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Abstract—This paper treats the problem of optimal resource allocation
over time in a finite-horizon setting, in which the resource become
available only sequentially and in incremental values and the utility
function is concave and can freely vary over time. Such resource allocation
problems have direct applications in data communication networks (e.g.,
energy harvesting systems). This problem is studied extensively for special
choices of the concave utility function (time-invariant and logarithmic) in
which case the optimal resource allocation policies are well-understood.
This paper treats this problem in its general form and analytically
characterizes the structure of the optimal resource allocation policy,
and devises an algorithm for computing the exact solutions analytically.
An observation instrumental to devising the provided algorithm is
that there exist time instances at which the available resources are
exhausted, with no carry-over to future. This algorithm identifies all such
instances, which in turn facilitates breaking the original problem into
multiple problems with significantly reduced dimensions. Furthermore,
some widely-used special cases in which the algorithm takes simpler
structures are characterized, and the application to the energy harvesting
systems is discussed. Numerical evaluations are provided to assess the key
properties of the optimal resource allocation structure and to compare
the performance with the generic convex optimization algorithms.

I. INTRODUCTION

Consider a resource allocation problem over a finite time horizon
T € N. The resource is made available for utilization sequentially
over time and in increments. Such resource allocation models mani-
fest in a wide range of power allocation and scheduling objectives in
communication systems. For instance, in energy harvesting networks
the transmitters rely partly or entirely on ambient sources in their
surrounding environments. In such systems, the energy resources are
available only sequentially and incrementally over time as they are
harvested. Similarly, the packet transmission systems under stringent
quality-of-service (QoS) constraints constitute another class of re-
source allocation problems in which the data packets to be transmitted
arrive sequentially over time at the transmitter, while all the arriving
information packets are required to be delivered to their destination
by a given deadline or by using a given amount of energy.

In a time-slotted setting, we denote the incremental amount of
resource made available during time slot ¢ € {1,...,T} by s; € R,
and denote the actual amount of resource utilized during time slot
t € {l,...,T} by x; € R*. The resource is assumed to be used
only causally, leading to the following set of T" resource utilization
constraints:

t t
S <Y s, VEe{l,...,T}. (1)
=1 =1

Accordingly, we denote the resource vector by s 2 [$1,...,87]
and denote the vector of utilized resource over time by x =
[z1,...,z7]. Also, we define the utility function f; : Rt —» R*

as the measure of the contribution of the amount of resource utilized
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during time slot ¢ € {1,...,T}, i.e., ;. We assume that all functions
{fe : t € {1,...,T}} are differentiable, non-decreasing, and strictly
concave, and denote the aggregate utility gleaned over the entire time
horizon by F(z) = ST, fi(z:). Based on these definitions,
the resource allocation problem under the sequential access to the
resource over a finite time-horizon can be formalized as

max F(x)

AN

¢ t
P(s) st S <Y s, Vee{l,..., T} - @
i=1 i=1

x > 0

The problem in (2), in its special cases with some constraints relaxed,
subsumes an extensive body of well-understood problems, e.g., power
allocation in parallel channels [1] and power allocation in single-user
multi-antenna channels [2] when {s; = 0 : 4 € {1,...,7 — 1}}.
In this paper, we leverage the structure of the convex optimization
problem formalized in (2) and provide the optimal closed-form
solution for the general form analytically.

A. Motivation and Related Work

In this subsection, we provide a more detailed overview of two

classes of communication systems and their existing relevant liter-
ature in which resource allocation objectives can be formalized as
problem P(s) defined in (2).
Energy Harvesting Communication Systems: These systems, in
which the transmitters rely partly or entirely on ambient sources in
their surrounding environments, represent one class of such commu-
nication systems in which the resource is available only sequentially.
Energy harvesting networks empowered by perpetual sources of
power, are especially promising alternatives to systems with lifetime-
limited batteries. In such systems, nevertheless, the availability of
energy becomes sporadic and temporally volatile, in which case
devising optimal policies for efficient utilization of the harvested
energy directly translates into how continually the communication
link can be sustained by relying on the harvested energy. In such
systems, optimally balancing energy consumption over time leads to
solving problems of the form in (2).

Optimal resource allocation policies under different settings and
objectives are studied extensively. In particular, and most relevant to
the scope of this paper, in the single-user energy harvesting channels,
optimal power allocation policies are studied under a number of
assumptions on the battery size for storing the harvested energy (finite
versus infinite), and information available regarding the causality of
energy harvesting, and wireless channel fading process (slow versus
fast). Specifically, the studies in [3] and [4] consider infinite-capacity
batteries, establish certain properties of the optimal policies, and
devise the directional water-filling approach to power allocation in
static as well as fading wireless channels. Extensions to random
channel conditions and finite-capacity batteries for static channels
are studied in [5]-[7].
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Enforcing a finite battery capacity induces constraints on the

policies, which are driven by the possibility of battery overflow at
the instances of harvesting energy. Extensions to such finite-battery
settings when facing inefficiencies in battery storage is investigated
in [8]. The studies in [9] and [10] address causal and non-causal
availability of the channel state information.
QoS-constrained Systems: Optimizing the efficiency of packet
transmission systems under stringent quality-of-service constraints
is another class of resource allocation problems solving which is
equivalent to the problem in (2). In such systems, the data packets
to be transmitted arrive sequentially over time at the source and
all the arriving information packets requires to be delivered to their
destination by a given deadline or by using a given amount of energy.
For instance, the studies in [11], [12] consider minimizing the energy-
cost used to transmit data packets through wireless channels subject
to given delay or other quality of service constraints. Maximizing the
transmission throughput of an energy- or time-constrained transmitter
over fading channels is studied in [13]. Under a fixed delay constraint,
a transmission schedule that maximizes the battery life-time is derived
in [14], while the study in [15] considers minimum-energy scheduling
problems over fading multiple-access and broadcast channels. Also,
the recent study in [16] analyzes proactive content caching from an
energy efficiency perspective. Moreover, a scheduling algorithm with
real-time constraints was presented in [17].

II. OPTIMAL SOLUTION: PROPERTIES AND ALGORITHM

The objective in this section is to analytically characterize x*,
which we define as the solution to P(s). The solution ™ is unique
since all the constraints are linear and the utility function is strictly
concave. We start by considering the offfine resource allocation
problem, in which the resource vector s and the utility functions
{fe:t€{1,...,T}} are known deterministically. We characterize
the optimal solution analytically, and then discuss the generalization
to the settings in which these terms bear stochastic uncertainties in
Section II-H.

A. Algorithm for Finding the Optimal Solution

We start by providing an algorithm that identifies the exact solution
to P(s), discuss its complexity in Section II-B, present an overview
of the scheme of the proofs in Section II-C, and present the detailed
steps of the analysis for establishing its optimality properties in
sections II-D and II-E. In these latter two subsections, specifically,
we show that the optimal solution @* has two key properties, which
constitute the main structure of Algorithm 1 for analytically solving
P(s). The first property is that the set of optimal values {z7,...,z7}
can be partitioned into d mutually exclusive subsets separated at time
instants ¢ € {us,...,uq}, which we can find analytically. We denote
these subsets by

{II, -71’,;’}7

3)
where we show that each subset can be characterized analytically
and independently of the rest. Built on this observation, secondly, we
show that among all the constraints of P(s), i.e.,

t t
S <Y s, VEe{l,...,T}. )
i=1 i=1

the constraints corresponding to ¢ € {u1, ..., uq} hold with equality,
and all others hold with strict inequality. Finally, based on these
two properties we show that finding «* via solving P(s) reduces

71‘:(1,1}7 {1:1*1,1{»17"'71,;2}7 {'I::,d,1+l7--

to solving a number of problems with a similar structure, but with
reduced dimension.

The detailed steps of solving P(s) are provided in Algorithm 1.
This algorithm receives the resource vector s as its input and
produces the optimal resource allocation solution x*. It consists of
one outer loop (lines 3-13) the purpose of which is progressively
determining the indices of the time instants {u; : ¢ € {1,...,d}}.
Each of the d outer loops involves an inner loop (lines 6-9),
which finds a part of the optimal solution, and specifically in the
iteration ¢ of the outer loop, the inner loop finds the optimal values
{x} : i € {wi—1+1,...,u;}}. This inner loops within the "
iteration solve optimization problems Q., ,—(s) for all values of
t € {ui—1+1,...,T}, where corresponding to each pair m < n we
have defined the auxiliary problem

S i)

max
A i=m+1
f— n n
Qm—n(s) = s.t. oxm= > s, Vee{l,...,T} >
i=m-+1 i=m+1
x >~ 0

(&)

It is noteworthy that Q,,—n»(s) has a unique globally optimal
solution, since its utility function is strictly concave.

Algorithm 1 - Solving P(s) for any given resource vector s

input s
initialize ¢t =1, d = 0 and up = 0,
while uy; < T —1
d+—d+1
set Ay = {ug—1+1,...,T}
for t € Ay
set wh?t as the solution to Qu, ,—¢(s)

set gt 2 min{%(w?’t) 20 € {ug_q + 1,‘..,t}}
end for
10: ug 2 arg mix q®* (if not unique, select the smallest?)
teAy

RS E AR bl > o

11: 2 dit
12: 20 £ qpdiua
13: end while

14:  forie {1,...,d}

15: fOI‘tE’Di:{ui,1+1,...,ui}
A

16: T = 2

17 : end for

18 : end for

19:  output @, d, {u; i€ {1,...,d}} and {v; : i € {1,...,d}}

“For the convenience in the analyses, throughout the rest of the paper
we assume that ug is unique. In case that it is not unique, by selecting the
smallest choice all the analyses remain valid.

B. Computational Complexity

The significance of obtaining the optimal solution &* analytically
is the substantial reduction in the computational complexity. To
furnish the relevant context, we remark that since the utility functions
are strictly concave, the generic approaches in convex optimization
can be readily applied to the problem at hand. In particular, the
primal-dual interior-point (IP) methods are known to be extremely
efficient and capable of handling large-scale non-linear problems.
From a computational perspective, the complexity of IP methods is
shaped primarily by two factors, namely the desired level of accuracy
in the solution they provide (i.e., closeness to the optimal solution)
and the nature of the utility functions (e.g., linear or quadratic). In
the IP methods, it is well-investigated that for linear utility functions,
the computational complexity scales at the rate O(\/Tln %) where
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T is the dimension of the problem and e accounts for the error of the
solution provided by the IP method, i.e., the difference between the
optimal solution and the solution provided by the IP method. For non-
linear utility functions, which is the case in this paper, the complexity
is higher, and except for special cases (e.g., quadratic) the general
complexity is unknown. On the other hand, Algorithm 1 provides
the exact optimal solutions, which corresponds to guaranteeing that
e = 0 for the output of Algorithm 1, achieving which by the IP
method results in theoretically unbounded computational complexity.
The same trend is true for other numerical approaches as well,
and in Section IV we provide numerical comparisons between the
computational complexities. Finally we remark that the complexity
of Algorithm 1 is O(T), since in the worst case it has 7" iterations.
Each iteration involves solving a problem of the form Q,—n(8).
The solution to Qm—n(s) often has a closed-form when the utility
functions are specified, and as a result as it is customary, the
computational complexity is considered negligible.

C. Scheme of the Proofs

Before proceeding to the details of the proofs, we provide a
scheme of the steps involved. The objective is to characterize the key
properties of «* as the optimal solution of P(s). For the analytical
purposes, we construct another resource allocation vector @ as the
output of Algorithm 1 when its input s is replaced by x*. It is
noteworthy that this serves merely as an auxiliary solution which
we are not interested in computing, but rather we investigate its
properties. Specifically, we show the following properties for x:

1) From the construction of @, it can be readily verified that @
satisfies all the constraints of P(s). As a result due to the
optimality of a*, the utility corresponding to & cannot exceed
the utility corresponding to =*, i.e., F(x*) > F(&). This is
established in Lemma 2.

2) Also, from the construction of &, we prove that F(x*) <

F(&). This is established in Lemma 3.
3) By leveraging the results of lemmas 2 and 3 we subsequently

have & = x™. This implies that if we initiate Algorithm 1 with
x”, it will produce the same vector x* as its output. This is

established in Theorem 1.
4) Finally, we show that initiating Algorithm 1 with inputs s

and ™ results in the same resource allocation vectors. This is
formalized in Theorem 2, which in conjunction with Theorem 1
establishes that the output of the Algorithm 1 is the unique
desired vector x*.
Besides these main items, we also show that & and the value of the
utility functions corresponding to this resource allocation vector have
a number of algebraic properties established in lemmas 1, 4, and 5,
which ™ also inherits due to the observation that * = Z.

D. Grouping the Constraints

We start the analysis by showing that the set of the optimal values
{z1,..., 27} has the key property that this set can be partitioned into
smaller subsets, such that the elements within one subset are closely
related. These properties are established via lemmas 1-5. For this
purpose, we first establish a number of properties for , which is the
output of Algorithm 1 when its input s is replaced with the optimal
solution «*. It is noteworthy that it is not our objective to actually
compute &, but rather we aim to show that when such an auxiliary
term is constructed according to the rules specified in Algorithm 1, it
satisfies certain desired properties. Hence, the purpose of generating
& is only proving the properties, as a result of which, this process does
not involve knowing the optimal solution @™, or actually computing

xT.

In order to construct &, Algorithm 1 admits x* as its input,
and based on that successively partitions the set of constraints
0 @ < Y st € {l,...,T}} into d disjoint subsets
of constraints. Specifically, it returns time indices 0 = ug < u1 <
-+« < uqg =T, and partitions the set {1,...,T} into d disjoint sets:

Di 2 {uisi+1,...,u}, for i€{l,...,d}. (6)

Furthermore, this algorithm computes the metrics {v; : i €
{1,...,d}} and assigns v; to the set D;. Once the dominant
constraints are known, solving P (a*) reduces to solving a collection
of smaller problems in the form of Q. ,—u,;(x") defined in (5).
The properties of & are formalized in the following lemmas.

Lemma 1. When Algorithm 1 is initiated with *, for all m €
{1,...,d} and t € Ay, 2 {tm-1+1,...,T}, we have

@) = A

Vi€ {tum-1+1,...,t:w™" >0}
(?ﬁ m,t
dz (wi ) > )‘mﬂ‘/v

Vi€ {tum-1+1,...,t:w =0}
@)

N * it .
where we have defined w™" = [w™’,. .. swr'], and A+ € Ry is

a strictly positive real constant. Furthermore we have """ = A 1.

Lemma 2. Vector & generated by Algorithm 1 satisfies all the
constraints of P(s).

Lemma 3. The vector & satisfies F(&) > F(x*), and the equality
holds if and only if €* = &.

The results of lemmas 1-3, collectively, establish the optimality of
x generated by Algorithm 1, which is formalized by the following
theorem.

Theorem 1. By initiating Algorithm 1 with ™ as the optimal solution
to P(s), the vector T generated by Algorithm 1 is equal to the optimal
solution of P(s), i.e, T =x".

E. Dominant Constraints

By leveraging the results in the previous subsection, which es-
sentially partition the set of all constraints into a collection of d
disjoint constraint sets, next we provide additional properties for these
sets of constraints. Specifically, we show that in each of the given d
sets, at least one constraint holds with equality, which we refer to as
the dominant constraint. These d dominant constraints are the only
constraints needed to characterize the optimal solution to P(s). The
following lemma represents an intermediate and instrumental step
towards characterizing the set of dominant constraints of P(s). In
particular, it establishes a connection among the derivative measures
g%t and v? defined in Algorithm 1.

Lemma 4. The sequence {v1,va,...,va} is strictly decreasing.

We remark that the indices {u; : ¢ € {1,...,d}} and their
associated constraint indices {v; : ¢ € {1,...,d}} have significant
physical meanings in resource allocation. Specifically, the elements
of {u; : i € {1,...,d}} specify the time instances at which all
the resources arrived by that time instance are consumed in their
entirely. At other time instances, a fraction of the available resources
is reserved for being consumed in the future time instances. This
observation is formally demonstrated in the following lemma. Also,
the measures {v; : ¢ € {1,...,d}} are the derivatives of the utility
functions at the optimal solution ™ over time. Specifically, for all
the indices in the range ¢ € D;;1, the derivatives of all the utility
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terms f; at the non-zero optimal values of @™ are all the same, and
equal to v;, i.e., for to the set D; is defined in (6) we have
d
v = fi(zt) 7
dl’t
Lemma 5. Under the optimal solution x*, all the inequality con-

straints with indices included in {um : m € {1,...,d}} hold with
equality, i.e.,

Vit S Di+1, and Vitt 7& 0.

Um Um

Zx; - Zs )
i=1

=1

vm e {1,...,d}:

F. Initiating ™ via Algorithm

By leveraging the results of Lemma 4 and Lemma 5 in this
subsection, we poof the optimality of Algorithm 1 for obtaining
x”. So far we have shown that if we modify Algorithm 1 such
that instead of inputting s we input the resource vector x*, then
the output will be in fact the optimal solution x*. Next we show
that initiating Algorithm 1 with either =™ or s yields the same
output. The underlying insight is that this algorithm depends on x*
primarily for determining the metrics {v; : ¢ € {1,...,d}} and their
associated constraint indices {u; : @ € {1,...,d}}. By invoking
the result of Lemma 5, we next show that for determining the sets
{vi i€ {1,...,d}} and {u; : ¢ € {1,...,d}}, alternatively, we
can also use the resource vector s, based on which subsequently we
can show that the outcome of Algorithm 1 based on the input s will
be in fact the optimal solution x*. Insensitivity of Algorithm 1 to the
choice of &* by s as the input is formalized in the next lemma.

Lemma 6. Denote the set of constraint indices yielded by Algo-
rithm 1 when it is initiated by x* by {u; : i € {1,...,d}}, and
denote the counterpart set when in Algorithm 1 is initiated with s by
{a; i€ {1,...,d}}. We have {u; :i € {1,...,d}} ={u; :i €
{1,...,d}}.

Based on the result of Lemma 6, in the following theorem we
establish the optimality of Algorithm 1, that is it produces &* with
it is initiated with input s.

Theorem 2. By admitting s as its input, Algorithm 1 generates the
optimal solution of P(s).

G. Homogeneous Utility Functions

In this subsection we consider the settings in which the utility
functions are all identical, i.e., fi = f for all t € {1,...,T}.
While in such settings we can solve P(s) directly via Algorithm 1,
nevertheless, by leveraging the homogeneity structure, this algorithm
can be significantly simplified. Specifically, we show that the inner
loop that solves an optimization problem for all the future time
instances (lines 6-9) can be avoided, and the indices of the dominant
constraints and the associated resource allocation scheme can be
found directly based on s. Specifically, in the following lemma, we
show that the set of dominant constraints {u., : m € {1,...,d}}
can be found without solving the optimization problems of the form
Qu,_;—t(8), unlike in the general form.

Lemma 7. For problem P(s) with identical utility function f; = f,

the indices of the dominant constraints {um, : m € {1,...,d}} are
given by
1 ¢
m = a i P EE— i 9
v e t Ienglm t— Um—1 Z 3 ( )

1=Upm—1+1

Based on the result of Lemma 7, we provide Algorithm 2 as
a simpler algorithm for obtaining the optimal solution x* to the

problem in (2) with homogeneous utility functions by admitting the
resource vector s as the input. The optimality of the outcome of the
algorithm x™ is stated in Theorem 3.

Algorithm 2 - Computing =* under homogeneous utility functions

1:  input s
2: initialize d =0andug =0
3: whileuy <T -1
4: d<—d+1
5: set.Adé{ud,1+1,...,T}
t
6: ug = arg min 1 Si
tedy Ul
Ud
I 1
7 P = dmia i=ug_1+1 %
8: end while

9 xr = 21:1 Brm - [oum71 » Ly~ 1 > OT—umJ

Theorem 3. The optimal solution to the problem P(s) under
homogeneous utility functions is yielded by Algorithm 2, and takes
the closed form x* = anzl Bm - [®um,1 s L=ty 1 (DT,um].
where 0, and 1, are {-dimensional vectors of all zeros and all ones,
respectively.

We comment that a similar solution structure is provided in [18]
for treating the problem of optimal power allocation over a point-to-
point static channel in an energy harvesting system.

H. Stochastic Uncertainties

In this subsection we consider a class of utility functions and
resource vectors the true values of which are known only causally,
and otherwise bear stochastic uncertainties. We show that solving
this class of stochastic problems can be reduced to solving problems
of the form in (2). To formalize such settings, we assume {s; :
t € {1,...,T}} are independent and identically distributed (i.i.d.)
random variables unknown non-causally. Furthermore, to capture
the uncertainties in f;(x) we assume that the function depends
on an unknown random variable «:, and denote it by fi(x, ).
We also assume that f: is concave in its both arguments. Given
these notations, a stochastic account of (2) can be formalized by
optimizing the expected value of the aggregate utility subject to
chance constraints on the availability of the resource, i.e.,

T
max Ea, [fe (e, o))
Q( )é N = t t
VY st P Z$i§25i> >y, Vted{l,...,T}
=1 =1
x >~ 0

(10)

It can be readily verified that the function f;(z) = Eq, [fi(x, cu)] is

concave in z. Also, by denoting the cumulative distribution function

of >°'_, si by G, the stochastic constraints can be rewritten as
AN

St @ < Gy '(1—). Moreover, by setting v1 = G * (), defining

w2 G 1-7) -Gih(1—-9),

and noting that G¢(z) > Gi_1(x) for all t € {2,...,T}, it can be
readily verified that the solution of Q(+) can be found by solving
the problem P(s) since Q(y) = P([y1,-..,77])-

vte{2,...,T}, (11)

III. APPLICATION: ENERGY HARVESTING SYSTEMS

In this section we discuss the application of the general approach
developed in Section II to the problem of power allocation in a single-
user point-to-point communication channel in which the transmitter’s
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battery is equipped with an energy harvesting unit, gathering its
power entirely from ambient sources in its surrounding environment.
Hence, power, as the resource, is made available for transmission only
sequentially and incrementally over time. For this purpose, consider
a time-slotted transmission over a single-antenna channel in which
the channel input at time ¢ € {1,...,T} is denoted by X, and the
output is given by

K:ht'Xt+Nt, for tG{l,,T}, (12)

where h; denotes the channel coefficient at time ¢ € {1,...,T}, and
N accounts for additive white Gaussian noise distributed according
to Ac(0, 1). In this model, z; denotes the transmission power at time
t € {1,...,T} and s; denotes energy increments harvested at time
t. Throughout the analysis we assume that the battery has infinite
capacity.

A. Sum-rate Maximization in Fading Channels

By setting the utility function as fi(x:) 2 log(1l + oy - x4)
where a; = |h¢|?, the optimal power consumption scheme over time
for the purpose of maximizing the sum-rate capacity in this energy

harvesting system can be obtained via solving

T
max . log(l+ o - x4)

i t=1
t t

st. > xi <> s, te{l,...,T}
i=1 i=1
x>~ 0

P(s) = (13)

For solving P(s) we can directly apply Algorithm 1, which can
identify the set of the dominant constraints recursively. In each
recursion cycle, the algorithm solves a power allocation problem
that is equivalent to optimizing power allocation across independent
parallel channels and can be solved via the well-known water-filling
algorithm. Nevertheless, when there is more structure to be leveraged,
solving such power allocation problems can be avoided, and the in-
dices of the dominant constraints, and the associated power allocation
schemes can be found directly. Hence, for a general fading model,
the optimal solution of P(s) consists of identifying the dominant
constraints indexed by {u; : ¢ € {1,...,d}} in conjunction with ap-
plying the water-filling algorithm d times for solving Qu, s, (8)-
We remark that the indices {u; : ¢ € {1,...,d}} mark the instances
at which the entire energy available at those instances is exhausted,
and there is no energy carry-over to the following instances. The fact
that the optimal solution involves elements similar to water-filling
is pointed out and discussed in details in [4], and the result in this
paper complements this observation by determining the exact time
intervals {u;—1+1, ..., u;} over which the optimal power solution is
the water-filling solution of Q. , ., (s). In the following corollary,
we also address a special cases of interest, in which the fading process
can be time-varying, but the rate of variations is small enough to be
bounded by a measure specified by the variations of the harvested
energy over time. Specifically, if the deviations of a% from their
average % Zthl a% are smaller than the average harvested energy
T Zthl S¢, 1.e., when

1 1« 1
— < = — 14
ming oy T;(St+at)’ a4
then the structure of Algorithm 1 simplifies significantly, as specified
in the following corollary and Algorithm 3. It is noteworthy that a
static channel (i.e., o+ constant) satisfies (14) and power allocation
in static channels can be also determined by Algorithm 3.

Corollary 1 (Slowly Fading Channels). For a fading model that
satisfies (14), for the optimal solution of P(s) the time instants at
which the available resources are exhausted are given by

t
1 1
Ly (+07)

i=Upm—1+1

arg min (15)

te Am

U =

Based on the result of Corollary 1, we provide Algorithm 3 as a
simple approach to obtain the optimal power allocation ™ to the
problem in (13) by admitting the vector of harvested energy e as an
input. For the convenience in notation, we define the channel power
gain vector as @ = [au,...,ar]. The optimality of the provided
power allocation x* is stated in Theorem 4.

Theorem 4. For a quasi-static fading model that satisfies (14), power
allocation ™ yielded by Algorithm 3 is the optimal solution to the
problem P(s) in (13).

Algorithm 3 - Optimal power allocation =* over fading channels

1: input s
2: initialize d = 0andug = vg =0
3: while ug < T —1
4: d<—d+1
5: setAdé{ud,l—i-l,...,T}
t
6: ug = argmin —— . (s- + i)
tea; w1 i:uglﬂ e

4 1 U 1

7 Ba=imum X it aD)
T ri=ag_q1+1 ‘

8: end while
9: forte{1,...,7T}
10: set 2 B — a%, where j = inf{u; : u; >t}

11:  end for

B. Special Cases

In this subsection we present two special cases that specialize the
sum-rate optimization of interest to the two special cases studies in
Section II, namely homogeneous utility functions and utility functions
with stochastic uncertainties.

Example 1 (Homogeneous Utility Functions). In the context of
energy harvesting, the utility functions turn out to be homogeneous
when the fading process is static and the fading coefficients do
not vary over time, ie, a3 = -+ = a = «, as a result
of which the utility functions remain unchanged over time, i.e.,
fe(z) =log(1l + ax).

Example 2 (Stochastic Uncertainty). When the fading coefficient
a; is random and unknown to the transmitter, the utility function
fi(z,ar) = log(l + asx), which is concave in both a; and =,
becomes also random and unknown. Based on the discussion in
Section II-H, the expected utility function f;(x) = Eq, [fi(c, 2)] =
Ea,[log(1 + a:x)] is concave in x, and as result the stochastically-
constrained power allocation problem can be solved via solving (10).

IV. NUMERICAL EVALUATIONS

In this section, we present numerical evaluations to highlight the
structure and the properties of Algorithm 1 provided in Section II
and compare its performance with the generic numerical algorithms
for solving convex problems. Throughout the simulations we pursue
two objectives. First, we aim to numerically assess the structure of
the optimal solution given in lemmas 4 and 5, and assess the number
of the variations of the dominant constraints, as well as the utility
value with respect to different resource arrival processes. Secondly,
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Fig. 1: Resource arrival and allocation.

we compare the structure of the optimal solution and the performance
yielded by the optimal solution characterized with those yielded by
two generic convex optimization approaches, namely the interior
point (IP) method and the Matlab CVX solver.

Throughout the simulations we focus on the slowly-fading energy
harvesting application specified in Section III. In this model the
utility function at time ¢ is fi(z:) = log(1l + |h¢|*x:), where the
channel coefficients h; follow a Rayleigh fading and are distributed
according to N¢(0,1). The amount of energy harvested at different
time slots, i.e., {s: : t € {1,...,T}}, randomly varies over time,
and for the purpose of implementation we consider three different
models for the energy arrival process, namely Unif (0, 27), Exp(%),
and Poisson(n), where 7 denotes the average resource arrival rate.

A. Constraint Groups

The key structure of the solution to P(s) is that it can be
reduced by partitioning {z*,...,x7} into d disjoint sets, where the
values in each set are related (their respective functions have same
derivatives) and can be computed independently of each other. The
set {u; :€ {1,...,d}} specifies the time instances at which all
the available resources are exhausted. In order to demonstrate this
numerically, we set the time horizon to 7" = 10, and generate one
realization of the harvested energy vector s. We solve the problem
P(s) for this realization, and in Fig. 1 plot the variations of >°'_, z}
over time to asses the optimal properties stated in lemmas 4 and 5. For
this evaluation we consider Unif(0, 2n) as the energy arrival process,
with n = 5. The light (red) bar at time ¢ shows the level of available
resources at time ¢, and the dark (blue) bar depicts the amount of
available resources to be consumed at time £. It is observed that at
certain time instants the two bars have exactly same heights indicating
the available resources are exhausted. These time instants occur at
{u1,u2,us, us,us} = {6,10,11,16,20}. We have also evaluated
the variations of ZiT:1 x; for the solution & provided by the CVX
solver as well as the IP method, where we have observed that the
solutions match with the optimal solution with high accuracy (albeit
with higher complexity analyzed in Section IV-B). Furthermore, for
the same system realization used for the evaluations in Fig. 1, the
variations of the derivatives of the utility functions, i.e., {df:/dt :
t € {1,...,T}} are depicted in Fig. 2. It shows two main properties
associated with the derivative measures {v; : ¢ € {1,...,d}}.
First, the solutions in the range {u; + 1,...,ui+1} have the same
derivatives, and secondly, the metrics {v; : ¢ € {1,...,d}} are
strictly decreasing over time. These values are marked in Fig. 2.
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Fig. 2: Derivative measures {df;/dt}.

B. Computational Complexity

An important practical advantage of {z*,...,x7} is that the
elements in each partition are computed independently of each other.
This leads to significant reduction in the computational complexity
since instead of solving a 7T'-dimensional problem we face solving
a number of problems with dimensions much smaller than 7. To
compare the complexity of Algorithm 1 with those of CVX solver
and IP method, we consider the setting of Section IV-A, and provide
Table I, which demonstrates the processing times of the algorithm
for different values of 1" and three energy arrival processes (uniform,
exponential, and Poisson). This table shows that the algorithm, in
designing which the structure of the problem is taken into account,
is considerably faster than the CVX solver and the IP method.

Table I: Computational time in seconds

o~ | Unif (0,10) Exp ()
Alg. 1 P CVX Alg. 1 P CVX
10 29 x 10°° | 0.11 1.84 51 x 10°° | 0.15 1.75
100 31x10°° | 0.87 | 11.25 | 55 x 10°° | 0.87 [ 10.55
1000 42 x 10°° | 2.09 | 443.70 | 77 x 10 ° | 2.08 | 376.23

C. Number of Partitions

Figure 3 depicts the variations of the number of partitions d with
respect to different rates of energy arrival 7 under three different
processes, and for different problem dimensions 7" = 10, 50, 100. It
is observed that for a given 7', d remains rather insensitive to energy
arrival process, and the the average arrival rate 7. The underlying
reason is that the expected values of {u; : ¢ € {1,...,d}} do not
depend on the exact distribution of the resource arrival process, and
rather they depend on the relative changes of these distributions over
time. When the distributions are identical over time, as is the case in
this setting, their exact choices do not have a significant impact. As
a result, varying the energy arrival rate 1 does not affect the average
values of {u; : ¢ € {1,...,d}}, and subsequently, the expected
value of d.

Additionally, increasing 7' has two opposing effects on d. On
the one hand it increases the spacing between the consecutive time
indices in {u; : ¢ € {1,...,d}}. The reason underlying this is
that according to Algorithm 1, these time indices are determined by
selecting the maximum derivative measure, ¢%!, for every ¢t € A; and
t € {1,...,d}. Thus, by increasing the time horizon 7, the maximum
values of the derivative measures, qd’t, appear, on average, at later
time instances. This effect tends to decrease d. On the other hand, a
larger T is expected to lead to a larger number of constraint groups.
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Figure 3 shows the combined effect of these two opposing trends is
in favor of an increasing trend for d.

V. CONCLUSION

In this paper, we have analyzed and solved the problem of optimal
resource allocation over time, with the resource becomes available
sequentially and incrementally over time. Such problems in their gen-
eral forms subsume a wide range of conventional resource allocation
problems in communication systems (e.g., resource allocation over
parallel channels), and have direct application in certain applications
in which resources are accessible sequentially (e.g., energy harvesting
and quality-constrained systems). First, we have established certain
key properties of the optimal solution, based on which we have
proposed an algorithm for obtaining the solution. A key observation
has been that there exist time instants at which the available resource
is entirely utilized, and characterizing the optimal solution depends on
identifying those instants. The proposed algorithm provides closed-
form characterization of these instants. Furthermore, we have shown
that the proposed algorithm can be applied to a stochastic version of
the resource allocation problem, in which only the statistical proper-
ties of the resource arrivals are known. Moreover, we have applied
the obtained optimal solution to identify a closed-form optimal power
allocation policy under energy harvesting constraints over the single-
user fading channels. Finally, we have provided numerical evaluations
to depict the key properties of the optimal resource allocation policy
and to also compare the performance with those of generic convex
optimization algorithms.
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