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ABSTRACT

This paper considers a network of agents generating correlated

data according to a known kernel. The correlation structure might

undergo a change at an unknown time instant, where the post-change

kernel is not fully known. Moreover, due to the data processing and

communication costs, only a subset of agents can be observed at any

time instant. The objective is to detect the change-point with mini-

mum average delay, while the rate of false alarms is controlled. This

paper proposes a coupled data acquisition and decision-making pro-

cess for change detection and establishes its optimality properties.

Index Terms— Change detection, Chernoff, CUSUM

1. INTRODUCTION

Real-time monitoring of a system or process for detecting a change

of behavior arises in many application domains such as detecting

faults or security breaches in networks, and performing quality con-

trol in production lines. It is often of interest to detect abrupt changes

with minimal delay after they occur. At the same time designing

detection rules that are too sensitive to changes in observations are

susceptible to raising frequent false alarms. This creates an inherent

tension between the quickness and the quality of the decisions.

In this paper we focus on a network of agents generating corre-

lated data streams and aim to detect abrupt changes in the correlation

structure of the data. Such change detection problems are studied in

the literature in two different directions. In one direction, the mea-

surements are collected sequentially such that at each time instant

one complete set of measurements are made from all the nodes in

the network [1, 2, 3]. While being effective, such approaches lack

efficiency when facing large networks and high dimensional data, in

which data acquisition incurs substantial communication, sensing,

and decision delay costs. To circumvent this issue, in the second

direction the measurements are first quantized (e.g., with one bit)

and then communicated to the decision-making units [4, 5, 6, 7, 8].

These approaches, while incurring substantially lower sensing and

communication costs, are shown to achieve asymptotic optimality

properties.

In this paper, we take a different approach and impose a con-

straint on the total number of measurements that can be made at

any time instant. Hence, at each time only a subset of nodes with

cardinality below a set threshold can be sampled. Therefore, quick-

est change detection in this setting involves coupled data-acquisition

and decision-making processes, in which at each time instant one

needs to decide whether to stop collecting data and declare a change,

or to continue collecting more data, and in the latter case also to

identify the subset of nodes to be observed. We assume that the
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pre-change distribution is fully known, while the post-change dis-

tribution follows a composite model. The composite post-change

distribution with fixed node selection rules and on-off selection rules

have been studied in [2] and [9], respectively. These studies are

fundamentally different from the problem investigated in this paper

since they examine one sequence of data.

Designing coupled data-acquisition and decision-making pro-

cesses is closely related to controlled sensing, in which the Cher-

noff rule [10] is widely used. Chernoff rule was originally posed for

designing binary hypothesis tests that involve controlling an action

for gathering information. Under the assumption of uniformly dis-

tinguishable hypotheses, it is shown that selecting the action with

the best immediate return, according to proper information mea-

sures, achieves optimal performance in the asymptote of diminish-

ing rate of erroneous decisions. Generalizations and extensions of

the Chernoff rule for various settings are studied in [11, 12, 13, 14,

15]. Specifically, in [15] the Chernoff rule is modified in a way

that the uniformly distinguishable assumption is relaxed for multi-

hypothesis setting by introducing randomized actions into the selec-

tion rule where it is shown that selecting actions randomly at certain

time instants accepts the same asymptotic performance. The results

are also extended to the setting in which available data belong to a

discrete alphabet and follow a stationary Markov model [16]. In this

paper, a modified Chernoff rule is proposed, which combined with

parallel cumulative sum (CUSUM) test, it minimizes the average de-

lay in detecting a change in the correlation structure, while ensuring

that the rate of false alarms is controlled below a pre-specified level.

2. PROBLEM FORMULATION

2.1. Data Model

Consider a network of n nodes indexed by V
△

= {1, . . . , n}, in which

each node generates a discrete-time sequence of random variables.

We denote the random variable generated by node i at time t by Xi
t .

Accordingly, we define Xt
△

= {Xi
t : i ∈ V} as the set of random

variables generated by the network at time t. Prior to an unknown

time instant γ, referred to as the change-point, the set of random

variables are assumed to be correlated according to a known struc-

ture (kernel). Specifically, we assume that random variables Xt are

generated according to a known joint distribution with cumulative

distribution function (CDF) F0. After the change point γ, the cor-

relation structure governing Xt changes to one of the M ∈ N pos-

sible correlation structures. In order to account for such a change,

we define Fθ as the joint CDF of Xt after the change-point, where

θ ∈ {θ1, . . . , θM}. Hence, we have a composite model for the post-

change distribution. Therefore,

Xt ∼ F0, t = 1, . . . , γ − 1
Xi ∼ Fθ, t = γ, γ + 1, . . .

. (1)
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We also assume that there exist well-defined probability density

functions (pdfs) corresponding to F0 and Fθ , which we denote by

f0 and fθ , respectively. Also, for any A ⊆ V we denote the joint

pdf of XA
△

= {Xi : i ∈ A} corresponding to the pre-change and

post-change events by f0(XA;A) and fθ(XA;A), respectively. We

denote the probability measure governing sequence {Xt : t ∈ N}
and the expectation with respect to this measure by P

θ
γ and E

θ
γ ,

respectively. We also use P
θ
∞ and E

θ
∞ for the case that no change

occurs and the distribution is always F0.

2.2. Sampling Model

The ultimate objective of the quickest change-point detection (QCD)

in the correlation structure is to sequentially collect measurements

from the network and detect the change-point with minimal delay

after it occurs, while, in parallel, controlling the rate of false alarms.

The setting in which at each time we collect measurements from all

nodes in the network, i.e., at time t observing Xt entirely, is studied

extensively in the literature (c.f. [1, 2, 3]). In contrast, in this pa-

per we assume that only a limited number of measurements can be

taken at any time instant. This could be due to a variety of practical

reasons, such as controlling the cost of sensing, the cost of commu-

nication, and computational complexity. We define m < n as the

maximum number of measurements we afford to make at any time

t. Under this setting, the sampling process sequentially collects m
measurements at-a-time, until the change-point can be detected with

sufficient confidence. Hence, by denoting the index of the nodes

observed at time t ∈ N by

ψt
△

= {ψt,1, . . . , ψt,m} , (2)

and the corresponding samples by

Yt
△

= {Yt,1, . . . , Yt,m} , (3)

we can abstract the information accumulated sequentially by the fil-

tration Ft, where

Ft
△

= σ
(

(Yi, ψi) : i ∈ {1, . . . , t}
)

. (4)

The sampling process continues until the stopping time, denoted by

τ , after which no further measurements are made and a change is

detected. Both the stopping time τ and the selection rule ψt are

Ft-measurable functions. A sampling strategy is completely charac-

terized by Φ
△

= (τ, ψ1, . . . , ψτ ).

2.3. Problem Formulation

We are interested in determining an optimal sampling policy Φ,

which involves dynamically making two intertwined decisions at

each time. Specifically, at each time t, and based on the information

accumulated up to time t, we need to decide whether to terminate the

sampling process and declare a change (i.e., τ = t), or to continue

and collect more measurements. In the latter case, we need to also

determine ψt+1, which specifies the set of nodes to be measured at

the subsequent time instant. Two relevant performance measures for

evaluating the quality of the sampling process are the average delay

between the change-point and the stopping time, and the frequency

of false alarms. To account for the average delay we investigate two

cases in which we adopt Pollak’s and Lorden’s definitions of the

average delay. Specifically, Pollak’s conditional average decision

delay is defined as [17]

CADD
θ(Φ)

△

= sup
γ≥1

E
θ
γ{τ − γ | τ ≥ γ} , (5)

and Lorden’s worst case average decision delay is defined as [18]

WADD
θ(Φ)

△

= sup
γ≥1

esssup
Fγ−1

E
θ
γ{(τ − γ)+ | Fγ−1} . (6)

It can be readily verified that

CADD
θ(Φ) ≤ WADD

θ(Φ) . (7)

Pollak’s criterion is more natural for modeling an unknown change-

point with no random mechanism specifying it (in contrast to

Bayesian settings), while Lorden’s criterion is more apt when the

change-point mechanism depends on the history of the observa-

tions. In order to account for the frequency of the false alarms, we

define [19]

FAR(Φ)
△

=
1

E∞{τ}
, (8)

which captures the average number of false alarms in a sufficiently

long observation interval.

There exists an inherent tension between the average delay and

the rate of false alarms as improving one penalizes the other one.

The optimal sampling strategy can be obtained by controlling the

false alarm rate and minimizing the average decision delay. Hence,

under Pollak’s setting, it is the solution to:

inf
Φ

CADD
θ(Φ)

s.t. FAR(Φ) ≤ α
, (9)

and under Lorden’s setting it is the solution to:

inf
Φ

WADD
θ(Φ)

s.t. FAR(Φ) ≤ α
, (10)

where α ∈ (0, 1) controls the false alarm rate. We aim to character-

ize sampling procedures that, uniformly for θ ∈ {θ1, . . . , θM}, are

asymptotically optimal. It is noteworthy that even under the setting

without a dynamic selection rule the non-asymptotic optimal solu-

tions to problems (9) and (10) are unknown.

3. QUICKEST CHANGE-POINT DETECTION

In order to treat the QCD problems in (9) and (10), we first briefly

review the relevant procedures that treat one change-point detection

in networks with one node (i.e., one sequence). Such settings do

not involve the dynamic node selection process that we face in the

setting of this paper, and are concerned with only determining the

optimal stopping.

3.1. QCD in Networks with One Node

QCD in one sequence of random variables is studied extensively in

the literature. When the post-change distribution is simple (M =
1), the CUSUM test is shown to be optimal for problem (10), and

asymptotically optimal for (9) as α approaches zero [20]. Specifi-

cally, as α tends to zero under CUSUM we have

CADD
θ1(Φ) ≤ WADD

θ1(Φ) =
| logα|

DKL(fθ1‖f0)
(1 + o(1)) . (11)

where DKL(fθ1‖f0) denotes the Kullback-Leibler (KL) divergence

between pdfs fθ1 and f0. When the post-change distribution is com-

posite, a multiple CUSUM algorithm is asymptotically optimal uni-

formly over θ for both problems [2]. Multiple CUSUM algorithm

consists in M parallel CUSUM tests, and its stopping time is the

minimum of those of the M constituent CUSUM tests. Under such

a multiple CUSUM test, CADDθ(Φ) and WADD
θ(Φ) satisfy (11)

for every possible post-change model θ ∈ {θ1, . . . , θM}.

6435

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on September 12,2022 at 23:02:38 UTC from IEEE Xplore.  Restrictions apply. 



3.2. QCD in Networks with Complete Data

QCD in a network with n = m is studied extensively in the liter-

ature. When all measurements are collected perfectly (infinite-rate

precision) it is shown that the CUSUM test achieves the same opti-

mality performance as in the single sequence setting [1, 2, 3], i.e.,

CADD
θ1(Φ) ≤ WADD

θ1(Φ) =
| logα|(1 + o(1))

DKL(fθ1(·;V)‖f0(·;V))
.

Also, when the measurements have finite-rate precision, e.g., are

quantized, it is shown that some variations of the CUSUM test ap-

plied locally achieves certain asymptotic optimality properties for

the expected delay [4, 5, 6, 7, 8].

3.3. QCD in Networks with Incomplete Data

The fundamental distinction between the setting of this paper and

those of sections 3.1 and 3.2 is the additional dynamic decision to

be made about the set of m nodes to observe at any time, where

m ∈ {1, . . . , n−1}. To this end, corresponding to each post-change

model θi, for i ∈ {1, . . . ,M} we define set Si ⊆ V such that |Si| =
m and it maximizes the KL divergence between fθi and f0, i.e.,

Si
△

= argmax
{S:|S|=m}

DKL(fθi(·;S)‖f0(·;S)) . (12)

Also, we denote the corresponding KL divergence by

D
∗
KL(fθi‖f0)

△

= max
{S:|S|=m}

DKL(fθi(·;S)‖f0(·;S)) . (13)

Based on these definitions we provide the following lower bounds

on the average delay metrics.

Theorem 1 Corresponding to any dynamic selection rule Φ, in the

asymptote of α approaching 0, ∀θ ∈ {θ1, . . . , θM} we have

WADD
θ(Φ) ≥ CADD

θ(Φ) ≥
| logα|

D∗
KL(fθ‖f0)

(1 + o(1)) . (14)

Next, we propose an algorithm and prove that it achieves the delay

lower bound provided in Theorem 1.

3.4. Simple Post-change Model

When the post-change distribution is simple, i.e.,M = 1, an optimal

node selection involves simply making measurements from nodes

S1, defined in (12) at all times t ∈ {1. . . . , τ}. This selection rule in

conjunction with the CUSUM test on the observed nodes constitutes

an asymptotically optimal sampling process, as formalized in the

following theorem.

Theorem 2 When M = 1, the CUSUM test combined with a selec-

tion rule that selects S1 at any time instant until the stopping time is

asymptotically optimal as α approaches zero, i.e.,

CADD
θ1(Φ) ≤ WADD

θ1(Φ) ≤
| logα|

D∗
KL(fθ1‖f0)

(1 + o(1)) . (15)

3.5. Composite Post-change Model

The main goal of this paper is to treat a composite post-change

model, in which case the set Si varies for different values of

i ∈ {1, . . . ,M}, and the sampling strategy for simple models

(Section 3.4) cannot be adopted. In fact selecting the set Si is cou-

pled with the decision about the true post-change model. Making

such coupled decisions is relevant to the notion of controlled sens-

ing in which the Chernoff rule and its variations are used under

different assumptions, and exhibit different optimality properties.

In the context of this paper, Chernoff rule at each time t identifies

the maximum likelihood (ML) decision about the true value of i,
denoted by î(t), and selects the subset of nodes that have the largest

KL divergence under θî(t), i.e., ψt = Sî(t). To ensure that the ML

decision converges to the true i in finite time and, consequently, the

final decision is asymptotically optimal, the Chernoff rule requires

the distributions to be distinguishable for all possible actions [10],

i.e., for any i ∈ {1, . . . ,M} and S ⊆ V such that |S| = m,

DKL(fθi(·;S)‖f0(·;S)) > 0 . (16)

In [15], this assumption is relaxed for a multi-hypothesis testing

problem by adopting a randomized selection rule at exponentially-

spaced time instants, and the asymptotic performance guarantees are

provided. Specifically, it is shown that by adopting a randomized

selection at time instants tℓ = ⌈aℓ⌉ for ℓ ∈ Z+ and a constant a > 1
that is sufficiently close to 1, and using the Chernoff rule at other

time instants, the asymptotically optimal average delay is achieved.

In our setting, however, we cannot directly apply the modified

Chernoff rule with randomization since the change-point is unknown

and the delay between the randomized time instants grows exponen-

tially. This means that if the change-point time is large, i.e., γ ≫ 1,

randomization fails to ensure the convergence of ML decision about

the true i in finite time. To circumvent this issue, we exploit the re-

newal structure of the CUSUM test to ensure that the starting point

of the randomization process is sufficiently close to the change-point

γ. For this purpose, we runM CUSUM tests in parallel, one for each

θi:

C0(θi) = 0 , (17)

Ct(θi) =
[

Ct−1(θi) + log
fθi(Yt;ψt)

f0(Yt;ψt)

]+

, (18)

and define an indicator vector

ζ(t)
△

= [ζ1(t), . . . , ζM (t)] , (19)

where ζi(t) corresponds to the CUSUM test associated with θi at

time t, and initialize it according to ζ(0) = 01×M . We start the

sampling process according to the Chernoff rule with a randomiza-

tion. When the CUSUM value associated with model θi is zero (i.e.,

Ct(θi) = 0) we set its indicator to ζi(t) = 1. This process continues

until time T which is the first time that indicator values correspond-

ing to all models are set to 1, i.e., ζ(T ) = 11×M , then we reset

ζ(T ) = 0, revise the randomization starting point by setting ℓ = 0
and tℓ = T +⌈aℓ⌉, and resume the sampling process until a change-

point is detected. This procedure is summarized in Algorithm 1, and

its asymptotic optimality properties are formalized in the following

theorem.

Theorem 3 The dynamic CUSUM test of Algorithm 1, which fol-

lows the ML decision for its selection rule, except at time instants

tℓ = T + ⌈aℓ⌉ for ℓ = Z+ at which it applies a uniform selection

rule, is an asymptotically optimal solution to (9) and (10) when the

false alarm rate approaches zero, and ∀θ ∈ {θ1, . . . , θM}

WADD
θ(τ) =

| logα|

D∗
KL(fθ‖f0)

(1 + o(1)) . (20)

Proof: If we show the convergence of ML decision in finite time, the

proof follows a similar procedure as in [16, Theorem 4.1]. We define

ν as the time instant after which the ML decision of i is always true,

and show that randomization guarantees the finiteness of (ν − γ),
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Algorithm 1. Proposed sampling strategy

1 Set t = 0, ℓ = 0, T = 0, ζ(0) = 0, and C0(θi) = 0

2 While maxi Ct(θi) < log M
α

3 t← t+ 1
4 If t = T + ⌈aj⌉ for some j ≥ ℓ
5 ψt ← m nodes randomly

6 ℓ← ℓ+ 1
7 Else

8 î← argmaxi Ct(θi)
9 ψt ← Sî
10 End if

11 For i = 1, . . . ,M

12 Ct(θi)←
[

Ct−1(θi) + log
fθi

(Yt;ψt)

f0(Yt;ψt)

]+

13 If Ct(θi) = 0 Then ζi(t)← 1
14 End for

15 If ζ(t) = 1

16 T ← t and ℓ← 0
17 End if

18 End while

19 Stop sampling, declare a change, and τ = t

i.e., when a is selected sufficiently close to 1, for some K > 0 and

any β > 2, ν satisfies:

P
θi
γ (ν − γ > t) ≤ Kt

−β
, ∀i ∈ {1, . . . ,M} . (21)

We denote the last time instant at which ζ(t) is reset to zero by η
and show that Pθiγ (γ − η = j) for j ∈ {1, . . . , γ}, which is the

probability of the event that at least one of the CUSUM values has

remained positive, is upper bounded by

P
θi
γ (γ − η = j) = P

θi
γ

(

M
⋃

i=1

(

Cη+k(θi) > 0 for k ∈ {1, . . . , j}
)

)

(a)

≤

M
∑

i=1

P
θi
γ

(

Cη+k(θi) > 0 for k ∈ {1, . . . , j}
)

(b)

≤

M
∑

i=1

ρ
j
i

(c)

≤ Mρ
j
max , (22)

where (a) holds owing to the union bound, (b) results from applying

the Markov and Cauchy-Schwartz inequalities on

ρi
△

= P∞

(

log
fθi(X)

f0(X)
> 0

)

< 1 , (23)

and (c) is due to definition ρmax
△

= maxi ρi. From the analysis

in [16, Lemma 6.4], it is clear that when the starting point of the

randomization and the change-point are the same, i.e., η = γ, we

have

P
θi
γ (ν − γ > t | η = γ) ≤ K1t

−β1 , (24)

for some β1 > 2. Following the same line of argument yields

P
θi
γ (ν − γ > t) =

∞
∑

j=0

P
θi
γ (ν − γ > t | γ − η = j)P(γ − η = j)

≤MK1

∞
∑

j=0

(t− j)−β1ρjmax ≤ Kt
−β

, (25)

for some positive constant K and β, which concludes the proof.
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4. SIMULATION RESULTS

We consider a network consisting of n = 10 nodes generating zero-

mean Gaussian random variables. Prior to the change-point γ the

generated data set at each time are independent with covariance ma-

trix I , and after γ they have a covariance matrix Σ where Σ ∈
{Σ1,Σ2,Σ3}. In Fig. 1 we set m = 2 and compare the conditional

average decision delay of the proposed selection rule and a random

selection rule. It is observed that the proposed selection rule shows a

significant gain compared to the random selection of nodes. Figure 2

compares the number of measurements required for the proposed ap-

proach and the setting that observes the entire network. It is observed

that the proposed approach requires fewer measurements to achieve

the same false alarm rate since it identifies the most relevant nodes

and collects their measurements.

5. CONCLUSION

We have analyzed the problem of quickest change-point detection

over a network of data streams with sampling constraint. We have

considered a setting in which the number of measurements that can

be collected at each time is controlled, and the subset of the nodes

for observation can be dynamically selected based on a data-adaptive

strategy. Also we have assumed that the pre-change data stream has

a known distribution, while the post-change distribution follows a

composite model. A sequential sampling strategy has been proposed

for identifying a change in the distribution for the setting in which

the post-change distribution takes one of the finite number of possi-

ble forms. We have shown that the CUSUM test combined with a

modified Chernoff rule is asymptotically optimal for minimizing the

expected delay as the false alarm rate approaches zero.
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