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ABSTRACT

Line outage detection and localization play pivotal roles in en-

hancing the overall reliability of the electricity grid. The existing

line outage detection and localization techniques often rely on the

assumption that the information about the grid, such as the topology

and system parameters, is known perfectly. In practice, however,

such information bears uncertainties due to inaccuracies in lines pa-

rameters and the historical data. This paper studies line outage de-

tection and localization under the assumption that the line reactance

values are known only partially, and aims to find the minimum num-

ber of measurements to perform outage detection and localization

with target reliability. Specifically, based on the nominal values of

line reactance it proposes a stochastic graphical framework that capi-

talizes on the correlation among the measurements generated across

the grid, and designs data-adaptive data-acquisition and decision-

making processes for the quickest localization of the lines in outage.

The paper also analyzes the sensitivity of the proposed algorithm to

the changes in the line reactance values and shows its robustness to

line reactance uncertainties.

1. INTRODUCTION

Reliable delivery of electricity is one of the key goals of system op-

erators, and a significant effort is being made to achieve it. Due to

the large-scale and strong inter-connectivities in the power grid, any

fault can transcend its realm and disrupt operations in other parts of

the grid. Therefore, real-time monitoring of the grid is of paramount

importance in securing reliable power delivery. Specifically, agile

detection and localization of system failures facilitate mitigating the

disruptive impacts the failure can cause to the network, prevent cas-

cading failures in larger scales, and reduce the recovery costs.

One common type of failure is transmission line outage, which

occurs due to the transmission lines being constantly exposed to var-

ious sources of disturbance, such as equipment malfunctioning and

natural disasters. While the power system is designed to operate re-

liably under single or multiple contingencies, the monitoring task

should identify those contingencies as quickly as possible to prevent

overload in one section of the grid. Detecting such contingencies

and localizing them accurately can expedite the process of repairing

the faulty components, speed up restoration of the grid, reduce out-

age time, and improve power system reliability [1]. Hence, outage

detection and localization have been investigated extensively in the

existing literature under different settings and objectives.

Motivated by lowering the required communication and reduc-

ing the delay of decision-making and its computational complex-

ity, the study in [2] has developed a stochastic graphical framework

for modeling the bus measurements, and has devised data-adaptive
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data-acquisition and decision-making processes for reliably detect-

ing and localizing the outage events with the fewest number of mea-

surements. This framework relies on knowing the network model

perfectly. However, while the introduction of phasor measurement

units (PMUs) enables acquiring real-time synchronized phasor angle

measurements with a satisfactory precision, accurate power grid pa-

rameters are far more difficult to obtain. For instance, reactance val-

ues of the transmission lines, which play critical roles in outage de-

tection [2–10], are susceptible to various factors such as unstable fre-

quency, cable quality changes, and electromagnetic fields variations,

thus deviating the actual values from the nominal values. Therefore,

in this paper we assume that the actual values of line reactance are

unknown and different from their nominal values and we analyze the

impact of such information uncertainties on the optimal line outage

detection and localization.

Based on the real-time measurements used for outage detection

and localization, the existing literature can be categorized into two

groups. In one direction, after collecting measurements from the en-

tire grid, the outage detection is performed by solving different for-

mulations of the problem such as combinatorial optimization [3–5],

line outage distribution factor [6, 7], graphical model learning [10],

compressive sensing [8], quickest change detection [9], and joint

outage detection and state estimation [11, 12]. In order to reduce

the cost of data collection and processing, in the other direction out-

age localization is performed based on the partial observation of the

grid [13–18]. These studies use pre-specified data collection rules,

which, despite their effectiveness, can become inefficient in large-

scale networks that are expanded over large geographic areas. The

study in [2] has developed a data-adaptive data collection strategy to

circumvent this issue, where it is assuming that all the parameters of

the grid are known perfectly.

In this paper, we show that, interestingly, the performance of

the proposed optimal sampling strategy in [2] displays outstanding

resistance towards reactance fluctuations. First, we establish the re-

silience of the algorithm proposed in [2] against the fluctuations in

line reactance values by analyzing its sensitivity. Then, through sim-

ulations we show that the degradation in the performance remains

marginal as the uncertainty in the values increases.

2. PRELIMINARIES

2.1. Statistical Model of Bus Measurements

Consider a power grid consisting of N buses collected in set B
△

=
{1, . . . , N} and L transmission lines denoted by set E ⊆ B × B,

where (i, j) ∈ E if buses i, j ∈ B are directly connected by a line.

We define θi and pi as the voltage phasor angle and the injected

active power at bus i ∈ B, and xij as the reactance of the line con-

necting buses i and j. From the DC power flow model we have [19]:

pi =
∑

j∈Ni

(θi − θj
xij

)

, (1)
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where Ni
△

= {j ∈ B : (i, j) ∈ E} is the set of neighbors of bus

i. It is assumed that line reactance values are not fully known and

there exist some level of uncertainty in their values. Specifically, by

denoting the set of line reactance values by X
△

= {xij : (i, j) ∈ E}
we assume that only their nominal values, collected in set X̄ , are

known. By defining p
△

= [p1, . . . , pN ]T and θ
△

= [θ1, . . . , θN ]T ,

from (1) we have p = Hθ, where H ∈ R
N×N is the weighted

Laplacian matrix of the connectivity graph defined as

H[ij]
△

=











∑

(i,ℓ)∈E
1
xiℓ

if i = j

− 1
xij

if (i, j) ∈ E

0 otherwise

. (2)

Furthermore, from (1) and by accounting for the random distur-

bances in the system and the uncertainties of load profiles, the aggre-

gate injected power at different buses can be modeled as independent

random variables [20, 21]. Hence, we can show that the statistical

relationship among the measurements collected from different buses

across the grid can be modeled effectively as [10, 22, 23]

θ|X ∼ N
(

θ̄, (I −R)−1) , (3)

where θ̄ is the mean vector for θ, and R is a matrix whose (i, j)-th
entry is rij which is defined as

rij
△

=
βi
xij

, where βi
△

=

(

∑

j∈Ni

1

xij

)−1

. (4)

Distribution of θ given in (3) indicates that, given the line reactance

values, the bus measurements form a Gauss-Markov random field

(GMRF) with the same dependency graph as the grid topology, i.e.,

G(B, E) [10]. We note that, by construction, matrix H is rank-

deficient. By removing the row and column corresponding to one

reference bus, the remaining (N − 1) × (N − 1) matrix has full

rank. In the remainder of this paper, when referring to the Laplacian

matrix of the network, we always mean the modified full-rank one.

2.2. Outage Events

We only consider the events that keep the underlying post-event

graph connected and define R = {R1, . . . , RJ} as the set of such

events, where Rk ⊆ E contains the lines experiencing outage under

event k ∈ {1, . . . , J}. Additionally, event R0 is reserved to signify

the no-outage event. When an outage occurs, the connectivity pro-

file of the grid changes. We denote the connectivity graph of the grid

under event Rk by Gk(B, Ek), corresponding to which we define the

weighted Laplacian matrix Hk similar to (2) except for replacing E
with Ek. Hence, detecting and localizing outage events can be cast

as the following multi-hypothesis testing problem:

Hk : θ = Bk · p , for k ∈ {0, . . . , J} , (5)

where we have defined Bk
△

= H−1
k . Under each outage event, θ

follows a distinct correlation structure governed by the associated

topology of the network, which is imposed by matrix Bk. Due to

the massive scale of power networks, collecting measurements from

all the buses incurs prohibitive sensing and processing costs. Also,

uncertainty in line reactance values implies that matrix Hk is not

completely known. In this paper, we devise a data-adaptive decision-

making framework based on the nominal ractance values that can

form arbitrarily reliable decisions about the state of the grid with the

minimal number of measurements.

3. QUICKEST OUTAGE LOCALIZATION

In this section, by capitalizing on the discrepancies among the level

of information provided by different buses under different outage

events, we formalize a sequential data-acquisition and decision-

making process to collect measurements of voltage phasor angles,

based on which we localize the outage event, when one is deemed to

exist, with the fewest number of measurements. The data-acquisition

process sequentially collects ℓmeasurements at-a-time from ℓ differ-

ent buses. The process continues until time τ ∈ N, as the stopping

time of the process, at which point it terminates and a decision about

the underlying event is formed. For modeling the dynamic decisions

about the buses to be observed at time t we define the selection

function ψ(t) ∈ Bℓ as the set of indices of ℓ buses to be measured

at time t, and denote the vector of measurements collected at time t
by θ(t) ∈ [0, 2π]ℓ. Accordingly, we denote the vector of observed

buses and their corresponding measurements up to time t by ψt and

θt, respectively, i.e.,

ψt
△

= [ψ(1), . . . , ψ(t)]T , and θt
△

= [θ(1), . . . ,θ(t)]T . (6)

Finally, we define δ ∈ R as the decision rule at the stopping time.

The quality of decision at the stopping time is captured by the deci-

sion error probability, where by denoting the true event by T ∈ R is

defined as Pe

△

= P(δ 6= T). Hence, the optimal sampling strategy is

obtained as the solution to the following optimization problem:

minimize
τ , δ , ψτ

E{τ} subject to Pe ≤ β , (7)

where β ∈ (0, 1) controls the reliability of the decision.

4. OPTIMAL DECISION RULES

4.1. Bus Selection Rule

For identifying the buses that should be measured we assign a metric

to each bus i ∈ B as follows:

M(i)
△

= max
U⊆Ni

1

|U|

∑

j∈U

log
1

1− r̄2ij
, (8)

where r̄ij is calculated based on the nominal reactance values x̄ij .
Then, at each time t we focus on the buses that are already observed

and identify the ones with the largest |θi − θ̄i|, which provides an

estimate of the location of the underlying outage event. Among the

neighbors of those buses we select those with the largest metrics

M(i). Also, at t = 1, data collection is initialized by selecting ℓ
buses with the most number of neighbors. The steps of bus selection

rule are presented in Algorithm 1.

4.2. Stopping Time and Decision Rule

The data-acquisition process is terminated as soon as a decision can

be made with the desired reliability. By denoting C as the incident

matrix of the grid topology with cℓ as its ℓ-th column that corre-

sponds to line ℓ with reactance xℓ, and defining

sk[ℓ]
△

=

{

1
xℓ
cTℓ θ if ℓ ∈ Rk

0 Otherwise
, (9)

at the stopping time τ we have

∆θτ = BτCsk +Bτn , (10)

where Bτ is the matrix constructed from H−1 by keeping its rows

corresponding to set ψτ , and we have defined n
△

= p − p̄ as the
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Algorithm 1: Data-adaptive bus selection

1 Set t = 1 and compute M(i) for i ∈ B according to (8)

2 ψ(t)← ℓ nodes with the largest degree

3 While stopping criterion is not met do

4 Take measurements from buses in ψ(t)

5 S ← ψt , t← t+ 1 , ψ(t)← {}

6 While |ψ(t)| < ℓ do

7 i← argmaxj∈S |θj − θ̄j |

8 Vi ← Unobserved neighbors of i sorted by decreasing M(·)

9 If |Vi| < ℓ− |ψ(t)| then ψ(t)← ψ(t) ∪ Vi
10 Else ψ(t)← ψ(t) ∪ {Vi(1), . . . ,Vi(ℓ− |ψ(t)|)}

11 End if

12 S ← S \ i

13 End while

14 End while

perturbations in the power injection incurred by an outage, which

can be modeled as a zero-mean uncorrelated Gaussian random vec-

tor [8]. Since the noise vector Bτn is colored, we include a pre-

processing whitening stage. By assuming the singular value decom-

position (SVD) Bτ = UΛV T , and defining

y
△

= Λ
−1

U
T∆θτ , and A

△

= Λ
−1

U
T
BτC , (11)

from (10)–(11), corresponding to event Rk we obtain

y = Ask + ñ , (12)

where ñ is a white noise vector with covariance matrix I . This leads

to an overcomplete representation of the sparse vector sk by mea-

surement vector y given in (12). Therefore, off-the-shelf tools from

compressed sensing can be applied to find the non-zero elements of

sk to detect and localize the lines in outage. Specifically, we use or-

thogonal matching pursuit (OMP) with the modification that we stop

the sampling process when the value of residual, i.e., r = y−Ask,

is smaller than a threshold γ that is selected such that the reliability

constraint is satisfied [2].

5. SENSITIVITY ANALYSIS

The analysis in [2] shows that the bus selection rule given in Al-

gorithm 1 combined with the stopping and the final decision rules

based on OMP is optimal when X = X̄ and β approaches zero. In

this section we analyze the sensitivity of the proposed algorithm to

the fluctuations in line reactance values, and show that this algorithm

is robust against such fluctuations. To this end, we analyze the sen-

sitivity of phasor angles and bus metrics to the line reactance xij for

each line (i, j) ∈ E .

5.1. Phasor Sensitivity

From the DC power flow model we have

H
∂θ

∂xij
= −

∂H

∂xij
θ = a(ei − ej) , (13)

where ei is the unit vector with i-th element being 1 and a is defined

as a
△

=
θi−θj
x2
ij

. Therefore, from (13) we have

∂θi
∂xij

=
a

∑

ℓ∈Ni

1
xiℓ

+

∑

ℓ∈Ni

1
xiℓ

∂θℓ
∂xij

∑

ℓ∈Ni

1
xiℓ

=
1

|Ni|
·

pij

xijANi(
1
xiℓ

)
+WANi(

∂θℓ
∂xij

) , (14)

where pij is the power flow from bus i to bus j, ANi(
1
xiℓ

) is the

average of the inverse reractance values of neighbors of bus i, and

WANi(
∂θℓ
∂xij

) is the weighted average of partial derivatives of pha-

sors of buses in Ni with the inverse of the reactances of the lines

connected to i as the weights. The sensitivity of node j will be the

same except for pij and Ni being replaced by pji = −pij and Nj ,

respectively. Furthermore, for any other bus k ∈ B (i.e., k 6= i, j)
we have

∂θk
∂xij

= WANk
(
∂θℓ
∂xij

) . (15)

Hence, the first term in (14) is propagated to the first neighbors of

buses i and j through a weighted average, and it propagates to the

second neighbors by being averaged once more. Therefore, the ef-

fect of any change in one line reactance diminishes as we go farther

away from the buses connected to that line. It also explains why in

the bus selection rule we have to observe the neighbors of the buses

with the largest changes in their phasor angle values. When an out-

age occurs in line (m,n) for (i, j) 6= (m,n) we have

∂∆θk
∂xij

= WANk
(
∂θℓ
∂xij

)−WAN̄k
(
∂θ̄ℓ
∂xij

) , (16)

which is negligible since it is the difference between the average sen-

sitivity of the neighbors of a bus, which are small values. When the

outage is in line (i, j) the post-outage phasor values will be indepen-

dent of the fluctuations in xij and we have

∂∆θi
∂xij

= −
1

|N̄i|

pij

xijAN̄i
( 1
xiℓ

)
−WAN̄i

(
∂θ̄ℓ
∂xij

) . (17)

5.2. Metric Sensitivity

For analyzing metric sensitivity we follow the same line of argument,

and from (8) we obtain

∂M(m)

∂xij
= max

U⊆Nm

1

|U|

∑

n∈U

−2rmn
1− r2mn

∂rmn
∂xij

. (18)

By denoting the set of neighbors of bus m that maximizes its metric

by Umax, and replacing the sensitivity of rmn to xij given in (18)

we obtain

∂M(m)

∂xij
=































1
|Umax|

(

2r2ij
(1+rij)xij

−
∑

n∈Umax

n 6=j

2rmnr
2

ij

(1−r2mn)xmn

)

if
i = m
j ∈ Umax

−1
|Umax|

∑

n∈Umax

2rmnr
2

ij

(1−r2mn)xmn
if

i = m
j /∈ Umax

0 otherwise

By denoting the minimum line reactance value by xmin, we have

∂M(m)

∂xij
≤



























−2
|Umax||Nm|(|Nm|2−1)xmin

if
i = m
j ∈ Umax

−2
|Nm|(|Nm|2−1)xmin

if
i = m
j /∈ Umax

0 otherwise

,

which shows that it is proportional to |Nm|−3. These analyses show

that the selection rule is only loosely sensitive to the uncertainties in

the line reactance values. In the next section, we verify our analyses

by numerical evaluation of the changes in the voltage phasers and

metrics, as well as the overall performance of the proposed localiza-

tion strategy.
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6. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed algo-

rithm and its insensitivity to the reactance fluctuations on the IEEE

118-bus standard system. The software toolbox MATPOWER is

used to generate phasor angle measurements as well as the pertinent

power flows under different outage events [24]. It is assumed that

transmission line reactance values are uniformly distributed around

their nominal value within a certain range, and all the outage events

that cause network islanding are excluded.

6.1. Sensitivity of Phasor Values and Metrics

First, we assess the sensitivity of phasor angles to various ranges

of line reactance fluctuations. Figure 1 shows that even with severe

reactance distortion with a fluctuation level as much as 50%, the

phasor angles experience limited variations. Under the same setting,

we assess the reactance fluctuation resistance property of bus metrics

M(·) in Fig. 2. It is observed that the fluctuation of the metrics is

also marginal.

6.2. Sensitivity of the Localization Algorithm

In order to numerically demonstrate the inherent robustness of the

proposed approach, we compare the localization accuracy of the al-

gorithm for different levels of transmission line fluctuations in Fig. 3.

It is observed that for any reactance uncertainty level, the recovery

accuracy rises with the increasing number of measurements. Be-

sides, for a fixed number of measurements, the accuracy degrades
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Fig. 3: Decision accuracy versus number of measurements.
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only marginally within a wide range of reactance uncertainties. The

main reason is that we compare the differences between the pre-

outage and post-outage phasor angles, which tend to be larger for

the buses close to the outage location, regardless of the impedance

values of the lines connecting those buses. In other words, the data-

adaptive approach judiciously takes advantage of the information

provided by phasor angle deviation, which is dominantly determined

by the power grid topology rather than the fluctuations of transmis-

sion line reactance values.

Figure 4 compares the localization accuracy for multiple line

outages where the lines under outage are in the same locality of the

grid. Motivated by the observation made in Fig. 3, we set the num-

ber of measurements in all impedance fluctuation levels to 70. It is

observed that for single and multiple line outage events, the accuracy

degrades only slightly as the reactance uncertainty level increases.

7. CONCLUSION

The problem of detecting and localizing line outage events by using

the minimum number of measurements under uncertainty in the line

reactance values has been considered. First, by assuming that the

known nominal values of line reactance are accurate, a data-adaptive

information-gathering and decision-making process has been pro-

posed. Then, through sensitivity analysis it has been shown that this

strategy is robust to the fluctuations in the line reactance values. The

results have been verified via numerical evaluations of the proposed

rule and its performance in localizing line outage with the minimum

number of measurements.
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