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KIRBY-THOMPSON DISTANCE FOR TRISECTIONS OF KNOTTED

SURFACES

RYAN BLAIR, MARION CAMPISI, SCOTT A. TAYLOR, AND MAGGY TOMOVA

Abstract. We adapt work of Kirby-Thompson and Zupan to define an integer invariant
L(T ) of a bridge trisection T of a smooth surface S in S4 or B4. We show that when
L(T ) = 0, then the surface S is unknotted. We also show that for a trisection T of an
irreducible surface, bridge number produces a lower bound for L(T ). Consequently L can
be arbitrarily large.

MSC (2010): 57Q45, 57M25

1. Introduction

Inspired by Hempel’s distance for Heegaard splittings [7], Kirby and Thompson [10] re-
cently defined a nonnegative integer valued invariant L(X) of a smooth 4-manifold X . They
show that when L(X) = 0, then X is diffeomorphic to the connected sum of the 4-sphere
with some number (possibly zero) of copies of S1×S3, S2×S2, and CP 2. This was extended
to be an invariant for smooth 4-manifolds with boundary in [2], where it was shown that if
the invariant takes the value zero on a rational homology ball, then the rational homology
ball is a 4-ball B4. In this paper, we adapt the definition to apply to smooth surfaces S
properly embedded in S4 or B4. We prove:

Theorem 6.2. Suppose that S ⊂ S4 is a smooth, closed surface with L(S) = 0. Then S is
the distant sum of unknotted 2-spheres and unknotted nonorientable surfaces.

As with the previous incarnations of this theorem, the invariant L is defined using tri-
sections. Trisections are, in some sense, a 4-dimensional version of Heegaard splittings of
3-manifolds. Trisections of both smooth closed 4-manifolds and smooth compact 4-manifolds
with boundary were introduced by Gay and Kirby [3]. Meier and Zupan [13] adapted this
definition, defining bridge trisections for smooth surfaces in S4 (and later in other closed
4-manifolds [14]). They show that every surface embedded in a closed 4-manifold has a
bridge trisection. Bridge trisections are a 4-dimensional version of bridge position for links
in closed 3-manifolds. We consider only trisection surfaces of genus 0. Associated to each
bridge trisection T of a smooth surface S in S4 are positive integers: the bridge number b
and the patch numbers c1, c2, and c3. We say that T is a (b; c1, c2, c3)-trisection of S. The
minimal value of b over all possible trisections of S is called the bridge number b(S) of S. It
is the case that 2b+ χ(S) ≥ 0 (where χ(S) is the Euler characteristic of S).

We establish links between these numbers, the invariant L, and the topological structure
of both S and its trisections. To state our results, recall that a smooth, closed surface S ⊂ S4

is unknotted or trivial if it is orientable and bounds a 3-dimensional handlebody in S4 or if it
is nonorientable and is the connected sum of unknotted projective planes [8]. (A projective
plane is unknotted if it is obtained by attaching a disk to a half-twisted Möbius band in the
equatorial S3 ⊂ S4.) Meier and Zupan prove that a surface S with b(S) ≤ 3 is unknotted
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[13, Theorem 1.8]. A smooth, closed, connected, orientable surface in S4 is irreducible if it
is nontrivial and not the connected sum of a nontrivial surface and a trivial surface of genus
g ≥ 1.

Theorem 6.7. If S ⊂ S4 is a smooth, closed, connected, orientable, irreducible surface then

L(S) > b(S)− g(S)− 2,

where g(S) is the genus of S.

Meier and Zupan [13, Section 5] show that spun torus knots have arbitrarily large bridge
number, and so L(S) can be arbitrarily large for knotted spheres. Combining their work
with that of Livingston [11]), it is likely the case that L(S) can be arbitrarily large for tori
as well.

Theorem 6.5, which is a more general version of Theorem 6.7, gives an upper bound on
L(S) such that if it is satisfied, then S is the nontrivial connected sum of two other surfaces
S1 and S2 such that L(S1)+L(S2) = L(S). A smooth, closed surface S ⊂ S4 is prime if it is
nontrivial and not a connected sum or distant sum of nontrivial smooth surfaces. Irreducible
surfaces need not be prime. In fact, it is unknown if any surface is prime; by [16], there is
a nontrivial sphere S ⊂ S4 whose connected sum with an unknotted projective plane P is
equivalent to P (see [1, Section 2.3.2]). We prove:

Theorem 6.4. If S ⊂ S4 is a surface that is smooth, closed, and prime. Then

L(S) > 2b(S) + 2χ(S)− 9

Finally, we remark that the essence of our results also applies to smooth surfaces with
boundary that are properly embedded in B4. Jeffrey Meier [12] has considered the definition
of bridge trisections (of arbitrary genus) for properly embedded surfaces in 4-manifolds with
boundary. Independent of, but subsequent to, his work, we arrived at an equivalent definition
for surfaces in the 4–ball. As the theory is still in its infancy, we hope that providing different,
more targeted, exposition is helpful. Meier proves a more general version of:

Theorem (Meier). Every properly embedded smooth surface S in B4 has a genus 0 bridge
trisection.

By Meier’s theorem, L provides an invariant arising from trisections for, say, slice disks or
other surfaces witnessing the 4-ball genus of knots in S3.

1.1. Outline. The remainder of this section establishes terminology, conventions and nota-
tion. In Section 2, we recall the definitions and constructions related to bridge trisections
of closed surfaces in S4 from [13] and generalize them to the case of surfaces with bound-
ary in B4. Section 3 describes how bridge surfaces in 3-dimensions and trisection surfaces
in 4-dimensions can be cut open along certain spheres. Section 4 describes the connection
between this operation and connected sums and distant sums. In Section 5, we define the
pants complex of a bridge surface or relative bridge surface. We use the pants complex to
define the invariant L and prove a sequence of lemmas relevant to the study of L. Finally,
in Section 6, we prove our main theorems.
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1.2. Terminology, conventions, and notation. All manifolds appearing in this paper
should be understood to be smooth and with (possibly empty) boundary. If Y is a subman-

ifold of X , we let N(Y ) and N̊(Y ) denote closed and open regular neighborhoods of Y in
X . The interval [−1, 1] is denoted I.

A simple closed curve γ in a disk or sphere Σ with marked points (called punctures)
is essential if it is disjoint from the punctures, does not bound an unpunctured or once-
punctured disk in Σ, and does not cobound an unpunctured annulus in Σ with ∂Σ. Isotopies
of essential curves are proper ambient isotopies of Σ relative to the punctures. We will often
conflate the isotopy class of a collection of essential curves with its representatives. In our
context, this should cause no confusion. The surface Σ is admissible if there are at least
3 punctures, when Σ is a disk, and at least 4 punctures when Σ is a sphere. A connected
subsurface P ⊂ Σ is a pair of pants if it is either a disk with 2 punctures, an annulus with
one puncture, or is unpunctured and has χ(P ) = −1.

Suppose that M is a 3–manifold (in our case, the 3-sphere or 3-ball) and that T ⊂ M is
a properly embedded 1–manifold and S ⊂ M is an embedded surface transverse to T . We
consider the points T ∩ S to be punctures on S. Suppose also that D ⊂ M is a disk with
∂D ⊂ S an essential curve and with interior disjoint from S and transverse to T . Then
D is a compressing disk if D ∩ T = ∅ and a cut disk if |D ∩ T | = 1. A disk that is a
compressing disk or a cut disk is a c-disk. If D is a c-disk for ∂M , then we also say that
D is a c-disk in (M,T ). If τ is a 1-manifold properly embedded in Z = D2 × I, then an
annulus properly embedded in Z, disjoint from τ and with one boundary component a curve
on each of D2 × {±1} is called a spanning annulus. For convenience we will often say that
one component of the boundary of a spanning annulus bounds the annulus (even though it
actually cobounds the annulus with the other boundary component).

1.3. Acknowledgments. Blair was supported by NSF grant DMS-1821254. Campisi was
supported by a San José State University RSCA Grant. Taylor was supported by a Colby
College Research Grant. We are grateful to Román Aranda, Chuck Livingston, Jeffrey
Meier, Maggie Miller, Alex Zupan, and the anonymous referee for helpful comments on the
manuscript.

2. Bridge trisections

We first define a (genus 0) trisection of S4 and then a (genus zero) bridge trisection of a
smooth surface in S4. After that we move on to the definition of relative trisections.

Remark 2.1. All of the trisections we discuss have trisection surfaces that are either the
sphere or the disk. We usually omit the adjective “genus 0” in what follows.

Definition 2.2 (Gay-Kirby). A 0-trisection of the 4–sphere S4 is a decomposition into
4-balls S4 = X1 ∪Σ X2 ∪Σ X3 with

(1) Bij = Xi ∩Xj , i, j ∈ {1, 2, 3} and i 6= j, a 3-ball, and
(2) Σ = X1 ∩X2 ∩X3 = B12 ∩ B23 ∩B31 a 2-sphere.

A trivial tangle (B, κ) is a 3-ball B containing properly embedded arcs κ such that, fixing
the endpoints of κ, we may isotope κ into ∂B. We consider ∂B to be a 2|κ|-punctured
surface, with the points ∂κ being the punctures. For expositional convenience, we also
set ∂+B = ∂B and ∂−B = ∅. A bridge splitting for a knot K ⊂ S3 is a decomposition
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(S3, K) = (B1, α1) ∪Σ (B2, α2) with (Bi, αi) trivial tangles and Σ = ∂Bi, for i = 1, 2. The
surface Σ is the bridge sphere of the splitting. A trivial disk system (X,D) is a 4-ball X
containing a collection D of properly embedded disks which are isotopic, relative to their
boundary, into ∂X .

Σ

X2

X1 X3

B12

B13

B23

T12

T13

T23

Figure 1. A schematic depiction of a bridge trisection. The circle in the
center represents the trisection surface, the sphere Σ. It is the boundary of
three 3-balls, depicted with dashed black lines. The union of any two of those
is a copy of the 3-sphere which is the boundary of a 4-ball. The union of the
4-balls is S4 and is depicted with the dashed blue circle. In each 3-ball is a
trivial tangle, depicted with red arcs. The disks in each 4-ball are not depicted.

Definition 2.3 (Meier-Zupan). A (b; c1, c2, c3)-bridge trisection T of a surface S ⊂ S4 is a
0-trisection S4 = X1 ∪Σ X2 ∪Σ X3 with b = |S ∩ Σ|/2 such that for all {i, j, k} = {1, 2, 3},
we have:

(1) (Sj, Lj) = (Bij ∪Σ Bjk, (Bij ∪Σ Bjk) ∩ S) is an unlink with cj-components in S3

(henceforth, just unlink).
(2) Σ is a bridge sphere for (Sj , Lj), decomposing it into the trivial tangles (Bij , Tij) and

(Bjk, Tjk).
(3) (Xi,Di) = (Xi, Xi ∩ S) is a trivial disk system.

We call S = (B12, T12) ∪ (B23, T23) ∪ (B31, T31) the spine of the bridge trisection. We define
Bij = Bji and αij = αji for all i, j ∈ {1, 2, 3} such that i 6= j. The minimum b(S) of the
bridge number b of T over all bridge trisections T of S is called the bridge number of S.
Note that b is a positive integer.

See Figure 1 for a schematic depiction of a bridge trisection and its spine. For ease
of exposition when we simultaneously handle relative trisections, in the case of a bridge
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trisection of a surface in S4 as above, we will set V = ∅ and also say that

S = (B12, α12) ∪ (B23, α23) ∪ (B31, α31) ∪ (V, V ∩ ∂Σ)

is the spine of the trisection.
We now turn to trisections of surfaces properly embedded in B4. The definition is in-

spired by the definition of Heegaard surfaces for 3-manifolds with boundary, trisections of
4-manifolds with boundary, and of course bridge trisections of surfaces in S4. See Figures 2
and 3 for a schematic depiction of the main components.

For a 3-ball Z parameterized as D2 × I, we define the positive (negative, resp.) boundary
to be ∂±Z = D2 × {±1}. The vertical boundary is ∂vZ = ∂D2 × I.

Definition 2.4 (Gay-Kirby). A 0-trisection of B4 is a decomposition into 4-balls B4 =
X1 ∪Σ X2 ∪Σ X3 with

(1) Zij = Xi ∩Xj, i, j ∈ {1, 2, 3} and i 6= j, a 3-ball parameterized as D2 × I, and
(2) Σ = X1 ∩X2 ∩X3 = ∂+Z12 = ∂+Z23 = ∂+Z31 a disk.

For later use, we observe the following. In B4, N(Σ) is homeomorphic to Σ × D2. The
intersection N(Σ) with ∂B4 is a solid torus V ′ = (∂Σ) × D2 ⊂ ∂B4. The complementary
solid torus V which is the closure of ∂B4 \ V ′ contains the three disks ∂−Z12, ∂−Z23, and
∂−Z13 as properly embedded meridian disks. Similarly, for {i, j, k} = {1, 2, 3}, the 3-sphere
∂Xi is decomposed into two solid tori Vi and V ′

i . The solid torus Vi is the union of the 3-balls
Zij and Zik along Σ together with the component of V \ (∂−Z12 ∪ ∂−Z23 ∪ ∂−Z13) between
∂−Zij and ∂−Zik. The solid torus V ′

i is the closure of ∂Xi \ Vi. The solid torus V ′ is formed
by taking the union of the solid tori V ′

1 , V
′

2 , and V ′

3 along the annuli ∂vZ12, ∂vZ23, and ∂vZ13.
A relative tangle (Z, T ) is a 3-ball Z = D2×I containing a properly embedded 1-manifold

T such that ∂T is contained in the interior of ∂−Z ∪ ∂+Z. It is trivial if there is a properly
embedded arc α ⊂ ∂+Z (necessarily containing the punctures) such that T can be isotoped,
relative to ∂T , into α×I. The arc α is called a trace arc. A relative tangle is strictly trivial if
T is trivial and has no closed components and no components with both endpoints on ∂−Z.
A relative tangle is spanning, if each arc component of T has one endpoint on each of ∂−Z
and ∂+Z. Spanning relative tangles may have closed components. If T is a trivial tangle, a
component of T is a vertical arc if it has an endpoint on each of ∂±Z and a bridge arc if it
has both endpoints on ∂+Z. Figure 2 shows an example of a strictly trivial relative tangle.

A disk Σ = D2 × {t0} for some t0 ∈ I \ ∂I is a relative bridge surface for a relative tangle
(Z, T ) (with Z = D2 × I) if the closure of each component of (Z, T ) \ Σ is a strictly trivial
tangle with positive boundary Σ. If (B1, α1) and (B2, α2) are the closures of the components
of (Z, T ) \ Σ, we also say that (B1, α1) ∪Σ (B2, α2) is a relative bridge splitting of (Z, T ).

A link in a solid torus S1 × D2 is an n-braid if its winding number is n and if it can be
isotoped so that the restriction of the map S1 × D2 → S1 to the link is monotonic. See
Figure 3 for a schematic depiction of the following definition.

Definition 2.5. A (genus 0 relative) bridge trisection T of a properly embedded surface
S ⊂ B4 is a 0-trisection B4 = (W1)∪Σ (W2)∪Σ (W3) such that for all {i, j, k} = {1, 2, 3}, we
have:

(1) ∂S ⊂ S3 = ∂B4 is an n-braid in the solid torus V that is the exterior of ∂Σ ⊂ S3

where n = |S ∩ ∂−Zij|
(2) (Zj, Tj) = (Zij ∪Σ Zjk, (Zij ∪Σ Zjk) ∩ S) is a trivial spanning relative tangle.
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∂+Z

∂−Z

α

Z = D2 × I

Figure 2. An example of a strictly trivial relative tangle (Z, T ). It has two
bridge arcs and two vertical arcs. One example of a trace arc α along with the
disk α× I are shown.

(3) Σ is a bridge disk for (Zj , Tj), decomposing (Zj, Tj) into the strictly trivial relative
tangles (Zij, Tij) and (Zjk, Tjk).

(4) In the solid torus Vi, each component of S ∩ Vi is either isotopic to a core of Vi or is
disjoint from ∂−Zij

(5) In the 3-sphere ∂Wi, the link S ∩ ∂Wi is an unlink.
(6) (Wi,Di) = (Wi,Wi ∩ S) is a trivial disk system.

We call S = (Z12, T12) ∪Σ (Z23, T23) ∪Σ (Z31, T31) ∪ (V, V ∩ ∂S) the spine of the bridge
trisection. The disk Σ is the trisection surface of the trisection and b(Σ) = |Σ ∩ S|/2 is the
bridge number of the trisection. Note that it is a positive integer or half-integer.

Example. In Figure 4, we show how to plug diagrams of certain tangles into a template to
create a bridge trisection for a slice disk for the square knot. When gluing the tangles Z13

and Z23 together in the process of verifying that the conditions in Definition 2.5 are satisfied,
remember to take the mirror image of one of the indicated diagrams, as in [13]. Since Z12

has no crossings, we do not need to bother mirroring when it is one of the tangles being
glued. To verify that the resulting bridge trisection is a trisection of a disk, we can compute
the Euler characteristic. In general, if ∂S is an n-braid and if there are b′ bridge arcs in each
tangle Zij and cj closed components of Tj , we have χ(S) = c1 + c2 + c3 +n− b′. In our case,
n = 3, b′ = 2, and each cj = 0.

The proof of [13, Lemma 2.5] shows that, even in the relative case, we have the following
result.

Lemma 2.6 (Lemma 2.5 of [13]). If two surfaces in S4 or B4 have trisections with the same
spine, then they are isotopic to each other by a smooth proper isotopy relative to the spine.

As a consequence, we consider two trisections to be equivalent if their spines are smoothly
properly isotopic via isotopies taking the trisection surfaces to each other.

Finally, we need the following lemma concerning spines without bridge arcs.

6



Σ

∂+Z12

∂+Z13 ∂+Z23

∂−Z12

∂−Z13 ∂−Z23

Figure 3. A schematic depiction of the spine of a relative bridge trisection,
shown without the gluings, without the 4-dimensional pieces, and without a
solid torus in the boundary of the 4-ball. The outer three trivial tangles (in
blue) form the solid torus V and the braid (V ∩ ∂S). The three inner tangles
are the strictly trivial tangles (Zij , Tij). The trisection disk is in the center.

Lemma 2.7. Suppose that T is a relative bridge trisection for a surface S ⊂ B4 with spine
(Z12, T12) ∪Σ (Z23, T23) ∪Σ (Z31, T31) ∪ (V, ∂S ∩ V ). Suppose also that each Tij consists only
of vertical arcs. Then S is the union of ∂-parallel disks, each having bridge number 1/2 with
respect to Σ.

Proof. Suppose that p ∈ Σ ∩ S is a puncture. Since each Tij consists only of vertical arcs,
p is incident to a vertical arc τij(p) in Tij. Since in each solid torus Vi, the components of
the link S ∩ Vi intersecting V is an n-braid where n is the number of components of S ∩ Vi,
in Vi, there is an arc τi(p) ⊂ (S ∩ Vi ∩ V ) joining the endpoint of τij(p) on ∂−Zij to the
endpoint of τik(p) on ∂−Zik. Observe that Li(p) = τij(p) ∪ τi(p) ∪ τik(p) is a component of
S ∩Vi and, thus, is isotopic to a core of Vi. By the definition of bridge trisection it bounds a
properly embedded disk Di(p) in the 4-ball Wi. This disk is a component of S ∩Wi. Finally,
observe that D1(p) ∪ D2(p) ∪ D3(p) is a disk component D(p) of S and that it has bridge
number 1/2 with respect to Σ. Also, D(p) is ∂-parallel, as can be seen by piecing together
the ∂-parallelism of each third. Since this is true for all p ∈ Σ ∩ S, the result holds. �
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Σ

Z12

Z13 Z23

1 7

A
B

C

A B C

Z13 Z23 Z12

1 23 4 5 6 7 1 2 3 4 56 7 12 3 45 6 7

Figure 4. A relative bridge trisection of a slice disk for the square knot.
This particular trisection was found by ad hoc methods. Meier [12] gives a
systematic approach.

3. Surgery on spheres

In this section, by way of establishing terminology we review the connected sum of mani-
folds, knots and bridge disks/spheres and establish lemmas that will be of importance later.
The next section extends this to trisections.

In general, if X is a smooth n-manifold and Y ⊂ X is a smooth submanifold diffeomorphic
to the sphere Sn−1, we can perform surgery on X along Y , by cutting X open along Y and
patching in two copies of the n-ball Bn via homeomorphisms from ∂Bn to the two copies of
Y in the boundary of the cut-open manifold. Several cases will be of particular interest:
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(1) If L is a properly embedded 1–manifold in a 3-manifold M and if P ⊂ M is a
separating 2-sphere that is disjoint from L, then surgery along P produces two distinct
3-manifolds M1 and M2, obtained from M by cutting open along P and pasting two
copies B1 and B2 of a 3-ball. The 3-manifolds M1 and M2 contain 1–manifolds
L1 ⊂ M1 and L2 ⊂ M2 that are the (possibly empty) union of components of L.

(2) If L is a properly embedded 1–manifold in a 3-manifold M and if P ⊂ M is a
separating 2-sphere that intersects L in exactly two points (i.e. a 0-sphere), then
again we obtain distinct 3-manifolds M1 and M2 containing 1–manifolds L1 and L2.
However, in this case L1 ∪L2 is obtained from L by cutting open L along P ∩L and
pasting in two boundary-parallel intervals properly embedded in B1 and B2.

(3) If M = S3 or D2 × I and Σ ⊂ M is a bridge sphere or disc for a 1-manifold L ⊂ M
and if P intersects Σ in a simple closed curve s, then surgery along P also produces
surfaces Σ1 ⊂ M1 and Σ2 ⊂ M2 obtained by cutting open Σ along s and pasting
disks properly embedded in B1 and B2. If P intersects L in two points, we choose
those disks to intersect in a single point each of the boundary-parallel intervals in B1

and B2 that are glued to L \ P to form L1 and L2. It is easy to check that each of
Σ1 and Σ2 is a bridge sphere or disk for L1 and L2. See Figure 5.

In any of the above cases, if |P ∩L| = 0, we say that P is an unpunctured summing sphere.
If |P ∩ L| = 2 we say that P is a twice-punctured summing sphere. In the third situation, a
summing sphere where the curve s is essential in Σ is called a reducing sphere for Σ.

Σ
s

Σ1 Σ2

Figure 5. Above: A twice-punctured summing sphere P that is a reducing
sphere for Σ. Below: The bridge spheres or disks Σ1 and Σ2 resulting from
surgery on P .

We can generalize the construction slightly by also surgering along annuli. This gives a
fourth case of particular interest:

(4) Suppose that (Z, L) is a relative spanning tangle with Z = D2 × I having bridge
disk Σ and that P ⊂ Z is a properly embedded annulus disjoint from (∂D2)× I and
intersecting Σ in a single simple closed curve s essential in both Σ and P . Assume
also that P is disjoint from L. We call P a reducing annulus. It is even if it bounds
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a solid cylinder in Z containing an even number of arcs. A reducing annulus P can
be isotoped to be vertical in the product structure on Z.

We can perform surgery on a reducing annulus P as follows. Cut Z open along P to obtain
Z ′

1 and Z2. Without loss of generality, assume that ∂Σ ⊂ Z ′

1. Then Σ intersects Z ′

1 in a
properly embedded annulus Σ′

1 and Z2 in a properly embedded disk Σ2. Observe that Σ2 is
a bridge disk for (Z2, L∩Z2). To s×I ⊂ ∂Z ′

1, glue a copy B of D2×I via a homeomorphism
of (∂D2) × I to s × I making the fibers match. This creates Z1. In B, choose a properly
embedded disk whose boundary is glued to s ⊂ Z ′

1 and let Σ1 be the union of Σ′

1 with that
disk. Then Σ1 is a bridge disk for (Z1, L ∩ Z1).

Recall that the bridge number of a bridge surface for a properly embedded 1–manifold is
equal to half the number of punctures. In either situation (3) or (4), let b be the bridge
number of Σ and bi be the bridge number of Σi for i = 1, 2. Observe that if P is a twice-
punctured summing sphere, then b1 + b2 = b+ 1; otherwise b1 + b2 = b. In any case, if P is
a reducing sphere (i.e. s is an essential curve on Σ), then b1, b2 < b. Similarly, let ci be the
number of closed components of Li and let vi be the number of arc components of Li. Let c
and v be the number of closed components and arc components of L, respectively. If P is a
twice-punctured sphere, then (c1 + v1/2) + (c2 + v2/2) = (c+ v/2) + 1; otherwise, since P is
an unpunctured summing sphere or annulus, (c1 + v1/2) + (c2 + v2/2) = (c+ v/2).

Expanding our viewpoint, suppose W is either B4 or S4 and that S ⊂ W and Σ ⊂ W
are smooth surfaces. Suppose P ⊂ W is a smooth 3-sphere that is either disjoint from S
or intersects S in a single simple closed curve and similarly for Σ. Then we can surger W ,
S, and Σ along P simultaneously to obtain 4-manifolds W1 and W2 and properly embedded
surfaces S1,Σ1 ⊂ W1 and S2,Σ2 ⊂ W2. One of W1 or W2 is S4 and the other is either S4

or B4. The next section explores the situation when Σ is a trisection surface for S. First,
however, we establish a few lemmas.

Lemma 3.1. Suppose that (Z, L) is either a link in S3 or a spanning relative tangle with
bridge sphere or disk Σ dividing (Z, L) into tangles (Zx, Lx) and (Zy, Ly). Suppose also that
s ⊂ Σ is an essential curve such that in each of (Zx, Lx) and (Zy, Ly) s bounds either a
c-disk or (with a curve in ∂−Zx or ∂−Zy) a spanning annulus disjoint from L. Then one of
the following holds:

(1) In each of (Zx, Lx) and (Zy, Ly), the curve s bounds a compressing disk.
(2) In each of (Zx, Lx) and (Zy, Ly), the curve s bounds a cut disk.
(3) In each of (Zx, Lx) and (Zy, Ly), the curve s bounds a spanning annulus.

Furthermore, it is not the case that both (1) and (2) hold. If, in (Zx, Lx) or (Zy, Ly), the
curve s bounds a reducing annulus with an essential curve in ∂−Zx or ∂−Zy then (3) holds
and neither (1) nor (2) hold. If in either (Zx, Lx) or (Zy, Ly), the curve s bounds a reducing
annulus with an inessential curve in ∂−Zx or ∂−Zy, then both (1) and (3) hold or both (2)
and (3) hold.

Proof. Let E ⊂ Σ be a disk with boundary s and suppose D is a c-disk in (Zx, Lx) or (Zy, Ly)
with boundary s. Then D ∪ E is a 2-sphere in S3 or B3 and, therefore, separates. Thus,
if E has an odd number of punctures, then D is a cut disk and if E has an even number
of punctures D is a compressing disk. Therefore, if s bounds a c-disk in both (Zx, Lx) and
(Zy, Ly) then exactly one of (1) or (2) holds. Consequently, without loss of generality, we
may suppose that s bounds a c-disk D in (Zy, Ly) and a spanning annulus P in (Zx, Lx) that
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is disjoint from L with a curve s′ ⊂ ∂−Zx. Let E ′ ⊂ ∂−Zx be the disk with boundary s′.
Then E ′∪P ∪D is a sphere in Z bounding a ball containing the properly embedded disk E.
Since (Z, L) is a spanning relative tangle, E ′ and D must both have one puncture or both
have no punctures. In particular, s′ is inessential. After a small isotopy to make it properly
embedded, E ′ ∪ P is a c-disk in (Zx, Lx), so either (1) or (2) holds. Hence, we can assume
(3) holds. Then s bounds vertical annuli Px and Py in (Zx, Lx) and (Zy, Ly) disjoint from L
with curves sx ⊂ ∂−Zx and sy ⊂ ∂−Zy, respectively. Let Ex ⊂ ∂−Zx and Ey ⊂ ∂−Zy be the
disks bounded by sx and sy. If s also bounds a c-disk D in (Zx, Lx) (say) then D ∪ Px ∪Ex

is a sphere in Z and we see that sx is inessential. Thus, if one of sx or sy is essential, neither
(1) nor (2) holds, while if both are inessential then (1) or (2) also holds. �

Corollary 3.2 (The Consistent Bounding Corollary). Suppose that (Z1, L1), (Z2, L2), and
(Z3, L3) are all either trivial tangles in B3 or strictly trivial tangles in D2 × I such that for
each i 6= j, ∂+Zi = ∂+Zj = Zi ∩ Zj and (Zi, Li) ∪ (Zj, Lj) is either an unlink or a spanning
trivial relative tangle with bridge sphere or disk Σ = ∂+Zi = ∂+Zj. Suppose that in Σ there
exists an essential curve s such that in each of (Z1, L1), (Z2, L2), and (Z3, L3), the curve s
bounds either a c-disk or spanning annulus. Then one of the following holds:

(1) In each (Zi, Li), the curve s bounds a compressing disk.
(2) In each (Zi, Li), the curve s bounds a cut disk.
(3) In each (Zi, Li), the curve s bounds a spanning annulus with a curve of ∂−Zi

Proof. This is almost immediate from Lemma 3.1. For i, j = 1, 2, 3 with i 6= j, use the
notation (ij.N) to indicate that conclusion (N) from Lemma 3.1 holds for (Zi, Li) and
(Zj, Lj). Suppose that (12.1) or (12.2) holds. If (13.1), (13.2), or (23.1), or (23.2) hold, we
are done by Lemma 3.1. So suppose that (13.3) and (23.3) hold. This implies Conclusion
(3). Suppose, therefore, that (12.3) holds and (12.1) and (12.2) do not. If (13.3) or (23.3)
hold, then we again have Conclusion (3). Thus, (13.1) or (13.2) hold and also (23.1) or
(23.2). Again, by Lemma 3.1, we are done. �

In our quest to find spheres or annuli to surger along, we will make use of the following
lemma. In the case when τ is the unknot, this is essentially due to Otal [15]. In the case of
relative tangles, after applying a trick, described below, Hayashi and Shimokawa [5] handled
the case when every component of τ is either an arc with both endpoints on ∂+Z or an arc
with one endpoint on each of ∂±Z. The case when Z \ τ contains an essential sphere is also
due to Hayashi-Shimokawa [6, Theorem 1.4].

Lemma 3.3. Suppose that (Z, τ) is either an (S3, unlink) pair or a spanning relative trivial
tangle with τ 6= ∅ and that Σ is a bridge sphere or disk, respectively. Then the following
hold:

(1) If Z \τ contains an essential sphere, then there exists an unpunctured reducing sphere
for Σ.

(2) If one of the following holds:
• τ is the unknot and Σ is a sphere such that |τ ∩ Σ| = 4, or
• τ is a single arc and Σ is a disk such that |τ ∩ Σ| = 3,

then there exist compressing disks for the tangles on either side of Σ with boundaries
on Σ intersecting exactly twice.

(3) If one of the following holds:
11



• τ is the unknot, Σ is a disk and |τ ∩ Σ| ≥ 4,
• τ is the unknot, Σ is a sphere and |τ ∩ Σ| ≥ 6, or
• τ is a collection of arcs, Σ is a disk, and τ contains an arc intersecting Σ in 3
or more points,

• τ is a collection of arcs, Σ is a disk, and |τ ∩ Σ| ≥ 4,
then there exists a twice-punctured reducing sphere for Σ.

(4) If τ is the union of three or more arcs, Σ is a disk, and each arc of τ intersects Σ in
exactly one point, then there exists an even reducing annulus for Σ.

Proof. We defer to [6] for the case when Z \τ is reducible. For (2) and (3), we will show that
Σ is “perturbed” and that this implies produces the desired conclusion. Assume, therefore,
that Z \ τ is irreducible.

A bridge disk for a bridge arc τ0 ⊂ τ \ Σ with endpoints on Σ is an embedded disk with
interior disjoint from Σ∪ τ and whose boundary is the union of τ0 with an arc on Σ. We say
that Σ is perturbed if there exist bridge disks (called a perturbing pair) on opposite sides of Σ
whose arcs on Σ are disjoint except for sharing a single endpoint. Observe that the boundary
of a regular neighborhood of the union S of two such bridge disks is a twice-punctured
sphere in Z intersecting Σ in a single simple closed curve. Thus, if |Σ ∩ τ | + |∂Σ| ≥ 5
and Σ is perturbed, then there is a twice-punctured reducing sphere for Σ. Similarly, if
|Σ∩ τ |+ |∂Σ| ≥ 4 and Σ is perturbed, then there exist compressing disks for the tangles on
either side of Σ with boundaries intersecting on Σ exactly twice.

If Z = S3, since τ is the unlink and Z \ τ is irreducible, τ is the unknot. By [15], it is
perturbed and so the lemma holds. Henceforth, assume that Z = D2 × I. Since Z \ τ is
irreducible, τ contains arc components. Attach a copy of D2 × I to (∂D2)× I ⊂ ∂Z so that

the product structures match. This converts Z into Ẑ = S2 × I. In the newly attached
D2× I, choose a vertical arc and call it τ ′. Let τ̂ = τ ∪ τ ′. Notice that we can recover (Z, τ)

from (Ẑ, τ̂) by drilling out τ ′. Attach a disk of the form D2 × {t0} to ∂Σ to form Σ̂. Since

Σ̂ intersects τ ′ only once, there is no perturbing pair for τ ′. Conclusions (2) and (3) now
follow from [5].

Finally, suppose that τ is the union of three or more arcs, each intersecting Σ in a single
point. From the definition of spanning relative trivial tangle, we see that τ can be properly
isotoped, by an isotopy preserving Σ so that the arcs τ are vertical in the product structure
on Z. We may then find an essential curve s ⊂ Σ bounding a disk in Σ containing an
even number of punctures. Such a curve bounds even spanning annuli to both sides and
their union is an even reducing annulus. Reversing the isotopy, we find the desired reducing
annulus in (Z, τ). �

4. Connected sums and distant sums of bridge trisections

Given two properly embedded smooth surfaces S1 and S2 such that one of them is in S4

and the other is in either B4 or S4, we can form either their connected sum S1#S2 or their
distant sum S1⊔S2, which will be a surface in either B4 or S4. On the ambient 4-manifolds,
both the connected sum and the distant sum function as connected sums; the difference is
that for the connected sum the summing points are chosen to lie on S1 and S2 and for the
distant sum the summing points are chosen to be disjoint from S1 and S2. Whether we
perform a connected sum or distant sum, if T1 and T2 are bridge trisections for S1 and S2
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with trisection surfaces Σ1 and Σ2 respectively, and if the summing points are chosen to
lie on Σ1 and Σ2, then the connected sum Σ = Σ1#Σ2 is a trisection surface for a bridge
trisection T of S = S1#S2 or S = S1 ⊔ S2. When we perform the connected sum or distant
sum, we also say that the trisection T is a connected sum or distant sum, respectively. In
either case, the trisection surface for T is the connected sum of the trisection surfaces for T1

and T2. See [13, Section 2.2] for more details on connected sum.
Observe that in a trisection surface Σ for a trisection T that is a connected sum or distant

sum, there is a simple closed curve s ⊂ Σ such that the summing 3-sphere P in the ambient
4-manifold intersects Σ in s. In the case of the connected sum, P also intersects S1#S2

in a single simple closed curve. This 3-sphere P has the property that performing surgery
along P allows us to recover S1 and T1, as well as S2 and T2. In each trivial tangle in
the spine of T , the curve s bounds either a disk disjoint from S1 ⊔ S2 (in the case of a
distant sum) or a disk intersecting S1#S2 in a single point (in the case when the sum is a
connected sum). If the sum is a distant sum, then the curve s is essential in Σ as neither
S1 nor S2 is empty. If the sum is a connected sum, then s is essential in Σ if and only if
neither T1 nor T2 have bridge number 1/2 or 1. Moreover, we will show that if the loop s is
inessential, then S1 or S2 is an unknotted 2-sphere in S4 or ∂-parallel disk in B4. Thus, if
s ⊂ Σ is an essential simple closed curve, we say that the trisection T and trisection surface
Σ are a nontrivial connected sum or distant sum. Modelling our terminology on that of
Heegaard splitting theory, we say that a bridge trisection T with trisection surface Σ and
spine S = (Z12, T12)∪(Z23, T23)∪(Z31, T31)∪(V, V ∩∂S) is reducible if there exists an essential
simple closed curve s ⊂ Σ such that either for each choice of distinct i, j ∈ {1, 2, 3} the curve
s bounds a compressing disk in (Zij, Tij) or for each choice of distinct i, j ∈ {1, 2, 3}, the
curve s bounds a cut disk in (Zij, Tij).

Lemma 4.1. A bridge trisection T of a surface S in either B4 or S4 is a nontrivial connected
sum or distant sum if and only if it is reducible.

Proof. The “only if” direction was addressed in the previous paragraph. To prove the “if”
direction, suppose that T is reducible. Let s ⊂ Σ be an essential curve in the trisection
surface for T such that s bounds either a compressing disk in each tangle (Zij, Tij) forming
the spine for T or s bounds a cut disk in each tangle (Zij, Tij) forming the spine for T .
In either case, let Dij ⊂ Zij be the c-disk. In both the punctured and unpunctured cases,
cutting the trivial tangle (Zij, Tij) along Dij produces two trivial tangles, and surgering along
the union Dij ∪ Djk in the 3-sphere or 3-ball Zij ∪ Zjk decomposes the unlink or relative
spanning trivial tangle Tj = Tij ∪Tjk into the disjoint union of links or tangles. Since Tj was
the unlink or a relative spanning trivial tangle, these links or tangles are unlinks or relative
spanning trivial tangles. Thus, we have spines for bridge trisections T1 and T2 of surfaces
S1 and S2, with one surface being in S4 and the other being in B4 or S4. Performing the
distant sum or connected sum of these trisections produces a trisection T ′ with the same
spine as that of T . By Lemma 2.6, this means that the original trisection is the distant or
connected sum of these two other trisections. �

In a similar spirit, we have the following characterization of trisections of surfaces in B4

that are either closed or whose boundary is disjoint from or a 1-braid with respect to the
boundary of the trisection surface.
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Lemma 4.2. Suppose that T is a relative trisection of S ⊂ B4 with spine S = (Z12, T12) ∪
(Z23, T23) ∪ (Z31, T31) ∪ (V, V ∩ ∂S). If ∂S is a 0-braid or 1-braid in V (equivalently, if each
Tij contains at most one vertical arc), then T is the distant sum or connected sum of a
trisection for a surface S ′ ⊂ S4 of bridge number |Σ ∩ S|/2 with either the relative bridge
trisection of the empty surface in B4 or a bridge number 1/2 relative bridge trisection of a
∂-parallel disc in B4.

Proof. Let s ⊂ Σ be a ∂-parallel simple closed curve. Since each Tij contains at most one
vertical arc, the curve s bounds a zero-punctured or once-punctured disk in each (Zij , Tij).
(It must be the same type of disk in each.) As in the proof of Lemma 4.1, we can surger
the spine for T along those zero-punctured or once-punctured disks and this extends to a
surgery on S and Σ in B4. The result is a trisection T1 of a surface S1 ⊂ B4 and a trisection
T2 of a surface S2 ⊂ S4. The trisection T1 has bridge number 0 or 1/2, as s was ∂-parallel
in Σ. The trisection T2 has bridge number equal to that of T . By Lemma 2.7, the surface
S1 is either empty or a ∂-parallel disk. �

5. The pants complex and efficient defining pairs

Suppose that Σ is a compact surface with punctures. A pants decomposition of Σ is a
collection of pairwise disjoint essential curves (up to isotopy) cutting Σ into pairs of pants.
The cases that are of most interest to us are when Σ is an admissible punctured sphere
or disk. If Σ is a sphere with 2b ≥ 4 punctures, then each pants decomposition of Σ has
2b− 3 curves. If Σ is a disk with 2b ≥ 3 punctures, then each pants decomposition of Σ has
2b − 2 curves. Define P(Σ), the pants complex of Σ, as follows. Each pants decomposition
of Σ is a vertex of P(Σ). Two vertices are connected by an edge if the two corresponding
pants decompositions have all but one (isotopy class of) curve in common and the two curves
where they differ (have representatives that) intersect minimally in exactly two points. The
distance d(x, y) between two collections of vertices x and y in P(Σ) is the minimum number
of edges in a path in P(Σ) between a vertex of x and a vertex of y. The pants complex for
admissible surfaces is connected and has infinite diameter, using the metric d [4]. We say that
a curve s ⊂ Σ is a common curve for a given path in P(Σ) if, for each pants decomposition
on the path, s is isotopic to one of the curves in the pants decomposition.

We will be using curves in pants decompositions to find reducing spheres and annuli. The
combinatorics in Lemma 5.8 are the reason for insisting that our reducing annuli be even.

If Σ′ is a disk with punctures (not necessarily admissible), a collection of pairwise disjoint
essential simple closed curves is a weak pants decomposition of Σ′ if it is either empty and
Σ′ has two or fewer punctures, or if it cuts Σ′ into pairs of pants and annuli, such that at
most one of the pairs of pants is a once-punctured annulus and that annulus, if it exists, has
∂Σ′ as one of its boundary components. For both trivial tangles and strictly trivial tangles
(B, κ) with Σ = ∂+B, we define a certain subset of the vertices of P(Σ) to be the disk set
Dκ. The case when (B, κ) is a trivial tangle is the simplest.

Definition 5.1. Suppose that (B, κ) is a trivial tangle with Σ = ∂B admissible. A vertex
x ∈ P(Σ) lies in Dκ if and only if there is a collection of c-disks D ⊂ B such that x = ∂D.
Now suppose that (B, κ) is a strictly trivial relative tangle with Σ = ∂+B admissible. A
vertex x ∈ P(Σ) lies in Dκ if and only if there is a collection of properly embedded disks
and annuli D ⊂ B, transverse to κ such that:
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(1) Each disk component of D is a c-disk for (B, κ)
(2) Each annulus component of D is an even spanning annulus for (B, κ).
(3) ∂D ∩ Σ = x
(4) ∂D ∩ ∂−B is a weak pants decomposition of Σ.

It is a well-known fact (and easy to prove) that if Σ = ∂B is an admissible sphere for
the trivial tangle (B, κ), then Dκ is nonempty. We need the corresponding result for bridge
disks. See Figure 6 for an example.

∂+Z γ′

γ−

γ′′

Figure 6. The thin blue curves at the top of Z = D2 × I form a pants
decomposition in the disk set of the strictly trivial relative tangle constructed
according to our recipe. We have labelled the curves γ− and γ′′ used in the
construction in the proof of Lemma 5.2.

Lemma 5.2. Suppose that (B, κ) is a strictly trivial relative tangle such that |∂+B ∩κ| ≥ 3.
Then Dκ 6= ∅.

Proof. Let α ⊂ ∂+B = Σ be the trace arc. By choosing α carefully we can guarantee that
as we traverse α (in some direction) we encounter the endpoints of all vertical arcs prior to
encountering the endpoints of all bridge arcs and also that there is no nesting of the bridge
arcs of κ in the trace disk α×I. The bridge arcs cut off bridge disks from α×I. And we can
pair up the adjacent vertical arcs so that, in pairs, they form two edges of the boundary of a
rectangle α′ × I where α′ is a subarc of α and int(α′ × I)∩ κ = ∅. We call such a rectangle
a parallellism. If the number of vertical arcs is odd, there will be one vertical arc left over
and we arrange for it to be the vertical arc whose endpoint is the first we encounter as we
traverse α.

Let δ be the union of the bridge disks and parallelisms. Let α′ ⊂ α be the subarc
containing exactly those punctures of κ ∩ ∂+B belonging to bridge arcs. Let α+ = δ ∩ ∂+B.
The boundary of a regular neighborhood of α+ is a collection of simple closed curves γ+ in
∂+B, each bounding a twice-punctured disc in ∂+B and each bounding an unpunctured disc
in (B, κ).

If there are no vertical arcs, set γ′ = ∂(∂+B) and E = ∂+B. Otherwise, let γ′ be the
boundary of a regular neighborhood of α′ and isotope it as necessary so that it bounds a
disc E in ∂+B containing γ+ in its interior. Observe that γ′ bounds an unpunctured disc D
in (B, κ).

Suppose, for the moment, that there are at least three vertical arcs. After boundary-
reducing (B, κ) along D, it becomes (B′, κ′) = (D2 × I, points × I). Using that product
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structure, the remnant of the disc D in ∂+B
′ projects vertically to an unpunctured disc

D′ ⊂ ∂−B
′ = ∂−B. The parallelisms in α × I survive to parallelisms between the arcs

of κ′. Let δ− be the arcs that are the intersections between these parallelisms and ∂−B
′.

Let γ− be the boundary of a regular neighborhood of δ−. Then each curve of γ− bounds a
twice-punctured disc in ∂−B

′ and additional curves can be added to γ− so that it is a pants
decomposition of ∂−B

′ and is disjoint from D′. Extend γ− vertically through the product
structure on (B′, κ′) to arrive at curves γ̂− in ∂+B disjoint from E. The curves γ̂− bound
even spanning annuli. Additional curves can then be added to γ̂− ∪ γ′ ∪ γ+ to turn it into
an element of Dκ. The curves that are added either lie in E and bound unpunctured discs
in (B, κ) or are external to E and bound even spanning annuli. If, on the other hand, there
are two or fewer vertical arcs, the construction of an element in Dκ is easier as the empty
set of curves is a weak pants decomposition of ∂−B. �

Definition 5.3. Suppose that (Z, τ) is either an unlink or a relative spanning trivial tangle
with bridge surface Σ dividing (Z, τ) into trivial tangles or strictly trivial relative tangles
(B, κ) and (B′, λ). A pair of pants decompositions x ∈ Dκ and y ∈ Dλ is said to be an
efficient defining pair if d(x, y) = d(Dκ,Dλ). (That is, if x and y are vertices in Dκ and Dλ

whose distance in the pants complex of Σ is minimal.)

We can now define the Kirby-Thompson invariant of a bridge trisection. See Figure 7 for
a schematic representation of the efficient defining pairs for a trisection.

Definition 5.4. Suppose that S ⊂ B4 or S ⊂ S4 is a properly embedded surface with bridge
trisection T having trisection surface Σ and spine (Z12, T12)∪Σ(Z23, T23)∪Σ(Z13, T13)∪(V, ∂S∩

V ). For {i, j, k} = {1, 2, 3}, let (pjij , p
j

jk) be an efficient defining pair for (Zij, Tij)∪Σ(Zjk, Tjk).
If Σ is not admissible, define L(T ) = 0. Otherwise, define L(T ) to be the minimum of

d(p112, p
2
12) + d(p131, p

3
31) + d(p223, p

3
23)

over all such choices of efficient defining pairs. Define L(S) to be the minimum of L(T ) over
all trisections T of S with b(T ) = b(S).

Remark 5.5. Our definition of L is not an exact parallel of that of Kirby and Thompson
[10] in three main regards. The first is that we use the pants complex, rather than the cut
complex, which is empty for punctured spheres and disks. Secondly, we calculate the distance
between piij and pjij in the whole pants complex, rather than in the disk set. This is not a
serious point, but it allows us to avoid discussing the geometry of the disk set. Finally, in
defining L(S) we minimize L(T ) only over those trisections achieving the bridge number of S,
rather than over all trisections of S. In the context of bridge trisections, this may be the more
sensible definition for the following reason. Gay and Kirby show that any two trisections
of a 4-manifold become equivalent after stabilizing each some number of times. Kirby and
Thompson’s invariant does not increase under stabilization; thus, Kirby and Thompson’s
definition of their invariant as a minimum, is equivalent to taking its limit under trisection
stabilization. Bridge trisections, on the other hand, behave differently. Meier and Zupan
[13] show that any two trisections of a surface in S4 become equivalent after some number
of perturbations and unperturbations, applied to each. (This was extended to higher genus
bridge trisections in [9].) Consequently, minimizing L over all bridge trisections may no
longer be equivalent to taking a limit.
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p112

p212

p223

p323

p331

p131

Figure 7. Defining L(T ) via efficient defining pairs. The dots represent
pants decompositions of Σ and the dark ellipses represent the disk sets. The
line joining pijk to piik represents a geodesic path in the pants complex.

The remainder of this section is taken up with developing the properties of efficient defining
pairs and the geodesics in P(Σ) between them. Our analysis draws heavily from that of
Zupan [17, Lemmas 4.1 and 4.2]. We give the complete proofs since our setting is somewhat
different and since Zupan does not address the relative case.

5.1. The distance between an efficient defining pair. In this subsection, we establish
the distance in the pants complex between x and y forming an efficient defining pair for some
unlink or spanning relative trivial tangle.

Lemma 5.6. Let (S3, L) be a link with bridge sphere Σ such that b = |Σ ∩ L|/2 ≥ 2 and
having c ≥ 1 components. Let (B, κ) and (B′, λ) be the tangles on either side of Σ. For
all x ∈ Dκ and y ∈ Dλ, we have d(x, y) ≥ b − c. Furthermore, if L is an unlink, then for
any efficient defining pair x ∈ Dκ and y ∈ Dλ, equality holds. Additionally, if b ≥ 3 and
d(x, y) = b− c, then for any geodesic in P(Σ) between the efficient pair there is a common
curve.

Proof. We first show that if L is the unlink of c components, then there exist x ∈ Dκ and
y ∈ Dλ with d(x, y) = b − c. If b = 2 and c = 2, by part (1) of Lemma 3.3, there is
an unpunctured sphere intersecting Σ in a single essential simple closed curve x. Observe
that setting x = y, we have x ∈ Dκ, y ∈ Dλ and 0 = d(x, y) = b − c. If b = 2 and
c = 1, then by part (2) of Lemma 3.3, there exist compressing disks Dκ in (B, κ) and Dλ

in (B′, λ) with x = ∂Dx and y = ∂Dy intersecting twice. Thus, x ∈ Dx and y ∈ Dy and
we have 1 = d(x, y) = b− c. Assume, therefore, that b ≥ 3 and that for any unlink L′ of c′

components having a bridge sphere with 4 ≤ 2b′ < 2b points of intersection with L′, we have
pants decompositions for the trivial tangles on either side of the bridge sphere of distance
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at most b′ − c′ from each other and lying in the corresponding disk sets. By parts (1) and
(3) of Lemma 3.3, there exists an unpunctured or twice-punctured reducing sphere S for Σ.
Surger (S3, L) and Σ along S to obtain links (S3, L1) and (S3, L2) with bridge spheres Σ1

and Σ2. Let b1 and b2 be the corresponding bridge numbers and c1 = |L1| and c2 = |L2|.
Recall that b1 + b2 − (c1 + c2) = b − c and both b1 and b2 are at most b − 1, since S ∩ Σ
is essential in Σ. Notice also that if we transversally orient Σ, then Σ1 and Σ2 also inherit
transverse orientations. For i = 1, 2, if bi ≥ 2, let xi and yi be pants decompositions for Σi

with xi lying in the disk set for the tangle below Σi and yi lying in the disk set for the tangle
above Σi. By our inductive hypothesis, we may choose xi and yi so that d(xi, yi) ≤ bi − ci.
If bi = 1, set xi = yi = ∅. The curves x = x1 ∪ x2 ∪ (Σ ∩ S) and y = y1 ∪ y2 ∪ (Σ ∩ S) are
pants decompositions for Σ lying in Dκ and Dλ respectively. Geodesic paths in P(Σ1) and
P(Σ2) from x1 to y1 and from x2 to y2 can be concatenated to produce a path from x to y
in P(Σ) of length at most b− c, as desired.

Now suppose that L is any link. Since (B, κ) and (B′, λ) are trivial tangles, each with at
least two arcs, the sets Dκ and Dλ are non-empty. Thus, d(Dκ,Dλ) is well-defined. Choose
x ∈ Dκ and y ∈ Dλ so that d(x, y) = d(Dκ,Dλ). We will show that d(x, y) ≥ b − c by
induction on b ≥ 2.

Consider first the case when b = 2, so x and y each correspond to a single curve on the
4-punctured sphere Σ. If x and y correspond to the same curve, this curve must bound
compressing disks on both sides, so L is a two component unlink and 0 = d(x, y) = b − c,
as desired. If the curve is not the same for both vertices, then d(x, y) ≥ 1. Since b = 2 and
c ≥ 1, we have d(x, y) ≥ b− c.

Suppose the result is true for all bridge spheres with bridge number less than b, and b
is at least 3. Each vertex of P(Σ) corresponds to 2b − 3 curves and b ≥ c. Choose a
geodesic path in P(Σ) from x to y and let C ⊂ Σ be the collection of common curves for
the geodesic. Adjacent vertices in P(Σ) differ by a single curve. Thus, if C = ∅, we have
d(x, y) ≥ 2b− 3 ≥ b− c, as desired. Suppose, therefore, that C 6= ∅.

Let γ ∈ C. Since γ is a component of both x and y, it bounds a c-disk in each of (B, κ)
and (B′, λ). Since every sphere in S3 separates, these are both compressing disks or both
cut disks. The union of these disks is either an unpunctured reducing sphere or a twice-
punctured reducing sphere S for Σ. Surger (S3, L) and Σ along S, to obtain links (S3, L1)
and (S3, L2) and bridge spheres Σ1 and Σ2. Let b1 and b2 be the corresponding bridge
numbers and c1 = |L1| and c2 = |L2|. Recall that b1, b2 < b and (b1 + b2)− (c1 + c2) = b− c.
Let xi, yi be the restrictions of x and y to Σi, and observe that either they are empty
or they are pants decompositions lying in the disk sets for the tangles above and below
Σi. If they are nonempty, since γ ⊂ C, the geodesic in P(Σ) from x to y, restricts to a
geodesic in P (Σi) from xi to yi. Let Di be the length of this geodesic, or 0 if xi and yi
are empty. Observe that d(x, y) = D1 + D2. Consequently, by our inductive hypothesis,
d(x, y) ≥ (b1 − c1) + (b2 − c2) = b− c, as desired. �

We now turn to the relative case. For a bridge disk Σ we let b be half the number of
punctures and for a tangle (Z, τ) we let c be the number of closed components and v the
number of arc components of τ . Note that β = b− (c+ v/2) is a non-negative integer since
each closed component of τ contributes a positive even number of punctures to Σ and each
arc component of τ contributes an odd number of punctures to Σ. Recall that when b ≥ 3/2,
by Lemma 5.2, the disk sets on either side of Σ are nonempty.

18



Lemma 5.7. Let (Z, τ) be a spanning relative tangle having bridge disk Σ such that b ≥ 3/2.
Let (B, κ) and (B′, λ) be the tangles on either side of Σ. For all x ∈ Dκ and y ∈ Dλ,
d(x, y) ≥ β. Furthermore, if (Z, τ) is trivial then for any efficient pair x ∈ Dκ and y ∈ Dλ

equality holds. Additionally, if b ≥ 2 and d(x, y) = β, then for any geodesic in P(Σ) between
the efficient pair there is a common curve.

Proof. This proof is much like that of Lemma 5.6, and we refer to that proof for several steps.
In particular, if each of κ and λ either contains no vertical arc or a single vertical arc, then
as in the proof of Lemma 4.2, we may decompose along a twice-punctured sphere P ⊂ (Z, τ)
intersecting Σ in a curve parallel to ∂Σ. The result will be a bridge disk Σ1 of bridge number
0 or 1/2 for a (possibly empty) tangle in D2 × I, together with a bridge sphere Σ2 of bridge
number b for a link in S3. In this case, the analysis of Lemma 5.6 applies directly to Σ2 and
our lemma can be easily derived from that. Suppose, therefore that at least one of κ and λ
contains at least two vertical arcs.

Suppose first that (Z, τ) is trivial. We induct on the half integer b ≥ 3/2. Suppose
b = 3/2. By our remarks above, at least one of κ or λ contains at least two vertical arcs,
and is, therefore, the union of three vertical arcs. If the other contains a bridge arc, then we
contradict the fact that (Z, τ) is spanning. So both κ and λ are the union of three vertical
arcs. Each curve in Σ bounding a twice-punctured disk in Σ, lies in both Dκ and Dλ. In
particular Dκ = Dλ = P(Σ). Consequently, d(Dκ,Dλ) = 0 = β and the result holds.

Suppose, therefore, that b ≥ 2 and the result holds for all bridge disks of bridge number at
least 3/2 and less than b. By Lemma 3.3, (Z, τ) contains an unpunctured reducing sphere,
twice-punctured reducing sphere, or even reducing annulus. In the proof of Lemma 5.6, we
handled the reducing spheres and the analysis here is essentially the same, so we do not
repeat it. Consider, therefore, the case when there is an even reducing annulus A. Let
(Z1, τ1) and (Z2, τ2) be the relative tangles resulting from surgery along A, and let Σ1 and
Σ2 be the bridge disks. Let bi = |Σi ∩ τi| and let ci be the number of closed components
of τi and vi the number of arc components. Observe that b1 + b2 = b, c1 + c2 = c, and
v1 + v2 = v. If bi ≥ 3/2, let xi and yi be the pants decompositions of Σi provided by the
induction hypothesis. If bi < 3/2, set xi = yi = ∅. Then, as in the proof of Lemma 5.6,
x1∪x2∪ (S ∩Σ) and y1∪y2∪ (S ∩Σ) are the desired pants decompositions with d(x, y) ≤ β.

Suppose now that (Z, τ) is any spanning relative tangle with b ≥ 3/2. Let x ∈ Dx and
y ∈ Dy. We again induct on b. As before the case when b = 3/2 can be handled by reducing
to Lemma 5.6. So assume b ≥ 2. We will show that d(x, y) ≥ β and that if equality holds
then there is a common curve on each geodesic from x to y.

Choose a geodesic in P(Σ) from x to y and let C be the set of common curves for the
geodesic. Recall that every pants decomposition of Σ contains 2b − 2 curves. Note that
b ≥ c + v/2. Equality holds if and only if each closed component intersects Σ exactly twice
and each arc component intersects exactly once. Thus, if b ≥ 2, then b+ (c+ v/2) > 2, and
so 2b− 2 > β. If C = ∅, then d(x, y) ≥ |x| = 2b− 2 since every curve of x must be moved
while traversing the geodesic. In which case, d(x, y) > β.

Suppose, therefore, that there is a curve γ ∈ C. As γ ⊂ x ∩ y, it bounds a c-disk or
even spanning annulus to each side of Σ. By Lemma 3.1, it bounds the same type of disk
or annulus to both sides. If γ bounds compressing disks or cut disks for both (Bx, αx) and
(By, αy), their union is an unpunctured or twice-punctured reducing sphere for Σ, and we
proceed as in Lemma 5.6. Suppose that γ bounds an even spanning annulus Ax in Bx and an
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even spanning annulus Ay in By. Recall that as x ∈ Dx, there are curves x′ ⊂ ∂−Bx giving
a weak pants decomposition of ∂−Bx so that there are annuli joining x′ to a subset of x. All
other curves of x bound compressing or cut-disks in (Bx, αx). By the definition of disk set,
each curve of x′ bounds a disk in ∂−Bx containing an even number of punctures. Similar
statements hold for the curves of y. Thus, A = Ax ∪ Ay is an even reducing annulus. The
argument now mimics that of the reducing sphere case to achieve the desired conclusion. �

5.2. Common cut disks. In this section, we study the properties of geodesics between the
terms of an efficient defining pair. The goal is to show that if the distance is positive, then
all curves in either pants decomposition of the efficient defining pair that bound cut disks
are common curves.

Lemma 5.8. Suppose that (Z, L) is either (S3, unlink) or a spanning trivial relative tangle
and that Σ ⊂ Z is a bridge sphere or disk dividing (Z, L) into tangles (Z1, L1) and (Z2, L2).
Let S be a collection of pairwise disjoint unpunctured reducing spheres or even reducing
annuli for Σ such that no two curves of S ∩ Σ bound an unpunctured annulus in Σ \ S. Let
c be the number of closed components of L and v the number of arcs. Then

2c+ v − 3 + |∂Σ| ≥ |S|.

Proof. Let Γ be the dual tree to S in Σ. If Σ is a disk, let r be vertex of Γ corresponding
to the component containing ∂Σ and consider it to be the root of Γ. If S is sphere, then Γ
does not have a root. For n = 1, 2, let Vn be the number of non-root vertices of Γ of degree
n. Let V3 be the number of non-root vertices of degree at least 3. By the degree formula for
graphs,

2|S| ≥ V1 + 2V2 + 3V3 + deg(r)|∂Σ|.

Since the Euler characteristic of a tree is 1, V1 + V2 + V3 = 1 + |S| − |∂Σ|. Thus,

2|S| ≥ 3(1 + |S| − |∂Σ|)− V2 − 2V1 + deg(r)|∂Σ|.

Hence,
2V1 + V2 + |∂Σ|(3− deg(r))− 3 ≥ |S|

Suppose that Σ′ ⊂ Σ \ S corresponds to a non-root degree one vertex of Γ. Since each
curve of S ∩ Σ is essential, |L ∩ Σ′| ≥ 2. Thus, as each component of S is unpunctured,
the region of B \ S containing Σ′ contains a component of L. Furthermore, if it contains an
arc component, then as all the annuli in S are even it contains at least two arc components.
Consequently, if c1 (resp. v1) is the number of closed components (resp. arcs) of L lying in
regions of B \ S corresponding to non-root degree one vertices of Γ then c1 + v1/2 ≥ V1. If r
has degree one, then the corresponding region of B \ L contains at least one component of
L, which could be either a closed component or an arc.

Suppose that Σ′ ⊂ Σ \S corresponds to a non-root degree two vertex of Γ; let B′ ⊂ B \S
be the region containing Σ′. Since no two curves of S∩Σ are parallel in the punctured surface
Σ, |L∩Σ′| ≥ 1. Thus, B′ contains at least one component of L. Suppose that component is
an arc. Let γ1 and γ2 be the components of ∂Σ′ and choose the notation so that γ1 bounds
a disc in Σ containing γ2. Since B

′ contains an arc, γ1 is contained in an annulus component
A of S. Suppose, first, that γ2 is contained in a sphere component S ′ ⊂ S, then S ′ bounds
a 3-ball in B disjoint from all the arcs of L. Since A is an even reducing annulus, we see
that B′ contains at least two arcs of L. If γ2 is contained in an annulus component A′ of S,
then as both A and A′ are even, we see that again B′ contains at least two arcs of L. Let
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c2 (resp. v2) be the number of closed components (resp. arcs) of L lying in regions of B \ S
corresponding to non-root degree two vertices of Γ. We see that c2 + v2/2 ≥ V2. Thus, if
|∂Σ| = 0, we have:

2c+ v − 3 ≥ 2c1 + v1 + c2 + v2/2− 3 ≥ |S|.

If |∂Σ| = 1 and deg(r) = 1, then as mentioned there is at least one arc not contributing to
v1 + v2. Thus, if Σ is a disk, we have

2c+ v − 3 + 1 ≥ 1 + 2c1 + v1 + c2 + v2/2− 3 + (3− deg(r)) ≥ |S|,

as desired. �

Lemma 5.9. Let (Z, L) be an unlink or spanning trivial relative tangle. Let c be the number
of closed components and v the number of arc components of L. Suppose Σ ⊂ Z is a bridge
sphere or disk of bridge number b. If Σ is a sphere, assume b ≥ 3; if Σ is a disk, assume
b ≥ 2. Let (B, κ) and (B′, λ) be the tangles to either side of Σ. Suppose that x ∈ Dκ, y ∈ Dλ

are an efficient pair. If d(x, y) > 0, then for any geodesic from x to y, there exists a common
curve s such that s bounds cut disks in both (B, κ) and (B′, λ).

Proof. Suppose d(x, y) > 0. By Lemmas 5.6 and 5.7, d(x, y) = b− (c + v/2). Let δ = |∂Σ|.
Fix some geodesic from x to y and let C be the collection of all common curves of the
geodesic. Since b ≥ 3− δ, Lemmas 5.6 and 5.7 show that C is nonempty.

Since a vertex in P(Σ) corresponds to 2b − 3 + δ curves on Σ, and adjacent vertices on
the geodesic differ by exactly one curve,

d(x, y) ≥ 2b− 3 + δ − |C|.

Hence,
|C| ≥ (2b− 3 + δ)− d(x, y) = b+ (c+ v/2)− 3 + δ.

By Lemma 3.1, each component of C either bounds a compressing disk to both sides, a
spanning annulus to both sides, or bounds a cut disk to both sides. If no component of C
bounds a cut disk to both sides, then by Lemma 5.8,

2c+ v − 3 + δ ≥ |C| ≥ b+ c+ v/2− 3 + δ.

Now, b ≥ c + v/2 since each closed component of L intersects Σ at least twice and each
arc component at least once. Thus,

2c+ v − 3 + δ ≥ |C| ≥ 2c+ v − 3 + δ.

Consequently,
C = 2b− 3 + δ.

This is the number of curves in x (equivalently, in y) so x = y. But this implies that
d(x, y) = 0, contradicting our hypothesis. �

Lemma 5.10. Let (Z, L) be an unlink or spanning relative trivial tangle. Let c be the number
of closed components and v the number of arc components of L. Suppose Σ ⊂ Z is a bridge
sphere or disk of bridge number b. If Σ is a sphere, assume b ≥ 3; if Σ is a disk, assume
b ≥ 2. Let (B, κ) and (B′, λ) be the tangles to either side of Σ. Suppose that x ∈ Dκ, y ∈ Dλ

are an efficient pair. A curve γ in x bounds a cut disk in (B, κ) if and only if it is also a
curve in y and bounds a cut disk in (B′, λ). Furthermore, such a curve is a common curve
for every geodesic from x to y.
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Remark 5.11. Notice that if x and y are an efficient defining pair with d(x, y) = 0, then
x = y and a curve in x = y bounds a cut disk to one side if and only if it bounds a cut disk
to the other side by Lemma 3.1. The only geodesic from x to y is the constant geodesic,
so such curves are again common curves for any (i.e. the only) geodesic from x to y. The
difference between this situation and that when d(x, y) > 0 is that such a curve need not
exist. If d(x, y) > 0, then such a curve exists by Lemma 5.9.

Proof of Lemma 5.10. Suppose, first, that γ is a curve common to x and y which bounds
a cut disk in (B, κ). By Lemma 3.1, it also bounds a cut disk in (B′, λ). Thus, it suffices
to show that if γ is a curve in x bounding a cut disk in (B, κ), then it also lies in y and is
a common curve to every geodesic from x to y. If d(x, y) = 0, then x = y and the result
follows trivially. Assume d(x, y) > 0 and that γ ⊂ x is a curve bounding a cut-disk in (B, κ).
Fix some particular geodesic α from x to y in P(Σ). By Lemma 5.9, there exists a common
curve s ⊂ Σ for the geodesic that bounds a cut-disk to both sides of Σ. If s = γ we are done,
so suppose that s 6= γ.

We induct on b+ |∂Σ|. We consider two base cases. First, Σ is a disk and b = 2. Second,
Σ is a sphere and b = 3. Suppose Σ is a disk and |Σ ∩ L| = 4. The curve γ must bound
a disk in Σ which contains 3 punctures. Any pants decomposition of the 4-punctured disk
contains at most one such curve, so in both x and y that curve is γ = s, contrary to our
assumption. Suppose Σ is a sphere and b = 3. The curve γ must cut Σ into two disks each of
which contains exactly three punctures. Any pants decomposition of the 6-punctured sphere
contains at most one such curve. Hence, γ = s. This argument applies symmetrically to
curves bounding cut disks in (B′, λ). Again, the uniqueness of s in x and y implies the result.

Suppose b+ |∂Σ| > 2. Surger (Z, L) and Σ along the twice-punctured sphere S such that
S ∩ Σ = s. This results in two trivial pairs (Z1, L1) and (Z2, L2) containing bridge surfaces
Σ1 and Σ2. Choose the notation so that ∂Σ ⊂ ∂Σ2. Note that Z1 = S3 while Z2 is either S

3

or D2× I. Let b1 and b2 be their bridge numbers respectively and recall that b1+ b2 = b+1.
We show that we can apply our inductive hypothesis to whichever of Σ1 or Σ2 contains γ.

The curve s bounds a disk in Σ containing an odd number (at least 3) of punctures. If
Σ is a sphere, then it bounds two such disks. Thus, in either case, Σ1 is a sphere with at
least 4 punctures and b1 ≥ 2. Thus, b2 < b and b2 + |∂Σ2| < b+ |∂Σ|. If b1 = 2, then γ does
not lie in Σ1, as both it and s bound disks in Σ containing an odd number (at least 3) of
punctures and they are not isotopic (by assumption).

Similarly, if Σ is a sphere, then Σ2 is also a sphere with at least 4 punctures, b2 ≥ 2, and

b1 = b1 + |∂Σ1| < b+ |∂Σ| = b.

If b2 = 2, then, as above, γ does not lie in Σ2.
If Σ is a disk, then Σ2 is a disk with at least two punctures and Σ1 is a sphere. Thus,

b2 ≥ 1 and v1 = 0. Consequently,

b1 = b1 + |∂Σ1| ≤ b < b+ |∂Σ|.

If b2 = 1, then s bounds a once-punctured annulus in Σ with ∂Σ. In which case, γ does not
lie in Σ2. If b2 = 3/2, then s bounds a twice-punctured annulus in Σ with ∂Σ. Since both γ
and s bound disks in Σ with an odd number of punctures, again γ does not lie in Σ2.

We conclude that if γ lies in Σi, then bi + |∂Σi| < b+ |∂Σ|, and bi ≥ 2 if Σi is a disk and
bi ≥ 3 if Σi is a sphere.
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Let c1 and c2 be the number of closed components of L1 and L2 respectively and v2 the
number of arc components of L2. Recall that c1 + (c2 + v2/2) = c + (v/2) + 1. Let di be
the distances in P(Σi) between the the induced pants decompositions for Σi. The original
geodesic path α from x to y restricts to a geodesic path α1 in P(Σ1). Likewise, α restricts
to a geodesic path α2 in P(Σ2). Since s is a common curve for the geodesic from x to y,
d = d1 + d2. By Lemma 5.6 and Lemma 5.7, d1 ≥ b1 − c1 and d2 ≥ b2 − (c2 + v2/2).

Consequently,

b− (c+ v/2) = (b1 − c1) + (b2 − (c2 + v2/2)) ≤ d1 + d2 = d = b− (c+ v/2)

Thus, d1 = b1 − c1 and d2 = b2 − (c2 + v2/2).
Suppose that γ ⊂ Σi. If di = 0, then γ is also a common curve for αi (and thus for α), as

desired. If di > 0, we apply the inductive hypothesis to conclude that γ is again a common
curve for αi (and thus for α), as desired. �

6. Reducible Trisections

In this section, we begin by considering the case when L(T ) = 0. A similar analysis could
likely be used to classify trisections with L ≤ 2. Afterwards, we establish a relationship
between L, b(T ), and the topology of S. We use the classification of bridge trisections of
surfaces in S4 having bridge number at most 3 by Meier and Zupan [13, Theorem 1.8]. Such
surfaces are unknotted. Furthermore if the bridge number is equal to 1, then the surface is
an unknotted 2-sphere.

Theorem 6.1. Suppose that T is a bridge trisection of a surface S in W , with W equal
to S4 or B4, such that L(T ) = 0. Then S is a connected sum or a distant sum of some
number of copies of unknotted spheres, unknotted projective planes, and boundary-parallel
disks. Furthermore, T is the connected sum and distant sum of trisections for those surfaces.

Proof. Suppose the spine for T is (Z12, T12) ∪Σ (Z23, T23) ∪Σ (Z13, T13) ∪ (V, V ∩ ∂S).
We induct on b. However, we treat the cases when b is small separately since many of the

results from Section 5 require a lower bound on b.
First, suppose that Σ is a sphere. There is a unique trisection of bridge number one, that

of the unknotted sphere. If b = 2, then by [13, Theorem 1.8] S is unknotted. Moreover,
for a (b; c1, c2, c3)-bridge trisection of S, −b + c1 + c2 + c3 = χ(S). So, χ(S) ≥ 1. Since
a bridge number two surface can have at most two components, S is either an unknotted
sphere, unknotted projective plane, or the distant sum of unknotted spheres. In the latter
case, T is the distant sum of bridge number one trisections.

Next, suppose Σ is a disk. If each Tij has zero or one vertical arcs, then by Lemma 4.2, T
is the distant sum or connected sum of a bridge trisection of the same bridge number of a
surface in S3 with either a bridge trisection of the empty surface in B3 or a bridge trisection
of bridge number 1/2 of a ∂-parallel disk in B3. Assume, therefore, that each Tij has at least
two vertical arcs. In particular, b ≥ 1.

If b = 1, then each Tj is a trivial spanning tangle. Since each Tij contains at least (and,
therefore, exactly) two vertical arcs, every Tj is a 2-strand braid and the result follows by
Lemma 2.7. If b = 3/2, then each Tij is the union of 3 vertical arcs, since each Tij contains
at least two vertical arcs. The result again follows from Lemma 2.7.
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Henceforth, we assume that if Σ is a sphere, then b ≥ 3 and if Σ is a disk, then b ≥ 2. We
also assume that the result holds for all trisections of bridge number strictly smaller than T
having L = 0.

Choose efficient pairs (pjij , p
j

jk) in the disk sets for the tangles (Zij, Tij) and (Zjk, Tjk) as
in the definition of L(T ) so that

0 = L(T ) = d(p112, p
2
12) + d(p223, p

3
23) + d(p113, p

3
13).

We conclude that p112 = p212, p
2
23 = p323, and p113 = p313. For simplicity call these points p, q,

and r, respectively. Fix geodesics between them.
Case 1: p = q = r.
In this case, each curve s of p bounds a c-disk or spanning annulus in each of (Z12, T12),

(Z23, T23), and (Z13, T13). By The Consistent Bounding Corollary 3.2, s satisfies one of the
following:

(1) s bounds a compressing disk in each of (Z12, T12), (Z23, T23), and (Z13, T13).
(2) s bounds a cut disk in each of (Z12, T12), (Z23, T23), and (Z13, T13).
(3) s bounds a spanning annulus in each of (Z12, T12), (Z23, T23), and (Z13, T13).

By Lemma 4.1, if any curve s of p satisfies (1) or (2), the trisection T is a distant sum or
connected sum of two other trisections T1 and T2 with bridge surfaces Σ1 and Σ2 respectively.
If Σi is admissible, then the restriction pi of p to the side of s in Σ corresponding to Σi is
nonempty. In that case, pi lies in the disk sets for all three tangles forming the spine of Ti

and so L(Ti) = 0, as desired. If Σi is not admissible, then L(Ti) = 0, by definition. Recall
that b(Ti) < b(T ) for i = 1, 2. Apply our inductive hypothesis to Ti to conclude that T also
satisfies the conclusion of the theorem.

Suppose, therefore, that every curve s of p satisfies (3) and no curve of p satisfies (1) or
(2). This implies that each Tij contains only vertical arcs. By Lemma 2.7, S is the union
of boundary parallel disks, each having bridge number 1/2 with respect to Σ and the result
again follows.

Case 2: No two of p, q, and r are equal.
Let α(pq), α(qr) and α(pr) be the chosen geodesics between p and q, between q and r,

and between p and r, respectively. Since d(p, q) > 0 and d(p, r) > 0, by Lemma 5.10 and
Remark 5.11, every curve in p that bounds a cut disk in (Z12, T12) (and there is at least one
such curve) is a common curve for both α(pq) and α(pr). In particular if s is such a curve,
then s bounds a cut disk in all three of (Z12, T12), (Z23, T23), and (Z13, T13). Observe it must
also be a common curve for α(qr) by Lemma 5.10. Consequently, by Lemma 4.1, the result
holds for T , as in Case 1.

Case 3: Exactly two of p, q, and r are equal.
Without loss of generality, assume that p = q and p 6= r. Since d(p, r) > 0, by Lemma

5.10 and Remark 5.11, there is a curve bounding a cut disk in (Z12, T12) that is a common
curve for both α(pr) and α(qr) and there is at least one such curve s. Since α(pq) is the
constant geodesic, s is also a common curve for α(pq). The result now follows as in Case
2. �

Applying this result to a trisection witnessing L(S) and using the fact that the connected
sum and distant sum of unknotted 2-spheres and unknotted nonorientable surfaceis the
distant sum of unknotted 2-spheres, we have the first theorem advertised in the Introduction.
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Theorem 6.2. Suppose that S ⊂ S4 is a smooth, closed surface with L(S) = 0. Then S is
the distant sum of unknotted 2-spheres and unknotted nonorientable surfaces.

For the statement and proofs of the next theorems, let S be a surface in S4 and consider a
bridge trisection T of S having bridge number b. Let S = (Z12, T12)∪Σ (Z23, T23)∪Σ (Z31, T31)
be the spine of T and let cj be the number of closed components of Lj = αij ∪ αjk. Set

L = L(T ). For each {i, j, k} = {1, 2, 3}, choose efficient pairs (pjij , p
j

jk) for the tangles
(Zij, Tij) and (Zjk, Tjk) so that

L = d(p112, p
2
12) + d(p223, p

3
23) + d(p113, p

3
13).

For each {i, j, k} = {1, 2, 3} choose a geodesic α(i) from piij to piik and a geodesic α(ij) from

piij to pjij. Let C(i) be the set of common curves for α(i) and C(ij) be the set of common
curves for α(ij).

Theorem 6.3. Suppose that T is a bridge trisection of a smooth, closed surface S ⊂ S4

with b ≥ 3. If

L ≤ 2(c1 + c2 + c3)− 9,

then T is a nontrivial connected sum or distant sum.

Proof. Since Σ is a sphere and b ≥ 3, the surface Σ is admissible.
Case 1: There exists a curve s common to two of C(1), C(2), and C(3).
Without loss of generality, suppose it to be common to C(1) and C(2). In this case, the

curve s is a curve of the pants decompositions p112, p
1
13 and p223 (as well as p212). Thus, it

bounds a c-disk in all three tangles (Z12, T12), (Z13, T13) and (Z23, T23). By the Consistent
Bounding Corollary 3.2, it bounds a compressing disk in all three tangles or a cut disk in all
three tangles. By Lemma 4.1, T is a connected sum or distant sum.

Case 2: There is no curve common to any two of C(1), C(2), and C(3).
As at the start of the proof of Lemma 5.9, for each i ∈ {1, 2, 3}

|C(i)| ≥ b+ ci − 3.

Thus, as we traverse α(ij), no curve of C(i) can persist to C(j). Since C(i) contains at least
b + ci − 3 curves and C(j) contains at least b + cj − 3 curves, then the image of C(i) under

α(ij) and C(j) must intersect in at least ci + cj − 3 curves. Thus, d(piij, p
j
ij) ≥ ci + cj − 3.

Consequently,

L ≥ 2(c1 + c2 + c3)− 9.

�

As a corollary we have a theorem advertised in the introduction.

Theorem 6.4. Suppose that S ⊂ S4 is smooth, closed, and prime. Then

L(S) > 2b(S) + 2χ(S)− 9.

Proof. Suppose S is smooth, closed, and prime. Let T be a (b; c1, c2, c3)-bridge trisection of
S with b = b(S) and L(T ) = L(S). Recall that c1+ c2+ c3 = b+χ(S). If b < 3, then by [14],
S is unknotted, contradicting primality. Thus, b ≥ 3. By the contrapositive of Theorem 6.3,
we have our inequality. �
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Theorem 6.5. Suppose b ≥ 4, and that S is connected and not an unknotted 2-sphere or
unknotted projective plane. If

(1) L(T ) ≤
1

2
(b+ c1 + c2 + c3)− 3,

then there is a nontrivial connected sum decomposition of T into bridge trisections T1 and
T2 for surfaces S1 and S2 such that:

(1) b(T1), b(T2) ≥ 2,
(2) L(T1) + L(T2) = L(T ), and
(3) Either both S1 and S2 are nonorientable or S2 is unknotted.

Remark 6.6. As remarked in [13], if T is a (b; c1, c2, c3)-trisection for a surface S ⊂ S4,
then χ(S) = c1 + c2 + c3 − b. Thus,

b+ c1 + c2 + c3 = χ(S) + 2b.

In particular, if S is orientable, then the right hand side of Inequality (1) is an even integer.

Proof. Meier and Zupan showed that every bridge trisection of bridge number at most 3 is a
bridge trisection of an unknotted surface [13, Theorem 1.8]. We prove our result by induction
on b, handling the base case and inductive case simultaneously. Assume that b ≥ 4 and that

L ≤
1

2
(b+ c1 + c2 + c3)− 3.

Note that Σ is admissible and that T cannot be a distant sum as S is connected. Assume
also that the result holds for any trisection with bridge number at least 4, strictly less than
b, and satisfying the corresponding Inequality (1).

Case 1: There is a curve s common to all six of C(1), C(2), C(3), C(12), C(23), and C(13).
By the Consistent Bounding Corollary 3.2, s bounds a cut disk in all three tangles (Zij , Tij)

for distinct i, j ∈ {1, 2, 3} or that curve bounds a compressing disk in all three tangles. By
Lemma 4.1, T is a nontrivial connected sum with factors T1 and T2. For i = 1, 2, the
bridge number b(Ti) satisfies 2 ≤ b(Ti) < b since the connected sum is nontrivial and by the
properties of connected sum. If b(Ti) ≤ 3, for i = 1 or i = 2, then by Meier and Zupan’s
result, we are done. So also suppose that b(Ti) ≥ 4, for i = 1, 2. This implies that the
trisection surface Σi for Ti is admissible. Consequently, each of the six geodesics α(i) and
α(ij) for distinct i, j ∈ {1, 2, 3}, restrict to geodesics in P(Σi). Hence, L(T1)+L(T2) = L(T ).

Suppose that Ti is a (bi; xi, yi, zi)-trisection. Recall that

b = b1 + b2 − 1
c1 = x1 + x2 − 1
c2 = y1 + y2 − 1
c3 = z1 + z2 − 1.

For i = 1, 2, let Bi =
1
2
(bi + xi + yi + zi)− 3. By Remark 6.6, for orientable surfaces it is a

positive integer. We have
L(T1) + L(T2) ≤ B1 +B2 + 1.

Since L is an integer, either both S1 and S2 are non-orientable (with odd Euler characteristic)
or L(T1) ≤ B1 or L(T2) ≤ B2. If both S1 and S2 are non-orientable, we have our theorem.
If not, the result follows by applying the inductive hypothesis to whichever Ti satisfies the
inequality.
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Case 2: There is no curve common to all six of C(1), C(2), C(3), C(12), C(23), and C(13).
Let ℓ(i) = b− ci be the length of α(i) and ℓ(ij) = d(piij, p

j
ij) be the length of α(ij). Recall

that L = ℓ(12) + ℓ(23) + ℓ(13).
Consider a curve s of p112 as we traverse the loop Λ defined by the geodesics α(1), α(13),

α(3), α(23), and α(2). By the hypothesis of the case, the curve s must be moved as we
traverse one of the edges of the loop. When it does so for the first time, it becomes a new
loop s′ ⊂ Σ intersecting s exactly twice. At the conclusion of our traversal of the loop, we
arrive back at p112, a collection of pairwise disjoint curves. Thus, s′ must be moved again as
we traverse some subsequent edge of the loop. As p112 has 2b− 3 curves,

ℓ(1) + ℓ(2) + ℓ(3) + L ≥ 2(2b− 3).

Consequently,
3b− (c1 + c2 + c3) + L ≥ 4b− 6.

Thus,
L ≥ b+ (c1 + c2 + c3)− 6.

By Inequality (1),

1

2
(b+ c1 + c2 + c3)− 3 ≥ L ≥ b+ (c1 + c2 + c3)− 6.

Thus, L = 0 and so by Theorem 6.1, S is an unknotted 2-sphere or nonorientable surface
and T is the connected and distant sum of trisections of unknotted 2-spheres and projective
planes. In the latter case, if there is more than one projective plane in the sum, we see that
the result still holds. �

Theorem 6.7. If S ⊂ S4 is a smooth, closed, connected, orientable, irreducible surface then

L(S) > b(S)− g(S)− 2,

where g(S) is the genus of S.

Proof. Suppose that S is smooth, closed, connected, orientable, and irreducible. By [13,
Theorem 1.8], b = b(S) ≥ 4. Let T be a (b; c1, c2, c3)-trisection of S such that L(T ) = L(S).
Recall that 2 − 2g(S) = χ(S) = c1 + c2 + c3 − b. If T is a nontrivial connected sum with
factors T1 and T2 that are bridge trisections of surfaces S1 and S2 with S2 being trivial, then
S2 must be an unknotted sphere, since S is irreducible and orientable. But the fact that the
connected sum is nontrivial contradicts the choice of T to satisfy b(T ) = b(S). Thus, by
Theorem 6.5,

L(S) = L(T )
> 1

2
(b+ c1 + c2 + c3)− 3

= 1
2
(2b+ 2− 2g(S))− 3

= b− g(S)− 2.

�
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