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Abstract—Consider a set of random sequences, each consisting
of independent and identically distributed random variables.
Each sequence is generated according to one of the two possible
distributions I\ or F; with unknown prior probabilities (1 — ¢)
and ¢, respectively. The objective is to design a sequential
decision-making procedure that identifies a sequence generated
according to F; with the fewest number of measurements. Earlier
analyses of this search problem have demonstrated that the
optimal design of the sequential rules strongly hinge on the exact
value of €. Such information, however, might not be available in
certain applications, especially in anomaly detection where the
anomalous sequences occur with unpredicted patterns. Motivated
by this premise, this paper designs a sequential inference mecha-
nism that forms two coupled decisions for identifying a sequence
of interest, and also learning the value of . The paper devises
three strategies that place different levels of emphasis on each of
these inference goals.

I. INTRODUCTION

Quickest search over a set of data streams aims to identify
one stream that exhibits desired statistical features in a real-
time and data-adaptive fashion. Quickest search aims to strike
a balance between the quality and the agility of the search
process, and it arises in many application domains such
as detecting free spectrum bands in spectrum sensing and
monitoring computer networks for detecting faults or security
breaches [1]. The significance of searching over data streams
is expected to grow well into the future due to the advances
in sensing and data acquisition technologies, which generate
and process large volumes of data. Due to the variety of
information sources and the large scale of the data sets, there
might exist certain levels of uncertainty in the data models,
which makes the design of the search mechanisms more
challenging.

The problem of quickest search was first formalized and
analyzed in [2] as an extension of sequential binary hypothesis
testing [3] and [4]. In [2] it is assumed that multiple data
streams are available such that they are generated according
to one of the two known distributions F{y and F} independently
of each other, with known prior probabilities (1 — €) and e,
respectively. The ultimate goal of quickest search is to identify
one sequence generated according to the desired distribution
F'; with the fewest number of measurements. Other variations
of this search problem under different settings and objectives
are also studied in [5]-[9]. In [2], [5] and [6] it is shown
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that the structure of the optimal decision rules for performing
quickest search strongly depends on the known prior prob-
ability e. In reality, however, this parameter might not be
known, especially when F captures anomalous behaviors with
unpredicted patterns and rates of occurrence.

In this paper we formalize the quickest search problem
over multiple data streams when € is unknown, and analyze
three specific problems. First we consider a purely sequential
detection problem in which the objective is to identify one
sequence generated according to Fj with minimal delay,
when facing uncertainty about €. Next we consider a purely
sequential estimation problem, in which the objective is to
form a reliable estimate for ¢ with the fewest number of
measurements made across the sequences. Finally, we consider
a sequential problem that pursues both inference goals, in
which a sequence generated according to Fj is identified,
and also a reliable estimate about € is produced. In analyzing
all these three problems, besides characterizing the stopping
rules and the detectors and estimators, we also need to design
an optimal information-gathering process, the role of which
is to dynamically decide about abandoning a sequence and
identifying the next sequence to make a measurement from.

Other studies of the quickest search problem under different
settings and objectives relevant to the scope of this paper
include the scanning problem, in which a finite number of
sequences are available and exactly one sequence is generated
according to the desired statistical feature, which is different
from the model in this paper [9]-[12]. In another direction, the
set of available sequences contains multiple sequences with the
desired distribution and the goal is to identify all of them [13]-
[15]. The sequential estimation of a single parameter by ob-
serving independent and identically distributed (i.i.d.) random
variables is studied in [16]. It is further extended in [17] to a
setting in which multiple unknown parameters are available,
and at each time instance one of a finite set of actions can be
taken for sampling. In [17] each action depends only on one
of the unknown parameters, while [18] generalizes the results
to the actions depending on common unknown parameters.

The remainder of the paper is organized as follows. Sec-
tion I provides the data model and the sampling model,
and formalizes the search problem of interest. The optimal
inference rules are characterized in Section III, and the sam-
pling procedures and the associated stopping rules for purely
detection and purely estimation routines are characterized
in Section IV and Section V, respectively. The combined
inference procedure is provided and analyzed in Section VI.
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Section VII provides simulation results, and concluding re-
marks are provided in Section VIIIL.

II. PROBLEM FORMULATION
A. Data Model

Consider an ordered set of n sequences {X*', ..., X"},
where each sequence consists of independent and iden-
tically distributed (i.i.d.) real-valued observations X° 2
{X?#, X35, ... }. Bach sequence, independently of the rest, is
generated according to one of the two possible distributions,
hence, obeying one of the two hypotheses

HOZ X;’NFO

H, - XJZ:NFl for j=1,2,...,

ey
where F, and F) denote cumulative distribution functions
(cdfs) and are assumed to be known. The distribution Fj
captures the statistical behavior of the normal sequences, and
the distribution of the abnormal sequences is Fj. We further
assume that well-defined probability density functions (pdfs)
corresponding to Iy and Fj exist and are denoted by fj and f1,
respectively. We assume that each sequence is abnormal with
the prior probability e € (0,1). Specifically, by defining T,
as the true model underlying sequence X¢, fori € {1,...,n}
we have

2

Furthermore, we assume that € is known only stochastically
with the continuous pdf g with support [0, 1].

B. Sampling Model

The objective of the search process is to identify one
abnormal sequence with the fewest expected number of mea-
surements. As shown in [2], [5], and [6], when € is known
precisely, the optimal decision rules strongly depend on the
value of e. Hence, the quickest search objective is strongly
coupled with concurrently forming a reliable estimate for e.
The sampling procedure sequentially examines the sequences
according to their order by taking one measurement at-a-time
until sufficiently reliable detection and estimation decisions
can be made. By denoting the index of the observed sequence
and its sample at time ¢ € N by s; and Y, respectively, we
can abstract the information accumulated sequentially by the
filtration {F; : t =1,2,...} where F; = o(Y1,...,Y;). The
sampling process starts from the first sequence, i.e., s; = 1,
and at time ¢ takes one of the following three actions based
on the information accumulated up to time t, i.e., F;.

A1) Decision: stops taking more samples and declares one
of the sequences observed up to time ¢ as an abnormal
one and forms an estimate for ¢;

Observation: due to lack of sufficient confidence to
make a decision or form a reliable estimate for ¢, one
more sample is taken from the same sequence, i.e.,
St4+1 = St; Or

Exploration: sequence s; is discarded and the sampling
procedure switches to the next sequence and takes one
observation from the new sequence, i.e., s;4+1 = s; + 1.

Ag)

A3z)

In order to formalize the sampling procedure we define 7 as
the stopping time of the procedure, that is the time instant
at which action A; (decision) is performed. We denote the
detection rule at the stopping time by 6(7) € {1,...,s,} and
the estimate formed for € by é(7). To characterize dynamic
switching between observation and exploration actions we
define the binary function ¢ : {1,...,7 — 1} — {0,1}
such that at time ¢ € {1,...,7 — 1} if the decision is in
favor of performing observation (Az) we set ¢ (t) = 0, while
¥(t) = 1 indicates a decision in favor of exploration (Ajs).
Hence, Vt € {1,...,7 — 1}:

v ={

A sequential decision is completely characterized by the
combination ® = (7,5(7), é(7),¥(1),...,1%(r — 1)).

0 action Ao
1 action Aj

3)

C. Problem Formulation

The optimal search procedure can be found by determin-
ing ®. The natural performance measures for evaluating the
efficiency of any sampling strategy ¢ include the quality of
the final detection, which is captured by (i) the frequency of
the erroneous decisions, i.e., Pg(7) = P(Ts(r) = HolF;) and
(ii) the mean squared error risk of estimation, i.e., Ry (7T) 2
E[[e — é(7)]?|F+], and (iii) the delay in reaching a decision,
i.e., 7. By integrating these three figures of merit into one cost
function, the stochastic aggregate cost function for a given ¢
at time ¢ is given by

Jo(t) = ca-Pa(t) +co Ra(t) +es-t, (4)

where cq, ce, and ¢y are positive constants that balance the
quality and the agility of the search process. In the following
sections, under different settings we characterize the stopping
time, the switching rules, the final decision rules, and the
associated performance guarantees

III. OPTIMAL INFERENCE RULES

In this section we start by characterizing the detection and
estimation rules 0(7) and é(7) for any given stopping time 7,
and switching sequence {¢(t) : t =1,...,7 — 1}. Then, we
focus on two special cases of the search problem, where one
places the emphasis on the detection subproblem by setting
ce = 0, and the other focuses on the estimation subproblem
by setting cq = 0. Based on the insights from these special
cases, we finally treat the problem in its general form.

It is shown in [19] that in a sequential setting, for any given
sampling strategy and stopping rule there exists a fixed set
of final decisions that are optimal. Furthermore, the quadratic
estimation cost Rg (¢) is independent of the detection rule, and
also the detection cost is independent of the estimate of the
prior probability. Hence, for any given stopping time 7 and
sequence of switching functions {¢(¢t) : t =1,...,7 — 1},
detection and estimation decision rules can be decoupled. The
following theorem formalizes these results.

Theorem 1. The sequential strategy for optimizing the cost
function (4) can be decoupled in a way that the detection
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and estimation rules are decoupled, and both of them are
independent of the stopping time and the switching rule.

This theorem facilitates characterizing the detection and esti-
mation decisions. To proceed, we define 7} as the posterior
probability that the sequence X is abnormal given the infor-
mation up to time ¢, i.e., 7! = P(T; = H, | F;). By defining
Ki(€) 2 P(T; = Hy | Fi,e€), it can be readily verified that

ri(e)f1(Yiz1) . _
. R+ (O o L5t =
'%t—i-l(e) = )
Kt (€) if sy #1
and = /ni(e)g(e | F¢) de

where g(e | F) is the posterior pdf of e. Also, at any time ¢,
we denote the posterior average of € by

é(t) =Ele | 7] - (5)

Based on these definitions, the next theorem provides the op-
timal decision rules for any given stopping time and switching
sequence.

Theorem 2 (Decision Rules). For a given stopping time T
and switching sequence:
1) The optimal detection rule, which minimizes Jo(7), is

o(1) =

argmax 7. . (6)
i€{s1,...,5+ }

2) The optimal estimation rule, which minimizes Jo (), is
é(r) =Ele| F] . (7)

Given the decision rules in Theorem 2, we next characterize
the optimal stopping time 7, and the associated optimal
switching rules {¢(t) : t = 1,...,7—1}. For this purpose, we
first consider the sequential search and sequential estimation
problems in two different settings. By leveraging the insight
gained from these special cases we solve the joint search and
estimation problem.

IV. EMPHASIS ON DETECTION (¢, = 0)

We first consider a purely sequential detection setting, in
which the estimation quality is unintegrated by setting c, = 0.
This problem when € is known and the objective is to minimize
the average delay is studied in [2], [6] and [7], where the anal-
yses provide the optimal stopping time and switching rules.
In this section, we provide stopping and switching rules that
enjoy certain optimality guarantees and facilitate generalizing
the results to the general case of ¢, # 0. To this end, we
propose a stopping and switching rules, the combination of
which accepts asymptotic optimality guarantees. Specifically,
we define

Tgéinf {t:max WiZl—Csd}7 ®)
3

where coq = f—d, as the stopping time of the sampling process.
According to this stopping rule, the sampling process contin-
ues until one is confident enough that one of the sequences is
generated by F3.

Next, we characterize the switching rule prior to the
stopping time in order to dynamically decide between the
exploration and observation actions. Specifically, at any time
t € {1,...,7; — 1} we set the switching rule to discard
sequence s; and switch to s; + 1 when 7;* < €(¢). Hence,

{ 1 if m)t < é(t)

Ya(t) = _ o ©)
0 if mt > é(t)

This switching rule, when combined with the stopping time
given in (8), achieves the asymptotic pointwise optimality
(APO), as formalized in the following theorem.

Theorem 3. Consider a sequential strategy ®q with the de-
tection and estimation rules given in (5) and (6), the stopping
time defined in (8), and the switching rule in (9). For any other
sampling strategy d, we have

Jou(7d) §1+A}:1, VA >0 .
15(7)

Proof: The proof can be carried out in two steps, which we
briefly discuss. In the first step we assume that L sequences are
visited during the sampling process and 7, for £ € {1,..., L}
is the number of samples taken from sequence /. It can
be shown that 7, for £ € {1,...,L — 1} are exponentially
bounded and the delay is dominated by the number of samples
taken from the sequence that will be declared as abnormal.
By defining Dk, (f1]|fo) as the Kullback-Leibler divergence
between fy and f1, in the second step we show that

lim u»{ (10)

Csd_>0

1
Tibg Po,(75) = —Dxi(f1llfo) , asca =0, (1D
d

which can be concluded from the first step and the fact that

1
Elog Po(rr) = —Dku(fillfo) , asca—0. (12)
Then, the optimality property is concluded from [16]. |

V. EMPHASIS ON ESTIMATION (¢q = 0)

The problem of sequential estimation from one sequence
is studied in [16], and the extension to controlled sequential
estimation is studied in [17] and [18]. In this section we show
how the results of [18] can be leveraged to solve the sequential
estimation of the quickest search problem. To this end, we
denote the Fisher information corresponding to each switching
rule ¢(t) = ¢, for £ € {0, 1}, by

o [0

1) 2 B[ 55 LL (Yl v() = 0)] |
where LL(Y;11]e,1(t) = ) is the log-likelihood of observing
Y41 at time ¢ + 1 when ¢ (¢) = £. Based on this definition,
we characterize a stopping time and a switching rule that
achieve asymptotic optimality when cge = % tends to zero.
Specifically, we define the stopping time as ’
7 2 inf {t : Re(t) <t- cse} .

e

13)

(14)

According to this stopping rule, when the estimation cost
Ra(t) falls below the total sampling cost ¢ - ¢g the sampling

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. b&vhibaded on September 12,2022 at 23:02:16 UTC from IEEE Xplore. Restrictions apply.



2017 IEEE International Symposium on Information Theory (ISIT)

process terminates. Furthermore, the switching rule should
select the action between observation and exploration that
minimizes the estimation variance, which according to the
Cramer-Rao bound is lower bounded by the inverse of the
Fisher information value. Hence, we first compute éyy,(t) as
the maximum likelihood (ML) estimate of € at time ¢ based on
the observations up to time ¢. Then, we select the action with
the largest Fisher information value for that estimate, i.e.,

1 if Il(éML(t)) > Io(éML(t))
Ye(t) = { . : 15)
0 if I1(€ML(t)) S Io(éML(t))
This switching rule ensures that the sampling process takes
the action that minimizes the variance of estimation. While
ignoring the impact of the current decision on the future
ones, it can be shown that in the large sample regimes, it
is asymptotically optimal.

Theorem 4. Let ®, be the sampling strategy characterized by
the stopping time and the switching rule given in (14) and (15),
respectively. Then, when cs. approaches zero, for any other
sampling strategy d we have

lim P{J‘I’e(Te) §1+A}:1, VAS0. (16

Cse—0 J<i> (’f' )

This switching rule ensures that a sufficient number of sam-

ples is taken from the current sequence so that its distribution
is distinguishable before switching to the next sequence.

Remark 1. When distributions Fy and Fy are distinguish-
able enough, the switching is more inclined to explore more
sequences and have a more reliable estimate of €. On the
other hand, if Fyy and F are less-distinguishable, the switching
rule tends to continue taking samples from the same sequence
in order to be more confident about its distribution before
switching to the following sequence.

VI. BALANCE BETWEEN DETECTION AND ESTIMATION

With the insights gained from the previous two sections, in
this section we treat the quickest search problem of interest in
its general form, which involves forming reliable decisions for
both estimation and detection routines. We first characterize
a stopping time by noting that in the detection problem the
sampling process terminates when (1 —max; 7}) falls below
Csd, 1.e., the relative cost of one new sample, while in the
estimation problem, it stops when the normalized estimation
cost (R%(t)) is smaller than the relative cost of one new sample
cse- Hence, for the general quickest search problem we define
the stopping time as

, Ro (¢
™ 2 inf {t ¢ ca(l —max 7p) + ¢ 2(t) SCS} .37

t
While it is a combination of the stopping rules in the previous
settings, we will show that it can be also obtained directly by
optimizing the total Bayesian cost given in (4).

Theorem 5. Let ®* be the sampling strategy with the stopping
time give in (17) and the optimal switching sequence {{*(t) :

t=1,2,...}, and P be any arbitrary sampling strategy with
the same swiiching rule and any other stopping time 7. For
all ® and 7 we have

: Jo-(77)
e\t )~ — )
M%ifﬁop{ IO A} 1, VA>0. (8

Proof: The detection cost depends only on one sequence,
while the estimation cost relies on all the observed sequences.
When the sampling cost is substantially smaller than the costs
of estimation and incorrect detection decisions, we know that

1
;log Pa(t) = —vDku(fillfo) , ast— oo, (19)
and , tRa(t) — Ve) , (20)

for some 0 < V(e) < oo and v € (0, 1). In case (19) and (20)
are exact, i.e., they are true for any ¢, the stopping time would
be the first time ¢ for which we have
caPa(t — 1)+ ceRap(t — 1)+ cs(t —1) <
caPa(t) + ccRa(t) +¢s -

as t — oo,

(21)
which by replacing P and Rg from (19) and (20) we have

Ro (¢
aPs1 - Pat)h) + e < )
and since (1 — Pg(t)*) — 1, (22) is equivalent to
- Ro(t
ca(l —max 7;) + ceo (Dt( ) <. (23)

The remainder of the proof, which involves showing that
for the asymptotic convergence in (19) and (20) we have
asymptotic optimality, follows the same line of argument as
in [16]. ]

Next, we characterize the switching rules for dynamically
deciding between exploration and observation actions. First,
we note that, taking a new sample from any sequence reduces
the average estimation cost, while the detection error probabil-
ity depends on the number of samples taken from the sequence
declared as the abnormal sequence. Also, taking many sam-
ples from one sequence cannot improve the estimation cost
significantly. Hence, for the switching rule, at the beginning
we apply the rule given in the purely estimation setting (15).
When the estimation cost becomes sufficiently small, we apply
the switching rule given in the purely detection setting (9).
Based on this, we set the switching rule as follows:

: { ve(t) i Bl
t) =
Ya(t) if R@t(t) < Cse

This switching rule, at the beginning of the sampling process,
is more focused on forming a reliable estimate for e. When
the estimation cost is sufficiently small, it gradually shifts the
focus to forming a reliable detection decision. The following
theorem formalizes the asymptotic optimality properties of the
sampling strategy characterized by the stopping rule in (17)
and the switching rule in (24).

> Cse
24)

Theorem 6. Let ®* be the sampling strategy with the stopping
time give in (17) and a switching rule given in (24), and ®
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average delay
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Ui
Fig. 1. Average delay versus 7).

be any arbitrary sampling strategy with the stopping time T.
Then, in the asymptote of = — 0, 2—; — 0, and ¢, = O(cq)

we have
: Jo-(77)
R < = .
cm}gﬁop{ RO 1+A} 1, VA>0. (25

VII. SIMULATION

In order to evaluate the performance of the proposed
adaptive strategies, in this section we compare the average
delay of the quickest linear search process with and without
emphasis on the estimation of the prior probability. For this
purpose, we assume zero-mean Gaussian distributions with
variance values 1 and 2 for Fy and F}, respectively. We also
assume that prior probability has a uniform distribution over
(0.3 = n/2,0.3 + n/2), where n is a constant in the range
1 € [0,0.6]. For a general setting with ¢; = 0.001, ¢q = 0.1,
and c, = 1, the average delay is compared with that of the
setting in which ¢, = 0 and have the same rate of erroneous
detection decisions. Figure 1 shows that by increasing the
uncertainty of the prior probability, more samples are required
even when the estimation cost of the prior probability is not
a concern. Also, it is observed that for reliable estimation of
the prior probability (when ¢, # 0), we require to take more
measurements compared to the case that estimation cost is
unintegrated from the total cost (c, = 0).

VIII. CONCLUSION

We have analyzed the problem of quickest search and
learning over multiple sequences, in which each sequence is
generated according to one of the normal and abnormal distri-
butions with unknown prior probabilities. The main objective
is to identify one abnormal sequence with the fewest number
of measurements, which is known to depend strongly on the
unknown prior probability. Hence, achieving the detection
objective, also necessitates producing a reliable estimate for
the prior probabilities. For this purpose, we have characterized
the optimal detection and estimation rules, and have designed
asymptotically optimal sequential mechanisms that at each

time dynamically decide which sequence should be sampled.
First, we have considered a purely detection setting in which

the estimation of the prior probability is not a concern and
have shown that the decision rules reduce to comparing the
posterior probability values with two thresholds. In the next
setting, we have focused on the reliable estimation of the prior
probability and have shown that the optimal procedure selects
the sequence that maximizes the Fisher information value and
stops when the cost of estimation falls below the total cost of
sampling. Finally, we have combined the results of the first two
settings to characterize the sampling strategy for the quickest
search problem in its general form.
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