

{

J(∆ | FN )

J(∆̄ | FN̄ )
≤ 1 + ǫ

}

→ 1, as cβ → ∞ . (7)

3. COST-AWARE ACTIVE ESTIMATION

In this section, we formalize a cost-aware active estima-

tion (CAE) framework for active sampling and estimation.

To specify different decision rules, we define λi(x | θ) ,

log fi(x | θ) as the log-likelihood associated with the

distribution of source Si for i ∈ [K]. We assume that

Ei[|λi(x | θ)|] < +∞ for all θ ∈ Θ. Furthermore, we

assume that λi(x | θ) is twice differentiable everywhere in θ

such that ∂2

∂θ2
λi(x

n; θ) exists and is bounded. Accordingly,

we denote the Fisher information (FI) associated with source

Si by

Ii(θ) , −Ei

[

∂2

∂θ2
λi(x; θ)

]

. (8)

Finally, we assume that the likelihood functions under two

sufficiently distinguishable parameters θ and φ are also dis-

tinguishable, that is,

Eθ

[

sup{λi(x; θ)− λi(x;φ) : |θ − φ| > ǫ}
]

< 0 . (9)

3.1. Decision Rules

Estimator. We start by fixing the stopping time N and

the sampling sequence ψN . We first specify an estimator

that minimizes the average posterior estimation cost func-

tion C(θ̂N | FN ) for any given N and ψN . Assuming that

E[N ] < +∞ we can write

C(θ̂N | FN ) = Et

[

∞
∑

t=0

ℓ(θ̂N , θ)1{N=t} | Ft

]

(10)

=

∞
∑

t=0

Et

[

ℓ(θ̂N , θ) | Ft
]

1{N=t} (11)

≥
∞
∑

t=0

inf
θ̂N

Et

[

ℓ(θ̂N , θ) | Ft
]

1{N=t} . (12)

Note that the indicator function 1{N=t} can be factored out

since it is Ft-measurable. The optimum Bayes estimator sat-

isfies

θ̂t = arg inf
θ̂t

Et

[

ℓ(θ̂t, θ) | Ft
]

, (13)

and under the mean-square error (MSE) criterion it is well-

known that the optimum Bayesian estimator is

νt , Et

[

θ | Ft
]

. (14)

Hence, by denoting the conditional average cost by Ct ,

Et [ℓ(νt, θ) | Ft], from (10)-(12) we have

C(θ̂N | FN ) ≥
∞
∑

t=0

Ct1{N=t} = CN . (15)

Hence, for any arbitrary stopping time N , if we apply the

optimum Bayes estimator at the stopping time, the conditional

expected cost C(θ̂N | FN ) matches the lower bound CN . We

adopt the Bayes estimator in (14) as our estimator.

Active Sampling Rule. The source selection and sampling

rule follows Chernoff’s principle for sequential design of

experiments for binary composite hypothesis testing through

incorporating a controlled information gathering process that

dynamically decides about taking one of a finite number of

possible actions at each time [1]. Under the assumption of

uniformly distinguishable hypotheses and having indepen-

dent control actions, Chernoff’s rule decides in favor of the

action with the best immediate return according to proper

information measures and achieves optimal performance in

the asymptote of a diminishing rate of erroneous decisions.

Chernoff’s rule, specifically, at each time, identifies the most

likely decision on the collected data and takes the action that

reinforces the decision.

In the context of the estimation problem considered in this

paper, at each time-step t ∈ N, we wish to identify the most

informative source that is expected to reduce the estimation

costs by the largest margin. As a relevant measure for com-

paring the informativeness of different sources, we adopt the

FI measure. More specifically, at any given instant t ∈ N,

based on νt−1 as the the most updated estimate of θ given

Ft−1, we select the source with the highest FI measure, i.e.,

we select source

ψ(t) = argmax
i∈[K]

Ii(νt−1) , (16)
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and any tie is resolved by tossing a fair coin.

Stopping Rule. Finally, given the estimators and the sam-

pling rules, we specify the stopping rule. This rule is di-

rectly driven by the decision quality constraint specified in

the formulation of problem P(β) in (5). Specifically, based

on P(β), we are interested in minimizing the number of sam-

ples such that the average posterior estimation cost falls below

the target level. Based on this, we set the stopping time as the

first time that the cost C(θ̂N | FN ) falls below β, i.e.,

N , inf
{

n ∈ N : C(θ̂N | FN ) ≤ β
}

. (17)

3.2. Performance Guarantee

Next, we show that the combination of the decision rules

specified in the previous subsection, collectively, admit

w-APO optimality, formalized in the following theorem.

Theorem 3.1. The combination of the estimator in (14), ac-

tive sampling rule in (16), and the stopping rule in (17), is

w-APO.

It is noteworthy that although this theorem is showing asymp-

totic optimality, in certain regimes the specific rules admit

stronger optimality properties. For instance, in the special

case of K = 1, i.e., only one information source, our frame-

work and proposed algorithm reduces to that of [20], in which

case stronger optimality properties are established.

4. NUMERICAL EXPERIMENT

A simple setup consisting of two sensors is considered. Each

sensor generates i.i.d. random measurements according to ex-

ponential and Erlang-2 models:

Sensor 1 : X | θ ∼ exp(x | θ) , (18)

Sensor 2 : X | θ ∼ Erlang(x; 2 | θ) . (19)

The prior distribution of θ is also exponential with parameter

a. Subsequently, the posterior distribution of θ at time t is

Gamma(θ, 2t− γt + 1, yt), where we have defined

yt , a+

t
∑

i=1

xi , and γt ,

t
∑

i=1

1{ψ(i)=1} . (20)

γt counts the number of times that the sampling action selects

sensor S1. The MMSE estimate and the associated average

posterior cost function are given by

θ̂t =
2n− γt + 1

yt
and C(θ̂t | Ft) =

2t− γt + 1

y2t
. (21)

Figure 1 shows the variations of the average sample com-

plexity E[N ] versus the estimation cost constraint β for the

choices of θ = 0.5 and a = 2. This figure compares the

performance of three approaches to sensor selection:
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cost-aware active estimation

Fig. 1. Average sample complexity versus varying levels of

prescribed tolerance β

1. The baseline model is a random selection of the sen-

sors, according to which at each time one of the sensors

is selected with probability 1
2 for sampling.

2. The performance of the approach of [19]. This ap-

proach involves a tuning parameter c the controls the

tradeoff between average delay and estimation perfor-

mance and does not have an explicit performance guar-

antee on the estimation quality (a counterpart of β in

our model). In order to facilitate comparisons, for any

given β, we determine what choices of c yields an es-

timation cost β for [19], and use that to generate the

E[N ] versus β curve.

3. Finally, we plot the curve of the active estimation ap-

proach of this paper.

As the comparisons show, our proposed approach yields a

(considerable) performance improvement for the smaller val-

ues of β, which is the more important regime accounting for

high-accuracy estimation. As β increases, expectedly, the gap

among the three methods diminishes.

5. CONCLUSION

In this paper, we have investigated an active estimation frame-

work for estimating a covariate parameter shared by multi-

ple statistical models. This framework provides a co-design

for actively sampling the models over time and estimating

the covariate parameter. The main observation is that when

collecting the samples sequentially over time, a combination

of forming a maximum likelihood estimate of the covariate

parameter and subsequently selecting the model that has the

largest Fisher information measure associated with the esti-

mate renders an asymptotically optimal rule. The stopping

rule of this framework consist of comparing the posterior av-

erage estimation cost with a pre-specified threshold that con-

trols the estimation fidelity.
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