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Abstract—Consider a set of random sequences, each consisting
of independent and identically distributed random variables.
Each sequence is generated according to one of the two possible
distributions F0 or F1 with unknown prior probabilities (1− ǫ)
and ǫ, respectively. The objective is to design a sequential
decision-making procedure that identifies a sequence generated
according to F1 with the fewest number of measurements. Earlier
analyses of this search problem have demonstrated that the
optimal design of the sequential rules strongly hinge on the exact
value of ǫ. Such information, however, might not be available in
certain applications, especially in anomaly detection where the
anomalous sequences occur with unpredicted patterns. Motivated
by this premise, this paper designs a sequential inference mecha-
nism that forms two coupled decisions for identifying a sequence
of interest, and also learning the value of ǫ. The paper devises
three strategies that place different levels of emphasis on each of
these inference goals.

I. INTRODUCTION

Quickest search over a set of data streams aims to identify

one stream that exhibits desired statistical features in a real-

time and data-adaptive fashion. Quickest search aims to strike

a balance between the quality and the agility of the search

process, and it arises in many application domains such

as detecting free spectrum bands in spectrum sensing and

monitoring computer networks for detecting faults or security

breaches [1]. The significance of searching over data streams

is expected to grow well into the future due to the advances

in sensing and data acquisition technologies, which generate

and process large volumes of data. Due to the variety of

information sources and the large scale of the data sets, there

might exist certain levels of uncertainty in the data models,

which makes the design of the search mechanisms more

challenging.

The problem of quickest search was first formalized and

analyzed in [2] as an extension of sequential binary hypothesis

testing [3] and [4]. In [2] it is assumed that multiple data

streams are available such that they are generated according

to one of the two known distributions F0 and F1 independently

of each other, with known prior probabilities (1 − ǫ) and ǫ,
respectively. The ultimate goal of quickest search is to identify

one sequence generated according to the desired distribution

F1 with the fewest number of measurements. Other variations

of this search problem under different settings and objectives

are also studied in [5]–[9]. In [2], [5] and [6] it is shown
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that the structure of the optimal decision rules for performing

quickest search strongly depends on the known prior prob-

ability ǫ. In reality, however, this parameter might not be

known, especially when F1 captures anomalous behaviors with

unpredicted patterns and rates of occurrence.

In this paper we formalize the quickest search problem

over multiple data streams when ǫ is unknown, and analyze

three specific problems. First we consider a purely sequential

detection problem in which the objective is to identify one

sequence generated according to F1 with minimal delay,

when facing uncertainty about ǫ. Next we consider a purely

sequential estimation problem, in which the objective is to

form a reliable estimate for ǫ with the fewest number of

measurements made across the sequences. Finally, we consider

a sequential problem that pursues both inference goals, in

which a sequence generated according to F1 is identified,

and also a reliable estimate about ǫ is produced. In analyzing

all these three problems, besides characterizing the stopping

rules and the detectors and estimators, we also need to design

an optimal information-gathering process, the role of which

is to dynamically decide about abandoning a sequence and

identifying the next sequence to make a measurement from.

Other studies of the quickest search problem under different

settings and objectives relevant to the scope of this paper

include the scanning problem, in which a finite number of

sequences are available and exactly one sequence is generated

according to the desired statistical feature, which is different

from the model in this paper [9]–[12]. In another direction, the

set of available sequences contains multiple sequences with the

desired distribution and the goal is to identify all of them [13]–

[15]. The sequential estimation of a single parameter by ob-

serving independent and identically distributed (i.i.d.) random

variables is studied in [16]. It is further extended in [17] to a

setting in which multiple unknown parameters are available,

and at each time instance one of a finite set of actions can be

taken for sampling. In [17] each action depends only on one

of the unknown parameters, while [18] generalizes the results

to the actions depending on common unknown parameters.

The remainder of the paper is organized as follows. Sec-

tion II provides the data model and the sampling model,

and formalizes the search problem of interest. The optimal

inference rules are characterized in Section III, and the sam-

pling procedures and the associated stopping rules for purely

detection and purely estimation routines are characterized

in Section IV and Section V, respectively. The combined

inference procedure is provided and analyzed in Section VI.
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Section VII provides simulation results, and concluding re-

marks are provided in Section VIII.

II. PROBLEM FORMULATION

A. Data Model

Consider an ordered set of n sequences {X 1, . . . ,Xn},

where each sequence consists of independent and iden-

tically distributed (i.i.d.) real-valued observations X i △

=
{Xi

1, X
i
2, . . . }. Each sequence, independently of the rest, is

generated according to one of the two possible distributions,

hence, obeying one of the two hypotheses

H0 : Xi
j ∼ F0

H1 : Xi
j ∼ F1

for j = 1, 2, . . . , (1)

where F0 and F1 denote cumulative distribution functions

(cdfs) and are assumed to be known. The distribution F0

captures the statistical behavior of the normal sequences, and

the distribution of the abnormal sequences is F1. We further

assume that well-defined probability density functions (pdfs)

corresponding to F0 and F1 exist and are denoted by f0 and f1,

respectively. We assume that each sequence is abnormal with

the prior probability ǫ ∈ (0, 1). Specifically, by defining Ti

as the true model underlying sequence X i, for i ∈ {1, . . . , n}
we have

P(Ti = H1) = ǫ . (2)

Furthermore, we assume that ǫ is known only stochastically

with the continuous pdf g with support [0, 1].

B. Sampling Model

The objective of the search process is to identify one

abnormal sequence with the fewest expected number of mea-

surements. As shown in [2], [5], and [6], when ǫ is known

precisely, the optimal decision rules strongly depend on the

value of ǫ. Hence, the quickest search objective is strongly

coupled with concurrently forming a reliable estimate for ǫ.
The sampling procedure sequentially examines the sequences

according to their order by taking one measurement at-a-time

until sufficiently reliable detection and estimation decisions

can be made. By denoting the index of the observed sequence

and its sample at time t ∈ N by st and Yt, respectively, we

can abstract the information accumulated sequentially by the

filtration {Ft : t = 1, 2, . . . } where Ft
△

= σ(Y1, . . . , Yt). The

sampling process starts from the first sequence, i.e., s1 = 1,

and at time t takes one of the following three actions based

on the information accumulated up to time t, i.e., Ft.

A1) Decision: stops taking more samples and declares one

of the sequences observed up to time t as an abnormal

one and forms an estimate for ǫ;
A2) Observation: due to lack of sufficient confidence to

make a decision or form a reliable estimate for ǫ, one

more sample is taken from the same sequence, i.e.,

st+1 = st; or

A3) Exploration: sequence st is discarded and the sampling

procedure switches to the next sequence and takes one

observation from the new sequence, i.e., st+1 = st + 1.

In order to formalize the sampling procedure we define τ as

the stopping time of the procedure, that is the time instant

at which action A1 (decision) is performed. We denote the

detection rule at the stopping time by δ(τ) ∈ {1, . . . , sτ} and

the estimate formed for ǫ by ǫ̂(τ). To characterize dynamic

switching between observation and exploration actions we

define the binary function ψ : {1, . . . , τ − 1} → {0, 1}
such that at time t ∈ {1, . . . , τ − 1} if the decision is in

favor of performing observation (A2) we set ψ(t) = 0, while

ψ(t) = 1 indicates a decision in favor of exploration (A3).

Hence, ∀t ∈ {1, . . . , τ − 1}:

ψ(t) =

{

0 action A2

1 action A3
. (3)

A sequential decision is completely characterized by the

combination Φ
△

= (τ, δ(τ), ǫ̂(τ), ψ(1), . . . , ψ(τ − 1)).

C. Problem Formulation

The optimal search procedure can be found by determin-

ing Φ. The natural performance measures for evaluating the

efficiency of any sampling strategy Φ include the quality of

the final detection, which is captured by (i) the frequency of

the erroneous decisions, i.e., PΦ(τ)
△

= P(Tδ(τ) = H0|Fτ ) and

(ii) the mean squared error risk of estimation, i.e., RΦ(τ)
△

=
E[[ǫ − ǫ̂(τ)]2|Fτ ], and (iii) the delay in reaching a decision,

i.e., τ . By integrating these three figures of merit into one cost

function, the stochastic aggregate cost function for a given Φ
at time t is given by

JΦ(t)
△

= cd · PΦ(t) + ce · RΦ(t) + cs · t , (4)

where cd, ce, and cs are positive constants that balance the

quality and the agility of the search process. In the following

sections, under different settings we characterize the stopping

time, the switching rules, the final decision rules, and the

associated performance guarantees

III. OPTIMAL INFERENCE RULES

In this section we start by characterizing the detection and

estimation rules δ(τ) and ǫ̂(τ) for any given stopping time τ ,

and switching sequence {ψ(t) : t = 1, . . . , τ − 1}. Then, we

focus on two special cases of the search problem, where one

places the emphasis on the detection subproblem by setting

ce = 0, and the other focuses on the estimation subproblem

by setting cd = 0. Based on the insights from these special

cases, we finally treat the problem in its general form.

It is shown in [19] that in a sequential setting, for any given

sampling strategy and stopping rule there exists a fixed set

of final decisions that are optimal. Furthermore, the quadratic

estimation cost RΦ(t) is independent of the detection rule, and

also the detection cost is independent of the estimate of the

prior probability. Hence, for any given stopping time τ and

sequence of switching functions {ψ(t) : t = 1, . . . , τ − 1},

detection and estimation decision rules can be decoupled. The

following theorem formalizes these results.

Theorem 1. The sequential strategy for optimizing the cost

function (4) can be decoupled in a way that the detection
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and estimation rules are decoupled, and both of them are

independent of the stopping time and the switching rule.

This theorem facilitates characterizing the detection and esti-

mation decisions. To proceed, we define πi
t as the posterior

probability that the sequence X i is abnormal given the infor-

mation up to time t, i.e., πi
t

△

= P(Ti = H1 | Ft). By defining

κi
t(ǫ)

△

= P(Ti = H1 | Ft, ǫ), it can be readily verified that

κi
t+1(ǫ) =

⎧

⎪

⎨

⎪

⎩

κi

t
(ǫ)f1(Yt+1)

κi

t
(ǫ)f1(Yt+1)+(1−κi

t
(ǫ))f0(Yt+1)

if st = i

κi
t(ǫ) if st �= i

,

and πi
t =

∫

κi
t(ǫ)g(ǫ | Ft) dǫ ,

where g(ǫ | Ft) is the posterior pdf of ǫ. Also, at any time t,
we denote the posterior average of ǫ by

ǫ̂(t)
△

= E[ǫ | Ft] . (5)

Based on these definitions, the next theorem provides the op-

timal decision rules for any given stopping time and switching

sequence.

Theorem 2 (Decision Rules). For a given stopping time τ
and switching sequence:

1) The optimal detection rule, which minimizes JΦ(τ), is

δ(τ) = argmax
i∈{s1,...,sτ}

πi
τ . (6)

2) The optimal estimation rule, which minimizes JΦ(τ), is

ǫ̂(τ) = E[ǫ | Fτ ] . (7)

Given the decision rules in Theorem 2, we next characterize

the optimal stopping time τ , and the associated optimal

switching rules {ψ(t) : t = 1, . . . , τ−1}. For this purpose, we

first consider the sequential search and sequential estimation

problems in two different settings. By leveraging the insight

gained from these special cases we solve the joint search and

estimation problem.

IV. EMPHASIS ON DETECTION (ce = 0)

We first consider a purely sequential detection setting, in

which the estimation quality is unintegrated by setting ce = 0.

This problem when ǫ is known and the objective is to minimize

the average delay is studied in [2], [6] and [7], where the anal-

yses provide the optimal stopping time and switching rules.

In this section, we provide stopping and switching rules that

enjoy certain optimality guarantees and facilitate generalizing

the results to the general case of ce �= 0. To this end, we

propose a stopping and switching rules, the combination of

which accepts asymptotic optimality guarantees. Specifically,

we define

τ∗d
△

= inf
{

t : max
i

πi
t ≥ 1− csd

}

, (8)

where csd
△

= cs
cd

, as the stopping time of the sampling process.

According to this stopping rule, the sampling process contin-

ues until one is confident enough that one of the sequences is

generated by F1.

Next, we characterize the switching rule prior to the

stopping time in order to dynamically decide between the

exploration and observation actions. Specifically, at any time

t ∈ {1, . . . , τ∗d − 1} we set the switching rule to discard

sequence st and switch to st + 1 when πst
t < ǫ̂(t). Hence,

ψd(t) =

{

1 if πst
t < ǫ̂(t)

0 if πst
t ≥ ǫ̂(t)

. (9)

This switching rule, when combined with the stopping time

given in (8), achieves the asymptotic pointwise optimality

(APO), as formalized in the following theorem.

Theorem 3. Consider a sequential strategy Φd with the de-

tection and estimation rules given in (5) and (6), the stopping

time defined in (8), and the switching rule in (9). For any other

sampling strategy Φ̂, we have

lim
csd→0

P

{

JΦd
(τ∗d )

JΦ̂(τ̂)
≤ 1 + ∆

}

= 1 , ∀∆ > 0 . (10)

Proof: The proof can be carried out in two steps, which we

briefly discuss. In the first step we assume that L sequences are

visited during the sampling process and τ� for ℓ ∈ {1, . . . , L}
is the number of samples taken from sequence ℓ. It can

be shown that τ� for ℓ ∈ {1, . . . , L − 1} are exponentially

bounded and the delay is dominated by the number of samples

taken from the sequence that will be declared as abnormal.

By defining DKL(f1‖f0) as the Kullback-Leibler divergence

between f0 and f1, in the second step we show that

1

τ∗d
logPΦd

(τ∗d ) → −DKL(f1‖f0) , as csd → 0 , (11)

which can be concluded from the first step and the fact that

1

τL
logPΦ(τL) → −DKL(f1‖f0) , as csd → 0 . (12)

Then, the optimality property is concluded from [16].

V. EMPHASIS ON ESTIMATION (cd = 0)

The problem of sequential estimation from one sequence

is studied in [16], and the extension to controlled sequential

estimation is studied in [17] and [18]. In this section we show

how the results of [18] can be leveraged to solve the sequential

estimation of the quickest search problem. To this end, we

denote the Fisher information corresponding to each switching

rule ψ(t) = ℓ, for ℓ ∈ {0, 1}, by

I�(ǫ)
△

= E

[−∂2

∂ǫ2
LL(Yt+1|ǫ, ψ(t) = ℓ)

]

, (13)

where LL(Yt+1|ǫ, ψ(t) = ℓ) is the log-likelihood of observing

Yt+1 at time t + 1 when ψ(t) = ℓ. Based on this definition,

we characterize a stopping time and a switching rule that

achieve asymptotic optimality when cse
△

= cs
ce

tends to zero.

Specifically, we define the stopping time as

τ∗e
△

= inf
{

t : RΦ(t) ≤ t · cse

}

. (14)

According to this stopping rule, when the estimation cost

RΦ(t) falls below the total sampling cost t · cse the sampling

2017 IEEE International Symposium on Information Theory (ISIT)

1373Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on September 12,2022 at 23:02:16 UTC from IEEE Xplore.  Restrictions apply. 



process terminates. Furthermore, the switching rule should

select the action between observation and exploration that

minimizes the estimation variance, which according to the

Cramer-Rao bound is lower bounded by the inverse of the

Fisher information value. Hence, we first compute ǫ̂ML(t) as

the maximum likelihood (ML) estimate of ǫ at time t based on

the observations up to time t. Then, we select the action with

the largest Fisher information value for that estimate, i.e.,

ψe(t) =

{

1 if I1(ǫ̂ML(t)) > I0(ǫ̂ML(t))

0 if I1(ǫ̂ML(t)) ≤ I0(ǫ̂ML(t))
. (15)

This switching rule ensures that the sampling process takes

the action that minimizes the variance of estimation. While

ignoring the impact of the current decision on the future

ones, it can be shown that in the large sample regimes, it

is asymptotically optimal.

Theorem 4. Let Φe be the sampling strategy characterized by

the stopping time and the switching rule given in (14) and (15),

respectively. Then, when cse approaches zero, for any other

sampling strategy Φ̂ we have

lim
cse→0

P

{

JΦe
(τ∗e )

JΦ̂(τ̂)
≤ 1 + ∆

}

= 1 , ∀∆ > 0 . (16)

This switching rule ensures that a sufficient number of sam-

ples is taken from the current sequence so that its distribution

is distinguishable before switching to the next sequence.

Remark 1. When distributions F0 and F1 are distinguish-

able enough, the switching is more inclined to explore more

sequences and have a more reliable estimate of ǫ. On the

other hand, if F0 and F1 are less-distinguishable, the switching

rule tends to continue taking samples from the same sequence

in order to be more confident about its distribution before

switching to the following sequence.

VI. BALANCE BETWEEN DETECTION AND ESTIMATION

With the insights gained from the previous two sections, in

this section we treat the quickest search problem of interest in

its general form, which involves forming reliable decisions for

both estimation and detection routines. We first characterize

a stopping time by noting that in the detection problem the

sampling process terminates when (1−maxi πi
t) falls below

csd, i.e., the relative cost of one new sample, while in the

estimation problem, it stops when the normalized estimation

cost
(

RΦ(t)
t

)

is smaller than the relative cost of one new sample

cse. Hence, for the general quickest search problem we define

the stopping time as

τ∗
△

= inf
{

t : cd(1−max
i

πi
t) + ce

RΦ(t)

t
≤ cs

}

. (17)

While it is a combination of the stopping rules in the previous

settings, we will show that it can be also obtained directly by

optimizing the total Bayesian cost given in (4).

Theorem 5. Let Φ∗ be the sampling strategy with the stopping

time give in (17) and the optimal switching sequence {ψ∗(t) :

t = 1, 2, . . . }, and Φ̂ be any arbitrary sampling strategy with

the same switching rule and any other stopping time τ̂ . For

all Φ̂ and τ̂ we have

lim
csd,cse→0

P

{

JΦ∗(τ∗)

JΦ̂(τ̂)
≤ 1 + ∆

}

= 1 , ∀∆ > 0 . (18)

Proof: The detection cost depends only on one sequence,

while the estimation cost relies on all the observed sequences.

When the sampling cost is substantially smaller than the costs

of estimation and incorrect detection decisions, we know that

1

t
logPΦ(t) → −γDKL(f1‖f0) , as t → ∞ , (19)

and , tRΦ(t) → V (ǫ) , as t → ∞ , (20)

for some 0 < V (ǫ) < ∞ and γ ∈ (0, 1). In case (19) and (20)

are exact, i.e., they are true for any t, the stopping time would

be the first time t for which we have

cdPΦ(t− 1) + ceRΦ(t− 1) + cs(t− 1) ≤

cdPΦ(t) + ceRΦ(t) + cs · t , (21)

which by replacing PΦ and RΦ from (19) and (20) we have

cdPΦ(t)(1− PΦ(t)
1
t ) + ce

RΦ(t)

t
≤ cs , (22)

and since (1− PΦ(t)
1
t ) → 1, (22) is equivalent to

cd(1−max
i

πi
t) + ce

RΦ(t)

t
≤ cs . (23)

The remainder of the proof, which involves showing that

for the asymptotic convergence in (19) and (20) we have

asymptotic optimality, follows the same line of argument as

in [16].

Next, we characterize the switching rules for dynamically

deciding between exploration and observation actions. First,

we note that, taking a new sample from any sequence reduces

the average estimation cost, while the detection error probabil-

ity depends on the number of samples taken from the sequence

declared as the abnormal sequence. Also, taking many sam-

ples from one sequence cannot improve the estimation cost

significantly. Hence, for the switching rule, at the beginning

we apply the rule given in the purely estimation setting (15).

When the estimation cost becomes sufficiently small, we apply

the switching rule given in the purely detection setting (9).

Based on this, we set the switching rule as follows:

ψ(t) =

{

ψe(t) if
RΦ(t)

t
> cse

ψd(t) if
RΦ(t)

t
≤ cse

. (24)

This switching rule, at the beginning of the sampling process,

is more focused on forming a reliable estimate for ǫ. When

the estimation cost is sufficiently small, it gradually shifts the

focus to forming a reliable detection decision. The following

theorem formalizes the asymptotic optimality properties of the

sampling strategy characterized by the stopping rule in (17)

and the switching rule in (24).

Theorem 6. Let Φ∗ be the sampling strategy with the stopping

time give in (17) and a switching rule given in (24), and Φ̂
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Fig. 1. Average delay versus η.

be any arbitrary sampling strategy with the stopping time τ̂ .

Then, in the asymptote of cs
ce

→ 0, cs
cd

→ 0, and ce = O(cd)
we have

lim
csd,cse→0

P

{

JΦ∗(τ∗)

JΦ̂(τ̂)
≤ 1 + ∆

}

= 1 , ∀∆ > 0 . (25)

VII. SIMULATION

In order to evaluate the performance of the proposed

adaptive strategies, in this section we compare the average

delay of the quickest linear search process with and without

emphasis on the estimation of the prior probability. For this

purpose, we assume zero-mean Gaussian distributions with

variance values 1 and 2 for F0 and F1, respectively. We also

assume that prior probability has a uniform distribution over

(0.3 − η/2, 0.3 + η/2), where η is a constant in the range

η ∈ [0, 0.6]. For a general setting with cs = 0.001, cd = 0.1,

and ce = 1, the average delay is compared with that of the

setting in which ce = 0 and have the same rate of erroneous

detection decisions. Figure 1 shows that by increasing the

uncertainty of the prior probability, more samples are required

even when the estimation cost of the prior probability is not

a concern. Also, it is observed that for reliable estimation of

the prior probability (when ce �= 0), we require to take more

measurements compared to the case that estimation cost is

unintegrated from the total cost (ce = 0).

VIII. CONCLUSION

We have analyzed the problem of quickest search and

learning over multiple sequences, in which each sequence is

generated according to one of the normal and abnormal distri-

butions with unknown prior probabilities. The main objective

is to identify one abnormal sequence with the fewest number

of measurements, which is known to depend strongly on the

unknown prior probability. Hence, achieving the detection

objective, also necessitates producing a reliable estimate for

the prior probabilities. For this purpose, we have characterized

the optimal detection and estimation rules, and have designed

asymptotically optimal sequential mechanisms that at each

time dynamically decide which sequence should be sampled.

First, we have considered a purely detection setting in which

the estimation of the prior probability is not a concern and

have shown that the decision rules reduce to comparing the

posterior probability values with two thresholds. In the next

setting, we have focused on the reliable estimation of the prior

probability and have shown that the optimal procedure selects

the sequence that maximizes the Fisher information value and

stops when the cost of estimation falls below the total cost of

sampling. Finally, we have combined the results of the first two

settings to characterize the sampling strategy for the quickest

search problem in its general form.
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