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Abstract—This paper treats the problem of optimal resource allocation

over time in a finite-horizon setting, in which the resource become

available only sequentially and in incremental values and the utility

function is concave and can freely vary over time. Such resource allocation

problems have direct applications in data communication networks (e.g.,

energy harvesting systems). This problem is studied extensively for special

choices of the concave utility function (time-invariant and logarithmic) in

which case the optimal resource allocation policies are well-understood.

This paper treats this problem in its general form and analytically

characterizes the structure of the optimal resource allocation policy,

and devises an algorithm for computing the exact solutions analytically.

An observation instrumental to devising the provided algorithm is

that there exist time instances at which the available resources are

exhausted, with no carry-over to future. This algorithm identifies all such

instances, which in turn facilitates breaking the original problem into

multiple problems with significantly reduced dimensions. Furthermore,

some widely-used special cases in which the algorithm takes simpler

structures are characterized, and the application to the energy harvesting

systems is discussed. Numerical evaluations are provided to assess the key

properties of the optimal resource allocation structure and to compare

the performance with the generic convex optimization algorithms.

I. INTRODUCTION

Consider a resource allocation problem over a finite time horizon

T ∈ N. The resource is made available for utilization sequentially

over time and in increments. Such resource allocation models mani-

fest in a wide range of power allocation and scheduling objectives in

communication systems. For instance, in energy harvesting networks

the transmitters rely partly or entirely on ambient sources in their

surrounding environments. In such systems, the energy resources are

available only sequentially and incrementally over time as they are

harvested. Similarly, the packet transmission systems under stringent

quality-of-service (QoS) constraints constitute another class of re-

source allocation problems in which the data packets to be transmitted

arrive sequentially over time at the transmitter, while all the arriving

information packets are required to be delivered to their destination

by a given deadline or by using a given amount of energy.

In a time-slotted setting, we denote the incremental amount of

resource made available during time slot t ∈ {1, . . . , T} by st ∈ R
+,

and denote the actual amount of resource utilized during time slot

t ∈ {1, . . . , T} by xt ∈ R
+. The resource is assumed to be used

only causally, leading to the following set of T resource utilization

constraints:

t
∑

i=1

xi ≤
t

∑

i=1

si , ∀t ∈ {1, . . . , T} . (1)

Accordingly, we denote the resource vector by s

△

= [s1, . . . , sT ]

and denote the vector of utilized resource over time by x

△

=
[x1, . . . , xT ]. Also, we define the utility function ft : R+ → R

+

as the measure of the contribution of the amount of resource utilized
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during time slot t ∈ {1, . . . , T}, i.e., xt. We assume that all functions

{ft : t ∈ {1, . . . , T}} are differentiable, non-decreasing, and strictly

concave, and denote the aggregate utility gleaned over the entire time

horizon by F (x)
△

=
∑T

t=1
ft(xt). Based on these definitions,

the resource allocation problem under the sequential access to the

resource over a finite time-horizon can be formalized as

P(s)
△

=















max
x

F (x)

s.t.
t
∑

i=1

xi ≤
t
∑

i=1

si , ∀t ∈ {1, . . . , T}
x � 0

. (2)

The problem in (2), in its special cases with some constraints relaxed,

subsumes an extensive body of well-understood problems, e.g., power

allocation in parallel channels [1] and power allocation in single-user

multi-antenna channels [2] when {si = 0 : i ∈ {1, . . . , T − 1}}.

In this paper, we leverage the structure of the convex optimization

problem formalized in (2) and provide the optimal closed-form

solution for the general form analytically.

A. Motivation and Related Work

In this subsection, we provide a more detailed overview of two

classes of communication systems and their existing relevant liter-

ature in which resource allocation objectives can be formalized as

problem P(s) defined in (2).

Energy Harvesting Communication Systems: These systems, in

which the transmitters rely partly or entirely on ambient sources in

their surrounding environments, represent one class of such commu-

nication systems in which the resource is available only sequentially.

Energy harvesting networks empowered by perpetual sources of

power, are especially promising alternatives to systems with lifetime-

limited batteries. In such systems, nevertheless, the availability of

energy becomes sporadic and temporally volatile, in which case

devising optimal policies for efficient utilization of the harvested

energy directly translates into how continually the communication

link can be sustained by relying on the harvested energy. In such

systems, optimally balancing energy consumption over time leads to

solving problems of the form in (2).

Optimal resource allocation policies under different settings and

objectives are studied extensively. In particular, and most relevant to

the scope of this paper, in the single-user energy harvesting channels,

optimal power allocation policies are studied under a number of

assumptions on the battery size for storing the harvested energy (finite

versus infinite), and information available regarding the causality of

energy harvesting, and wireless channel fading process (slow versus

fast). Specifically, the studies in [3] and [4] consider infinite-capacity

batteries, establish certain properties of the optimal policies, and

devise the directional water-filling approach to power allocation in

static as well as fading wireless channels. Extensions to random

channel conditions and finite-capacity batteries for static channels

are studied in [5]–[7].
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Enforcing a finite battery capacity induces constraints on the

policies, which are driven by the possibility of battery overflow at

the instances of harvesting energy. Extensions to such finite-battery

settings when facing inefficiencies in battery storage is investigated

in [8]. The studies in [9] and [10] address causal and non-causal

availability of the channel state information.

QoS-constrained Systems: Optimizing the efficiency of packet

transmission systems under stringent quality-of-service constraints

is another class of resource allocation problems solving which is

equivalent to the problem in (2). In such systems, the data packets

to be transmitted arrive sequentially over time at the source and

all the arriving information packets requires to be delivered to their

destination by a given deadline or by using a given amount of energy.

For instance, the studies in [11], [12] consider minimizing the energy-

cost used to transmit data packets through wireless channels subject

to given delay or other quality of service constraints. Maximizing the

transmission throughput of an energy- or time-constrained transmitter

over fading channels is studied in [13]. Under a fixed delay constraint,

a transmission schedule that maximizes the battery life-time is derived

in [14], while the study in [15] considers minimum-energy scheduling

problems over fading multiple-access and broadcast channels. Also,

the recent study in [16] analyzes proactive content caching from an

energy efficiency perspective. Moreover, a scheduling algorithm with

real-time constraints was presented in [17].

II. OPTIMAL SOLUTION: PROPERTIES AND ALGORITHM

The objective in this section is to analytically characterize x
∗,

which we define as the solution to P(s). The solution x
∗ is unique

since all the constraints are linear and the utility function is strictly

concave. We start by considering the offline resource allocation

problem, in which the resource vector s and the utility functions

{ft : t ∈ {1, . . . , T}} are known deterministically. We characterize

the optimal solution analytically, and then discuss the generalization

to the settings in which these terms bear stochastic uncertainties in

Section II-H.

A. Algorithm for Finding the Optimal Solution

We start by providing an algorithm that identifies the exact solution

to P(s), discuss its complexity in Section II-B, present an overview

of the scheme of the proofs in Section II-C, and present the detailed

steps of the analysis for establishing its optimality properties in

sections II-D and II-E. In these latter two subsections, specifically,

we show that the optimal solution x
∗ has two key properties, which

constitute the main structure of Algorithm 1 for analytically solving

P(s). The first property is that the set of optimal values {x∗
1, . . . , x

∗
T }

can be partitioned into d mutually exclusive subsets separated at time

instants t ∈ {u1, . . . , ud}, which we can find analytically. We denote

these subsets by

{x∗
1, . . . , x

∗
u1
}, {x∗

u1+1, . . . , x
∗
u2
}, . . . {x∗

ud−1+1, . . . , x
∗
T } ,

(3)

where we show that each subset can be characterized analytically

and independently of the rest. Built on this observation, secondly, we

show that among all the constraints of P(s), i.e.,

t
∑

i=1

xi ≤
t

∑

i=1

si , ∀t ∈ {1, . . . , T} . (4)

the constraints corresponding to t ∈ {u1, . . . , ud} hold with equality,

and all others hold with strict inequality. Finally, based on these

two properties we show that finding x
∗ via solving P(s) reduces

to solving a number of problems with a similar structure, but with

reduced dimension.

The detailed steps of solving P(s) are provided in Algorithm 1.

This algorithm receives the resource vector s as its input and

produces the optimal resource allocation solution x
∗. It consists of

one outer loop (lines 3-13) the purpose of which is progressively

determining the indices of the time instants {ui : i ∈ {1, . . . , d}}.

Each of the d outer loops involves an inner loop (lines 6-9),

which finds a part of the optimal solution, and specifically in the

iteration i of the outer loop, the inner loop finds the optimal values

{x∗
i : i ∈ {ui−1 + 1, . . . , ui}}. This inner loops within the ith

iteration solve optimization problems Qui−1→t(s) for all values of

t ∈ {ui−1+1, . . . , T}, where corresponding to each pair m < n we

have defined the auxiliary problem

Qm→n(s)
△

=























max
x

n
∑

i=m+1

fi(xi)

s.t.
n
∑

i=m+1

xi =
n
∑

i=m+1

si , ∀t ∈ {1, . . . , T}
x � 0

,

(5)

It is noteworthy that Qm→n(s) has a unique globally optimal

solution, since its utility function is strictly concave.

Algorithm 1 - Solving P(s) for any given resource vector s

1: input s

2: initialize t = 1, d = 0 and u0 = 0,
3: while ud ≤ T − 1
4: d← d+ 1

5: set Ad
△

= {ud−1 + 1, . . . , T}
6: for t ∈ Ad

7: set wd,t as the solution to Qud−1→t(s)

8: set qd,t
△

= min
{

dfi
dx

(wd,t
i ) : i ∈ {ud−1 + 1, . . . , t}

}

9: end for

10: ud
△

= arg max
t∈Ad

qd,t (if not unique, select the smallesta)

11: vd
△

= max
t∈Ad

qd,t

12: z
d △

= w
d,ud

13: end while
14: for i ∈ {1, . . . , d}
15: for t ∈ Di = {ui−1 + 1, . . . , ui}

16: xt
△

= zit
17 : end for
18 : end for
19: output x, d, {ui : i ∈ {1, . . . , d}} and {vi : i ∈ {1, . . . , d}}

aFor the convenience in the analyses, throughout the rest of the paper
we assume that ud is unique. In case that it is not unique, by selecting the
smallest choice all the analyses remain valid.

B. Computational Complexity

The significance of obtaining the optimal solution x
∗ analytically

is the substantial reduction in the computational complexity. To

furnish the relevant context, we remark that since the utility functions

are strictly concave, the generic approaches in convex optimization

can be readily applied to the problem at hand. In particular, the

primal-dual interior-point (IP) methods are known to be extremely

efficient and capable of handling large-scale non-linear problems.

From a computational perspective, the complexity of IP methods is

shaped primarily by two factors, namely the desired level of accuracy

in the solution they provide (i.e., closeness to the optimal solution)

and the nature of the utility functions (e.g., linear or quadratic). In

the IP methods, it is well-investigated that for linear utility functions,

the computational complexity scales at the rate O(
√
T ln 1

ǫ
), where
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T is the dimension of the problem and ǫ accounts for the error of the

solution provided by the IP method, i.e., the difference between the

optimal solution and the solution provided by the IP method. For non-

linear utility functions, which is the case in this paper, the complexity

is higher, and except for special cases (e.g., quadratic) the general

complexity is unknown. On the other hand, Algorithm 1 provides

the exact optimal solutions, which corresponds to guaranteeing that

ǫ = 0 for the output of Algorithm 1, achieving which by the IP

method results in theoretically unbounded computational complexity.

The same trend is true for other numerical approaches as well,

and in Section IV we provide numerical comparisons between the

computational complexities. Finally we remark that the complexity

of Algorithm 1 is O(T ), since in the worst case it has T iterations.

Each iteration involves solving a problem of the form Qm→n(s).
The solution to Qm→n(s) often has a closed-form when the utility

functions are specified, and as a result as it is customary, the

computational complexity is considered negligible.

C. Scheme of the Proofs

Before proceeding to the details of the proofs, we provide a

scheme of the steps involved. The objective is to characterize the key

properties of x
∗ as the optimal solution of P(s). For the analytical

purposes, we construct another resource allocation vector x̃ as the

output of Algorithm 1 when its input s is replaced by x
∗. It is

noteworthy that this serves merely as an auxiliary solution which

we are not interested in computing, but rather we investigate its

properties. Specifically, we show the following properties for x̃:

1) From the construction of x̃, it can be readily verified that x̃

satisfies all the constraints of P(s). As a result due to the

optimality of x∗, the utility corresponding to x̃ cannot exceed

the utility corresponding to x
∗, i.e., F (x∗) ≥ F (x̃). This is

established in Lemma 2.
2) Also, from the construction of x̃, we prove that F (x∗) ≤

F (x̃). This is established in Lemma 3.
3) By leveraging the results of lemmas 2 and 3 we subsequently

have x̃ = x
∗. This implies that if we initiate Algorithm 1 with

x
∗, it will produce the same vector x

∗ as its output. This is

established in Theorem 1.
4) Finally, we show that initiating Algorithm 1 with inputs s

and x
∗ results in the same resource allocation vectors. This is

formalized in Theorem 2, which in conjunction with Theorem 1

establishes that the output of the Algorithm 1 is the unique

desired vector x∗.

Besides these main items, we also show that x̃ and the value of the

utility functions corresponding to this resource allocation vector have

a number of algebraic properties established in lemmas 1, 4, and 5,

which x
∗ also inherits due to the observation that x∗ = x̃.

D. Grouping the Constraints

We start the analysis by showing that the set of the optimal values

{x∗
1, . . . , x

∗
T } has the key property that this set can be partitioned into

smaller subsets, such that the elements within one subset are closely

related. These properties are established via lemmas 1-5. For this

purpose, we first establish a number of properties for x̃, which is the

output of Algorithm 1 when its input s is replaced with the optimal

solution x
∗. It is noteworthy that it is not our objective to actually

compute x̃, but rather we aim to show that when such an auxiliary

term is constructed according to the rules specified in Algorithm 1, it

satisfies certain desired properties. Hence, the purpose of generating

x̃ is only proving the properties, as a result of which, this process does

not involve knowing the optimal solution x
∗, or actually computing

x̃.

In order to construct x̃, Algorithm 1 admits x
∗ as its input,

and based on that successively partitions the set of constraints

{∑t

i=1
xi ≤ ∑t

i=1
si : t ∈ {1, . . . , T}} into d disjoint subsets

of constraints. Specifically, it returns time indices 0 = u0 < u1 <
· · · < ud = T , and partitions the set {1, . . . , T} into d disjoint sets:

Di
△

= {ui−1 + 1, . . . , ui} , for i ∈ {1, . . . , d} . (6)

Furthermore, this algorithm computes the metrics {vi : i ∈
{1, . . . , d}} and assigns vi to the set Di. Once the dominant

constraints are known, solving P(x∗) reduces to solving a collection

of smaller problems in the form of Qui−1→ui
(x∗) defined in (5).

The properties of x̃ are formalized in the following lemmas.

Lemma 1. When Algorithm 1 is initiated with x
∗, for all m ∈

{1, . . . , d} and t ∈ Am
△

= {um−1 + 1, . . . , T}, we have

dfi
dx

(wm,t
i ) = λm,t , ∀i ∈ {um−1 + 1, . . . , t : wm,t

i > 0}
dfi
dx

(wm,t
i ) > λm,t , ∀i ∈ {um−1 + 1, . . . , t : wm,t

i = 0} ,

(7)

where we have defined w
m,t △

= [wm,t
1 , . . . , wm,t

T ], and λm,t ∈ R+ is

a strictly positive real constant. Furthermore we have qm,t = λm,t.

Lemma 2. Vector x̃ generated by Algorithm 1 satisfies all the

constraints of P(s).

Lemma 3. The vector x̃ satisfies F (x̃) ≥ F (x∗), and the equality

holds if and only if x∗ = x̃.

The results of lemmas 1-3, collectively, establish the optimality of

x̃ generated by Algorithm 1, which is formalized by the following

theorem.

Theorem 1. By initiating Algorithm 1 with x
∗ as the optimal solution

to P(s), the vector x̃ generated by Algorithm 1 is equal to the optimal

solution of P(s), i.e., x̃ = x
∗.

E. Dominant Constraints

By leveraging the results in the previous subsection, which es-

sentially partition the set of all constraints into a collection of d
disjoint constraint sets, next we provide additional properties for these

sets of constraints. Specifically, we show that in each of the given d
sets, at least one constraint holds with equality, which we refer to as

the dominant constraint. These d dominant constraints are the only

constraints needed to characterize the optimal solution to P(s). The

following lemma represents an intermediate and instrumental step

towards characterizing the set of dominant constraints of P(s). In

particular, it establishes a connection among the derivative measures

qd,t and vd defined in Algorithm 1.

Lemma 4. The sequence {v1, v2, . . . , vd} is strictly decreasing.

We remark that the indices {ui : i ∈ {1, . . . , d}} and their

associated constraint indices {vi : i ∈ {1, . . . , d}} have significant

physical meanings in resource allocation. Specifically, the elements

of {ui : i ∈ {1, . . . , d}} specify the time instances at which all

the resources arrived by that time instance are consumed in their

entirely. At other time instances, a fraction of the available resources

is reserved for being consumed in the future time instances. This

observation is formally demonstrated in the following lemma. Also,

the measures {vi : i ∈ {1, . . . , d}} are the derivatives of the utility

functions at the optimal solution x
∗ over time. Specifically, for all

the indices in the range t ∈ Di+1, the derivatives of all the utility
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terms ft at the non-zero optimal values of x
∗ are all the same, and

equal to vi, i.e., for to the set Di is defined in (6) we have

vi =
dft(xt)

dxt

, ∀t ∈ Di+1, and ∀xt 6= 0 .

Lemma 5. Under the optimal solution x
∗, all the inequality con-

straints with indices included in {um : m ∈ {1, . . . , d}} hold with

equality, i.e.,

∀m ∈ {1, . . . , d} :

um
∑

i=1

x∗
i =

um
∑

i=1

si . (8)

F. Initiating x
∗ via Algorithm

By leveraging the results of Lemma 4 and Lemma 5 in this

subsection, we poof the optimality of Algorithm 1 for obtaining

x
∗. So far we have shown that if we modify Algorithm 1 such

that instead of inputting s we input the resource vector x
∗, then

the output will be in fact the optimal solution x
∗. Next we show

that initiating Algorithm 1 with either x
∗ or s yields the same

output. The underlying insight is that this algorithm depends on x
∗

primarily for determining the metrics {vi : i ∈ {1, . . . , d}} and their

associated constraint indices {ui : i ∈ {1, . . . , d}}. By invoking

the result of Lemma 5, we next show that for determining the sets

{vi : i ∈ {1, . . . , d}} and {ui : i ∈ {1, . . . , d}}, alternatively, we

can also use the resource vector s, based on which subsequently we

can show that the outcome of Algorithm 1 based on the input s will

be in fact the optimal solution x
∗. Insensitivity of Algorithm 1 to the

choice of x∗ by s as the input is formalized in the next lemma.

Lemma 6. Denote the set of constraint indices yielded by Algo-

rithm 1 when it is initiated by x
∗ by {ui : i ∈ {1, . . . , d}}, and

denote the counterpart set when in Algorithm 1 is initiated with s by

{ūi : i ∈ {1, . . . , d̄}}. We have {ui : i ∈ {1, . . . , d}} = {ūi : i ∈
{1, . . . , d̄}}.

Based on the result of Lemma 6, in the following theorem we

establish the optimality of Algorithm 1, that is it produces x
∗ with

it is initiated with input s.

Theorem 2. By admitting s as its input, Algorithm 1 generates the

optimal solution of P(s).

G. Homogeneous Utility Functions

In this subsection we consider the settings in which the utility

functions are all identical, i.e., ft = f for all t ∈ {1, . . . , T}.

While in such settings we can solve P(s) directly via Algorithm 1,

nevertheless, by leveraging the homogeneity structure, this algorithm

can be significantly simplified. Specifically, we show that the inner

loop that solves an optimization problem for all the future time

instances (lines 6-9) can be avoided, and the indices of the dominant

constraints and the associated resource allocation scheme can be

found directly based on s. Specifically, in the following lemma, we

show that the set of dominant constraints {um : m ∈ {1, . . . , d}}
can be found without solving the optimization problems of the form

Qud−1→t(s), unlike in the general form.

Lemma 7. For problem P(s) with identical utility function ft = f ,

the indices of the dominant constraints {um : m ∈ {1, . . . , d}} are

given by

um = arg min
t ∈ Am

1

t− um−1

t
∑

i=um−1+1

si . (9)

Based on the result of Lemma 7, we provide Algorithm 2 as

a simpler algorithm for obtaining the optimal solution x
∗ to the

problem in (2) with homogeneous utility functions by admitting the

resource vector s as the input. The optimality of the outcome of the

algorithm x
∗ is stated in Theorem 3.

Algorithm 2 - Computing x
∗ under homogeneous utility functions

1: input s

2: initialize d = 0 and ud = 0
3: while ud ≤ T − 1
4: d← d+ 1

5: set Ad
△

= {ud−1 + 1, . . . , T}

6: ud = argmin
t ∈ Ad

1

t−ud−1

t
∑

i=ud−1+1

si

7: βd
△

= 1

ud−ud−1

ud
∑

i=ud−1+1

si

8: end while

9: x
∗ =

∑d
m=1

βm ·
[

0um−1
, 1um−um−1

, 0T−um

]

Theorem 3. The optimal solution to the problem P(s) under

homogeneous utility functions is yielded by Algorithm 2, and takes

the closed form x
∗ =

∑d

m=1
βm ·

[

0um−1
, 1um−um−1

, 0T−um

]

.

where 0ℓ and 1ℓ are ℓ-dimensional vectors of all zeros and all ones,

respectively.

We comment that a similar solution structure is provided in [18]

for treating the problem of optimal power allocation over a point-to-

point static channel in an energy harvesting system.

H. Stochastic Uncertainties

In this subsection we consider a class of utility functions and

resource vectors the true values of which are known only causally,

and otherwise bear stochastic uncertainties. We show that solving

this class of stochastic problems can be reduced to solving problems

of the form in (2). To formalize such settings, we assume {st :
t ∈ {1, . . . , T}} are independent and identically distributed (i.i.d.)

random variables unknown non-causally. Furthermore, to capture

the uncertainties in ft(x) we assume that the function depends

on an unknown random variable αt, and denote it by ft(x, αt).
We also assume that ft is concave in its both arguments. Given

these notations, a stochastic account of (2) can be formalized by

optimizing the expected value of the aggregate utility subject to

chance constraints on the availability of the resource, i.e.,

Q(γ)
△

=























max
x

T
∑

t=1

Eαt
[ft(xt, αt)]

s.t. P

(

t
∑

i=1

xi ≤
t
∑

i=1

si

)

≥ γ , ∀t ∈ {1, . . . , T}
x � 0

.

(10)

It can be readily verified that the function f̄t(x) = Eαt
[ft(x, αt)] is

concave in x. Also, by denoting the cumulative distribution function

of
∑t

i=1
si by Gt, the stochastic constraints can be rewritten as

∑t

i=1
xi ≤ G−1

t (1−γ). Moreover, by setting γ1
△

= G−1
1 (γ), defining

γt
△

= G−1
t (1− γ)−G−1

t−1(1− γ) , ∀t ∈ {2, . . . , T} , (11)

and noting that Gt(x) ≥ Gt−1(x) for all t ∈ {2, . . . , T}, it can be

readily verified that the solution of Q(γ) can be found by solving

the problem P(s) since Q(γ) = P([γ1, . . . , γT ]).

III. APPLICATION: ENERGY HARVESTING SYSTEMS

In this section we discuss the application of the general approach

developed in Section II to the problem of power allocation in a single-

user point-to-point communication channel in which the transmitter’s
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battery is equipped with an energy harvesting unit, gathering its

power entirely from ambient sources in its surrounding environment.

Hence, power, as the resource, is made available for transmission only

sequentially and incrementally over time. For this purpose, consider

a time-slotted transmission over a single-antenna channel in which

the channel input at time t ∈ {1, . . . , T} is denoted by Xt, and the

output is given by

Yt = ht ·Xt + Nt , for t ∈ {1, . . . , T} , (12)

where ht denotes the channel coefficient at time t ∈ {1, . . . , T}, and

Nt accounts for additive white Gaussian noise distributed according

to NC(0, 1). In this model, xt denotes the transmission power at time

t ∈ {1, . . . , T} and st denotes energy increments harvested at time

t. Throughout the analysis we assume that the battery has infinite

capacity.

A. Sum-rate Maximization in Fading Channels

By setting the utility function as ft(xt)
△

= log(1 + αt · xt)

where αt
△

= |ht|2, the optimal power consumption scheme over time

for the purpose of maximizing the sum-rate capacity in this energy

harvesting system can be obtained via solving

P(s) =























max
x

T
∑

t=1

log(1 + αt · xt)

s.t.
t
∑

i=1

xi ≤
t
∑

i=1

si , t ∈ {1, . . . , T}
x � 0

. (13)

For solving P(s) we can directly apply Algorithm 1, which can

identify the set of the dominant constraints recursively. In each

recursion cycle, the algorithm solves a power allocation problem

that is equivalent to optimizing power allocation across independent

parallel channels and can be solved via the well-known water-filling

algorithm. Nevertheless, when there is more structure to be leveraged,

solving such power allocation problems can be avoided, and the in-

dices of the dominant constraints, and the associated power allocation

schemes can be found directly. Hence, for a general fading model,

the optimal solution of P(s) consists of identifying the dominant

constraints indexed by {ui : i ∈ {1, . . . , d}} in conjunction with ap-

plying the water-filling algorithm d times for solving Qui−1→ui
(s).

We remark that the indices {ui : i ∈ {1, . . . , d}} mark the instances

at which the entire energy available at those instances is exhausted,

and there is no energy carry-over to the following instances. The fact

that the optimal solution involves elements similar to water-filling

is pointed out and discussed in details in [4], and the result in this

paper complements this observation by determining the exact time

intervals {ui−1+1, . . . , ui} over which the optimal power solution is

the water-filling solution of Qui−1→ui
(s). In the following corollary,

we also address a special cases of interest, in which the fading process

can be time-varying, but the rate of variations is small enough to be

bounded by a measure specified by the variations of the harvested

energy over time. Specifically, if the deviations of 1

αt
from their

average 1

T

∑T

t=1

1

αt
are smaller than the average harvested energy

1

T

∑T

t=1
st, i.e., when

1

mint αt

≤ 1

T

T
∑

t=1

(st +
1

αt

) , (14)

then the structure of Algorithm 1 simplifies significantly, as specified

in the following corollary and Algorithm 3. It is noteworthy that a

static channel (i.e., αt constant) satisfies (14) and power allocation

in static channels can be also determined by Algorithm 3.

Corollary 1 (Slowly Fading Channels). For a fading model that

satisfies (14), for the optimal solution of P(s) the time instants at

which the available resources are exhausted are given by

um = arg min
t ∈ Am

1

t− um−1

·
t

∑

i=um−1+1

(

si +
1

αi

)

. (15)

Based on the result of Corollary 1, we provide Algorithm 3 as a

simple approach to obtain the optimal power allocation x
∗ to the

problem in (13) by admitting the vector of harvested energy e as an

input. For the convenience in notation, we define the channel power

gain vector as α

△

= [α1, . . . , αT ]. The optimality of the provided

power allocation x
∗ is stated in Theorem 4.

Theorem 4. For a quasi-static fading model that satisfies (14), power

allocation x
∗ yielded by Algorithm 3 is the optimal solution to the

problem P(s) in (13).

Algorithm 3 - Optimal power allocation x
∗ over fading channels

1: input s

2: initialize d = 0 and ud = vd = 0
3: while ud ≤ T − 1
4: d← d+ 1

5: set Ad
△

= {ud−1 + 1, . . . , T}

6: ud = argmin
t ∈ Ad

1

t−ud−1

·
t
∑

i=ud−1+1

(

si +
1

αi

)

7: βd
△

= 1

ud−ud−1

ud
∑

i=ūd−1+1

(si +
1

αi
)

8: end while
9: for t ∈ {1, . . . , T}

10: set x∗
t

△

= βj −
1

αt
, where j = inf{ui : ui ≥ t}

11: end for

B. Special Cases

In this subsection we present two special cases that specialize the

sum-rate optimization of interest to the two special cases studies in

Section II, namely homogeneous utility functions and utility functions

with stochastic uncertainties.

Example 1 (Homogeneous Utility Functions). In the context of

energy harvesting, the utility functions turn out to be homogeneous

when the fading process is static and the fading coefficients do

not vary over time, i.e., α1 = · · · = αt = α, as a result

of which the utility functions remain unchanged over time, i.e.,

ft(x) = log(1 + αx).

Example 2 (Stochastic Uncertainty). When the fading coefficient

αt is random and unknown to the transmitter, the utility function

ft(x, αt) = log(1 + αtx), which is concave in both αt and x,

becomes also random and unknown. Based on the discussion in

Section II-H, the expected utility function f̄t(x) = Eαt
[ft(αt, x)] =

Eαt
[log(1 + αtx)] is concave in x, and as result the stochastically-

constrained power allocation problem can be solved via solving (10).

IV. NUMERICAL EVALUATIONS

In this section, we present numerical evaluations to highlight the

structure and the properties of Algorithm 1 provided in Section II

and compare its performance with the generic numerical algorithms

for solving convex problems. Throughout the simulations we pursue

two objectives. First, we aim to numerically assess the structure of

the optimal solution given in lemmas 4 and 5, and assess the number

of the variations of the dominant constraints, as well as the utility

value with respect to different resource arrival processes. Secondly,
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we compare the structure of the optimal solution and the performance

yielded by the optimal solution characterized with those yielded by

two generic convex optimization approaches, namely the interior

point (IP) method and the Matlab CVX solver.

Throughout the simulations we focus on the slowly-fading energy

harvesting application specified in Section III. In this model the

utility function at time t is ft(xt) = log(1 + |ht|2xt), where the

channel coefficients ht follow a Rayleigh fading and are distributed

according to NC(0, 1). The amount of energy harvested at different

time slots, i.e., {st : t ∈ {1, . . . , T}}, randomly varies over time,

and for the purpose of implementation we consider three different

models for the energy arrival process, namely Unif(0, 2η), Exp( 1

η
),

and Poisson(η), where η denotes the average resource arrival rate.

A. Constraint Groups

The key structure of the solution to P(s) is that it can be

reduced by partitioning {x∗, . . . , x∗
T } into d disjoint sets, where the

values in each set are related (their respective functions have same

derivatives) and can be computed independently of each other. The

set {ui :∈ {1, . . . , d}} specifies the time instances at which all

the available resources are exhausted. In order to demonstrate this

numerically, we set the time horizon to T = 10, and generate one

realization of the harvested energy vector s. We solve the problem

P(s) for this realization, and in Fig. 1 plot the variations of
∑t

i=1
x∗
i

over time to asses the optimal properties stated in lemmas 4 and 5. For

this evaluation we consider Unif(0, 2η) as the energy arrival process,

with η = 5. The light (red) bar at time t shows the level of available

resources at time t, and the dark (blue) bar depicts the amount of

available resources to be consumed at time t. It is observed that at

certain time instants the two bars have exactly same heights indicating

the available resources are exhausted. These time instants occur at

{u1, u2, u3, u4, u5} = {6, 10, 11, 16, 20}. We have also evaluated

the variations of
∑T

i=1
xi for the solution x provided by the CVX

solver as well as the IP method, where we have observed that the

solutions match with the optimal solution with high accuracy (albeit

with higher complexity analyzed in Section IV-B). Furthermore, for

the same system realization used for the evaluations in Fig. 1, the

variations of the derivatives of the utility functions, i.e., {dft/dt :
t ∈ {1, . . . , T}} are depicted in Fig. 2. It shows two main properties

associated with the derivative measures {vi : i ∈ {1, . . . , d}}.

First, the solutions in the range {ui + 1, . . . , ui+1} have the same

derivatives, and secondly, the metrics {vi : i ∈ {1, . . . , d}} are

strictly decreasing over time. These values are marked in Fig. 2.

B. Computational Complexity

An important practical advantage of {x∗, . . . , x∗
T } is that the

elements in each partition are computed independently of each other.

This leads to significant reduction in the computational complexity

since instead of solving a T -dimensional problem we face solving

a number of problems with dimensions much smaller than T . To

compare the complexity of Algorithm 1 with those of CVX solver

and IP method, we consider the setting of Section IV-A, and provide

Table I, which demonstrates the processing times of the algorithm

for different values of T and three energy arrival processes (uniform,

exponential, and Poisson). This table shows that the algorithm, in

designing which the structure of the problem is taken into account,

is considerably faster than the CVX solver and the IP method.

Table I: Computational time in seconds

T

st Unif (0,10) Exp ( 1

30
)

Alg. 1 IP CVX Alg. 1 IP CVX

10 29 × 10−6 0.11 1.84 51 × 10−6 0.15 1.75
100 31 × 10−6 0.87 11.25 55 × 10−6 0.87 10.55
1000 42 × 10−6 2.09 443.70 77 × 10−6 2.08 376.23

C. Number of Partitions

Figure 3 depicts the variations of the number of partitions d with

respect to different rates of energy arrival η under three different

processes, and for different problem dimensions T = 10, 50, 100. It

is observed that for a given T , d remains rather insensitive to energy

arrival process, and the the average arrival rate η. The underlying

reason is that the expected values of {ui : i ∈ {1, . . . , d}} do not

depend on the exact distribution of the resource arrival process, and

rather they depend on the relative changes of these distributions over

time. When the distributions are identical over time, as is the case in

this setting, their exact choices do not have a significant impact. As

a result, varying the energy arrival rate η does not affect the average

values of {ui : i ∈ {1, . . . , d}}, and subsequently, the expected

value of d.

Additionally, increasing T has two opposing effects on d. On

the one hand it increases the spacing between the consecutive time

indices in {ui : i ∈ {1, . . . , d}}. The reason underlying this is

that according to Algorithm 1, these time indices are determined by

selecting the maximum derivative measure, qd,t, for every t ∈ Ai and

i ∈ {1, . . . , d}. Thus, by increasing the time horizon T , the maximum

values of the derivative measures, qd,t, appear, on average, at later

time instances. This effect tends to decrease d. On the other hand, a

larger T is expected to lead to a larger number of constraint groups.
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Figure 3 shows the combined effect of these two opposing trends is

in favor of an increasing trend for d.

V. CONCLUSION

In this paper, we have analyzed and solved the problem of optimal

resource allocation over time, with the resource becomes available

sequentially and incrementally over time. Such problems in their gen-

eral forms subsume a wide range of conventional resource allocation

problems in communication systems (e.g., resource allocation over

parallel channels), and have direct application in certain applications

in which resources are accessible sequentially (e.g., energy harvesting

and quality-constrained systems). First, we have established certain

key properties of the optimal solution, based on which we have

proposed an algorithm for obtaining the solution. A key observation

has been that there exist time instants at which the available resource

is entirely utilized, and characterizing the optimal solution depends on

identifying those instants. The proposed algorithm provides closed-

form characterization of these instants. Furthermore, we have shown

that the proposed algorithm can be applied to a stochastic version of

the resource allocation problem, in which only the statistical proper-

ties of the resource arrivals are known. Moreover, we have applied

the obtained optimal solution to identify a closed-form optimal power

allocation policy under energy harvesting constraints over the single-

user fading channels. Finally, we have provided numerical evaluations

to depict the key properties of the optimal resource allocation policy

and to also compare the performance with those of generic convex

optimization algorithms.

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Wiley, 2006.

[2] E. Telatar, “Capacity of multi-antenna gaussian channels,” Transactions

on Emerging Telecommunications Technologies, vol. 10, no. 6, pp. 585–
595, Nov. 1999.

[3] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Resource
management for fading wireless channels with energy harvesting nodes,”
in Proc. IEEE International Conference on Computer Communications,
Shanghai, China, Apr. 2011, pp. 456–460.

[4] ——, “Transmission with energy harvesting nodes in fading wireless
channels: Optimal policies,” IEEE Journal on Selected Areas in Com-

munications, vol. 29, no. 8, pp. 1732–1743, Aug. 2011.

[5] A. Sinha, “Optimal power allocation for a renewable energy source,” in
National Conference on Communications, Kharagpur, India, Feb. 2012.

[6] K. Tutuncuoglu and A. Yener, “Short-term throughput maximization for
battery limited energy harvesting nodes,” in Proc. IEEE International

Conference on Communications, Kyoto, Japan, Jun. 2011.
[7] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Optimum

transmission policies for battery limited energy harvesting nodes,” IEEE

Transactions on Wireless Communications, vol. 11, no. 3, pp. 1180–
1189, Mar. 2012.

[8] K. Tutuncuoglu and A. Yener, “Optimal power policy for energy
harvesting transmitters with inefficient energy storage,” in Proc. Annual

Conference on Information Sciences and Systems, Princeton, NJ, Mar.
2012.

[9] C. K. Ho and R. Zhang, “Optimal energy allocation for wireless com-
munications powered by energy harvesters,” in Proc. IEEE International

Symposium on Information Theory, Austin, TX, Jun. 2010, pp. 2368–
2372.

[10] ——, “Optimal energy allocation for wireless communications with
energy harvesting constraints,” IEEE Transactions on Signal Processing,
vol. 60, no. 9, pp. 4808–4818, Sep. 2012.

[11] E. Uysal-Biyikoglu, B. Prabhakar, and A. El Gamal, “Energy-efficient
packet transmission over a wireless link,” IEEE/ACM Transactions on

Networking, vol. 10, no. 4, pp. 487–499, Aug. 2002.

[12] M. A. Zafer and E. Modiano, “A calculus approach to energy-efficient
data transmission with quality-of-service constraints,” IEEE/ACM Trans-

actions on Networking, vol. 17, no. 3, pp. 898–911, Jun. 2009.

[13] A. Fu, E. Modiano, and J. Tsitsiklis, “Optimal energy allocation for
delay-constrained data transmission over a time-varying channel,” in
Proc. Annual Joint Conference of the IEEE Computer and Communica-

tions Societies, vol. 2, San Francisco, CA, Apr. 2003, pp. 1095–1105.

[14] P. Nuggehalli, V. Srinivasan, and R. R. Rao, “Delay constrained energy
efficient transmission strategies for wireless devices,” in Proc. IEEE An-

nual Joint Conference of the Computer and Communications Societies,
vol. 3, New York, NY, Jun. 2002, pp. 1765–1772.

[15] E. Uysal-Biyikoglu and A. El Gamal, “On adaptive transmission for
energy efficiency in wireless data networks,” IEEE Transactions on

Information Theory, vol. 50, no. 12, pp. 3081–3094, Nov. 2004.
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