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ABSTRACT

Line outage detection and localization play pivotal roles in en-
hancing the overall reliability of the electricity grid. The existing
line outage detection and localization techniques often rely on the
assumption that the information about the grid, such as the topology
and system parameters, is known perfectly. In practice, however,
such information bears uncertainties due to inaccuracies in lines pa-
rameters and the historical data. This paper studies line outage de-
tection and localization under the assumption that the line reactance
values are known only partially, and aims to find the minimum num-
ber of measurements to perform outage detection and localization
with target reliability. Specifically, based on the nominal values of
line reactance it proposes a stochastic graphical framework that capi-
talizes on the correlation among the measurements generated across
the grid, and designs data-adaptive data-acquisition and decision-
making processes for the quickest localization of the lines in outage.
The paper also analyzes the sensitivity of the proposed algorithm to
the changes in the line reactance values and shows its robustness to
line reactance uncertainties.

1. INTRODUCTION

Reliable delivery of electricity is one of the key goals of system op-
erators, and a significant effort is being made to achieve it. Due to
the large-scale and strong inter-connectivities in the power grid, any
fault can transcend its realm and disrupt operations in other parts of
the grid. Therefore, real-time monitoring of the grid is of paramount
importance in securing reliable power delivery. Specifically, agile
detection and localization of system failures facilitate mitigating the
disruptive impacts the failure can cause to the network, prevent cas-
cading failures in larger scales, and reduce the recovery costs.

One common type of failure is transmission line outage, which
occurs due to the transmission lines being constantly exposed to var-
ious sources of disturbance, such as equipment malfunctioning and
natural disasters. While the power system is designed to operate re-
liably under single or multiple contingencies, the monitoring task
should identify those contingencies as quickly as possible to prevent
overload in one section of the grid. Detecting such contingencies
and localizing them accurately can expedite the process of repairing
the faulty components, speed up restoration of the grid, reduce out-
age time, and improve power system reliability [1]. Hence, outage
detection and localization have been investigated extensively in the
existing literature under different settings and objectives.

Motivated by lowering the required communication and reduc-
ing the delay of decision-making and its computational complex-
ity, the study in [2] has developed a stochastic graphical framework
for modeling the bus measurements, and has devised data-adaptive
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data-acquisition and decision-making processes for reliably detect-
ing and localizing the outage events with the fewest number of mea-
surements. This framework relies on knowing the network model
perfectly. However, while the introduction of phasor measurement
units (PMUs) enables acquiring real-time synchronized phasor angle
measurements with a satisfactory precision, accurate power grid pa-
rameters are far more difficult to obtain. For instance, reactance val-
ues of the transmission lines, which play critical roles in outage de-
tection [2—10], are susceptible to various factors such as unstable fre-
quency, cable quality changes, and electromagnetic fields variations,
thus deviating the actual values from the nominal values. Therefore,
in this paper we assume that the actual values of line reactance are
unknown and different from their nominal values and we analyze the
impact of such information uncertainties on the optimal line outage
detection and localization.

Based on the real-time measurements used for outage detection
and localization, the existing literature can be categorized into two
groups. In one direction, after collecting measurements from the en-
tire grid, the outage detection is performed by solving different for-
mulations of the problem such as combinatorial optimization [3-5],
line outage distribution factor [6, 7], graphical model learning [10],
compressive sensing [8], quickest change detection [9], and joint
outage detection and state estimation [11, 12]. In order to reduce
the cost of data collection and processing, in the other direction out-
age localization is performed based on the partial observation of the
grid [13-18]. These studies use pre-specified data collection rules,
which, despite their effectiveness, can become inefficient in large-
scale networks that are expanded over large geographic areas. The
study in [2] has developed a data-adaptive data collection strategy to
circumvent this issue, where it is assuming that all the parameters of
the grid are known perfectly.

In this paper, we show that, interestingly, the performance of
the proposed optimal sampling strategy in [2] displays outstanding
resistance towards reactance fluctuations. First, we establish the re-
silience of the algorithm proposed in [2] against the fluctuations in
line reactance values by analyzing its sensitivity. Then, through sim-
ulations we show that the degradation in the performance remains
marginal as the uncertainty in the values increases.

2. PRELIMINARIES

2.1. Statistical Model of Bus Measurements

Consider a power grid consisting of NV buses collected in set 5 =
{1,...,N} and L transmission lines denoted by set £ C B x B,
where (i,75) € € if buses i,j € B are directly connected by a line.
We define 6; and p; as the voltage phasor angle and the injected
active power at bus ¢ € B, and x;; as the reactance of the line con-
necting buses ¢ and j. From the DC power flow model we have [19]:

n=Y (7). M
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where N; £ {j € B : (i,j) € £} is the set of neighbors of bus
i. It is assumed that line reactance values are not fully known and
there exist some level of uncertainty in their values. Specifically, by

denoting the set of line reactance values by X = {zij = (1,5) € &}
we assume that only their nominal values, collected in set X, are

known. By defining p = [p1,...,pn]" and 8 = [64,...,0x]7,
from (1) we have p = HO, where H € RV*Y js the weighted
Laplacian matrix of the connectivity graph defined as

Z(i,é)eglez ifi=j
Hlij) ={ -3 if (i,5) €€ . @

Tij
0 otherwise

Furthermore, from (1) and by accounting for the random distur-
bances in the system and the uncertainties of load profiles, the aggre-
gate injected power at different buses can be modeled as independent
random variables [20,21]. Hence, we can show that the statistical
relationship among the measurements collected from different buses
across the grid can be modeled effectively as [10,22,23]

olx ~N(6,(I-R)"), 3)

where 0 is the mean vector for 6, and R is a matrix whose (4, j)-th
entry is 7;; which is defined as

-1
, Wwhere f; = (Z 1) . 4
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Distribution of @ given in (3) indicates that, given the line reactance
values, the bus measurements form a Gauss-Markov random field
(GMRF) with the same dependency graph as the grid topology, i.e.,
G(B,€&) [10]. We note that, by construction, matrix H is rank-
deficient. By removing the row and column corresponding to one
reference bus, the remaining (N — 1) x (N — 1) matrix has full
rank. In the remainder of this paper, when referring to the Laplacian
matrix of the network, we always mean the modified full-rank one.

2.2. Outage Events

We only consider the events that keep the underlying post-event
graph connected and define R = {R1,..., Ry} as the set of such
events, where R, C £ contains the lines experiencing outage under
eventk € {1,...,J}. Additionally, event Ry is reserved to signify
the no-outage event. When an outage occurs, the connectivity pro-
file of the grid changes. We denote the connectivity graph of the grid
under event Ry, by G (B, &k ), corresponding to which we define the
weighted Laplacian matrix H, similar to (2) except for replacing £
with &. Hence, detecting and localizing outage events can be cast
as the following multi-hypothesis testing problem:

Hp.: 6=By-p, forke{0,...,J}, 5)
where we have defined B} 2 H ,:1. Under each outage event, 6
follows a distinct correlation structure governed by the associated
topology of the network, which is imposed by matrix Bj. Due to
the massive scale of power networks, collecting measurements from
all the buses incurs prohibitive sensing and processing costs. Also,
uncertainty in line reactance values implies that matrix H is not
completely known. In this paper, we devise a data-adaptive decision-
making framework based on the nominal ractance values that can
form arbitrarily reliable decisions about the state of the grid with the
minimal number of measurements.

3. QUICKEST OUTAGE LOCALIZATION

In this section, by capitalizing on the discrepancies among the level
of information provided by different buses under different outage
events, we formalize a sequential data-acquisition and decision-
making process to collect measurements of voltage phasor angles,
based on which we localize the outage event, when one is deemed to
exist, with the fewest number of measurements. The data-acquisition
process sequentially collects ¢ measurements at-a-time from ¢ differ-
ent buses. The process continues until time 7 € N, as the stopping
time of the process, at which point it terminates and a decision about
the underlying event is formed. For modeling the dynamic decisions
about the buses to be observed at time ¢ we define the selection
function (t) € B as the set of indices of £ buses to be measured
at time ¢, and denote the vector of measurements collected at time ¢
by 0(t) € [0,27]". Accordingly, we denote the vector of observed
buses and their corresponding measurements up to time ¢ by ¢, and
0., respectively, i.e.,

ve = (1), .

Finally, we define § € R as the decision rule at the stopping time.
The quality of decision at the stopping time is captured by the deci-
sion error probability, where by denoting the true event by T € R is

®]F, and 6, 2[0(1),...,0)]" . (6)

defined as P, = P(§ # T). Hence, the optimal sampling strategy is
obtained as the solution to the following optimization problem:

minimize E{7} Pe<8, @)

T,0,¥r

subject to

where 3 € (0, 1) controls the reliability of the decision.
4. OPTIMAL DECISION RULES

4.1. Bus Selection Rule

For identifying the buses that should be measured we assign a metric
to each bus ¢ € B as follows:

1>

1 1
M(i 2 N og
() = max o ]%; BTz ®)

where 7;; is calculated based on the nominal reactance values Z;;.
Then, at each time ¢ we focus on the buses that are already observed
and identify the ones with the largest |§; — 6;|, which provides an
estimate of the location of the underlying outage event. Among the
neighbors of those buses we select those with the largest metrics
M (%). Also, at t = 1, data collection is initialized by selecting ¢
buses with the most number of neighbors. The steps of bus selection
rule are presented in Algorithm 1.

4.2. Stopping Time and Decision Rule

The data-acquisition process is terminated as soon as a decision can
be made with the desired reliability. By denoting C' as the incident
matrix of the grid topology with ¢, as its ¢-th column that corre-
sponds to line ¢ with reactance x, and defining

LT ift e Ry
TUER I : ©
0 Otherwise
at the stopping time 7 we have
A0, =B,.Cs;, +Bn, (10)

where B is the matrix constructed from H ~! by keeping its rows
corresponding to set ¥~, and we have defined n 2 p — D as the
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Algorithm 1: Data-adaptive bus selection

Set ¢t = 1 and compute M () for i € 5 according to (8)
¥ (t) + £ nodes with the largest degree
While stopping criterion is not met do
Take measurements from buses in ()
S, t+t+1, )« {}
While [14(t)] < £ do
i< argmax;cg |0; — 0,1
V; < Unobserved neighbors of 4 sorted by decreasing M (+)
IE[Vi] < £ — [(t)] then () + (1) UV;
Else (1) < (1) U {Vi(1), ..., Vi(€ — [6(6)])}
End if
S+ S\
End while
End while

O 00 1 AN R W N =

—_ =
=

—_
E- LYV 8]

perturbations in the power injection incurred by an outage, which
can be modeled as a zero-mean uncorrelated Gaussian random vec-
tor [8]. Since the noise vector B, n is colored, we include a pre-
processing whitening stage. By assuming the singular value decom-
position (SVD) B, = UAV™, and defining

y2AT'UTAG,, and AZAT'UTB.C, (1)

from (10)—(11), corresponding to event 12, we obtain
y=As,+n, (12)

where 72 is a white noise vector with covariance matrix I. This leads
to an overcomplete representation of the sparse vector s; by mea-
surement vector y given in (12). Therefore, off-the-shelf tools from
compressed sensing can be applied to find the non-zero elements of
sy to detect and localize the lines in outage. Specifically, we use or-
thogonal matching pursuit (OMP) with the modification that we stop
the sampling process when the value of residual, i.e., 7 = y — Asg,
is smaller than a threshold ~y that is selected such that the reliability
constraint is satisfied [2].

5. SENSITIVITY ANALYSIS

The analysis in [2] shows that the bus selection rule given in Al-
gorithm 1 combined with the stopping and the final decision rules
based on OMP is optimal when X = X and 3 approaches zero. In
this section we analyze the sensitivity of the proposed algorithm to
the fluctuations in line reactance values, and show that this algorithm
is robust against such fluctuations. To this end, we analyze the sen-
sitivity of phasor angles and bus metrics to the line reactance x;; for
each line (4, j) € £.

5.1. Phasor Sensitivity
From the DC power flow model we have

00 OH
H@mij B _6acij0 =alei—e)), (3)

where e; is the unit vector with ¢-th element being 1 and a is defined

A 0;—0;
asa = % Therefore, from (13) we have
ij

96
00; . a ZZEJ\Q %Ow/fj
O Zze/\/i i Zee/\fi ﬁ
1 Dij 90,
— T L WA, , (14)
NIl @A, (51) (85““ :

where p;; is the power flow from bus ¢ to bus j, A, (%) is the
average of the inverse reractance values of neighbors of bus i, and
WA, (E?Tef) is the weighted average of partial derivatives of pha-
sors of buses in N; with the inverse of the reactances of the lines
connected to ¢ as the weights. The sensitivity of node j will be the
same except for p;; and N; being replaced by p;j; = —p;; and Nj,
respectively. Furthermore, for any other bus & € B (i.e., k # 1, j)
we have

00y

63?7;]'

00,
8£Eij
Hence, the first term in (14) is propagated to the first neighbors of
buses ¢ and j through a weighted average, and it propagates to the
second neighbors by being averaged once more. Therefore, the ef-
fect of any change in one line reactance diminishes as we go farther
away from the buses connected to that line. It also explains why in
the bus selection rule we have to observe the neighbors of the buses
with the largest changes in their phasor angle values. When an out-
age occurs in line (m, n) for (¢, 5) # (m,n) we have

OAO, 90, 7 876_7[
D —WANk(axZ_]_) WANk(axij)’ (16)

— WA, (2. (15)

which is negligible since it is the difference between the average sen-
sitivity of the neighbors of a bus, which are small values. When the
outage is in line (4, 7) the post-outage phasor values will be indepen-
dent of the fluctuations in z;; and we have

0AG; 1 py
Oxij Wil Az, (257)

_WA/\*/i(ge[

). am

vJ

5.2. Metric Sensitivity

For analyzing metric sensitivity we follow the same line of argument,
and from (8) we obtain

OM(m) 1 —27mn OTmn

Oxiy  UCKn U] % 1 =13, Oxij

(18)

By denoting the set of neighbors of bus m that maximizes its metric
by Umax, and replacing the sensitivity of 7, to x;; given in (18)
we obtain

oM(m)
6331"7'
1 ry D 2rmn Ty i i=m
[Umax | \ (T+7ij)aij "Enl/;fj‘f‘“‘ A=r, ) Tmn J € Umax
2 y —
T S B if LS m
[Umax| £=4n€Umax (1—72, )Tmn J & Umax
0 otherwise

By denoting the minimum line reactance value by Zmin, we have

_ L. l=m
Unman N TN P Do & € U
OM (m) <
81‘”‘ - =2 @ if Z, =m ’
N [(Now 12— D § & Unmax
0 otherwise

which shows that it is proportional to |\, | 2. These analyses show
that the selection rule is only loosely sensitive to the uncertainties in
the line reactance values. In the next section, we verify our analyses
by numerical evaluation of the changes in the voltage phasers and
metrics, as well as the overall performance of the proposed localiza-
tion strategy.
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Fig. 1: Sensitivity of phasor values to reactance values
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Fig. 2: Sensitivity of metric values to reactance values

6. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed algo-
rithm and its insensitivity to the reactance fluctuations on the IEEE
118-bus standard system. The software toolbox MATPOWER is
used to generate phasor angle measurements as well as the pertinent
power flows under different outage events [24]. It is assumed that
transmission line reactance values are uniformly distributed around
their nominal value within a certain range, and all the outage events
that cause network islanding are excluded.

6.1. Sensitivity of Phasor Values and Metrics

First, we assess the sensitivity of phasor angles to various ranges
of line reactance fluctuations. Figure 1 shows that even with severe
reactance distortion with a fluctuation level as much as 50%, the
phasor angles experience limited variations. Under the same setting,
we assess the reactance fluctuation resistance property of bus metrics
M (-) in Fig. 2. It is observed that the fluctuation of the metrics is
also marginal.

6.2. Sensitivity of the Localization Algorithm

In order to numerically demonstrate the inherent robustness of the
proposed approach, we compare the localization accuracy of the al-
gorithm for different levels of transmission line fluctuations in Fig. 3.
It is observed that for any reactance uncertainty level, the recovery
accuracy rises with the increasing number of measurements. Be-
sides, for a fixed number of measurements, the accuracy degrades

100

80 | b

Accuracy (%)

I 0% inaccuracy
[ 10% inaccuracy
[ 20% inaccuracy |7
[ 150% inaccuracy

50 70 90 110
Number of measurements

Fig. 3: Decision accuracy versus number of measurements.
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Accuracy (%)
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Number of lines in outage

Fig. 4: Decision accuracy versus different number of line outage.

only marginally within a wide range of reactance uncertainties. The
main reason is that we compare the differences between the pre-
outage and post-outage phasor angles, which tend to be larger for
the buses close to the outage location, regardless of the impedance
values of the lines connecting those buses. In other words, the data-
adaptive approach judiciously takes advantage of the information
provided by phasor angle deviation, which is dominantly determined
by the power grid topology rather than the fluctuations of transmis-
sion line reactance values.

Figure 4 compares the localization accuracy for multiple line
outages where the lines under outage are in the same locality of the
grid. Motivated by the observation made in Fig. 3, we set the num-
ber of measurements in all impedance fluctuation levels to 70. It is
observed that for single and multiple line outage events, the accuracy
degrades only slightly as the reactance uncertainty level increases.

7. CONCLUSION

The problem of detecting and localizing line outage events by using
the minimum number of measurements under uncertainty in the line
reactance values has been considered. First, by assuming that the
known nominal values of line reactance are accurate, a data-adaptive
information-gathering and decision-making process has been pro-
posed. Then, through sensitivity analysis it has been shown that this
strategy is robust to the fluctuations in the line reactance values. The
results have been verified via numerical evaluations of the proposed
rule and its performance in localizing line outage with the minimum
number of measurements.
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