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contributing to the development of ML-enabled systems for pro-

duction use (i.e., not pure data analytics/early prototypes). Our

research question is: What are the collaboration points and corre-

sponding challenges between data scientists and software engineers?

Participants come from 28 organizations, from small startups to

large big tech companies, and have diverse roles in these projects,

including data scientists, software engineers, and managers. Dur-

ing our interviews, we explored organizational structures (e.g., see

Figure 1), interactions of project members with different technical

backgrounds, and where conflicts arise between teams.

While some organizations have adopted better collaboration

practices than others, many struggle setting up structures, pro-

cesses, and tooling for effective collaboration among teammembers

with different backgrounds when developing ML-enabled systems.

To the best of our knowledge, and confirmed by the practitioners

we interviewed, there is little systematic or shared understanding

of common collaboration challenges and best practices for devel-

oping ML-enabled systems and coordinating developers with very

different backgrounds (e.g., data science vs. software engineering).

We find that smaller and new-to-ML organizations struggle more,

but have limited advice to draw from for improvement.

Three collaboration points surfaced as particularly challenging:

(1) Identifying and decomposing requirements, (2) negotiating train-

ing data quality and quantity, and (3) integrating data science and

software engineering work. We found that organizational struc-

ture, team composition, power dynamics, and responsibilities differ

substantially, but also found common organizational patterns at

specific collaboration points and challenges associated with them.

Overall, our observations suggest four themes that would benefit

from more attention when building ML-enabled systems:� Invest

in supporting interdisciplinary teams to work together (including

education and avoiding silos),p Pay more attention to collabora-

tion points and clearly document responsibilities and interfaces,

3 Consider engineering work as a key contribution to the project,

and� Invest more into process and planning.

In summary, we make the following contributions: (1) We iden-

tify three core collaboration points and associated collaboration

challenges based on interviews with 45 practitioners, triangulated

with a literature review, (2) We highlight the different ways in

which teams organize, but also identify organizational patterns that

associate with certain collaboration challenges, and (3) We identify

recommendations to improve collaboration practices.

2 STATE OF THE ART

Researchers and practitioners have discussed whether and how

machine learning changes software engineering with the introduc-

tion of learned models as components in software systems [e.g.,

1, 5, 42, 69, 81, 83, 90, 103, 111]. To lay the foundation for our inter-

view study and inform the questions we ask, we first provide an

overview of the related work and existing theories on collabora-

tion in traditional software engineering and discuss how machine

learning may change this.

Collaboration in Software Engineering. Most software projects

exceed the capacity of a single developer, requiring multiple devel-

opers and teams to collaborate (łwork togetherž) and coordinate

(łalign goalsž). Collaboration happens across teams, often in a more

formal and structured form, and within teams, where familiarity

with other team members and frequent co-location fosters informal

communication [63]. At a technical level, to allow multiple develop-

ers to work together, abstraction and a divide and conquer strategy

are essential. Dividing software into components (modules, func-

tions, subsystems) and hiding internals behind interfaces is a key

principle of modular software development that allows teams to

divide work, and work mostly independently until the final system

is integrated [62, 72].

Teams within an organization tend to align with the technical

structure of the system, with individuals or teams assigned to com-

ponents [30], hence the technical structure (interfaces and depen-

dencies between components) influences the points where teams

collaborate and coordinate. Coordination challenges are especially

observed when teams cannot easily and informally communicate,

often studied in the context of distributed teams of global corpora-

tions [38, 68] and open-source ecosystems [16, 95].

More broadly, interdisciplinary collaboration often poses chal-

lenges. It has been shown that when team members differ in their

academic and professional backgrounds and possess different expec-

tations on the same system, communication, cultural, and methodi-

cal challenges often emerge when working together [21, 73]. Key

insights are that successful interdisciplinary collaboration depends

on professional role, structural characteristics, personal character-

istics, and a history of collaboration; specifically, structural factors

such as unclear mission, insufficient time, excessive workload, and

lack of administrative support are barriers to collaboration [24].

The component interface plays a key role in collaboration as a

negotiation and collaboration point. It is where teams (re-)negotiate

how to divide work and assign responsibilities [19]. Team mem-

bers often seek information that may not be captured in interface

descriptions, as interfaces are rarely fully specified [32]. In an ide-

alized development process, interfaces are defined early based on

what is assumed to remain stable [72], because changes to inter-

faces later are expensive and require the involvement of multiple

teams. In addition, interfaces reflect key architectural decisions for

the system, aimed to achieve desired overall qualities [11].

In practice though, the idealized divide-and-conquer approach

following top-down planning does not alwaysworkwithout friction.

Not all changes can be anticipated, leading to later modifications

and renegotiation of interfaces [16, 31]. It may not be possible to

identify how to decompose work and design stable interfaces until

substantial experimentation has been performed [12]. To manage,

negotiate, and communicate changes of interfaces, developers have

adopted a wide range of strategies for communication [16, 33, 97],

often relying on informal broadcast mechanisms to share planned

or performed changes with other teams.

Software lifecycle models [22] also address this tension of when

and how to design stable interfaces: Traditional top-down mod-

els (e.g., waterfall) plan software design after careful requirements

analysis; the spiral model pursues a risk-first approach in which de-

velopers iterate to prototype risky parts, which then informs future

system design iterations; agile approaches de-emphasize upfront

architectural design for fast iteration on incremental prototypes.

The software architecture community has also grappled with the

question of how much upfront architectural design is feasible, prac-

tical, or desirable [11, 107], showing a tension between the desire
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for upfront planning on one side and technical risks and unsta-

ble requirements on the other. In this context, our research explores

how introducing machine learning into software projects challenges

collaboration.

Software Engineering withMLComponents. In a ML-enabled

system, machine learning contributes one or multiple components

to a larger system with traditional non-ML components. We refer to

the whole system that an end user would use as the product. In some

systems, the learned model may be a relatively small and isolated

addition to a large traditional software system (e.g., audit prediction

in tax software); in others it may provide the system’s essential core

with only minimal non-ML code around it (e.g., a sales prediction

system sending daily predictions by email). In addition to models,

an ML-enabled system typically also has components for training

and monitoring the model(s) [42, 51]. Much attention in practice

recently focuses on building robust ML pipelines for training and

deploying models in a scalable fashion, often under names such

as łAI engineering,ž łSysML,ž and łMLOpsž [51, 59, 67, 90]. In this

work, we focus more broadly on the development of the entire

ML-enabled system, including both ML and non-ML components.

Compared to traditional software systems, ML-enabled systems

require additional expertise in data science to build the models and

may place additional emphasis on expertise such as data manage-

ment, safety, and ethics [5, 49]. In this paper, we primarily focus on

the roles of software engineers and data scientists, who typically have

different skills and educational backgrounds [48, 49, 84, 111]: Data

science education tends to focus more on statistics, ML algorithms,

and practical training of models from data (typically given a fixed

dataset, not deploying the model, not building a system), whereas

software engineering education focuses on engineering tradeoffs

with competing qualities, limited information, limited budget, and

the construction and deployment of systems. Research shows that

software engineers who engage in data science without further

education are often naive when building models [111] and that data

scientists prefer to focus narrowly on modeling tasks [84] but are

frequently faced with engineering work [106]. While there is plenty

of work on supporting collaboration among software engineers [26,

33, 85, 115] and more recently on supporting collaboration among

data scientists [105, 114], we are not aware of work exploring collab-

oration challenges between these roles, which we do in this work.

The software engineering community has recently started to

explore software engineering for ML-enabled systems as a research

field, with many contributions on bringing software-engineering

techniques to ML tasks, such as testing models and ML algorithms

[10, 20, 28, 110], deploying models [4, 13, 29, 34, 51], robustness and

fairness of models [81, 94, 101], life cycles for ML models [1, 5, 34,

61, 74], and engineering challenges or best practices for developing

ML components [3, 5, 18, 27, 40, 44, 60, 90]. A smaller body of

work focuses on the ML-enabled system beyond the model, such

as exploring system-level quality attributes [73, 93], requirements

engineering [103], architectural design [113], safety mechanisms

[17, 83], and user interaction design [7, 25, 112]. In this paper, we

adopt this system-wide scope and explore how data scientists and

software engineers work together to build the system with ML and

non-ML components.

3 RESEARCH DESIGN

Because there is limited research on collaboration in building ML-

enabled systems, we adopt a qualitative research strategy to explore

collaboration points and corresponding challenges, primarily with

stakeholder interviews.We proceeded in four steps: (1)We prepared

interviews based on an initial literature review, (2) we conducted

interviews, (3) we triangulated results with literature findings, and

(4) we validated our findings with the interview participants. We

base our research design on Straussian Grounded Theory [98, 99],

which derives research questions from literature, analyzes inter-

views with open and axial coding, and consults literature through-

out the process. In particular, we conduct interviews and literature

analysis in parallel, with immediate and continuous data analysis,

performing constant comparisons, and refining our codebook and

interview questions throughout the study.

Step 1: Scoping and interview guide. To scope our research and

prepare for interviews, we looked for collaboration problems men-

tioned in existing literature on software engineering forML-enabled

systems (Sec. 2). In this phase, we selected 15 papers opportunis-

tically through keyword search and our own knowledge of the

field. We marked all sections in those papers that potentially relate

to collaboration challenges between team members with differ-

ent skills or educational backgrounds, following a standard open

coding process [99]. Even though most papers did not talk about

problems in terms of collaboration, we marked discussions that

may plausibly relate to collaboration, such as data quality issues

between teams. We then analyzed and condensed these codes into

nine initial collaboration areas and developed an initial codebook

and interview guide (provided in Appendix of arXiv version [66]).

Step 2: Interviews. We conducted semi-structured interviews

with 45 participants from 28 organizations, each 30 to 60 minutes

long. All participants are involved in professional software projects

using machine learning that are either already or planned to be

deployed in production. In Table 1, we show the demographics of

the interview participants and their organizations. Details can be

found in the Appendix of our arXiv version [66].

We tried to sample participants purposefully (maximum varia-

tion sampling [36]) to cover participants in different roles, types of

companies, and countries. We intentionally recruited most partic-

ipants from organizations outside of big tech companies, as they

represent the vast majority of projects that have recently adopted

machine learning and often face substantially different challenges

[40]. Where possible, we tried to separately interview multiple

participants in different roles within the same organization to get

different perspectives. We identified potential participants through

personal networks, ML-related networking events, LinkedIn, and

recommendations from previous interviewees and local tech lead-

ers. We adapted our recruitment strategy throughout the research

based on our findings, at later stages focusing primarily on spe-

cific roles and organizations to fill gaps in our understanding, until

reaching saturation. For confidentiality, we refer to organizations

by number and to participants by PXy where X refers to the orga-

nization number and y distinguishes participants from the same

organization.
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Table 1: Participant and Company Demographics

Type Break-down

Participant Role (45) ML-focused (23), SE-focused (9), Manage-

ment (5), Operations (2), Domain Expert (2),

Other (4)

Participant Seniority (45) 5 years of experience or more (28), 2-5

years (9), under 2 years (8)

Company Type (28) Big tech (6), Non IT (4), Mid-size tech (11),

Startup (5), Consulting (2)

Company Location (28) North America (11), South America (1), Eu-

rope (5), Asia (10), Africa (1)

We transcribed and analyzed all interviews. Then, to map chal-

lenges to collaboration points, we created visualizations of orga-

nizational structure and responsibilities in each organization (we

show two examples in Figure 1) andmapped collaboration problems

mentioned in the interviews to collaboration points within these

visualizations. We used these visualizations to further organize our

data; in particular, we explored whether collaboration problems

associate with certain types of organizational structures.

Step 3: Triangulation with literature. As we gained insights

from interviews, we returned to the literature to identify related

discussions and possible solutions (even if not originally framed in

terms of collaboration) to triangulate our interview results. Relevant

literature spans multiple research communities and publication

venues, including machine learning, human-computer interaction,

software engineering, systems, and various application domains

(e.g., healthcare, finance), and does not always include obvious

keywords; simply searching for machine-learning research yields a

far too wide net. Hence, we decided against a systematic literature

review and pursued a best effort approach that relied on keyword

search for topics surfaced in the interviews, as well as backward

and forward snowballing. Out of over 300 papers read, we identified

61 as possibly relevant and coded them with the same evolving

codebook. The complete list can be found in our arXiv version [66].

Step 4: Validity check with interviewees. For checking fit and

applicability as defined by Corbin and Strauss [99] and validating

our findings, we went back to the interviewees after creating a full

draft of this paper. We presented the interviewees both a summary

and the full draft, including the supplementary material, along

with questions prompting them to look for correctness and areas

of agreement or disagreement (i.e., fit), and any insights gained

from reading about experiences of the other companies, roles, or

findings as a whole (i.e., applicability). Ten interviewees responded

with comments and all indicated general agreement, some explicitly

reaffirmed some findings. We incorporated two minor suggested

changes about details of two organizations.

Threats to validity and credibility. Our work exhibits the typ-

ical threats common and expected for this kind of qualitative re-

search. Generalizations beyond the sampled participant distribu-

tion should be made with care; for example, we interviewed few

managers, no dedicated data experts, and no clients. In several

organizations, we were only able to interview a single person, giv-

ing us a one-sided perspective. Observations may be different in

organizations in specific domains or geographic regions not well

represented in our data. Self-selection of participants may influ-

ence results; for example developers in government-related projects

more frequently declined interview requests. As described earlier,

we followed standard practices for coding and memoing, but, as

usual in qualitative research, we cannot entirely exclude biases

introduced by us researchers.

4 DIVERSITY OF ORG. STRUCTURES

Throughout our interviews, we found that the number and type

of teams that participate in ML-enabled system development dif-

fers widely, as do their composition and responsibilities, power

dynamics, and the formality of their collaborations, in line with

findings by Aho et al. [1]. To illustrate these differences, we provide

simplified descriptions of teams found in two organizations in Fig-

ure 1. We show teams and their members, as well as the artifacts for

which they are responsible, such as, who develops the model, who

builds a repeatable pipeline, who operates the model (inference),

who is responsible for or owns the data, and who is responsible

for the final product. A team often has multiple responsibilities and

interfaces with other teams at multiple collaboration points. Where

unambiguous, we refer to teams by their primary responsibility as

product team or model team.

Organization 3 (Figure 1, top) develops anML-enabled system for

a government client. The product (health domain), including an ML

model and multiple non-ML components, is developed by a single

8-person team. The team focuses on training a model first, before

building a product around it. Software engineering and data science

tasks are distributed within the team, where members cluster into

groups with different responsibilities and roughly equal negotiation

power. A single data scientist is part of this team, though they

feel somewhat isolated. Data is sourced from public sources. The

relationship between the client and development team is somewhat

distant and formal. The product is delivered as a service, but the

team only receives feedback when things go wrong.

Organization 7 (Figure 1, bottom) develops a product for in-house

use (quality control for a production process). A small team is devel-

oping and using the product, but model development is delegated

to an external team (different company) composed of four data sci-

entists, of which two have some software engineering background.

The product team interacts with the model team to define and revise

model requirements based on product requirements. The product

team provides confidential proprietary data for training. The model

team deploys the model and provides a ready-to-use inference API

to the product team. The relationship between the teams crosses

company boundaries and is rather distant and formal. The product

team clearly has the power in negotiations between the teams.

These two organizations differed alongmany dimensions, andwe

found no clear global patterns when looking across organizations.

Nonetheless patterns did emerge when focusing on three specific

collaboration aspects, as we will discuss in the next sections.

5 COLLABORATION POINT: REQUIREMENTS
AND PLANNING

In an idealized top-down process, one would first solicit product re-

quirements and then plan and design the product by dividing work
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into components (ML and non-ML), deriving each component’s re-

quirements/specifications from the product requirements. In this

process, collaboration is needed for: (1) product team needs to ne-

gotiate product requirements with clients and other stakeholders;

(2) product team needs to plan and design product decomposition,

negotiating with component teams the requirements for individ-

ual components; and (3) product project manager needs to plan

and manage the work across teams in terms of budgeting, effort

estimation, milestones, and work assignments.

5.1 Common Development Trajectories

Few organizations, if any, follow an idealized top-down process, and

it may not even be desirable, as we will discuss later. While we did

not find any global patterns for organizational structures (Sec. 4),

there are indeed distinct patterns relating to how organizations

elicit requirements and decompose their systems. Most importantly,

we see differences in terms of the order in which teams identify

product and model requirements:

Model-first trajectory: 13 of the 28 organizations (3, 10, 14ś17,

19, 20, 22, 23, 25ś27) focus on building the model first, and build

a product around the model later. In these organizations, product

requirements are usually shaped by model capabilities after the

(initial) model has been created, rather than being defined upfront.

In organizations with separate model and product teams, the model

team typically starts the project and the product team joins later

with low negotiating power to build a product around the model.

Product-first trajectory: In 13 organizations (1, 4, 5, 7ś9, 11ś

13, 18, 21, 24, 28), models are built later to support an existing

product. In these cases, a product often already exists and product

requirements are collected for how to extend the product with new

ML-supported functionality. Here, the model requirements are de-

rived from the product requirements and often include constraints

on model qualities, such as latency, memory and explainability.

Parallel trajectory: Two organizations (2, 6) follow no clear

temporal order; model and product teams work in parallel.

5.2 Product and Model Requirements

We found a constant tension between product and model require-

ments in our interviews. Functional and nonfunctional product

requirements set expectations for the entire product. Model re-

quirements set goals and constraints for the model team, such as

expected accuracy and latency, target domain, and available data.

Product requirements require input from the model team

(�,�). A common theme in the interviews is that it is difficult to

elicit product requirements without a good understanding of ML ca-

pabilities, which almost always requires involving the model team

and performing some initial modeling when eliciting product re-

quirements. Regardless of whether product requirements or model

requirements are elicited first, data scientists often mentioned being

faced with unrealistic expectations about model capabilities.

Participants that interact with clients to negotiate product re-

quirements (which may involve members of the model team) indi-

cate that they need to educate clients about capabilities of ML tech-

niques to set correct expectations (P3a, P6a, P6b, P7b, P9a, P10a, P15c,

P19b, P22b, P24a). This need to educate customers about ML capabil-

ities has also been raised in the literature [1, 17, 44, 49, 100, 103, 106].

For many organizations, especially in product-first trajectories,

the model team indicates similar challenges when interacting with

the product team. If the product team does not involve the model

team in negotiating product requirements, the product team may

not identify what data is needed for building the model, and may

commit to unrealistic requirements. For example, P26a shared łFor

this project, [the project manager] wanted to claim that we have no

false positives and I was like, that’s not gonna work.ž Members of

the model team often report lack of ML literacy in members of

the product team and project managers (P1b, P4a, P7a, P12a, P26a,

P27a) and a lack of involvement (e.g., P7b: łThe [product team]

decided what type of data would make sense. I had no say on that.ž ).

Usually the product team cannot identify product requirements

alone, instead product and model teams need to interact to explore

what is achievable.

In organizations with a model-first trajectory, members of the

model team sometimes engage directly with clients (and also report

having to educate them about ML capabilities). However, when

requirements elicitation is left to the model team, members tend to

focus on requirements relevant for the model, but neglect require-

ments for the product, such as expectations for usability, e.g., P3c’s

customers łwere kind of happy with the results, but weren’t happy

with the overall look and feel or how the system worked.ž Several re-

search papers similarly identified how the goals of data scientists di-

verge from product goals if product requirements are not obvious at

modeling time, leading to inefficient development, worse products,

or constant renegotiation of requirements, especially [67, 73, 112].

Model developmentwithunclearmodel requirements is com-

mon (p). Participants from model teams frequently explain how

they are expected to work independently, but are given sparse

model requirements. They try to infer intentions behind them, but

are constrained by having limited understanding of the product

that the model will eventually support (P3a, P3b, P16b, P17b, P19a).

Model teams often start with vague goals and model requirements

evolve over time as product teams or clients refine their expec-

tations in response to provided models (P3b, P7a, P9a, P5b, P19b,

P21a). Especially in organizations following the model-first trajec-

tory, model teams may receive some data and a goal to predict

something with high accuracy, but no further context, e.g., P3a

shared łthere isn’t always an actual spec of exactly what data they

have, what data they think they’re going to have and what they want

the model to do.ž Several papers similarly report projects starting

with vague model goals [50, 77, 83, 111].

Even in organizations following a product-first trajectory, product

requirements are often not translated into clear model requirements.

For example, participant P17b reports how the model team was

not clear about the model’s intended target domain, thus could

not decide what data was considered in scope. As a consequence,

model teams usually cannot focus just on their component, but have

to understand the entire product to identify model requirements

in the context of the product (P3a, P10a, P13a, P17a, P17b, P19b,

P20b, P23a), requiring interactions with the product team or even

bypassing the product team to talk directly to clients. The difficulty

of providing clear requirements for an ML model has also been

raised in the literature [49, 55, 80, 92, 104, 111], partially arguing

that uncertainty makes it difficult to specify model requirements
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upfront [1, 44, 50, 69, 106]. Ashemore et al. report mapping product

requirements to model requirements as an open challenge [10].

Providedmodel requirements rarely go beyond accuracy and

data security (3, p). Requirements given to model teams pri-

marily relate to some notion of accuracy. Beyond accuracy, require-

ments for data security and privacy are common, typically imposed

by the data owner or by legal requirements (P5a, P7a, P9a, P13a,

P14a, P18a, P20a-b, P21a-b, P22a, P23a, P24a, P25a, P26a). Literature

also frequently discusses how privacy requirements impact and

restrict ML work [15, 41, 43, 55, 56, 78].

We rarely heard of any qualities other than accuracy. Some par-

ticipants report that ignoring qualities such as latency or scalability

has resulted in integration and operation problems (P3c, P11a). In a

few cases requirements for inference latency were provided (P1a,

P6a, P14a) and in one case hardware resources provided constraints

on memory usage (P14a), but no other qualities such as training

latency, model size, fairness, or explainability were required that

could be important for product integration and deployment.

When prompted, very few of our interviewees report consider-

ations for fairness either at the product or the model level. Only

two participants from model teams (P14a, P22a) reported receiving

fairness requirements, whereas many others explicitly mentioned

that fairness is not a concern for them yet (P4a, P5b, P6b, P11a, P15c,

P20a, P21b, P25a, P26a). The lack of fairness and explainability re-

quirements is in stark contrast to the emphasis that these qualities

receive in the literature [e.g., 7, 15, 25, 39, 40, 57, 89, 92, 109, 114].

Recommendations. Our observations suggest that involving data

scientists early when soliciting product requirements is important

(�) and that pursuing a model-first trajectory entirely without

considering product requirements is problematic (�). Conversely,

model requirements are rarely specific enough to allow data scien-

tists to work in isolation without knowing the broader context of

the system and interaction with the product team should ideally

be planned as part of the process. Requirements form a key col-

laboration point between product and model teams, which should

be emphasized even in more distant collaboration styles (e.g., out-

sourced model development). The few organizations that use the

parallel trajectory report fewer problems by involving data scien-

tists in negotiating product requirements to discard unrealistic ones

early on (P6b). Vogelsang and Borg also provide similar recommen-

dations to consult data scientists from the beginning to help elicit

requirements [103]. While many papers place emphasis on clearly

defining ML use cases and scope [49, 93, 100], several others men-

tion how collaboration of technical and non-technical stakeholders

such as domain experts helps [73, 89, 104, 106].

ML literacy for customers and product teams appears to be im-

portant (�). P22a and P19a suggested conducting technical ML

training sessions to educate clients; similar training is also useful

for members of product teams. Several papers argue for similar

training for non-technical users of ML products [44, 89, 103].

Most organizations elicit requirements only rather informally

and rarely have good documentation, especially when it comes

to model requirements. It seems beneficial to adopt more formal

requirements documentation for product and model (p), as several

participants reported that it fosters shared understanding at this

collaboration point (P11a, P13a, P19b, P22a, P22c, P24a, P25a, P26a).

Checklists could help to cover a broader range of model quality

requirements, such as training latency, fairness, and explainability.

Formalisms such as model cards [64] and FactSheets [8] could be

used as a starting point for documenting model requirements.

5.3 Project Planning

ML uncertainty makes effort estimation difficult (�). Irre-

spective of trajectory, 19 participants (P3a, P4a, P7a-b, P8a, P14b,

P15b-c, P16a, P17a, P18a, P19a-b, P20a, P22a-c, P23a, P25a) men-

tioned that the uncertainty associated with ML components makes

it difficult to estimate the timeline for developing an ML compo-

nent and by extension the product. Model development is typically

seen as a science-like activity, where iterative experimentation and

exploration is needed to identify whether and how a problem can

be solved, rather than as an engineering activity that follows a

somewhat predictable process. This science-like nature makes it

difficult for the model team to set expectations or contracts with

clients or the product team regarding effort, cost, or accuracy. While

data scientists find effort estimation difficult, lack of ML literacy

in managers makes it worse (P15b, P16a, P19b, P20a, P22b). Teams

report deploying subpar models when running out of time (P3a,

P15b, P19a), or postponing or even canceling deployments (P25a).

These findings align with literature mentioning difficulties associ-

ated with effort estimation for ML tasks [1, 9, 61, 106] and planning

projects in a structured manner with diverse methodologies, with

diverse trajectories, and without practical guidance [1, 17, 61, 106].

Generally, participants frequently report that synchronization

between teams is challenging because of different team pace, differ-

ent development processes, and tangled responsibilities (P2a, P11a,

P12a, P14-b, P15b-c, P19a; see also Sec. 7.2).

Recommendations. Participants suggested several mitigation

strategies: keeping extra buffer times and adding additional time-

boxes for R&D in initial phases (P8a, P19a, P22b-c, P23a;�), contin-

uously involving clients in every phase so that they can understand

the progression of the project and be aware of potential missed

deadlines (P6b, P7a, P22a, P23a;�). From the interviews, we also

observe the benefits of managers who understand both software

engineering and machine learning and can align product and model

teams toward common goals (P2a, P6a, P8a, P28a;�).

6 COLLABORATION POINT: TRAINING DATA

Data is essential for machine learning, but disagreements and frus-

trations around training data were the most common collaboration

challenges mentioned in our interviews. In most organizations, the

team that is responsible for building the model is not the team that

collects, owns, and understands the data, making data a key collab-

oration point between teams in ML-enabled systems development.

6.1 Common Organizational Structures

We observed three patterns around data that influence collaboration

challenges from the perspective of the model team:

Provided data: The product team

has the responsibility of providing data

to the model team (org. 6ś8, 13, 18, 21,

23). The product team is the initial point
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of contact for all data-related questions from the model team. The

product team may own the data or acquire it from a separate data

team (internal or external). Coordination regarding data tends to

be distant and formal, and the product team tends to hold more

negotiation power.

External data: The product team

does not have direct responsibility for

providing data, but instead, the model

team relies on external data providers.

Commonly, the model team (i) uses publicly available resources

(e.g., academic datasets, org. 2ś4, 6, 19) or (ii) hires a third party for

collecting or labeling data (org. 9, 15ś17, 22, 23). In the former case,

the model team has little to no negotiation power over data; in the

latter, it can set expectations.

In-house data: Product, model, and

data teams are all part of the same or-

ganization and the model team relies

on internal data from that organization

(org. 1, 5, 9ś12, 14, 20, 24ś28). In these cases, both product and

model teams often find it challenging to negotiate access to internal

data due to differing priorities, internal politics, permissions, and

security constraints.

6.2 Negotiating Data Quality and Quantity

Disagreements and frustrations around training data were the most

common collaboration challenges in our interviews. In almost ev-

ery project, data scientists were unsatisfied with the quality and

quantity of data they received at this collaboration point, in line

with a recent survey showing data availability and management to

be the top-ranked challenge in building ML-enabled systems [5].

Provided and public data is often inadequate (p, �). In or-

ganizations where data is provided by the product team, the model

team commonly states that it is difficult to get sufficient data (P7a,

P8a, P13a, P22a, P22c). The data that they receive is often of low

quality, requiring significant investment in data cleaning. Similar to

the requirements challenges discussed earlier, they often state that

the product team has little knowledge or intuition for the amount

and quality of data needed. For example, participant P13a stated

that they were given a spreadsheet with only 50 rows to build a

model and P7a reported having to spend a lot of time convincing

the product team of the importance of data quality. This aligns with

past observations that software engineers often have little appreci-

ation for data quality concerns [49, 54, 65, 77, 84] and that training

data is often insufficient and incomplete [6, 43, 56, 77, 83, 93, 106].

When the model team uses public data sources, its members

also have little influence over data quality and quantity and report

significant effort for cleaning low quality and noisy data (P2a, P3a,

P4a, P3c, P6b, P19b, P23a). Papers have similarly questioned the

representativeness and trustworthiness of public training data [34,

103, 109] as łnobody gets paid to maintain such dataž [104].

Training-serving skew is a common challenge when training data

is provided to the model team: models show promising results,

but do not generalize to production data because it differs from

provided training data (P4a, P8a, P13a, P15a, P15c, P21a, P22c, P23a)

[9, 23, 55, 56, 77ś79, 84, 100, 109, 116]. Our interviews show that

this skew often originates from inadequate training data combined

with unclear information about production data, and therefore no

chance to evaluate whether the training data is representative of

production data.

Data understanding and access to domain experts is a bottle-

neck (p,�). Existing data documentation (e.g, data item defini-

tions, semantics, schema) is almost never sufficient for model teams

to understand the data (also mentioned in a prior study [46]). In

the absence of clear documentation, team members often collect

information and keep track of unwritten details in their heads (P5a),

known as institutional or tribal knowledge [5, 40]. Data understand-

ing and debugging often involve members from different teams and

thus cause challenges at this collaboration point.

Model teams receiving data from the product team report strug-

gling with data understanding and having a difficult time getting

help from the product team (or the data team that the product team

works with) (P8a, P7b, P13a). As the model team does not have

direct communication with the data team, data understanding is-

sues often cannot be resolved effectively. For example, P13a reports

łIdeally, for us it would be so good to spend maybe a week or two with

one person continuously trying to understand the data. It’s one of

the biggest problems actually, because even if you have the person,

if you’re not in contact all the time, then you misinterpreted some

things and you build on it.ž The low negotiation power of the model

team in these organizations hinders access to domain experts.

Model teams using public data similarly struggle with data un-

derstanding and getting help (P3a, P4a, P19a), relying on sparse

data documentation or trying to reach any experts on the data.

For in-house projects, in several organizations the model team

relies on data in shared databases (org. 5, 11, 26, 27, 28), collected by

instrumenting a production system, but shared by multiple teams.

Several teams shared problems with evolving and often poorly

documented data sources, as participant P5a illustrates ł[data rows]

can have 4,000 features, 10,000 features. And no one really cares.

They just dump features there. [...] I just cannot track 10,000 features.ž

Model teams face challenges in understanding data and identifying

a team that can help (P5a, P25a, P20b, P27a), a problem also reported

in a prior study about data scientists at Microsoft [49].

Challenges in understanding data and needing domain experts

are also frequently mentioned in the literature [13, 40, 41, 46, 49,

65, 77, 84], as is the danger of building models with insufficient

understanding of the data [34, 103]. Although we are not aware of

literature discussing the challenges of accessing domain experts,

papers have shown that even when data scientists have access,

effective knowledge transfer is challenging [71, 91].

Ambiguitywhen hiring a data team (p). When the model team

hires an external data team for collecting or labelling data (org. 9,

15, 16, 17, 22, 23), the model team has much more negotiation

power over setting data quality and quantity expectations (though

Kim et al. report that model teams may have difficulty getting

buy-in from the product team for hiring a data team in the first

place [49]). Our interviews did not surface the same frustrations as

with provided data and public data, but instead participants from

these organizations reported communication vagueness and hidden

assumptions as key challenges at this collaboration point (P9a, P15a,

P15c, P16a, P17b, P22a, P22c, P23a). For example, P9a related how
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different labelling companies given the same specification widely

disagreed on labels, when the specification was not clear enough.

We found that expectations between model and data teams are

often communicated verbally without clear documentation. As

a result, the data team often does not have sufficient context to

understand what data is needed. For example, participant P17b

states łData collectors can’t understand the data requirements all the

time. Because, when a questionnaire [for data collection] is designed,

the overview of the project is not always described to them. Even

if we describe it, they can’t always catch it.ž Reports about low

quality data from hired data teams have been also discussed in the

literature [10, 43, 55, 84, 103, 106].

Need to handle evolving data (3, �). In most projects, mod-

els need to be regularly retrained with more data or adapted to

changes in the environment (e.g., data drift) [42, 55, 84], which is a

challenge for many model teams (P3a, P3c, P5a, P7a-b, P11a, P15c,

P18a, P19b, P22a). When product teams provide the data, they often

have a static view and provide only a single snapshot of data rather

than preparing for updates, and model teams with their limited

negotiation power have a difficult time fostering a more dynamic

mindset (P7a-b, P15c, P18a, P22a), as expressed by participant P15c:

łPeople don’t understand that for a machine learning project, data

has to be provided constantly.ž It can be challenging for a model

team to convince the product team to invest in continuous model

maintenance and evolution (P7a, P15c) [46].

Conversely, if data is provided continuously (most commonly

with public data sources, in-house sources, and own data teams),

model teams struggle with ensuring consistency over time. Data

sources can suddenly change without announcement (e.g., changes

to schema, distributions, semantics), surprising model teams that

make but do not check assumptions about the data (P3a, P3c, P19b).

For example, participants P5a and P11a report similar challenges

with in-house data, where their low negotiation power does not

allow them to set quality expectations, but they face undesired and

unannounced changes in data sources made by other teams. Most

organizations do not have a monitoring infrastructure to detect

changes in data quality or quantity, as we will discuss in Sec. 7.3.

In-house priorities and security concerns often obstruct data

access (�). In in-house projects, we frequently heard about the

product or model team struggling to work with another teamwithin

the same organization that owns the data. Often, these in-house

projects are local initiatives (e.g., logistics optimization) with more

or less buy-in from management and without buy-in from other

teams that have their own priorities; sometimes other teams explic-

itly question the business value of the product. The interviewed

model teams usually have little negotiation power to request data

(especially if it involves collecting additional data) and almost never

get an agreement to continuously receive data in a certain format,

quality, or quantity (P5a, P10a, P11a, P20a-b, P27a) (also observed in

studies at Microsoft, ING and other organizations [34, 49, 65]). For

example, P10a shared łwe wanted to ask the data warehouse team to

[provide data], and it was really hard to get resources. They wouldn’t

do that because it was hard to measure the impact [our in-house

project] had on the bottom line of the business.ž Model teams in these

settings tend to work with whatever data they can get eventually.

Security and privacy concerns can also limit access to data (P7a,

P7b, P21a-b, P22a, P24a) [46, 55, 56, 65, 77], especially when data

is owned by a team in a different organization, causing frustra-

tion, lengthy negotiations, and sometimes expensive data-handling

restrictions (e.g., no use of cloud resources) for model teams.

Recommendations. Data quality and quantity is important to

model teams, yet they often find themselves in a position of low

negotiation power, leading to frustration and collaboration ineffi-

ciencies. Model teams that have the freedom to set expectations and

hire their own data teams are noticeably more satisfied. When plan-

ning the entire product, it seems important to pay special attention

to this collaboration point, and budget for data collection, access

to domain experts, or even a dedicated data team (�). Explicitly

planning to provide substantial access to domain experts early in

the project was suggested as important (P25a).

We found it surprising that despite the importance of this col-

laboration point there is little written agreement on expectations

and often limited documentation (p), even when hiring a dedi-

cated data teamÐin stark contrast to more established contracts for

traditional software components. Not all organizations allow the

more agile, constant close collaboration between model and data

teams that some suggest [77, 79]. With a more formal or distant

relationship (e.g., across organizations, teams without buy-in), it

seems beneficial to adopt a more formal contract, specifying data

quantity and quality expectations, which are well researched in

the database literature [58] and have been repeatedly discussed

in the context of ML-enabled systems [43, 46, 49, 56, 91]. This has

also been framed as data requirements in the software engineering

literature [83, 100, 103]. When working with a dedicated data team,

participants suggested to invest in making expectations very clear,

for example, by providing precise specifications and guidelines (P9a,

P6b, P28a), running training sessions for the data collectors and

annotators (P17b, P22c), and measuring inter-rater agreement (P6b).

Automated checks are also important as data evolves (3). For

example, participant P13a mentioned proactively setting up data

monitoring to detect problems (e.g., schema violations, distribution

shifts) at this collaboration point; a practice suggested also in the

literature [53, 56, 77, 79, 84, 89, 100] and supported by recent tooling

[e.g., 47, 79, 86]. The risks regarding possible unnoticed changes to

data make it important to consider data validation and monitoring

infrastructure as a key feature of the product early on (3,�), as

also emphasized by several participants (P5a, P25a, P26a, P28a).

7 COLLABORATION POINT:
PRODUCT-MODEL INTEGRATION

As discussed earlier, to build an ML-enabled system both ML com-

ponents and traditional non-ML components need to be integrated

and deployed, requiring data scientists and software engineers to

work together, typically across multiple teams. We found many con-

flicts at this collaboration point, stemming from unclear processes

and responsibilities, as well as differing practices and expectations.

7.1 Common Organizational Structures

We saw large differences among organizations in how engineering

responsibilities were assigned, most visible in how responsibility

for model deployment and operation is assigned, which typically
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involves significant engineering effort for building reproducible

pipelines, API design, or cloud deployment, often with MLOps

technologies. We found the following patterns:

Shared model code: In

some organizations (2, 6, 23,

25), the model team is respon-

sible only for model develop-

ment and delivers training code (e.g., in a notebook) or model

files to the product team; the product team takes responsibility

for deployment and operation of the model, possibly rewriting the

training code as a pipeline. Here, the model team has little or no

engineering responsibilities.

Model as API: In most organi-

zations (18 out of 28), the model

team is responsible for developing

and deploying the model. Hence,

the model team requires substantial engineering skills in addition

to data science expertise. Here, some model teams are mostly com-

posed of data scientists with little engineering capabilities (org. 7,

13, 17, 22, 26), some consist mostly of software engineers who have

picked up some data science knowledge (org. 4, 15, 16, 18, 19, 21,

24), and others have mixed team members (org. 1, 9, 11, 12, 14, 28).

These model teams typically provide an API to the product team,

or release individual model predictions (e.g., shared files, email; org.

17, 19, 22) or install models directly on servers (org. 4, 9, 12).

All-in-one: If only few people

work on model and product, some-

times a single team (or even a sin-

gle person) shares all responsibilities

(org. 3, 5, 10, 20, 27). It can be a small team with only data scientists

(org. 10, 20, 27) or mixed teams with data scientists and software

engineers (org. 3, 5).

We also observed two outliers: One startup (org. 8) had a distinct

model deployment team, allowing the model team to focus on

data science without much engineering responsibility. In one large

organization (org. 28), an engineering-focused model team (model

as API) was supported by a dedicated research team focused on

data-science research with fewer engineering responsibilities.

7.2 Responsibility and Culture Clashes

Interdisciplinary collaboration is challenging (cf. Sec. 2). We ob-

served many conflicts between data science and software engineer-

ing culture, made worse by unclear responsibilities and boundaries.

Team responsibilities often do not match capabilities and

preferences (3). When the model team has responsibilities re-

quiring substantial engineering work, we observed some dissatis-

faction when its members were assigned undesired responsibilities.

Data scientists preferred engineering support rather than needing

to do everything themselves (P7a-b, 13a), but can find it hard to

convince management to hire engineers (P10a, P20a, P20b). For

example P10a describes łI was struggling to change the mindset of

the team lead, convincing him to hire an engineer...I just didn’t want

this to be my main responsibility.ž Especially in small teams, data

scientists report struggling with the complexity of the typical ML

infrastructure (P7b, P9a, P14a, P26a, P28a).

In contrast, when deployment is the responsibility of software

engineers in the product team or of dedicated engineers in all-in-

one teams, some of those engineers report problems integrating

the models due to insufficient knowledge on model context or do-

main, and the model code not being packaged well for deployment

(P20b, P23a, P27a). In several organizations, we heard about soft-

ware engineers performing ML tasks without having enough ML

understanding (P5a, P15b-c, P16b, 18b, 19b, 20b). Mirroring obser-

vations from past research [111], P5a reports łthere are people who

are ML engineers at [company] , but they don’t really understand

ML. They were actually software engineers... they don’t understand

[overfitting, underfitting, ...]. They just copy-paste code.ž

Siloing data scientists fosters integration problems (�, �).

We observed data scientists often working in isolationÐknown as

siloingÐin all types of organizational structures, even within single

small teams (see Sec. 4) and within engineering-focused teams.

In such settings, data scientists often work in isolation with weak

requirements (cf. Sec. 5.2) without understanding the larger context,

seriously engaging with others only during integration (P3a, P3c,

P6a, P7b, P11a, P13a, P15b, P25a) [41], where problems may surface.

For example, participant P11a reported a problem where product

and model teams had different assumptions about the expected

inputs and the issue could only be identified after a lot of back and

forth between teams at a late stage in the project.

Technical jargon challenges communication (�). Participants

frequently described communication issues arising from differing

terminology used by members from different backgrounds (P1a-b,

P2a, P3a, P5b, P8a, P12a, P14a-b, P16a, P17a-b, P18a-b, P20a, P22b,

P23a), leading to ambiguity, misunderstandings, and inconsistent

assumptions (on top of communication challenges with domain

experts) [1, 46, 76, 104]. P1b reports, łThere are a lot of conversations

in which disambiguation becomes necessary. We often use different

kinds of words that might be ambiguous.ž For example, data scien-

tists may refer to prediction accuracy as performance, a term many

software engineers associate with response time. These challenges

can be observed more frequently between teams, but they even

occur within a team with members from different backgrounds

(P3a-c, P20a).

Code quality, documentation, and versioning expectations

differ widely and cause conflicts (�, 3). Many participants

reported conflicts around development practices between data sci-

entists and software engineers during integration and deployment.

Participants report poor practices that may also be observed in

traditional software projects; but particularly software engineers

expressed frustration in interviews that data scientists do not follow

the same development practices or have the same quality standards

when it comes to writing code. Reported problems relate to poor

code quality (P1b, P2a, P3b, P5a, P6a-b, P10a, P11a, P14a, P15b-c,

P17a, P18a, P19a, P20a-b, P26a) [9, 27, 34, 37, 75, 87, 106], insufficient

documentation (P5a-b, P6a-b, P10a, P15c, P26a) [8, 46, 64, 114], and

not extending version control to data and models (P3c, P7a, P10a,

P14a, P20b). In two shared-model-code organizations, participants

report having to rewrite code from the data scientists (P2a, P6a-b).

Missing documentation for ML code and models is considered the

cause for different assumptions that lead to incompatibility between

ML and non-ML components (P10a) and for losing knowledge and
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even the model when faced with turnover (P6a-b). Recent papers

similarly hold poor documentation responsible for team decisions

becoming invisible and inadvertently causing hidden assumptions

[34, 40, 43, 46, 76, 114]. Hopkins and Booth called model and data

versioning in small companies as desired but łelusivež [40].

Recommendations. Many conflicts relate to boundaries of re-

sponsibility (especially for engineering responsibilities) and to dif-

ferent expectations by team members with different backgrounds.

Better teams tend to define processes, responsibilities, and bound-

aries more carefully (�), document APIs at collaboration points

between teams (p), and recruit dedicated engineering support for

model deployment (3), but also establish a team culture with mu-

tual understanding and exchange (�). Big tech companies usually

have more established processes and clearer responsibility assign-

ments than smaller organizations and startups that often follow

ad-hoc processes or figure out responsibilities as they go.

The need for engineering skills for ML projects has frequently

been discussed [5, 67, 87, 90, 96, 112, 116], but our interviewees

differ widely in whether all data scientists should have substantial

engineering responsibilities or whether engineers should support

data scientists so that they can focus on their core expertise (3).

Especially interviewees from big tech emphasized that they expect

engineering skills from all data science hires (P28a). Others empha-

sized that recruiting software engineers and operations staff with

basic data-science knowledge can help at many communication

and integration tasks, such as converting experimental ML code

for deployment (P2a, P3b), fostering communication (P3c, P25a),

and monitoring models in production (P5b). Generally, siloing data

scientists is widely recognized as problematic and many intervie-

wees suggest practices for improving communication (�), such as

training sessions for establishing common terminology (P11a, P17a,

P22a, P22c, P23a), weekly all-hands meetings to present all tasks

and synchronize (P2a, P3c, P6b, P11a), and proactive communica-

tion to broadcast upcoming changes in data or infrastructure (P11a,

P14a, P14b). This mirrors suggestions to invest in interdisciplinary

training [5, 48, 49, 69, 76, 112] and proactive communication [54].

7.3 Quality Assurance for Model and Product

During development and integration, questions of responsibility

for quality assurance frequently arise, often requiring coordination

and collaboration between multiple teams. This includes evaluating

components individually (including the model) as well as their

integration and the whole system, often including evaluating and

monitoring the system online (in production).

Model adequacy goals are difficult to establish (p, �). Off-

line accuracy evaluation of models is almost always performed by

the model team responsible for building the model, though often

they have difficulty deciding locally when the model is good enough

(P1a, P3a, P5a, P6a, P7a, P15b, P16b, P23a) [34, 44]. As discussed

in Sec. 5 and Sec. 6, model team members often receive little guid-

ance on model adequacy criteria and are unsure about the actual

distribution of production data. They also voice concerns about

establishing ground truth, for example, needing to support data

for different clients, and hence not being able to establish (offline)

measures for model quality (P1b, P16b, P18a, P28a). As quality re-

quirements beyond accuracy are rarely provided for models, model

teams usually do not feel responsible for testing latency, memory

consumption, or fairness (P2a, P3c, P4a, P5a, P6b, P7a, P14a, P15b,

P20b). Whereas literature discussed challenges in measuring busi-

ness impact of a model [10, 14, 43, 49] and balancing business goals

with model goals [73], interviewed data scientists were concerned

about this only with regards to convincing clients, managers or

product teams to provide resources (P7a-b, P10a, P26a, P27a).

Limited confidence without transparent model evaluation

(p). Participants in several organizations report that model teams

do not prioritize model evaluation and have no systematic evalua-

tion strategy (especially if they do not have established adequacy

criteria they try to meet), performing occasional ład-hoc inspec-

tionsž instead (P2a, P15b, P16b, P18b, P19b, P20b, P21b, P22a, P22b).

Without transparency about their test processes and test results,

other teams voiced reduced confidence in the model, leading to

skepticism to adopt the model (P7a, P10a, P21b, P22a).

Unclear responsibilities for system testing (�). Teams often

struggle with testing the entire product after integrating ML and

non-ML components. Model teams frequently explicitly mentioned

that they assume no responsibility for product quality (including

integration testing and testing in production) and have not been

involved in planning for system testing, but that their responsibili-

ties end with delivering a model evaluated for accuracy (P3a, P14a,

P15b, P25a, P26a). However, in several organizations, product teams

also did not plan for testing the entire system with the model(s)

and, at most, conducted system testing in an ad-hoc way (P2a, P6a,

P16a, P18a, P22a). Recent literature has reported a similar lack of

focus on system testing in product teams [13, 114], mirroring also

a focus in academic research on testing models rather than testing

the entire system [10, 20]. Interestingly, some established software

development organizations delegated testing to an existing separate

quality assurance team with no process or experience testing ML

products (P2a, P8a, P16a, P18b, P19a).

Planning for online testing and monitoring is rare (�, 3,

�). Due to possible training-serving skew and data drift, literature

emphasizes the need for online evaluation [4, 10, 13, 14, 23, 42, 44,

47, 51, 65, 87, 88, 90, 103]. With collected telemetry, one can usually

approximate both product and model quality, monitor updates,

and experiment in production [14]. Online testing usually requires

coordination among multiple teams responsible for product, model,

and operation. We observed that most organizations do not perform

monitoring or online testing, as it is considered difficult, in addition

to lack of standard process, automation, or even test awareness

(P2a, P3a, P3b, P4a, P6b, P7a, P10a, P15b, P16b, P18b, P19b, 25a,

P27a). Only 11 out of 28 organizations collected any telemetry; it is

most established in big tech organizations. When to retrain models

is often decided based on intuition or manual inspection, though

many aspire to more automation (P1a, P3a, P3c, P5a, P10a, P22a,

P25a, P27a). Responsibilities around online evaluation are often

neither planned nor assigned upfront as part of the project.

Most model teams are aware of possible data drift, but many do

not have any monitoring infrastructure for detecting and managing

drift in production. If telemetry is collected, it is the responsibility

of the product or operations team and it is not always accessible to

the model team. Four participants report that they rely on manual

feedback about problems from the product team (P1a, P3a, P4a,
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P10a). At the same time, others report that product and operation

teams do not necessarily have sufficient data science knowledge to

provide meaningful feedback (P3a, P3b, P5b, P18b, P22a) [82].

Recommendations. Quality assurance involves multiple teams

and benefits from explicit planning and making it a high priority

(�). While the product team should likely take responsibility for

product quality and system testing, such testing often involves build-

ing monitoring and experimentation infrastructure (3), which re-

quires planning and coordination with teams responsible for model

development, deployment, and operation (if separate) to identify

the right measures. Model teams benefit from receiving feedback

on their model from production systems, but such support needs

to be planned explicitly, with corresponding engineering effort as-

signed and budgeted, even in organizations following a model-first

trajectory. We suspect that education about benefits of testing in

production and common infrastructure (often under the label Dev-

Ops/MLOps [59]) can increase buy-in from all involved teams (�).

Organizations that have established monitoring and experimenta-

tion infrastructure strongly endorse it (P5a, P25a, P26a, P28a).

Defining clear quality requirements for model and product can

help all teams to focus their quality assurance activities (cf. Sec. 5;

p). Even when it is challenging to define adequacy criteria upfront,

teams can together develop a quality assurance plan for model and

product. Participants and literature emphasized the importance of

human feedback to evaluate model predictions (P11a, P14a) [88],

which requires planning to collect such feedback (�). System and

usability testing may similarly require planning for user studies

with prototypes and shadow deployment [89, 100, 109].

8 DISCUSSION AND CONCLUSIONS

Through our interviews we identified three central collaboration

points where organizations building ML-enabled systems face sub-

stantial challenges: (1) requirements and project planning, (2) train-

ing data, and (3) product-model integration. Other collaboration

points surfaced, but were mentioned far less frequently (e.g., inter-

action with legal experts and operators), did not relate to problems

between multiple disciplines (e.g., data scientists documenting their

work for other data scientists), or mirrored conventional collabora-

tion in software projects (e.g., many interviewees wanted to talk

about unstable ML libraries and challenges interacting with teams

building and maintaining such libraries, though the challenges

largely mirrored those of library evolution generally [16, 31]).

Data scientists and software engineers are certainly not the first

to realize that interdisciplinary collaborations are challenging and

fraught with communication and cultural problems [21], yet it

seems that many organizations building ML-enabled systems pay

little attention to fostering better interdisciplinary collaboration.

Organizations differ widely in their structures and practices, and

some organizations have found strategies that work for them (see

recommendation sections). Yet, we find that most organizations do

not deliberately plan their structures and practices and have little

insight into available choices and their tradeoffs. We hope that this

work can (1) encourage more deliberation about organization and

process at key collaboration points, and (2) serve as a starting point

for cataloging and promoting best practices.

Beyond the specific challenges discussed throughout this paper,

we see four broad themes that benefit from more attention both in

engineering practice and in research:

�Communication:Many issues are rooted in miscommunica-

tion between participants with different backgrounds. To facilitate

interdisciplinary collaboration, education is key, including ML liter-

acy for software engineers and managers (and even customers) but

also training data scientists to understand software engineering

concerns. The idea of T-shaped professionals [102] (deep expertise

in one area, broad knowledge of others) can provide guidance for

hiring and training.

pDocumentation:Clearly documenting expectations between

teams is important. Traditional interface documentation familiar

to software engineers may be a starting point, but practices for

documenting model requirements (Sec. 5.2), data expectations (Sec.

6.2), and assured model qualities (Sec. 7.3) are not well established.

Recent suggestions like model cards [64], and FactSheets [8] are

a good starting point for encouraging better, more standardized

documentation of ML components. Given the interdisciplinary na-

ture at these collaboration points, such documentation must be

understood by all involved ś theories of boundary objects [2] may

help to develop better interface description mechanisms.

3 Engineering: With attention focused on ML innovations,

many organizations seem to underestimate the engineering ef-

fort required to turn a model into a product to be operated and

maintained reliably. Arguably adopting machine learning increases

software complexity [48, 69, 87] and makes engineering practices

such as data quality checks, deployment automation, and testing in

production even more important. Project managers should ensure

that the ML and the non-ML parts of the project have sufficient

engineering capabilities and foster product and operations thinking

from the start.

� Process: Finally, machine learning with its more science-like

process challenges traditional software process life cycles. It seems

clear that product requirements cannot be established without in-

volving data scientists for model prototyping, and often it may

be advisable to adopt a model-first trajectory to reduce risk. But

while a focus on the product and overall process may cause delays,

neglecting it entirely invites the kind of problems reported by our

participants. Whether it may look more like the spiral model or

agile [22], more research into integrated process life cycles for ML-

enabled systems (covering software engineering and data science)

is needed.
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