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Abstract—Multi-hypothesis testing, which is widely used in
many domains for discerning the true model governing the data,
is often studied in a fixed sample-size setting. In such settings,
the data-acquisition and decision-making processes are decoupled
and the data-acquisition policies are pre-specified. Motivated by
the advantages of sequential sampling, this paper treats the
inherently coupled problems of data-acquisition and decision-
making for multi-hypothesis testing, where data-acquisition can
be abstracted as selecting one possible sensing action from a
finite set. It aims to devise the quickest detection strategy by
characterizing the minimum number of samples required to make
a reliable decision as well as designing the dynamic attendant
decision rules for selecting the best actions. The setting in which
the available control actions are co-dependent is considered,
which is a major distinction from the existing literature. Specifi-
cally, the existing data-adaptive approaches lose their optimality
guarantees for this problem as they fail to account for such
dependence. A novel sampling strategy that incorporates the
dependence of the control actions into its decision rules is
proposed, and its optimality properties are established.

I. INTRODUCTION

Multiple hypothesis testing is a data-driven statistical ap-
proach to discerning the underlying statistical model of the
data. Such testing problems are classical inference problems
and have been investigated extensively in the literature [1]
and [2]. They are often performed in frameworks with pre-
specified data size, where the data is provided by an unknown
data-acquisition process, and the objective is forming the most
reliable decision. However, it is well understood that these
tests can have often substantially lower sample complexity, and
subsequently lower data-acquisition and computational com-
plexity, when performed in sequential settings. In sequential
settings, specifically, the data-size is data-driven, and the data
is collected sequentially over time until a stochastic stopping
time at which a reliable decision can be formed.

Sequential strategies work based on the premise that col-
lecting the samples sequentially guides the data-acquisition
process to progressively identify and take the most informative
actions. The primary challenge in designing the sequential
methods pertains to jointly co-designing the decision-making
process in conjunction with the underlying data-acquisition
process. The data acquisition process consists in two main
components. The first component is the data-driven stopping
time of the process, which determines the size of the data. The
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second one pertains to the process of collecting the data prior
to the stopping time. This component manifests in network
settings in which there exist multiple information sources each
generating an information stream over time, where one faces
selecting the sequence of information sources to collect data
from over time. Throughout this paper we refer to the selection
of the information sources over time as the control actions.
The settings in which the control actions are statistically
independent over time is well-investigated [3]—[8], for which
there exists a large body of decisions rules that are variations
of, or inspired by, the original work of Chernoff [9] for
controlled sensing. In many emerging domains, however, the
statistical independence of the actions cannot be sustained. For
instance, in networks of interconnected information sources,
whose data bears statistical correlation due to an underlying
physical interaction or coupling, the assumption that a control
action at any time does not impact future ones is not neces-
sarily valid. Representative application domains include sensor
management [10], inspection and classification [11], medical
diagnosis [12], search [13], channel coding with feedback [14],
universal source coding [15], [16], and outlier detection [17].
Motivated by such scenarios, in this paper we consider a
general setting for sequential hypothesis testing in which the
control actions are statistically co-dependent. The problem
is considered in a fully sequential setting in which, data is
collected sequentially one-at-a-time until a reliable decision
about the true model can be made. Furthermore, it is assumed
that at each time instant, there exist a set of possible control
actions to be taken. The goal is to design a sequential and
data-adaptive strategy that consists of a causal control policy
which is a function of all the previous actions and collected
data. Such strategies are specified by the number of samples to
be collected, as well as the actions to be taken at each time.
When there exists only one action, determining the optimal
sampling strategy reduces to minimizing the (average) number
of samples. This can be effectively facilitated via sequential
hypothesis testing, which is well-investigated [18]—[22].
However, incorporating control actions into the decisions
is less-investigated. One directly applicable approach to treat
such coupled sampling and decision-making processes is con-
trolled sensing, originally developed by Chernoff for binary
composite hypothesis testing under independent control ac-
tions [9]. Chernoff’s rule decides in favor of the action with
the best immediate return according to proper information
measures, and achieves optimal performance in the asymptote
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of diminishing rates of erroneous decisions. In [7] the Chernoff
rule is modified to relax the assumption that the hypotheses
should be uniformly distinguishable in the multi-hypothesis
setting by introducing a randomization policy at certain time
instants. The results are extended to the setting in which the
available data belongs to a discrete alphabet and follows a
stationary Markov model [8].

Despite their discrepancies in settings and approaches, all
the aforementioned studies on controlled sensing assume that
the available control actions are independent, or they follow
a first-order stationary Markov process. This is in contrast
to the setting of this paper, in which the control actions
follow a known general dependency kernel. This paper devises
a sequential sampling strategy, in which the dependence of
control actions plays a significant role in designing the control
policy. Specifically, the devised control policy, unlike the
Chernoff rule, incorporates such dependence into the decision
rules via accounting for the impact of each action on the future
ones.

II. DATA MODEL AND PROBLEM FORMULATION
A. Data Model

Consider a multi-hypothesis testing problem, consisting of
L hypotheses denoted by H = {H1,...,Hz}. There exist n
possible control actions. We denote the sample taken under
action A; by X; € R, for ¢ € {1,...,n}. The samples are
correlated, inducing correlation among this associated actions.
We denote the joint cumulative distribution function (cdf)
of X 2 {X1,...,X,} under hypothesis H, by F,. For
convenience in notations, we assume that the distributions
of the random variables under each hypothesis H, € H are
absolutely continuous with respect to a common distribution
and have well-defined probability density functions (pdfs). For
every non-empty set B C {1,...,n}, we denote the joint pdf
of Xp = {X; : i € B} under H; by fi(-; B). We also define
T € H as the true hypothesis and denote the prior probability
that hypothesis Hy is true by €, i.e.,

e = P(T=H,), for Le{l,..., L}, (1)

L
where >, ;€ = 1.

B. Sampling Model

We consider a fully sequential data acquisition mechanism,
in which we select one control action at each time and collect
the sample generated under that action. It is assumed that each
control action can be selected only once'. The goal is to design
an optimal sequence of control actions, such that, with the
minimum number of samples, the true model T € H can be
determined. Samples are collected sequentially such that at
any time ¢ and based on the information accumulated up to ¢,
the sampling procedure takes one of the following actions.

Aj) Exploration: Due to lack of sufficient confidence, mak-
ing any decision is deferred and one more sample is

IThis assumption is for convenience in notations, and can be relaxed with
proper adjustment in the analysis.

taken by selecting one of the control actions that has not
been taken before. Thus, the next control action should
be specified.

Detection: Data collection process is terminated and a
reliable decision about the true model of the data is
formed. Hence, the stopping time and the final decision
rule upon stopping should be specified.

Ay)

The sampling process can be expressed uniquely by its
stopping time, the final decision rule, and the data-adaptive
control policy. In order to formalize the detection rule, we
define 7, € N as the stochastic stopping time, at which the
sampling process is terminated and a decision is formed, and
define d,, € {1,...,L} as the decision rule at the stopping
time, where 6,, = /¢ indicates a decision in favor of Hy,,
for ¢ € {1,...,L}. Furthermore, in order to characterize
the information-gathering process (exploration), we define the
control policy ¥, : {1,...,7} = A = {1,...,n}, where
1, (t) specifies the control action at time ¢. Accordingly, we
define z/;fl as the ordered set of control actions up to time ¢,
ie.,

Pl = (1), ea(B)} )

and denote the sample taken under action 1), (¢) at time ¢ by
Y, £ Xy, (t)- Also, the sequence of samples accumulated up
to time ¢ is denoted by

vie{mn,... .V} . (3)

Furthermore, we define <pr as the set of control actions that
can still be taken at time ¢, i.e.,

LpiéA\{qpn(l)avwn(t_l)} . (4)

The information accumulated sequentially can be abstracted
by the filtration {F; : t =1,2,...}, where

Fr=o(Yhyl) . (5)

The stopping time, the selection rule, and the control policy are
Fi-measurable functions. We define the J;-measurable tuple
®,, = (7,00, 7) to uniquely describe the sampling strategy.

Finally, we define the following information measures that
are instrumental to formalizing and analyzing various decision
rules. Specifically, for any k # £, any given +!, and B C !+1
we define

Jox(B,¥%) = Dy (fo(Xp; B | )l fu(Xp; B F)) , (6)

where Dxk1,(f|lg) denotes the Kullback-Leibler (KL) diver-
gence from a statistical model with pdf g to a model with pdf

f.
C. Problem Formulation

The sequence of coupled information-gathering strategy
and decision-making processes is uniquely specified by ®,,.
Designing the optimal sampling strategy for achieving the
quickest reliable decision involves striking a balance between
the quality and agility of the process as two opposing mea-
sures. The agility of the process is captured by the average
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delay in reaching a decision, i.e., E{7}, and the decision
quality is captured by the frequency of erroneous decisions.
Such error rates can be captured by

Pl =P, #0|T=Hy), Ve{l,....L}. (7

There exists an inherent tension between the accuracy and the
agility of the process, since improving one penalizes the other
one. Hence, to formalize the quickest reliable decision, we
control the quality of the decision and minimize the average
number of samples over all possible strategies. Hence, the
optimal sampling strategy of interest is the solution to

E{r.}
s.t. P! <af |

infq;.n
) ®)

Vee{l1,...,L}

where o, € (0,1) controls the probability of error when Hy

is the true model. The values of o, for £ € {1,..., L}, are

selected such that problem (8) is feasible almost surely.

D. Assumptions

In order to formalize the performance bounds and analyze
the proposed rules, we need to make some assumptions about
the candidate models F for £ € {1,...,L}. Let us define

Zy(t) = log fo(Yh9h) 9)

as the log-likelihood of the samples collected up to time ¢
under hypothesis Hy € #. Then, for any ¢,k € {1,...,L}
where ¢ # k, we define

Aer(t) & Zo(t) — Zi(t) (10)

as the log-likelihood ratio (LLR) processes of the samples
collected up to time ¢. When the samples are independent and
identically distributed (i.i.d.), LLR processes are random walks
with fixed expected step-sizes. When the collected samples are
non-i.i.d., they lose this property, and the ensuing uncontrolled
fluctuations in the step-sizes hinder our ability to analyze the
problem in (8). In order to obtain lower bounds for the mo-
ments of a stopping time and to prove asymptotic optimality
of the proposed rules, some restrictions should be imposed
on these fluctuations. For this purpose, we use the notion
of r-quick convergence [22]. Specifically, corresponding to
any subsequence of control actions {«(¢)}7, and sequence
of samples collected under these actions {Y;}*,, we define
Io(¢™) as the convergence limit of the normalized LLRs
under H; as follows

1
EAZk(m) — Lo (™) (11)

when the convergence is r-quick as m,n — oo. The conver-
gence in (11) is r-quick if and only if E,{T7,.(h)} < oo for
any h > 0 and r > 0, where

1
Tz]c(h) £ sup {t : ‘EAgk(m) — I[k(d)m)’ > h} .
We also define
(12)

as the largest value of these information measures for each
pair of hypotheses attained by a subsequence.

III. DATA-ADAPTIVE SAMPLING

In this section, we offer a coupled sampling and decision-
making strategy ®,, = (7,,,0,, %) as a solution to (8) and
analyze its optimality properties in Section IV.

A. Stopping Time and Decision Rules

The detection action consists of determining the stopping
time of the sampling process and the final decision rule. To
determine these two rules, for a set of thresholds {ve} we
define

ve = inf {t : Z,(t) > max [Zk(t)+7ek] ,ort =n}, (13)

for any £ € {1,..., L}, and set

A
* —_
Tn =

(14)

min{vy,...,v.} .

Furthermore, at the stopping time we make a decision about
the true model according to

AN .
0y = argmin vy .
ee{l,...,L}

15)

The following theorem establishes that by selecting suitable
set of thresholds {7}, the error probability constraints in (8)
are satisfied by the likelihood ratio test (LRT) described above.

Theorem 1: When problem (8) is feasible, for any data
adaptive sampling strategy ®,, = (77,07, ") with the stop-

ping time and decision rule specified in (13)—(15), we have
P! <af, forall £ € {1,...,L}, provided that

Zexp{—m} <at, Vle{l,..,L}.
kil

(16)

The following corollary provides one possible choice for
selecting the thresholds.
Corollary 1: By setting

L
’sz;:lOgT, V€7k€{17"'aL}’ (17)
an

the sampling strategy ®,, = (7, 0%,47) satisfies PY < of,
forall £ {1,...,L}.
Based on (13)—(15), the sampling process continues as long
as none of the hypotheses is a strong candidate for the true
model, and terminates when a sufficiently reliable candidate
is found and makes a decision in favor of that model.
Detection rule in (15) specifies the decision at the stopping
time. Prior to that, we need to dynamically characterize 1), ().
In other words, based on (13) and (14), as long as the LLRs
associated with none of the hypotheses are large enough, we
need to take at least one more sample. In the next subsection
we characterize the control policy v, (t) which identifies the
action to be taken at each time.
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B. Control Policy

Prior to the stopping time 7,, at any time ¢ the sampling
process should dynamically identify one of the remaining
control actions that provides the most relevant information
about the true hypothesis. When the samples under different
actions are statistically independent, the control policy at the
current time instant has no impact on the future ones. In such a
setting, the Chernoff rule [9], which selects the best immediate
action, admits optimality properties under certain conditions.
Specifically, at any time ¢ the Chernoff rule first forms the
maximum likelihood (ML) decision about the true hypothesis.
Next, at time (¢t+ 1) based on this decision, it selects the most
informative action based on some information measures. The
Chernoff rule minimizes the average delay in the asymptote
of small rate of erroneous decisions, if all the actions are
independent [9] and [7]. In this paper, however, the available
actions are co-dependent. Therefore, the Chernoff rule, which
ignores such dependence and the impact of the current decision
on the future ones, fails to exploit it.

We propose a control policy which incorporates the impact
of all future actions into the decision rules. To this end, we
denote the ML decision about the true hypothesis at time ¢ by
omw(t), ie.,

Swi(t) & argmax fo(Y'59L) .
te{1,...,.L}

(18)

Next, based on this decision we set the control policy. This
step is the main distinction between the Chernoff rule and
the proposed control policy of this paper. The Chernoff rule
at any time selects the action that maximize the reliability of
the decision about the model at that time, while our proposed
rule considers the impact of the next action on all the future
ones. We define ., (t) as the control policy of the Chernoff
rule at time ¢, and accordingly define the ordered set %, =
{ten(1), ..., %en(t)}. The Chernoff rule selects the action that
maximizes the distance between f; and its closest alternative
when the ML decision is in favor of Hy, i.e.,

Yen(t) = argmax min Jo ({i}, 05 ") - (19)
icpt,  k#L

In our proposed control policy, we incorporate the impact
of 1, (t) on all future actions. To this end, new information
measures are introduced to facilitate selecting the next action,
which is the one that maximizes the combination of immediate
information and future expected information gain. For this
purpose, at time ¢ and for each action i € ¢!, we define the
set R as the set of all subsets of !, that contain i, i.e.,

Ri={S:S8C¢, andiecS}. (20)

Corresponding to the samples collected under the actions in the
set S € R} under H, € H we define the following information
measures:

i R t—1
M(t,S) = min Ju(S, ") . 1)

The terms M} (t,S) capture the information content of |S|

M (t,S)

samples. Hence, the normalized terms S| account for

the average information content per sample. Based on these
normalized measures, a candidate decision is to select the
control action that maximizes the average information over
all possible future control actions. Therefore, when the ML
decision about the true hypothesis is Hy, the optimal control
policy is the solution of the following optimization problem
over all combinations of the remaining actions:

M(t,S)

Vi (t) = argmax max S

22
" i€pl, SER:@ ( )

In this control policy, an ML decision about the true hypothesis
is formed based on the collected data, and the action that
maximizes the average information over all possible sequences
of future control actions is selected. We note that the sets S
are selected such that they contain the control action ¢, which
is a candidate to be taken at time ¢, and possibly additional
control actions that will be taken in the future.

Since under some of the control actions different distribu-
tions may be non-distinguishable, similar to [7] we introduce
randomized decisions at certain exponentially-separated time
instants. Specifically, at time instants ¢ = [a®], for some
a > 1, which is close to 1 and s € N, we select one control
action from ¢!, randomly. The randomized actions guarantee
that the ML decision converges to the true model of the data
in a polynomially-bounded time [7].

IV. PERFORMANCE ANALYSIS

In this section, we focus of feasible problems of form (8),
and analyze the asymptotic performance of the proposed
sequence of strategies {®,},en in the asymptote of small
error rates. To this end, we define

a2 — lim l1og ot (23)
n—oo n

and assume that a, > 0 for all £ € {1,...,L}. Then, as
n grows, the error rates approach zero. A counter example
is provided in [23], which shows that the Chernoff rule
loses its optimality properties when the control actions are
co-dependent. In this section, we prove that the proposed
strategy attains the same asymptotic optimality properties
under co-dependent actions as that of the Chernoff rule under
independent actions.

Based on the measures defined in (11) and (12), we provide
the optimality guarantee of the proposed strategy for the
problem in (8). First, in the following theorem we provide the
performance bounds of any feasible solution to problem (8).

Theorem 2: Under the assumptions in (11) and (12), in the
asymptote of large n and for any m € N, any feasible solution
to problem (8) satisfies

E m _ m
Edr™} > |max £ | . (1+0(1)) .
nm k£l I;k,

Next, we show that the proposed strategy @ = (75,07, ¢¥7™)
achieves asymptotic optimality under this setting.

eTheorem 3: Under the assumptions in (11) and (12), if 0 <
n < oo for any £,k € {1,...,L}, the proposed strategy

k
an,

(24)
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Fig. 1. Average delay of different approaches versus error probability.

O = (77,8%,47") specified by (14), (15), and (22) is an
optimal solution to problem (8) with respect to any moment
of the stopping time in the asymptote of large n, i.e., for any
méeN

Ee{(r3)™}

nm

ag m
< |max -(14+0(1)) . 25
[k# ;J (1+0(1) (25)
Theorems 2 and 3 prove the optimality of the proposed strategy
in the asymptote of large n.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
sampling strategy by comparing it with the existing approaches
through simulations. For this purpose, we use a random control
policy and the Chernoff rule as the benchmark methods. We
consider zero-mean Gaussian distributions for data, and test for
two different covariance matrices. We also set ¢, = 0.5 and
af = afor ¢ € {1,2}. In Fig. 1, we compare the performance
of different approaches in terms of the average decision delay
for making a final decision with the same quality. It is observed
that the proposed sampling procedure outperforms both the
pre-specified and the Chernoff rule in terms of the reliability-
agility trade-off.

VI. CONCLUSION

We have considered the problem of controlled sensing for
multi-hypothesis testing when the actions are co-dependent.
The objective is to determine the true hypothesis with the
desired reliability by taking the minimum average number
of samples. After discussing the widely used Chernoff rule
and its shortcomings, we have designed a sequential and data-
adaptive sampling strategy, consisting of a stopping time, a
final decision rule, and a control policy. The proposed sam-
pling strategy, which judiciously incorporates the dependence
of the actions into its decision rules, involves dynamically
deciding whether to terminate the sampling process, or to
continue collecting further evidence, and prior to terminating
the process specifies the best control action at each time
instant. We have established the optimality properties of the

proposed sampling strategy and verified its superior perfor-
mance through simulations.
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