Data-Efficient Double-Win Lottery Tickets from Robust Pre-training

Tianlong Chen '

Abstract

Pre-training serves as a broadly adopted start-
ing point for transfer learning on various down-
stream tasks. Recent investigations of lottery tick-
ets hypothesis (LTH) demonstrate such enormous
pre-trained models can be replaced by extremely
sparse subnetworks (a.k.a. matching subnetworks)
without sacrificing transferability. However, prac-
tical security-crucial applications usually pose
more challenging requirements beyond standard
transfer, which also demand these subnetworks to
overcome adversarial vulnerability. In this paper,
we formulate a more rigorous concept, Double-
Win Lottery Tickets, in which a located subnet-
work from a pre-trained model can be indepen-
dently transferred on diverse downstream tasks, to
reach BOTH the same standard and robust gener-
alization, under BOTH standard and adversarial
training regimes, as the full pre-trained model
can do. We comprehensively examine various
pre-training mechanisms and find that robust pre-
training tends to craft sparser double-win lottery
tickets with superior performance over the stan-
dard counterparts. For example, on downstream
CIFAR-10/100 datasets, we identify double-win
matching subnetworks with the standard, fast ad-
versarial, and adversarial pre-training from Ima-
geNet, at 89.26%/73.79%, 89.26%/79.03%, and
91.41%/83.22% sparsity, respectively. Further-
more, we observe the obtained double-win lot-
tery tickets can be more data-efficient to trans-
fer, under practical data-limited (e.g., 1% and
10%) downstream schemes. Our results show
that the benefits from robust pre-training are am-
plified by the lottery ticket scheme, as well as
the data-limited transfer setting. Codes are avail-
able at https://github.com/VITA-Group/
Double-Win-LTH.
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F1gure 1. Overview of our work paradigm: we investigate the exis-
tence of double-win lottery tickets drawn from robust pre-training
in the scenario of transfer learning, with the full training data and
the limited training being available, respectively.
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1. Introduction

The lottery tickets hypothesis (LTH) (Frankle & Carbin,
2018) demonstrates that there exist subnetworks in dense
neural networks, which can be trained in isolation from the
same random initialization and match the performance of
the dense counterpart. We call such subnetworks as win-
ning tickets. Unlike the conventional pipeline (Han et al.,
2016) of model compression that follows the train-compress-
retrain process and aims for efficient inference, the LTH
sheds light on the potential for more computational savings
by training a small subnetwork from the start if only we
had known which subnetwork to choose. However, finding
these intriguing subnetworks is quite costly since the cur-
rent most effective approach, iterative magnitude pruning
(IMP) (Frankle & Carbin, 2018; Han et al., 2016), requires
multiple rounds of burdensome (re-)training, especially for
large models like BERT (Devlin et al., 2018). Fortunately,
recent studies (Chen et al., 2020b;a) provide a remedy by
leveraging the popular paradigm of pre-training and fine-
tuning, which first identifies critical subnetworks (a.k.a. pre-
trained tickets) from standard pre-training and then transfers
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Figure 2. Loss landscape visualization of subnetworks (73.79% sparsity) from diverse adversarial fine-tuning schemes. Each sparse
network is first identified by IMP and standard training on the pre-training task with standard fsp, fast adversarial OraT, or adversarial
0T pre-training, respectively. Then, they are fine-tuned from the corresponding (robust) pre-training on downstream CIFAR-10 with

100% or 10% training data.

to a range of downstream tasks. The demonstrated universal
transferability across various datasets and tasks, shows the
positive sign of replacing the gigantic pre-trained models
with a much smaller subnetwork while maintaining the im-
pressive downstream performance and leading to substantial
memory/computation reductions. Meantime, the extraordi-
nary cost of both pre-training and finding pre-trained tickets
can be amortized by reusing and transferring to diverse
downstream tasks.

Nevertheless, in practical settings, the deployed models usu-
ally ask for strong robustness, which is beyond the scope of
standard transfer, e.g., for safety-critical applications like
autonomous cars and face recognition. Therefore, a more
challenging requirement arises, which demands the located
subnetworks can effectively transfer in both standard and
adversarial training schemes (Madry et al., 2017). Thus,
it is a new perspective to investigate the transferability of
pre-trained tickets across diverse training regimes, differing
from previous works (Chen et al., 2020b;a) on transferring
downstream datasets and tasks. This inspires us to propose
a new hypothesis of lottery tickets. Specifically, when an
identified sparse subnetwork from pre-training can be inde-
pendently trained (transferred) on diverse downstream tasks,
to match the same accuracy and robustness, under both stan-
dard and adversarial training regimes, as the full pre-trained
model can do — we name it a Double-Win Lottery Ticket
illustrated in Figure. 1.

Meanwhile, inspired by (Salman et al., 2020), which sug-
gests that robust pre-training shows better transferability for
dense models, we examine (1) whether this appealing prop-
erty still holds under the lens of sparsity; (2) how can robust
pre-training benefits our double-win tickets compared to its
standard counterpart. To address such curiosity, we com-
prehensively investigate representative robust pre-training
approaches besides standard training, including fast adver-
sarial (FAT) (Wong et al., 2020) and adversarial (AT) (Madry
et al., 2017) pre-training. Our results reveal the prevailing
existence of double-win tickets with different pre-training,
and suggest the subnetworks obtain from AT pre-trained
models consistently achieve superior generalization and
robustness, under both standard and adversarial transfer
learning, when the typical full training data is available for
downstream tasks.

Yet, another critical constraint in real-world scenarios is the
possible scarcity of training data (e.g., due to the difficulty
of data collection and annotation). What makes it worse is
that satisfactory adversarial robustness intrinsically needs
more training samples (Schmidt et al., 2018). Our proposed
double-win tickets from robust pre-training tackle this issue
by leveraging the crafted sparse patterns as an inductive
prior, which (¢) is found to reduce the sample complex-
ity (Zhang et al., 2021b) and brings data efficiency (Chen
et al., 2021a); (i7) converges to a flatter loss landscapes
with improved robust generalization as advocated by (Wu
et al., 2020; Hein & Andriushchenko, 2017), particularly
for data-scarce settings shown in Figure 2. To support these
intuitions, extensive experiments about few-shot (or data-
efficient) transferability are evaluated with only 10% or 1%
data for adversarial downstream training (Jiang et al., 2020).
In what follows, we summarize our contributions in order
to bridge LTH and its practical usage in the data-limited and
security-crucial applications:

* We define a more rigorous notion of double-win lottery
tickets, which requires the sparse subnetworks found
on pre-trained models to have the same transferability
as the dense pre-trained ones: in terms of both accuracy
and robustness, under both standard and adversarial
training regimes, and towards a variety of downstream
tasks. We show such tickets widely exist.

* Using IMP, we find double-win tickets broadly across
diverse downstream datasets and at non-trivial spar-
sity levels 79.03% ~ 89.26% and 83.22% ~ 96.48%
sparsity, using the fast adversarial (FAT) and adversar-
ial (AT) pre-training. In general, subnetworks located
from the AT pre-trained model have superior perfor-
mance than FAT and standard pre-training.

e We further demonstrate the intriguing property of
double-win tickets in the data-limited transfer settings
(e.g., 10%, 1%). In this specific situation, FAT can sur-
prisingly find higher-quality subnetworks with small
sparsity while AT overtakes in a larger sparsity range.

* We show that adopting standard or adversarial train-
ing in the process of IMP makes no significant differ-
ence for the transferability of identified subnetworks
on downstream tasks.
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2. Related Works

The lottery tickets hypothesis (LTH). The (LTH) (Fran-
kle & Carbin, 2018) points out the existence of sparse
subnetworks which are capable of training from scratch
and match or even surpass the performance of the full net-
work. (Frankle et al., 2019; Renda et al., 2020) further
scale up LTH to larger datasets and networks by weight
rewinding techniques that re-initialize the subnetworks to
the weight from the early training stage instead of scratch.
Follow-up researchers have explored LTH in various fields,
including image classification (Frankle & Carbin, 2018;
Liu et al., 2019; Wang et al., 2020; Evci et al., 2019; Ma
et al., 2021; You et al., 2020), natural language process-
ing (Gale et al., 2019; Yu et al., 2020; Chen et al., 2020d;b),
vision+language multi-modal tasks (Gan et al., 2021), graph
neural networks (Chen et al., 2021b), generative adversarial
networks (Chen et al., 2021e;a), reinforcement learning (Yu
etal., 2020) and life-long learning (Chen et al., 2021c). Most
existing works of LTH identify subnetworks by resource-
consuming (iterative) weight magnitude pruning (Han et al.,
2016; Frankle & Carbin, 2018). Studies about the transfer-
ability of the subnetworks provide a potential offset to the
computationally expensive process of finding high-quality
subnetworks. (Chen et al., 2020b; Desai et al., 2019; Mor-
cos et al., 2019; Mehta, 2019) investigate the transferability
across different datasets (i.e., dataset transfer), while other
pioneers study the transferability of pre-trained tickets from
supervised and self-supervised vision pre-training (Chen
et al., 2020a) across diverse downstream tasks like detection
and segmentation (i.e., task transfer). These two transfer
capabilities form the core target of the pre-training / fine-
tuning paradigm. In this paper, we take a leap further to
meet more practical requirements by designing the concept
of double-win tickets. It examines the transferability across
different downstream training regimes, including standard
and adversarial transfer, data-rich and data-scarce transfer.
To our best knowledge, this training schemes transfer has
never been explored in the LTH literature, offering a new
view to analyze beneficial properties of pre-trained tickets.

Adversarial training and robust pre-training. Deep neu-
ral networks are vulnerable to imperceivable adversarial
examples (Szegedy et al., 2013), which limits their appli-
cations in security-crucial scenarios. To tackle this limita-
tion, massive defense methods were proposed (Goodfellow
et al., 2014; Kurakin et al., 2016; Madry et al., 2017), while
many of them, except adversarial training (Madry et al.,
2017), were later found to provide false security from ob-
fuscated gradients caused by input transformation (Xu et al.,
2017; Liao et al., 2018; Guo et al., 2017; Dziugaite et al.,
2016) and randomization (Liu et al., 2018b;a; Dhillon et al.,
2018). Besides, several works that focus on certified de-
fenses (Cohen et al., 2019; Raghunathan et al., 2018), aim

to provide a theoretical guarantee of robustness yet lack
scalability. Nowadays, adversarial training (AT) (Madry
et al., 2017) remains one of the most effective approaches
and numerous following works endeavor to improve its per-
formance (Zhang et al., 2019b; Chen et al., 2021d) and
computation efficiency (Shafahi et al., 2019b; Zhang et al.,
2020), while it may suffer from overfitting issues. Particu-
larly, (Zhang et al., 2019a; Shafahi et al., 2019a; Wong et al.,
2020) point out the overfitting phenomenon in several fast
adversarial training methods, where sometimes the robust
accuracy against a PGD adversary suddenly drops to nearly
zero after some training. (Andriushchenko & Flammarion,
2020) suggests it can be mitigated by performing local lin-
earization to the loss landscape in those “fast” AT. Another
reported robust overfitting (Rice et al., 2020) seems to raise
a completely new challenge for the classical AT (not fast),
which can be alleviated by early stopping and smoothen-
ing (Chen et al., 2021d). Meantime, several pioneering ef-
forts have been made to obtain models that are both compact
and robust to adversarial attacks (Gui et al., 2019; Sehwag
et al., 2020; Fu et al., 2021), spurious features (Zhang et al.,
2021a), and input corruptions (Diffenderfer et al., 2021)

Although the standard pre-training is commonly used in
both areas of computer vision (He et al., 2019b; Girshick
et al., 2014) and natural language process (Devlin et al.,
2018), such as the supervised ImageNet and self-supervised
BERT (Devlin et al., 2018) pre-training, there exist only few
investigations of robust pre-training. The work (Chen et al.,
2020c) for the first time demonstrates that adversarial pre-
training can speed up and improve downstream adversarial
fine-tuning. Latter works (Jiang et al., 2020; Salman et al.,
2020) show extra benefits of enhanced dataset transferability
and data efficiency from adversarial pre-training. All the
above studies were only conducted with dense networks.

3. Preliminary

Networks. Aligned with previous work of pre-trained tick-
ets (Chen et al., 2020a), we consider the official ResNet-
50 (He et al., 2016) as the unpruned dense model, and
formulate the output of the network as f(x;6), where x is
the input images and # € RY is the network parameters.
In the same way, a subnetwork is a network f(z;m © 6)!
with a binary pruning mask m € {0,1}¢, where © is the
element-wise product. In our experiment, we sparsify the
major part of the dense network, leaving the task-specific
classification head out of the scope of pruning.

Adpversarial training (AT). The classical AT (Madry
et al., 2017) remains one of the most effective approaches
to tackle the vulnerability for small perturbations and build
a robust model, in which the standard empirical risk mini-

"For simplicity purpose, we use f(x;6) to denote a network or
its output in different contexts.
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mization is replaced by a robust optimization, as depicted
in equation 1:
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where the perturbation is constrained in an ¢, norm ball
with the radius equals to ¢, and input data z with its as-
sociated label y are sampled from the training set D. To
solve the inner maximization problem, projected gradient
descent (PGD) (Madry et al., 2018) is frequently adopted
and believed to be the strongest first-order adversary, which
works in an iterative fashion as equation 2:

6"+ = projp (8' + o sgn (VL L(f(x +850),9)) ) @)

where ¢ is the generated perturbation, ¢ denotes the number
of iterations, « represents the step size, and sgn is a function
that returns the sign of its input. Besides, (Wong et al., 2020)
proposes a fast adversarial training method and claimed
that adversarial training with Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014), which is the single-step
variant of PGD, can be as effective as PGD-based adversar-
ial training once combined with random initialization. In
the following context, we will refer standard empirical risk
minimization process to standard training (ST) and robust
optimization to adversarial training (AT) or fast adversar-
ial training (FAT) according to the number of PGD steps.
We remark that FAT alone may cause the issue of robust
catastrophic overfitting (Andriushchenko & Flammarion,
2020) when the train-time attack strength grows. Thus, an
early-stopping policy (Rice et al., 2020), which was also
suggested by (Andriushchenko & Flammarion, 2020), is
adopted to mitigate such catastrophic overfitting.

Pruning algorithms. For a dense neural network f(z;6),
we adopt the unstructured iterative magnitude pruning
(IMP) (Frankle & Carbin, 2018; Han et al., 2016) to identify
the subnetworks f(x;m ® @), which is a standard option
for mining lottery tickets (Frankle & Carbin, 2019). More
precisely, starting from the pre-trained weights 6, as ini-
tialization, we follow the circle of prune-rewind-retrain to
locate subnetworks, in which we prune p% of the remaining
weight with the smallest magnitude and rewind the weights
of the subnetwork to their values from 6,,. We repeat the
prune-rewind-retrain process until the desired sparsity.

In our experiments, we choose a precise p% = 20% (Fran-
kle & Carbin, 2019; Chen et al., 2020a) and consider three
initialization: the standard pre-trained” ResNet-50 fgrp,
the PGD-based adversarial pre-trained3 ResNet-50 a1 and
fast adversarial pre—trained4 ResNet-50 by Opap. All the
models are pre-trained with the classification task on the

2
https://pytorch.org/vision/stable/models.html
https://github.com/microsoft/robust-models-transfer

4
https://github.com/locuslab/fast_adversarial/tree/master/ImageNet

Table 1. Summary of our setups.

Source domain: finding subnetworks via pruning with pre-trained weights 6,

Target domains: evaluating transferability of f(x;m © 6,) across training schemes

Training scheme ‘ Standard Training ‘ Adversarial Training

RA

Evaluation metrics ‘ SA ‘ SA
Double-Win Tickets if and only if ‘

winning ‘ winning winning

ImageNet source dataset (Krizhevsky et al., 2012). It is
worthy to mention that all pruning are applied to the source
dataset (or pre-training task) only, since our main focus is
investigating the mask transferability cross training schemes
of subnetworks obtained from pre-training.

Downstream datasets, training and evaluation. Af-
ter producing subnetworks from the pre-training task on
ImageNet by IMP, we implement both standard and ad-
versarial transfer on three downstream datasets: CIFAR-
10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky
& Hinton, 2009), and SVHN (Netzer et al., 2011). For
adversarial training, we train the network against /., ad-
versary of 10-steps Projected Gradient Descent (PGD-10)
with € = 55 and & = ;2. On CIFAR-10/100, we train
the network for 100 epochs with an initial learning rate
of 0.1 and decay by ten times at 50, 75th epoch. As for
SVHN, we start from 0.01 learning rate and decay by a
cosine annealing schedule for 80 epochs. Moreover, an
SGD optimizer is adopted with 5 x 10~* weight decay and
0.9 momentum. And we use a batch size of 128 for all
downstream experiments. To evaluate the downstream per-
formance of subnetworks, we report both Standard Testing
Accuracy (SA) and Robust Testing Accuracy (RA), which
are computed on the original and adversarial perturbed test
images respectively. During the inference, we generate the
adversarial test images by PGD-20 attack with other hyper-
parameters kept the same as in training (Chen et al., 2021d).
More details are in Sec. Al.

Double-Win lottery tickets. Here we introduce formal
definitions of our double-win tickets:

> Matching subnetworks (Chen et al., 2020b;a; Frankle
et al., 2020). A subnetwork f(z;m © 6) is matching for

a training algorithm A7 if its performance of evaluation
metric €’ is no lower than the pre-trained dense network
f(x;6,) that trained with the same algorithm A7 , namely:

(AT (fwme0)) > € (AT (f(:6,)) )
> Winning Tickets (Chen et al., 2020a; Frankle et al., 2020).
If a subnetwork f(x;m © ) is matching with 6 = 6, for a
training algorithm A7, then it is a winning ticket for A7 .

> Double-Win Lottery Tickets. When a subnetwork
f(x;m ® 0) is a winning ticket for standard training under
metric SA and for adversarial training under both metrics
SA and RA, we name it as a double-win lottery ticket, as
demonstrated in Table 1.
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Figure 3. Comparison results of the subnetworks that are fine-tuned on three downstream datasets (i.e., CIFAR-10, CIFAR-100 and
SVHN) under both standard and adversarial training regimes. For standard training, we report the standard accuracy; while for adversarial

training, both standard and robust accuracy are presented.

and Blue represent the performance of subnetworks generated

from IMP on pre-trained ImageNet classification (m>T) with standard re-training and different pre-trained weights (i.e. standard fsp,
fast adversarial OraT, and adversarial O pre-training, respectively) while Red stands for random pruning with adversarial pre-trained
weight. The solid line and shading area are the mean and standard deviation of standard/robust accuracy.

4. Drawing Double-Win Lottery Tickets from
Robust Pre-training

In this section, we evaluate the quality of subnetworks
f(x;m © 6) on multiple downstream tasks under both
standard and adversarial training regimes. Before that,
we extract desired subnetworks via IMP on the ImageNet
classification tasks. During the process, the pre-trained
weights 0, are treated as initialization for rewinding, and
standard training (ST) or adversarial training (AT) is adopted
for re-training the sparse model on the pre-trained task.
In the downstream transferring stage, subnetworks start
from mask mf and pre-trained weights 6,,, where p €
{STD, FAT, AT} stands for {standard, fast adversarial,
adversarial} pre-training, and the pruning method P €
{ST, AT, RP, OMP} which represents {IMP with standard
(re-)training, IMP with adversarial (re-)training, random
pruning, one-shot magnitude pruning} (Han et al., 2016)
on the pre-training task (RP or OMP indicates there is no
re-training). In the following content, Section 4.1 shows the
existence of double-win lottery tickets from diverse (robust)
pre-training with impressive transfer performance for both
standard or adversarial training; Section 4.2 investigates the
effects of standard or adversarial re-training on the quality
of derived double-win tickets. All experiments have three

independent replicates with different random seeds and the
mean results and standard deviation are reported.

4.1. Do Double-Win Lottery Tickets Exist?

To begin with, we validate the existence of double-win lot-
tery tickets drawn from diverse (robust) pre-training and
source ImageNet dataset. We consider the sparsity masks
from IMP with standard re-training m>" and random prun-
ing mRY on the pre-training task, together with three differ-
ent pre-trained weights, i.e. standard fsTp, fast adversarial
fraT, and adversarial weights 6a1. As demonstrated in
Figure 3, we adopt two downstream fine-tuning receipts,
i.e., standard training (report SA) and adversarial training
(report SA/RA)), simultaneously. Note that all presented
numbers here are subnetwork’s sparsity levels. Several
consistent observations can be drawn:

® Double-win lottery tickets generally exist from var-
ious pre-training, showing unimpaired performance
on diverse downstream tasks for both standard and
adversarial transfer. To account for fluctuations, we
consider the performance of subnetworks is match-
ing when it’s within one standard deviation of the
unpruned dense network. The extreme sparsity lev-
els of subnetworks drawn from {fsTp, OraT, OaT,}
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Figure 4. Comparison results of the subnetworks that are independently trained on three downstream datasets (i.e., CIFAR-10, CIFAR-100,
SVHN) under both standard and adversarial training regimes. For standard training, we report the standard accuracy; while for adversarial
training, both standard and robust accuracy are presented.

generated by IMP with standard re-training (m~), adversarial re-training (mAa-

, red and Blue represent the performance of subnetworks
) on ImageNet classification task, one shot magnitude

pruning (m°™F) and random pruning (m®F), together with the adversarial pre-training (@) as initialization. The solid line and shading

area are the mean and standard deviation of standard/robust accuracy.

are {89.26%, 89.26%, 91.41%}, {73.79%, 79.03%,
83.22%}, {0.00%, 79.03%, 96.48%} with matching
or even superior standard and robust performance un-
der both training regimes (standard and adversarial)
on CIFAR-10, CIFAR-100 and SVHN, respectively.
All these double-win tickets surpass randomly pruned
subnetwork by a significant performance margin. It
demonstrates the superior performance of double-win
tickets is not only from reduced parameter counts but
also credits to the located sparse structural patterns.

Subnetworks identified from adversarial pre-training
consistently outperform the ones from fast adversar-
ial and standard pre-training across all three down-
stream classification tasks, which is aligned with the
result in (Salman et al., 2020). Taking the extreme
sparsity as an indicator, the adversarial pre-training
finds double-win lottery tickets to the extreme spar-
sity of 83.22% ~ 96.48% while fast adversarial, stan-
dard pre-training reach the extreme sparsity level of
20.00% ~ 89.26% and 0.00% ~ 89.26%. This sug-
gests that the adversarial pre-trained model can serve
as a desirable starting point for locating high-quality
double-win tickets to cover both standard and adver-
sarial downstream transferability. Note that here all
downstream transferring can access full training data,
i.e., data-rich fine-tuning.

Along with the increase of sparsity, we notice that
the performance improvements from adversarial pre-

training O a1 (¢) remain stable in the standard transfer
(the first row in Figure 3) even at extreme sparsity
like 98.56%; (i) first increase then diminish in adver-
sarial transfer after 95.60% sparsity. It suggests that
double-win tickets from adversarial pre-training are
more sensitive to the aggressive sparsity in the sce-
nario of adversarial transfer learning.

The comparison results among different pre-training
varies with the training regime of downstream tasks.
Take the result on CIFAR-100 as an example, the
subnetworks drawn from fast adversarial pre-training
shows superior performance than the ones from stan-
dard training in the range of sparsity level from
0.00% ~ 98.56% under adversarial training. While
for the standard training regime, fast adversarial and
standard pre-training locate subnetworks with similar
performance across the sparsity level from 0.00% to
95.60%. The inferior performance of standard pre-
training suggests that the vanilla lottery tickets that
only focus on the standard training regime and use
standard test accuracy as the only evaluation metric,
is insufficient in practical security-crucial scenarios.
Thus we take adversarial transfer into consideration
and propose the concept of double-win lottery tickets
to improve the original LTH.
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Figure 5. Data-efficient transfer results of double-win tickets from adversarial pre-training on three downstream datasets (i.e. CIFAR-10,
CIFAR-100, and SVHN) with 100%, 10% and 1% training data. Both standard and robust accuracy are reported. , and

Blue represent the performance of subnetworks located from IMP together with standard training on ImageNet classification (ST

) with

different pre-trained weights (i.e. standard fstp, fast adversarial @raT, and adversarial pre-training 6T, respectively). The solid line and
shading area are the mean and standard deviation of standard/robust accuracy.

4.2. Do training regimes on source domain affect the
located subnetworks?

During the ticket finding on pre-trained tasks, we can adopt
standard re-training and adversarial re-training after each
IMP pruning process. Intuitively, adversarial re-training
should be able to maintain more information from adver-
sarial pre-training, and lead to better transfer performance
on downstream tasks (Salman et al., 2020). However, our
experiment results surprisingly challenge this “common
sense”. Specifically, we choose the adversarial pre-trained
weight (fa1>) as the initialization and compare four types

>The official robust model (Y~ adversary with € = % and
a= 255) on ImageNet Z00 at nttps://github.com/MadryLab/robustness.

of pruning and re-training methods on the pre-trained tasks,
i.e., IMP with standard training (mlsﬁn), IMP with adver-
sarial training (m+), one-shot magnitude pruning (OMP)
(m®MP) and random pruning (m=P).

As shown in Figure 4, the extreme sparsity of double-win
lottery tickets on {CIFAR-10, CIFAR-100} is (91.41%,
83.22%), (91.41%, 83.22%), (89.26%, 79.03%), (20%,
0%) for (mAx,0at), (M35 0a1), (MOMF Oa7) and
(mBP @a7), respectively. IMP with standard and adversar-
ial training shows similar performance, and both of them are
better than OMP and random pruning. It suggests that the
re-training regimes during IMP doesn’t make an significant
impact on the downstream transferablity of subnetworks.
Due to the heavy computational cost of adversarial training
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and the inferior performance of OMP, we consider IMP
with standard training as our major pruning method and
investigate the data efficiency property of subnetworks in
following sections.

5. Double-Win Tickets with Robust
Pre-training Enables Data-Efficient
Transfer

In this section, we further exploit the practical benefits of
double-win lottery tickets by assessing the data-efficient
transferability under limited training data schemes (e.g.,
1% and 10%). All subnetworks are drawn from IMP with
standard re-training on the pre-training task. We consider
three different pre-trained weights (i.e., standard fgrp, fast
adversarial OpaT, and adversarial pre-training €a7). The
results are included in Figure 5, from which we find:

@ Opar and O significantly outperform fsTp on both
data-rich and data-scarce transfer for all three datasets.
It evidences that the robust pre-training improves data-
efficient transfer. While on the challenging SVHN
downstream dataset with limited training data (i.e.,
10% and 1%), the performance of OpaT and Ot de-
grades to fsTp’s level at large sparsity 83.22% and
97.19% respectively.

@ For data-limited transferring, sparse tickets derived
from robust pre-training {fpaT,0aT} Surpass their
dense counterpart by up to {0.75%,22.53%} SA and
{0.79%.,8.97%} RA, which indicates the enhanced
data-efficiency also comes from appropriate sparse
structures. The consistent robustness gains under un-
seen transfer attacks in Section A2, also exclude the
possibility of obfuscated gradients.

@ In general, when subnetworks are trained with only
10% or 1% training samples available, those drawn
from fast adversarial pre-trained weight Opar show
superior performance at middle sparsity levels, with
performance improvements up to {30.97%, 2.42%,
10.05%} SA and {8.36%, 0.70%, 18.49%} RA com-
pared with 1 for CIFAR-10, CIFAR-100 and SVHN,
respectively. But with the increase of sparsity, ad-
versarial pre-trained weight 01 overtakes OpaT and
dominates the larger sparsity range.

To understand the counter-intuitive results that subnetworks
from weak robust pre-training fgaT perform better than the
ones from strong robust pre-training 6 at middle sparsity
levels such as 73.79% particularly for data-limited transfer-
ring, we visualize the training trajectories along with loss
landscapes through tools in (Li et al., 2018). We take robus-
tified subnetworks with 73.79% sparsity on CIFAR-10 as an
example. As shown in Figure 6 and A9, for the results on the
original test data (columns: a,b,c), the loss contour of OpaT

mgr, OsTD mst, Opat mgr, Ot

100% Data

- 10% Data

1% Data

() (b) ©
Figure 6. Visualization of loss contours and training trajectories
of subnetworks located by IMP with standard re-training m>T
at 73.79% sparsity. Each subnetwork is adversarial trained with
100%, 10% or 1% training data on CIFAR-10. We compare three
pre-training (i.e., standard fsp, fast adversarial frar, and adver-
sarial pre-training OaT). The original test set is used.

is smoother/flatter than 61 and fsp, i.e., the basin with
converged minimum has larger area in terms of the same
level of loss like the 2.000 contour in the middle row’s plots
of Figure 6. A smoother/flatter loss surface is often believed
to indicate enhanced standard (Keskar et al., 2017; He et al.,
2019a) and robust generalization (Wu et al., 2020; Hein &
Andriushchenko, 2017). It offers a possible explanation of
OraT’s superior performance to O s by up to 8.98% and
9.62% SA improvements for data-limited transferring with
10% and 1% training samples. Moreover, loss geometric on
attacked test data (Fig. A9) reveals similar conclusions.

6. Analyzing Properties of Double-Win Tickets

Relative similarity. In Fig. A8, we report the relative
similarity (i.e., }Zﬂ:;:
m,; and m;, which denotes the degree of overlapping in
sparse patterns located from different pre-trained models.
We observe that subnetworks from different pre-training has
distinct sparse patterns. Specifically, the relative similarity is
less than 20.00% when the sparsity of subnetworks reaches
73.79% and the more sparsified, the larger differences arise.

) between binary pruning masks

Structural patterns. Meanwhile, we calculate the number
of completely pruned (zero) kernels and visualize the kernel-
wise heatmap of subnetworks with an extreme sparsity of
97.19%. As depicted in Figure 7, the subnetworks from the
standard pre-trained model have the largest number of zero
kernels, which roughly reveals the most clustered sparse
patterns. And the subnetworks from robust pre-training are
less clustered, especially for fpaT. We notice that these
zero kernels are mainly distributed in the front/later residual
blocks for subnetworks from 6a1/6paT, Where they scatter
evenly across all blocks. Typically, subnetworks with more
zero kernels may have a stronger potential for hardware
speedup (Elsen et al., 2020).
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Bl B2 B3 B4

Figure 7. Kernel-wise heatmap visualizations of sparse masks
drawn from three different pre-training, i.e., mitp, mpar, and
mim at 97.19% sparsity. The bright dots (-) are the completely
pruned (zero) kernels and the dark dots (e) stand for the kernels
with at least one remaining weight. B1 ~ B4 represent the four
residual blocks in ResNet-50.

7. Conclusion and Limitation

In this paper, we examine the lottery tickets hypothesis in a
more rigorous and practical scenario, which asks for com-
petitive transferability across both standard and adversarial
downstream training regimes. We name these intriguing
subnetworks as double-win lottery tickets. Extensive re-
sults reveal that double-win matching subnetworks derived
from robust pre-training enjoy superior performance and
enhanced data efficiency during transfer learning. However,
the current investigations are only demonstrated in computer
vision, and we leave the exploration in other fields such as
natural language processing to future work.
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Al. More Implementation Details

To identify subnetworks in the pre-trained models, we con-
sider both standard and adversarial re-training for IMP, in
which we remove 20% parameters with the lowest magni-
tude for each pruning step and fine-tune the network for
30 epochs with a fixed learning rate of 5 x 10~%. And we
use an SGD optimizer with the weight decay and momen-
tum kept to 1 x 10~ and 0.9, respectively. The batch size
equals 2048 for all experiments of IMP on the pre-training
task with ImageNet. And for adversarial training, we apply
PGD-3 with € = % and o = % against the /., adversary.

A2. More Experiments Results

Table A2. Transfer attack performance of subnetworks located
from adversarial pretraining Ot through IMP with standard re-
training mST. And the subnetworks are trained with PGD-10 on
CIFAR-10. We report the accuracy on attacked test sets, which are
generated from an unseen robust model, together with the vanilla
robust accuracy.

Sparsity (%) ‘ Transfer Attack Accuracy (%) ‘ Robust Accuracy (%)

0 55.54 47.11
89.26 62.79 56.00
93.13 60.09 60.05
95.60 56.49 50.85

Excluding obfuscated gradients. Table A2 demonstrates
that the sparse subnetworks consistently outperform the
dense counterpart under transfer attack from an unseen ro-
bust model, which is aligned with the vanilla robust accuracy.
This piece of evidence excludes the possibility of gradient
masking for our obtain RA improvements.
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Figure A8. The statistic of subnetworks drawn from three different
pre-training, i.e. (m&mp, 0sTD), (MEar, OraT) and (M3n, Oar).
(Top): The relative mask similarity between subnetworks from
different pre-training. (Bottom): The number of completely pruned

(zero) kernels in these subnetworks.

Relative similarity. To measure the overlapping level in
sparse patterns drawn from different pre-trained models,

mgr, OstD mgr, O

mgr, OpaT

100% Data
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Figure A9. Visualization of loss contours and training trajectories
of subnetworks located by IMP with standard re-training m>T
at 73.79% sparsity. Each subnetwork is adversarial trained with
100%, 10% and 1% training data on CIFAR-10, respectively. We
compare three pre-training (i.e., standard fstp, fast adversarial
OraT, and adversarial pre-training O o). Columns (d,e,f) stand for
the results on attacked test data by PGD-20.

we adopt the relative similarity (i.e., migﬂ) between bi-

i J

nary pruning masks m; and m;. As shown in Fig. A8,
subnetworks from different pre-training share remarkably
heterogeneous sparse structures. For instance, the relative
similarity is less than 20.00% when the sparsity of subnet-
works reaches 73.79% and the more sparsified, the larger
differences arise.

Extra loss surface visualizations. As shown in Figure A9,
consistent observations with Figure 6 can be drawn.

More datasets and tasks. We conduct additional experi-
ments of classification on (i) CUB-200 birds (more classes
and higher resolution), (i¢) VisDA17 (4 ~ 5 times big-
ger than CIFAR), and (7¢7) instance segmentation on VOC.
Results of 60 sparse models are collected in Figure A10,
showing consistent conclusion that robust pre-training helps.
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Figure A10. Results on more datasets and tasks.

A3. Boarder Impact

Although our work makes great contributions to efficient
machine learning and security-critical applications, it still
has potential negative social impacts when it is abused by
malicious attackers. Specifically, our methods may speed
up and robustify attackers’ harmful algorithms or software.
One possible solution is to issue a license and limit the blind
distribution of our proposals.



