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ABSTRACT

The problem of parameter estimation in an adversarial setting, in
which an active adversary might decide to compromise the data for
the purpose of subverting the estimation decisions, is considered.
Forming secure estimation decisions entails two intertwined infer-
ence decisions. Specifically, on one hand, deciding whether the data
is compromised, like any detection decision, is never perfect. On
the other hand, missing any attack translates to degradation in the
estimation quality. Based on these two observations, the paper aims
to characterize the interplay between two figures of merit q and β,
where q captures how much estimation quality degrades when the
objective is to miss the presence of an attacker with a probability not
exceeding β. The paper characterizes the optimal decision rules and
compares the results with the existing literature.

Index Terms— Combined estimation and detection, parameter
estimation, secure inference.

1. INTRODUCTION

1.1. Overview

Consider the canonical parameter estimation problem in a sensor
network consisting of n sensors. Each sensor i ∈ {1, . . . , n} moni-
tors a stochastic scalar X ∈ R and reports it to a fusion center (FC).
The measurement reported by sensor i ∈ {1, . . . , n} is denoted by

Yi = hiX +Ni , (1)

where hi is the gain corresponding to the channel between sensor i
and the FC, and Ni accounts for the additive channel noise. The FC
aims to form an estimate of X based on the measurements.

The potential presence of an active adversary introduces a new
decision dimension in the parameter estimation problem, which does
not exist in the attack-free settings. Specifically, on the one hand,
compromising the measurements alters the stochastic model of the
measurements, and on the other hand, the measurements model de-
termines the optimal structure of the estimator. Hence, along with
forming an estimate for X , the FC should also make a detection de-
cision regarding whether the measurements are compromised.

Based on this observation, in this paper, we introduce and analyze
a framework for secure parameter estimation, which is formalized
based on the premise that detecting and countering the adversaries
is never perfect. Any uncertainty about the presence of the adver-
saries translates into an uncertainty about the model governing the
measurements, which, consequently, leads to degradation in the fi-
delity of the estimate that can be achieved in an attack-free setting.
In order to quantify this interplay, we call an estimator (q, β)-secure
if its estimation quality is larger than that of the attack-free setting
by a factor q ≥ 1, while it misses at most β ∈ (0, 1] of the attacks.
Based on this notion, we quantify the fundamental tradeoff between
q and β, and characterize the decision rules that achieve the optimal
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tradeoff. The analysis demonstrates that the estimation and detection
decisions are strongly coupled and should be formed jointly.

1.2. Related Studies

Of particular relevance to the scope of our paper is the approach
in [1], which considers parameter estimation in a network consisting
of a secured sensor and a vulnerable sensor. A two-step detection-
driven approach is designed, in which in the first step, a decision is
made about whether the vulnerable sensor has been compromised,
and based on that, a decision is formed based on the measurements
provided by the secured sensor (when the adversary is deemed to
be active), or based on the measurements provided by both sensors
(when the adversary is deemed to be inactive). We provide a case
study that compares the qualities of the decisions made based on
the joint designs of the detector and estimator in this paper to those
of [1].

The adversarial setting defined in this paper is also related to the
Byzantine attack models in sensor networks. In [2], the impact of
Byzantine attacks on inferences in sensor networks, as well as rele-
vant mitigation strategies are discussed. Detection-driven estimation
strategies in the presence of Byzantine attacks (i.e., the estimation
step is preceded by a Byzantine attack detection step) are devel-
oped in [3–6], in which multiple sensors send quantized informa-
tion to the FC, and a subset of the sensors are compromised with
pre-specified probabilities, as a result of which the information bits
sent by the sensors are randomly flipped. Strategies for isolating the
compromised nodes are analyzed in [7–9], which are different from
the scope of our work, which places the emphasis on the estimation
routine.

Unlike parameter estimation in stationary systems, which is the
focus of this paper, the problem of estimating the state of linear dy-
namical systems in an adversarial setting in the context of cyber-
physical systems has been studied more extensively (c.f. [10–16]).
The studies more relevant to the scope of this paper include ro-
bust estimation of the states in dynamic systems studied in [11],
[15], and [16]. Also, inference in dynamical systems from the per-
spective of the adversaries is studied in [17], where the bounds on
degradation in estimation performance in a single-sensor network
with degrees of stealthiness of the attacker is characterized.

Characterizing the optimal secure estimator necessitates forming
an entangled detection decision about whether the adversary is ac-
tive, which cannot be reduced to independent estimation and de-
tection routines as such decoupling approaches lead to sub-optimal
performance ([18] and [19]). In the detection-driven approach, ini-
tially a detection decision is made, which reduces the problem to
a purely estimation one, at which point an estimator is optimized
(e.g., Neyman-Pearson detection followed by Bayesian estimation).
In the estimation-driven approach, first an estimate for the unknown
parameter is made, which is used to circumvent the uncertainties as-
sociated with the unknown parameter, and then a detection decision
is made (e.g., the generalized likelihood ratio test). Both these ap-
proaches admit optimality properties only at the asymptote of having
an infinite number of measurements.

Recent development on the non-asymptotically optimal com-
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bined detection and estimation rules are investigated in [20] and [21],
where [20] considers a binary hypothesis testing problem in which
under one of the hypotheses the measurements follow a compos-
ite model and involve an unknown parameter that is of interest to
be estimated. Extensions to having composite models under both
hypotheses, where the parameters to be estimated under the differ-
ent hypotheses are distinct and independent in nature, are studied
in [21].

2. SYSTEM MODEL

We first provide a canonical model for parameter estimation in
an attack-free setting. This furnishes a baseline for modeling and
assessing the fundamental performance limits in the adversarial set-
ting.

2.1. Attack-free Setting

Consider the problem of estimating a scalar random parameter X
with known probability density function (pdf) π from n ∈ N noisy
observations collected by a fusion center (FC) from n independent
sensors. The noisy observation collected from sensor i ∈ {1, . . . , n}
is denoted by

Yi = hiX +Ni , (2)

where hi ∈ R captures the fixed gain of the channel linking

sensor i ∈ {1, . . . , n} to the FC and is known to the FC1. The
independent and identically distributed (i.i.d) random variables
{Ni : i ∈ {1, . . . , n}} account for the measurement noise. We de-

note the joint pdf of the collected measurements Y , [Y1, . . . , Yn]

by f0. Based on measurements Y , the FC forms an estimate X̂(Y )
for X . We define a non-negative cost function C(X,U) to measure
the fidelity of any generic estimator U . A popular cost function

based on the mean-squared error criterion is C(X,U) = ‖X−U‖2.
We also define the average posterior cost function when Y is dis-
tributed according to f0 as

Cp,0(U | Y ) , E0 [C(X,U) | Y ] , (3)

where the expectation is with respect to X for given Y . Therefore,
the optimal estimate, which minimizes Cp,0(U | Y ), is

X̂0(Y ) , arg inf
U

Cp,0(U | Y ) . (4)

We define Ĉp,0 as the minimum cost in an attack-free setting, i.e.,

Ĉp,0(Y ) , inf
U

Cp,0(U | Y ) . (5)

Also, for any estimator U , we define the average cost function

J0(U) , E0[C(X,U)] , (6)

where the expectation is taken over X and Y.

2.2. Adversarial Setting

In an adversarial setting, an adversary might attempt to degrade
the estimation quality of X by corrupting the observations received
by the FC. We assume that the adversary can attack at most one

1For the convenience in notations we are assuming that each sensor gen-
erates one measurement, and the results can be readily generalized to having
multiple measurements per sensor.

sensor at any instant 2. Denote the probability that sensor i is com-
promised by ǫi, and the probability that no sensor is compromised
by ǫ0, where we have

∑n

i=0 ǫi = 1 .
By defining Zi as the disturbance imposed by the adversary on the
measurement from sensor i ∈ {1, . . . , n}, the observation model in
(2) changes to:

Yi = hiX +Ni + Zi , (7)

and the joint pdf of Y changes from f0 to fi. Similar to the attack-
free setting, we define the average posterior cost function when Y is
distributed according to fi as

Cp,i(U | Y ) , Ei [C(X,U) | Y ] . (8)

Similarly, the optimal estimate of X when an attack is deemed to
exist on sensor i is given by

X̂i(Y ) , arg inf
U

Cp,i(U | Y ) , (9)

and the optimal estimation cost is

Ĉp,i(Y ) , inf
U

Cp,i(U | Y ) . (10)

3. PROBLEM FORMULATION

The adversary may or may not choose to inject an attack, and
therefore, it is imperative for the FC to also form a decision about
the presence of an attack. The problem of detecting an attack and
providing an estimate for X can be modeled as an (n+1)-ary com-
posite hypothesis testing problem given by:

H0 : Y ∼ f0(Y | X), with X ∼ π(X)

Hi : Y ∼ fi(Y | X), with X ∼ π(X)
, (11)

where H0 is the hypothesis corresponding to the attack-free setting,
and Hi is the hypothesis corresponding to experiencing an attack on
sensor i ∈ {1, . . . , n}. We solve the estimation and detection prob-
lems jointly to design an optimum estimate for X in the adversarial
setting.

3.1. Definitions

Define T ∈ {H0, . . . ,Hn} as the true hypothesis, and D ∈
{H0, . . . ,Hn} as the decision about the hypothesis. Therefore,
P(D = Hi | T = Hj) captures the likelihood of deciding in favour
of Hi while the true hypothesis is Hj , for i, j ∈ {0, . . . , n}. Define
Pmd as the probability of missing the attack when it exists, i.e.,

Pmd , P(D=H0 |T 6=H0) . (12)

By invoking P(T=Hi) = ǫi, we readily find

Pmd ,
1

1− ǫ0

n
∑

i=1

ǫi · P(D=H0 |T = Hi) . (13)

Also, let Pfa denote the probability of false alarms, which is given
by

Pfa ,

n
∑

i=1

P(D=Hi |T=H0) . (14)

2Generalization to attacks on multiple sensors follows the same line of
analysis, albeit with an increase in the dimension of the parameters to be
introduced.
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We use a randomized test δ= [δ0(Y ), . . . , δn(Y )] to design the
decision rule for discerning the correct hypothesis, where δi(Y )
is defined as the probability of deciding in favour of Hi. Clearly
δi(Y ) ∈ [0, 1] and

∑n

i=0 δi(Y ) = 1 . For any generic estimator
of X under the hypothesis Hi, which we denote by Ui, the estima-

tion cost is C(X,Ui), and accordingly define U , [U0, . . . , Un].
The estimate of X is different under different hypotheses and the
estimation cost C(X,Ui) is relevant only when deciding in favour
of Hi. To characterize the overall estimation cost in the adversarial
setting, let Ji(δi, Ui) denote the average estimation cost given that
the decision is in favor of Hi. For given δi(Y ) and Ui, define

Ji(δi, Ui) , E [C(X,Ui) |D=Hi] , (15)

where the expectation is with respect to X and Y . The overall esti-
mation cost, J(δ,U) is defined as the maximum of the average costs
Ji(δi, Ui), and is given by

J(δ,U) , max
i∈{0,...,n}

{Ji(δi, Ui)} . (16)

3.2. Secure Parameter Estimation

The quality of estimation routine hinges on successfully detecting
the underly data models {Hi : i = 0, . . . , n}, but detecting the pres-
ence of an attack is never perfect because of noisy measurements.
Consequently, any potential presence of an attack degrades the esti-
mation quality. In this paper, we aim to characterise the fundamental
interplay between the qualities of of estimating X and detecting the
presence of an attacker. For this purpose, we provide the following
definition.

Definition 1. We call an estimation procedure (q, β)-secure, if the
estimation cost is larger than that of the attack-free setting by factor
q ≥ 1, i.e.,

q ,
min(δ,U) J(δ,U)

minU J0(U)
, (17)

while we aim to miss at most β ∈ (0, 1] fraction of the attacks, i.e.,
Pmd ≤ β.

Based on this definition, we specifically aim to characterize the
region of all simultaneously achievable values of q and β. Such a
region can be found as the solution to

P1(β) ,

{

min(δ,U) J(δ,U)

s.t. Pmd ≤ β
. (18)

Remark 1. Note that minimizing q defined in (17) is equivalent to
minimizing J(δ,U), since the average cost function in the attack-
free setting, i.e., minU J0(U) becomes a constant for the given dis-
tributions f0 and π.

Problem P1(β) is concerned with only the likelihood of missing
the attacks. Sometimes it can be of interest to also control the like-
lihood of false alarm, which happens when the detector decides that
an attack exists in an attack free model. To further accommodate
such settings, we provide the following definition.

Definition 2. We call an estimation procedure (q, α, β)-secure if it
is (q, β)-secure and the rate of false alarms is below α ∈ (0, 1], i.e.,
Pfa ≤ α.

All achievable secure strategies belong to a region characterized
by solving

P2(α, β) =







min(δ,U) J(δ,U)

s.t. Pmd ≤ β

Pfa ≤ α

. (19)

Remark 2. Clearly, we have the connection P1(β) = P2(1, β).

Remark 3 (Feasibility). In principle, probabilities Pmd and Pfa

cannot be made arbitrarily small simultaneously. By the Neyman-
Pearson theory [22], it can be readily verified that for any given
α, there exists a value β∗(α), which specifies the smallest feasible
value for β.

4. DECISION RULES

In this section, we characterize the optimal decision rules, i.e., the
estimators {Ui : i ∈ {0, . . . , n}} and the detectors {δi : i ∈ {0, . . . , n}}.
We focus on the more general problem P2(α, β), solving which also
provides the solution to P1(β) = P2(1, β). Throughout the anal-
ysis, we assume that the combination of α and β is a feasible
combination. We start by explicitly specifying the dependence of
Pmd and Pfa on {δi : i ∈ {0, . . . , n}}. By noting that

P(D=Hj |T=Hi) =

∫

Y

δj(Y )fi(Y )dY , (20)

and leveraging (13), we have

Pmd =
1

1− ǫ0

n
∑

i=1

ǫi

∫

Y

δ0(Y )fi(Y )dY . (21)

Similarly, by noting (20) and based on (14), we have

Pfa =

n
∑

i=1

∫

Y

δi(Y )f0(Y )dY . (22)

By using expansions in (21) and (22), the secure parameter estima-
tion of interest becomes

P2(α, β) =



















min(δ,U) J(δ,U)

s.t. 1
1−ǫ0

n
∑

i=1

ǫi

∫

Y

δ0(Y )fi(Y )dY ≤ β

n
∑

i=1

∫

Y

δi(Y )f0(Y )dY ≤ α

.

(23)

Close scrutiny of (23) indicates that the effect of the estimators
{Ui : i ∈ {0, . . . , n}} appear only in the utility function. This
allows for breaking the optimization problem in (23) into two sub-
problems, as formalized in the next theorem.

Theorem 1. The solution of P2(α, β) can be found by equivalently
solving

P2(α, β) =























minδ J̃(δ, X̂)

s.t. 1
1−ǫ0

n
∑

i=1

ǫi

∫

Y

δ0(Y )fi(Y )dY ≤ β

n
∑

i=1

∫

Y

δi(Y )f0(Y )dY ≤ α

,

(24)

where J̃(δ, X̂) = min
U

J(δ,U) , (25)

and X̂ = argmin
U

J(δ,U) . (26)

By using the result of Theorem 1, next we provide the design of the
optimal estimators.
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Theorem 2 (Secure Estimator). The optimal secure estimator under
model Hi is given by

X̂i(Y ) = arg inf
Ui

Cp,i(Ui | Y ) , (27)

and correspondingly, the cost function J̃(δ, X̂) is given by

J̃(δ, X̂) = max
i















∫

Y

δi(Y )Ĉp,i(Y )fi(Y )dY
∫

Y

δi(Y )fi(Y )dY















. (28)

Given the optimal estimators X̂XX , the corresponding optimal deci-
sion rules are obtained by solving the minimization problem in (24).

Theorem 3. The optimal decision rules are given by:
δi∗(Y ) = 1 and δi(Y ) = 0 for i 6= i∗, where

i
∗ = argmin

i∈{0,...,n}

Ai ,

and

A0 , ℓ0f0(Y )(Ĉp,0(Y )− P2(α, β)) + ℓn+1

n
∑

i=1

ǫifi(Y )

1− ǫ0
,

and for i ∈ {1, . . . , n},

Ai , ℓifi(Y )(Ĉp,i(Y )− P2(α, β)) + ℓn+2f0(Y ) .

Non-negative constants ℓi, for i ∈ {0, . . . , n+ 2} are the Lagrange

multipliers selected such that
∑n+2

i=0 ℓi = 1 and the constraints
in the following convex optimization problem (that is equivalent to
(24)) are satisfied.

P2(α, β) ,











































minδ u

s.t.

∫

Y

δi(Y )fi(Y )(Ĉp,i(Y )− u)dY ≤ 0 ,

∀ i ∈ {0, . . . , n}

1
1−ǫ0

n
∑

i=1

ǫi

∫

Y

δ0(Y )fi(Y )dY ≤ β ,

n
∑

i=1

∫

Y

δi(Y )f0(Y )dY ≤ α .

(29)

Also, the optimum estimation cost is given by P2(α, β).

The secure estimation approach developed in this section leads to
the optimal estimation performance under the given constraints on
Pmd and Pfa. The methodology developed so far is illustrated using
a case study presented in the next section.

5. CASE STUDY

Consider a sensor network consisting of two sensors monitoring a

parameter X distributed according to N (0, σ2
x), and reporting their

observations Y1 and Y2 to the FC. Therefore, under an attack-free
setting, for i ∈ {1, 2}, we have

Yi = hiX +Ni ,

where hi is a fixed scalar, and Ni is an i.i.d random variable corre-
sponding to the measurement noise with distribution N (0, σ2

n). The
probability distributions of X and the noise are known to the FC. We
consider a setting similar to the one studied in [1], and assume that
only sensor 2 is vulnerable to an attack by an adversary, based on
which for ǫi defined in Section 2.2, we have ǫ1 = 0 and ǫ0+ǫ2 = 1.

Therefore, in the adversarial setting, the measurement of sensor 2 is
given by

Y2 = h2X +N2 + Z2 .

We assume Z2 to be uniformly distributed according to Unif [a, b].
Therefore, the composite hypothesis testing problem in (11) for this
case is given by

H0 : Y ∼ f0(Y | X), with X ∼ N (0, σ2
x)

H1 : Y ∼ f1(Y | X), with X ∼ N (0, σ2
x)

, (30)

where H0 corresponds to an attack-free setting, and H1 corresponds
to the attack experienced on sensor 2. This setting is fundamentally
similar to the one explored in [1], when |Z2| ∈ [0,∞).

Figure 1 depicts the variations of the estimation quality, captured
by q versus the tolerable miss-detection rate β, where it is observed
that the estimation quality improves monotonically as β increases.
This observation is in line with what is expected analytically from
the formulation of the secure parameter estimation problems in (18)
and (19).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8
Optimal Performance

Method in [1]

Fig. 1. q versus β for fixed α∗ = 0.1.

Figure 1 also compares the estimation quality of the methodology
developed in this paper, with that obtained by applying the method-
ology of [1], which characterizes a single point in the (q, β) plane.
Specifically, in [1], an estimator is designed to obtain the most ro-
bust estimate by exploring the dependence of the estimation quality
on the false alarm probability, using which an optimal false alarm
probability α∗ is obtained, which in turn fixes the miss-detection
error probability, and does not provide the flexibility to change the
miss-detection rate β. For the results presented in Fig. 1, we have
set σx = 3, σn = 1, h1 = 1, h2 = 4, and Z2 is uniformly dis-
tributed Unif[−40, 40]. The upper bound on Pfa is set to α∗, which
is the optimal false alarm probability obtained for this setting using
the methodology in [1].

6. CONCLUSIONS

We have introduced and analyzed a secure parameter estimation
framework in order to form estimation decisions in the environments
where the collected measurements used for inference are vulnerable
to be compromised by active adversaries. The analysis has revealed
that designing the optimal estimators is fundamentally intertwined
with designing detection rules for deciding whether an adversary
has compromised the measurements. This necessitates forming com-
pound estimation and detection decisions, and creates a fundamental
tradeoff between the qualities of the estimation and detection rules.
We have characterized the optimal estimators and detectors that can
achieve these fundamental tradeoffs. We have also provided a case
study for two-sensor networks in order to assess the performance of
the proposed framework, and compared it with those of the existing
approaches.

485



7. REFERENCES

[1] C. Wilson and V. V. Veeravalli, “MMSE estimation in a sensor
network in the presence of an adversary,” in Proc. IEEE Inter-
national Symposium on Information Theory, Barcelona, Spain,
Jul. 2016, pp. 2479–2483.

[2] A. Vempaty, L. Tong, and P. K. Varshney, “Distributed infer-
ence with Byzantine data: State-of-the-art review on data fal-
sification attacks,” IEEE Signal Processing Magazine, vol. 30,
no. 5, pp. 65–75, Sep. 2013.

[3] A. Vempaty, O. Ozdemir, K. Agrawal, H. Chen, and P. K.
Varshney, “Localization in wireless sensor networks: Byzan-
tines and mitigation techniques,” IEEE Transactions on Signal
Processing, vol. 61, no. 6, pp. 1495–1508, Mar. 2013.

[4] P. Ebinger and S. D. Wolthusen, “Efficient state estimation
and Byzantine behavior identification in tactical MANETs,”
in Proc. IEEE Military Communications Conference, Boston,
MA, Oct. 2009.

[5] J. Zhang, R. S. Blum, X. Lu, and D. Conus, “Asymptotically
optimum distributed estimation in the presence of attacks,”
IEEE Transactions on Signal Processing, vol. 63, no. 5, pp.
1086–1101, Mar. 2015.

[6] J. Zhang and R. S. Blum, “Distributed estimation in the pres-
ence of attacks for large scale sensor networks,” in Proc. Con-
ference on Information Sciences and Systems, Princeton, NJ,
Mar. 2014.

[7] A. S. Rawat, P. Anand, H. Chen, and P. K. Varshney, “Coun-
tering Byzantine attacks in cognitive radio networks,” in Proc.
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, Dallas, TX, Mar. 2010, pp. 3098–3101.

[8] E. Soltanmohammadi, M. Orooji, and M. Naraghi-Pour, “De-
centralized hypothesis testing in wireless sensor networks in
the presence of misbehaving nodes,” IEEE Transactions on In-
formation Forensics and Security, vol. 8, no. 1, pp. 205–215,
Jan. 2013.

[9] A. Vempaty, K. Agrawal, P. Varshney, and H. Chen, “Adaptive
learning of Byzantines’ behavior in cooperative spectrum sens-
ing,” in Proc. IEEE Wireless Communications and Networking
Conference, Cancun, Mexico, Mar. 2011, pp. 1310–1315.

[10] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure state-estimation
for dynamical systems under active adversaries,” in Proc.
Allerton Conference on Communication, Control, and Com-
puting, Monticello, IL, Sep. 2011, pp. 337–344.

[11] ——, “Secure estimation and control for cyber-physical sys-
tems under adversarial attacks,” IEEE Transactions on Auto-
matic Control, vol. 59, no. 6, pp. 1454–1467, Jun. 2014.

[12] S. Z. Yong, M. Zhu, and E. Frazzoli, “Resilient state estima-
tion against switching attacks on stochastic cyber-physical sys-
tems,” in Proc. IEEE Conference on Decision and Control, Os-
aka, Japan, Dec. 2015, pp. 5162–5169.

[13] M. Pajic, P. Tabuada, I. Lee, and G. J. Pappas, “Attack-resilient
state estimation in the presence of noise,” in Proc. IEEE Con-
ference on Decision and Control, Osaka, Japan, Dec. 2015, pp.
5827–5832.

[14] Y. Shoukry, P. Nuzzo, A. Puggelli, A. L. Sangiovanni-
Vincentelli, S. A. Seshia, and P. Tabuada, “Secure state esti-
mation for cyber physical systems under sensor attacks: a sat-
isfiability modulo theory approach,” IEEE Transactions on Au-
tomatic Control, vol. PP, no. 99, 2017.

[15] S. Mishra, Y. Shoukry, N. Karamchandani, S. Diggavi, and
P. Tabuada, “Secure state estimation: Optimal guarantees
against sensor attacks in the presence of noise,” in Proc. IEEE
International Symposium on Information Theory, Hong Kong,
China, Jun. 2015, pp. 2929–2933.

[16] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee,
and G. J. Pappas, “Robustness of attack-resilient state esti-
mators,” in Proc. IEEE International Conference on Cyber-
Physical Systems, Berlin, Germany, Apr. 2014, pp. 163–174.

[17] C. Z. Bai and V. Gupta, “On Kalman filtering in the presence of
a compromised sensor: Fundamental performance bounds,” in
Proc. American Control Conference, Portland, OR, Jun. 2014,
pp. 3029–3034.

[18] D. Middleton and R. Esposito, “Simultaneous optimum detec-
tion and estimation of signals in noise,” IEEE Transactions on
Information Theory, vol. 14, no. 3, pp. 434–444, May 1968.

[19] O. Zeitouni, J. Ziv, and N. Merhav, “When is the generalized
likelihood ratio test optimal?” IEEE Transactions on Informa-
tion Theory, vol. 38, no. 5, pp. 1597–1602, Sep. 1992.

[20] G. V. Moustakides, G. H. Jajamovich, A. Tajer, and X. Wang,
“Joint detection and estimation: Optimum tests and appli-
cations,” IEEE Transactions on Information Theory, vol. 58,
no. 7, pp. 4215–4229, Jul. 2012.

[21] G. H. Jajamovich, A. Tajer, and X. Wang, “Minimax-optimal
hypothesis testing with estimation-dependent costs,” IEEE
Transactions on Signal Processing, vol. 60, no. 12, pp. 6151–
6165, Dec. 2012.

[22] H. V. Poor, An Introduction to Signal Detection and Estima-
tion, 2nd ed. New York: Springer-Verlag, 1998.

486


