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Abstract—Multi-hypothesis testing, which is widely used in
many domains for discerning the true model governing the data,
is often studied in a fixed sample-size setting. In such settings,
the data-acquisition and decision-making processes are decoupled
and the data-acquisition policies are pre-specified. Motivated by
the advantages of sequential sampling, this paper treats the
inherently coupled problems of data-acquisition and decision-
making for multi-hypothesis testing, where data-acquisition can
be abstracted as selecting one possible sensing action from a
finite set. It aims to devise the quickest detection strategy by
characterizing the minimum number of samples required to make
a reliable decision as well as designing the dynamic attendant
decision rules for selecting the best actions. The setting in which
the available control actions are co-dependent is considered,
which is a major distinction from the existing literature. Specifi-
cally, the existing data-adaptive approaches lose their optimality
guarantees for this problem as they fail to account for such
dependence. A novel sampling strategy that incorporates the
dependence of the control actions into its decision rules is
proposed, and its optimality properties are established.

I. INTRODUCTION

Multiple hypothesis testing is a data-driven statistical ap-

proach to discerning the underlying statistical model of the

data. Such testing problems are classical inference problems

and have been investigated extensively in the literature [1]

and [2]. They are often performed in frameworks with pre-

specified data size, where the data is provided by an unknown

data-acquisition process, and the objective is forming the most

reliable decision. However, it is well understood that these

tests can have often substantially lower sample complexity, and

subsequently lower data-acquisition and computational com-

plexity, when performed in sequential settings. In sequential

settings, specifically, the data-size is data-driven, and the data

is collected sequentially over time until a stochastic stopping

time at which a reliable decision can be formed.

Sequential strategies work based on the premise that col-

lecting the samples sequentially guides the data-acquisition

process to progressively identify and take the most informative

actions. The primary challenge in designing the sequential

methods pertains to jointly co-designing the decision-making

process in conjunction with the underlying data-acquisition

process. The data acquisition process consists in two main

components. The first component is the data-driven stopping

time of the process, which determines the size of the data. The
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second one pertains to the process of collecting the data prior

to the stopping time. This component manifests in network

settings in which there exist multiple information sources each

generating an information stream over time, where one faces

selecting the sequence of information sources to collect data

from over time. Throughout this paper we refer to the selection

of the information sources over time as the control actions.

The settings in which the control actions are statistically

independent over time is well-investigated [3]–[8], for which

there exists a large body of decisions rules that are variations

of, or inspired by, the original work of Chernoff [9] for

controlled sensing. In many emerging domains, however, the

statistical independence of the actions cannot be sustained. For

instance, in networks of interconnected information sources,

whose data bears statistical correlation due to an underlying

physical interaction or coupling, the assumption that a control

action at any time does not impact future ones is not neces-

sarily valid. Representative application domains include sensor

management [10], inspection and classification [11], medical

diagnosis [12], search [13], channel coding with feedback [14],

universal source coding [15], [16], and outlier detection [17].

Motivated by such scenarios, in this paper we consider a

general setting for sequential hypothesis testing in which the

control actions are statistically co-dependent. The problem

is considered in a fully sequential setting in which, data is

collected sequentially one-at-a-time until a reliable decision

about the true model can be made. Furthermore, it is assumed

that at each time instant, there exist a set of possible control

actions to be taken. The goal is to design a sequential and

data-adaptive strategy that consists of a causal control policy

which is a function of all the previous actions and collected

data. Such strategies are specified by the number of samples to

be collected, as well as the actions to be taken at each time.

When there exists only one action, determining the optimal

sampling strategy reduces to minimizing the (average) number

of samples. This can be effectively facilitated via sequential

hypothesis testing, which is well-investigated [18]–[22].

However, incorporating control actions into the decisions

is less-investigated. One directly applicable approach to treat

such coupled sampling and decision-making processes is con-

trolled sensing, originally developed by Chernoff for binary

composite hypothesis testing under independent control ac-

tions [9]. Chernoff’s rule decides in favor of the action with

the best immediate return according to proper information

measures, and achieves optimal performance in the asymptote
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of diminishing rates of erroneous decisions. In [7] the Chernoff

rule is modified to relax the assumption that the hypotheses

should be uniformly distinguishable in the multi-hypothesis

setting by introducing a randomization policy at certain time

instants. The results are extended to the setting in which the

available data belongs to a discrete alphabet and follows a

stationary Markov model [8].

Despite their discrepancies in settings and approaches, all

the aforementioned studies on controlled sensing assume that

the available control actions are independent, or they follow

a first-order stationary Markov process. This is in contrast

to the setting of this paper, in which the control actions

follow a known general dependency kernel. This paper devises

a sequential sampling strategy, in which the dependence of

control actions plays a significant role in designing the control

policy. Specifically, the devised control policy, unlike the

Chernoff rule, incorporates such dependence into the decision

rules via accounting for the impact of each action on the future

ones.

II. DATA MODEL AND PROBLEM FORMULATION

A. Data Model

Consider a multi-hypothesis testing problem, consisting of

L hypotheses denoted by H
△

= {H1, . . . ,HL}. There exist n

possible control actions. We denote the sample taken under

action Ai by Xi ∈ R, for i ∈ {1, . . . , n}. The samples are

correlated, inducing correlation among this associated actions.

We denote the joint cumulative distribution function (cdf)

of X
△

= {X1, . . . ,Xn} under hypothesis Hℓ by Fℓ. For

convenience in notations, we assume that the distributions

of the random variables under each hypothesis Hℓ ∈ H are

absolutely continuous with respect to a common distribution

and have well-defined probability density functions (pdfs). For

every non-empty set B ⊆ {1, . . . , n}, we denote the joint pdf

of XB
△

= {Xi : i ∈ B} under Hℓ by fℓ(·;B). We also define

T ∈ H as the true hypothesis and denote the prior probability

that hypothesis Hℓ is true by ǫℓ, i.e.,

ǫℓ
△

= P(T = Hℓ) , for ℓ ∈ {1, . . . , L} , (1)

where
∑L
ℓ=1 ǫℓ = 1.

B. Sampling Model

We consider a fully sequential data acquisition mechanism,

in which we select one control action at each time and collect

the sample generated under that action. It is assumed that each

control action can be selected only once1. The goal is to design

an optimal sequence of control actions, such that, with the

minimum number of samples, the true model T ∈ H can be

determined. Samples are collected sequentially such that at

any time t and based on the information accumulated up to t,

the sampling procedure takes one of the following actions.

A1) Exploration: Due to lack of sufficient confidence, mak-

ing any decision is deferred and one more sample is

1This assumption is for convenience in notations, and can be relaxed with
proper adjustment in the analysis.

taken by selecting one of the control actions that has not

been taken before. Thus, the next control action should

be specified.

A2) Detection: Data collection process is terminated and a

reliable decision about the true model of the data is

formed. Hence, the stopping time and the final decision

rule upon stopping should be specified.

The sampling process can be expressed uniquely by its

stopping time, the final decision rule, and the data-adaptive

control policy. In order to formalize the detection rule, we

define τn ∈ N as the stochastic stopping time, at which the

sampling process is terminated and a decision is formed, and

define δn ∈ {1, . . . , L} as the decision rule at the stopping

time, where δn = ℓ indicates a decision in favor of Hℓ,

for ℓ ∈ {1, . . . , L}. Furthermore, in order to characterize

the information-gathering process (exploration), we define the

control policy ψn : {1, . . . , τ} → A
△

= {1, . . . , n}, where

ψn(t) specifies the control action at time t. Accordingly, we

define ψtn as the ordered set of control actions up to time t,

i.e.,

ψtn
△

= {ψn(1), . . . , ψn(t)} , (2)

and denote the sample taken under action ψn(t) at time t by

Yt
△

= Xψn(t). Also, the sequence of samples accumulated up

to time t is denoted by

Y t
△

=
{

Y1, . . . , Yt
}

. (3)

Furthermore, we define ϕtn as the set of control actions that

can still be taken at time t, i.e.,

ϕtn
△

= A \ {ψn(1), . . . , ψn(t− 1)} . (4)

The information accumulated sequentially can be abstracted

by the filtration {Ft : t = 1, 2, . . . }, where

Ft
△

= σ(Y t;ψtn) . (5)

The stopping time, the selection rule, and the control policy are

Ft-measurable functions. We define the Ft-measurable tuple

Φn
△

= (τn, δn, ψ
τ
n) to uniquely describe the sampling strategy.

Finally, we define the following information measures that

are instrumental to formalizing and analyzing various decision

rules. Specifically, for any k 6= ℓ, any given ψtn, and B ⊆ ϕt+1
n

we define

Jℓk(B,ψ
t
n)

△

= DKL

(

fℓ(XB ;B | Ft)‖fk(XB ;B | Ft)
)

, (6)

where DKL(f‖g) denotes the Kullback-Leibler (KL) diver-

gence from a statistical model with pdf g to a model with pdf

f .

C. Problem Formulation

The sequence of coupled information-gathering strategy

and decision-making processes is uniquely specified by Φn.

Designing the optimal sampling strategy for achieving the

quickest reliable decision involves striking a balance between

the quality and agility of the process as two opposing mea-

sures. The agility of the process is captured by the average
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delay in reaching a decision, i.e., E{τ}, and the decision

quality is captured by the frequency of erroneous decisions.

Such error rates can be captured by

P
ℓ
n

△

= P(δn 6= ℓ
∣

∣ T = Hℓ) , ∀ℓ ∈ {1, . . . , L} . (7)

There exists an inherent tension between the accuracy and the

agility of the process, since improving one penalizes the other

one. Hence, to formalize the quickest reliable decision, we

control the quality of the decision and minimize the average

number of samples over all possible strategies. Hence, the

optimal sampling strategy of interest is the solution to

infΦn
E{τn}

s.t. P
ℓ
n ≤ αℓn , ∀ℓ ∈ {1, . . . , L}

, (8)

where αℓn ∈ (0, 1) controls the probability of error when Hℓ

is the true model. The values of αℓn, for ℓ ∈ {1, . . . , L}, are

selected such that problem (8) is feasible almost surely.

D. Assumptions

In order to formalize the performance bounds and analyze

the proposed rules, we need to make some assumptions about

the candidate models Fℓ for ℓ ∈ {1, . . . , L}. Let us define

Zℓ(t)
△

= log fℓ(Y
t;ψtn) , (9)

as the log-likelihood of the samples collected up to time t

under hypothesis Hℓ ∈ H. Then, for any ℓ, k ∈ {1, . . . , L}
where ℓ 6= k, we define

Λℓk(t)
△

= Zℓ(t)− Zk(t) , (10)

as the log-likelihood ratio (LLR) processes of the samples

collected up to time t. When the samples are independent and

identically distributed (i.i.d.), LLR processes are random walks

with fixed expected step-sizes. When the collected samples are

non-i.i.d., they lose this property, and the ensuing uncontrolled

fluctuations in the step-sizes hinder our ability to analyze the

problem in (8). In order to obtain lower bounds for the mo-

ments of a stopping time and to prove asymptotic optimality

of the proposed rules, some restrictions should be imposed

on these fluctuations. For this purpose, we use the notion

of r-quick convergence [22]. Specifically, corresponding to

any subsequence of control actions {ψ(t)}mt=1 and sequence

of samples collected under these actions {Yt}
m
t=1, we define

Iℓk(ψ
m) as the convergence limit of the normalized LLRs

under Hℓ as follows

1

m
Λℓk(m) → Iℓk(ψ

m) , (11)

when the convergence is r-quick as m,n→ ∞. The conver-

gence in (11) is r-quick if and only if Eℓ{T
r
ℓk(h)} < ∞ for

any h > 0 and r > 0, where

Tℓk(h)
△

= sup

{

t :
∣

∣

∣

1

m
Λℓk(m)− Iℓk(ψ

m)
∣

∣

∣
≥ h

}

.

We also define

I∗ℓk
△

= sup
ψm⊆{1,...,n}

Iℓk(ψ
m) , (12)

as the largest value of these information measures for each

pair of hypotheses attained by a subsequence.

III. DATA-ADAPTIVE SAMPLING

In this section, we offer a coupled sampling and decision-

making strategy Φn = (τn, δn, ψ
τ
n) as a solution to (8) and

analyze its optimality properties in Section IV.

A. Stopping Time and Decision Rules

The detection action consists of determining the stopping

time of the sampling process and the final decision rule. To

determine these two rules, for a set of thresholds {γℓk} we

define

νℓ
△

= inf
{

t : Zℓ(t) ≥ max
k 6=ℓ

[Zk(t)+γℓk] , or t = n
}

, (13)

for any ℓ ∈ {1, . . . , L}, and set

τ∗n
△

= min{ν1, . . . , νL} . (14)

Furthermore, at the stopping time we make a decision about

the true model according to

δ∗n
△

= argmin
ℓ∈{1,...,L}

νℓ . (15)

The following theorem establishes that by selecting suitable

set of thresholds {γℓk}, the error probability constraints in (8)

are satisfied by the likelihood ratio test (LRT) described above.

Theorem 1: When problem (8) is feasible, for any data

adaptive sampling strategy Φn = (τ∗n, δ
∗
n, ψ

τ
n) with the stop-

ping time and decision rule specified in (13)–(15), we have

P
ℓ
n ≤ αℓn, for all ℓ ∈ {1, . . . , L}, provided that

∑

k 6=ℓ

exp{−γkℓ} ≤ αℓn , ∀ℓ ∈ {1, . . . , L} . (16)

The following corollary provides one possible choice for

selecting the thresholds.

Corollary 1: By setting

γℓk = log
L

αkn
, ∀ℓ, k ∈ {1, . . . , L} , (17)

the sampling strategy Φn = (τ∗n, δ
∗
n, ψ

τ
n) satisfies P

ℓ
n ≤ αℓn

for all ℓ ∈ {1, . . . , L}.

Based on (13)–(15), the sampling process continues as long

as none of the hypotheses is a strong candidate for the true

model, and terminates when a sufficiently reliable candidate

is found and makes a decision in favor of that model.

Detection rule in (15) specifies the decision at the stopping

time. Prior to that, we need to dynamically characterize ψn(t).
In other words, based on (13) and (14), as long as the LLRs

associated with none of the hypotheses are large enough, we

need to take at least one more sample. In the next subsection

we characterize the control policy ψn(t) which identifies the

action to be taken at each time.
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B. Control Policy

Prior to the stopping time τn, at any time t the sampling

process should dynamically identify one of the remaining

control actions that provides the most relevant information

about the true hypothesis. When the samples under different

actions are statistically independent, the control policy at the

current time instant has no impact on the future ones. In such a

setting, the Chernoff rule [9], which selects the best immediate

action, admits optimality properties under certain conditions.

Specifically, at any time t the Chernoff rule first forms the

maximum likelihood (ML) decision about the true hypothesis.

Next, at time (t+1) based on this decision, it selects the most

informative action based on some information measures. The

Chernoff rule minimizes the average delay in the asymptote

of small rate of erroneous decisions, if all the actions are

independent [9] and [7]. In this paper, however, the available

actions are co-dependent. Therefore, the Chernoff rule, which

ignores such dependence and the impact of the current decision

on the future ones, fails to exploit it.

We propose a control policy which incorporates the impact

of all future actions into the decision rules. To this end, we

denote the ML decision about the true hypothesis at time t by

δML(t), i.e.,

δML(t)
△

= argmax
ℓ∈{1,...,L}

fℓ(Y
t;ψtn) . (18)

Next, based on this decision we set the control policy. This

step is the main distinction between the Chernoff rule and

the proposed control policy of this paper. The Chernoff rule

at any time selects the action that maximize the reliability of

the decision about the model at that time, while our proposed

rule considers the impact of the next action on all the future

ones. We define ψch(t) as the control policy of the Chernoff

rule at time t, and accordingly define the ordered set ψtch
△

=
{ψch(1), . . . , ψch(t)}. The Chernoff rule selects the action that

maximizes the distance between fℓ and its closest alternative

when the ML decision is in favor of Hℓ, i.e.,

ψch(t)
△

= argmax
i∈ϕt

n

min
k 6=ℓ

Jℓk
(

{i}, ψt−1
ch

)

. (19)

In our proposed control policy, we incorporate the impact

of ψn(t) on all future actions. To this end, new information

measures are introduced to facilitate selecting the next action,

which is the one that maximizes the combination of immediate

information and future expected information gain. For this

purpose, at time t and for each action i ∈ ϕtn we define the

set Ri
t as the set of all subsets of ϕtn that contain i, i.e.,

Ri
t

△

= {S : S ⊆ ϕtn and i ∈ S} . (20)

Corresponding to the samples collected under the actions in the

set S ∈ Ri
t under Hℓ ∈ H we define the following information

measures:

M i
ℓ(t,S)

△

= min
k 6=ℓ

Jℓk(S, ψ
t−1) . (21)

The terms M i
ℓ(t,S) capture the information content of |S|

samples. Hence, the normalized terms
Mi

ℓ
(t,S)
|S| account for

the average information content per sample. Based on these

normalized measures, a candidate decision is to select the

control action that maximizes the average information over

all possible future control actions. Therefore, when the ML

decision about the true hypothesis is Hℓ, the optimal control

policy is the solution of the following optimization problem

over all combinations of the remaining actions:

ψ∗
n(t)

△

= argmax
i∈ϕt

n

max
S∈Ri

t

M i
ℓ(t,S)

|S|
, (22)

In this control policy, an ML decision about the true hypothesis

is formed based on the collected data, and the action that

maximizes the average information over all possible sequences

of future control actions is selected. We note that the sets S
are selected such that they contain the control action i, which

is a candidate to be taken at time t, and possibly additional

control actions that will be taken in the future.

Since under some of the control actions different distribu-

tions may be non-distinguishable, similar to [7] we introduce

randomized decisions at certain exponentially-separated time

instants. Specifically, at time instants t = ⌊as⌋, for some

a > 1, which is close to 1 and s ∈ N, we select one control

action from ϕtn randomly. The randomized actions guarantee

that the ML decision converges to the true model of the data

in a polynomially-bounded time [7].

IV. PERFORMANCE ANALYSIS

In this section, we focus of feasible problems of form (8),

and analyze the asymptotic performance of the proposed

sequence of strategies {Φn}n∈N in the asymptote of small

error rates. To this end, we define

ᾱℓ
△

= − lim
n→∞

1

n
logαℓn , (23)

and assume that ᾱℓ > 0 for all ℓ ∈ {1, . . . , L}. Then, as

n grows, the error rates approach zero. A counter example

is provided in [23], which shows that the Chernoff rule

loses its optimality properties when the control actions are

co-dependent. In this section, we prove that the proposed

strategy attains the same asymptotic optimality properties

under co-dependent actions as that of the Chernoff rule under

independent actions.

Based on the measures defined in (11) and (12), we provide

the optimality guarantee of the proposed strategy for the

problem in (8). First, in the following theorem we provide the

performance bounds of any feasible solution to problem (8).

Theorem 2: Under the assumptions in (11) and (12), in the

asymptote of large n and for any m ∈ N, any feasible solution

to problem (8) satisfies

Eℓ{τ
m}

nm
≥

[

max
k 6=ℓ

ᾱk

I∗ℓk

]m

·
(

1 + o(1)
)

. (24)

Next, we show that the proposed strategy Φ∗
n = (τ∗n, δ

∗
n, ψ

τ
n
∗)

achieves asymptotic optimality under this setting.

Theorem 3: Under the assumptions in (11) and (12), if 0 <
αℓ

n

αk
n

< ∞ for any ℓ, k ∈ {1, . . . , L}, the proposed strategy
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Fig. 1. Average delay of different approaches versus error probability.

Φ∗
n = (τ∗n, δ

∗
n, ψ

τ
n
∗) specified by (14), (15), and (22) is an

optimal solution to problem (8) with respect to any moment

of the stopping time in the asymptote of large n, i.e., for any

m ∈ N

Eℓ{(τ
∗
n)
m}

nm
≤

[

max
k 6=ℓ

ᾱk

I∗ℓk

]m

·
(

1 + o(1)
)

. (25)

Theorems 2 and 3 prove the optimality of the proposed strategy

in the asymptote of large n.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

sampling strategy by comparing it with the existing approaches

through simulations. For this purpose, we use a random control

policy and the Chernoff rule as the benchmark methods. We

consider zero-mean Gaussian distributions for data, and test for

two different covariance matrices. We also set ǫℓ = 0.5 and

αℓn = α for ℓ ∈ {1, 2}. In Fig. 1, we compare the performance

of different approaches in terms of the average decision delay

for making a final decision with the same quality. It is observed

that the proposed sampling procedure outperforms both the

pre-specified and the Chernoff rule in terms of the reliability-

agility trade-off.

VI. CONCLUSION

We have considered the problem of controlled sensing for

multi-hypothesis testing when the actions are co-dependent.

The objective is to determine the true hypothesis with the

desired reliability by taking the minimum average number

of samples. After discussing the widely used Chernoff rule

and its shortcomings, we have designed a sequential and data-

adaptive sampling strategy, consisting of a stopping time, a

final decision rule, and a control policy. The proposed sam-

pling strategy, which judiciously incorporates the dependence

of the actions into its decision rules, involves dynamically

deciding whether to terminate the sampling process, or to

continue collecting further evidence, and prior to terminating

the process specifies the best control action at each time

instant. We have established the optimality properties of the

proposed sampling strategy and verified its superior perfor-

mance through simulations.
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