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KIRBY-THOMPSON DISTANCE FOR TRISECTIONS OF KNOTTED
SURFACES

RYAN BLAIR, MARION CAMPISI, SCOTT A. TAYLOR, AND MAGGY TOMOVA

ABSTRACT. We adapt work of Kirby-Thompson and Zupan to define an integer invariant
L(T) of a bridge trisection 7 of a smooth surface S in S* or BY. We show that when
L(T) = 0, then the surface S is unknotted. We also show that for a trisection 7 of an
irreducible surface, bridge number produces a lower bound for £(7). Consequently £ can
be arbitrarily large.
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1. INTRODUCTION

Inspired by Hempel’s distance for Heegaard splittings [7], Kirby and Thompson [10] re-
cently defined a nonnegative integer valued invariant £(X) of a smooth 4-manifold X. They
show that when £(X) = 0, then X is diffeomorphic to the connected sum of the 4-sphere
with some number (possibly zero) of copies of ST x 3, 5% x S? and CP?. This was extended
to be an invariant for smooth 4-manifolds with boundary in [2], where it was shown that if
the invariant takes the value zero on a rational homology ball, then the rational homology
ball is a 4-ball B*. In this paper, we adapt the definition to apply to smooth surfaces S
properly embedded in S* or B*. We prove:

Theorem 6.2. Suppose that S C S* is a smooth, closed surface with £(S) = 0. Then S is
the distant sum of unknotted 2-spheres and unknotted nonorientable surfaces.

As with the previous incarnations of this theorem, the invariant £ is defined using tri-
sections. Trisections are, in some sense, a 4-dimensional version of Heegaard splittings of
3-manifolds. Trisections of both smooth closed 4-manifolds and smooth compact 4-manifolds
with boundary were introduced by Gay and Kirby [3]. Meier and Zupan [13] adapted this
definition, defining bridge trisections for smooth surfaces in S* (and later in other closed
4-manifolds [14]). They show that every surface embedded in a closed 4-manifold has a
bridge trisection. Bridge trisections are a 4-dimensional version of bridge position for links
in closed 3-manifolds. We consider only trisection surfaces of genus 0. Associated to each
bridge trisection T of a smooth surface S in S* are positive integers: the bridge number b
and the patch numbers ¢y, ¢y, and c3. We say that T is a (b; ¢1, ¢9, ¢3)-trisection of S. The
minimal value of b over all possible trisections of S is called the bridge number b(S) of S. It
is the case that 20 + x(S) > 0 (where x(.5) is the Euler characteristic of \S).

We establish links between these numbers, the invariant £, and the topological structure
of both S and its trisections. To state our results, recall that a smooth, closed surface S C S*
is unknotted or trivial if it is orientable and bounds a 3-dimensional handlebody in S* or if it
is nonorientable and is the connected sum of unknotted projective planes [8]. (A projective
plane is unknotted if it is obtained by attaching a disk to a half-twisted M&bius band in the

equatorial S® C S%.) Meier and Zupan prove that a surface S with b(S) < 3 is unknotted
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[13, Theorem 1.8]. A smooth, closed, connected, orientable surface in S* is irreducible if it
is nontrivial and not the connected sum of a nontrivial surface and a trivial surface of genus
g=>1

Theorem 6.7. If S C S* is a smooth, closed, connected, orientable, irreducible surface then
L(S) > b(S) = g(5) — 2,
where g(S) is the genus of S.

Meier and Zupan [13, Section 5] show that spun torus knots have arbitrarily large bridge
number, and so £(S) can be arbitrarily large for knotted spheres. Combining their work
with that of Livingston [11]), it is likely the case that £(S) can be arbitrarily large for tori
as well.

Theorem 6.5, which is a more general version of Theorem 6.7, gives an upper bound on
L(S) such that if it is satisfied, then S is the nontrivial connected sum of two other surfaces
S and Sy such that £(S1) + £(Ss) = L(S). A smooth, closed surface S C S* is prime if it is
nontrivial and not a connected sum or distant sum of nontrivial smooth surfaces. Irreducible
surfaces need not be prime. In fact, it is unknown if any surface is prime; by [16], there is
a nontrivial sphere S C S* whose connected sum with an unknotted projective plane P is
equivalent to P (see [1, Section 2.3.2]). We prove:

Theorem 6.4. If S C S* is a surface that is smooth, closed, and prime. Then
L(S) > 2b(S) +2x(S) -9

Finally, we remark that the essence of our results also applies to smooth surfaces with
boundary that are properly embedded in B*. Jeffrey Meier [12] has considered the definition
of bridge trisections (of arbitrary genus) for properly embedded surfaces in 4-manifolds with
boundary. Independent of, but subsequent to, his work, we arrived at an equivalent definition
for surfaces in the 4-ball. As the theory is still in its infancy, we hope that providing different,
more targeted, exposition is helpful. Meier proves a more general version of:

Theorem (Meier). Every properly embedded smooth surface S in B* has a genus 0 bridge
trisection.

By Meier’s theorem, £ provides an invariant arising from trisections for, say, slice disks or
other surfaces witnessing the 4-ball genus of knots in S®.

1.1. Outline. The remainder of this section establishes terminology, conventions and nota-
tion. In Section 2, we recall the definitions and constructions related to bridge trisections
of closed surfaces in S?* from [13] and generalize them to the case of surfaces with bound-
ary in B*. Section 3 describes how bridge surfaces in 3-dimensions and trisection surfaces
in 4-dimensions can be cut open along certain spheres. Section 4 describes the connection
between this operation and connected sums and distant sums. In Section 5, we define the
pants complex of a bridge surface or relative bridge surface. We use the pants complex to
define the invariant £ and prove a sequence of lemmas relevant to the study of £. Finally,

in Section 6, we prove our main theorems.
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1.2. Terminology, conventions, and notation. All manifolds appearing in this paper
should be understood to be smooth and with (possibly empty) boundary. If Y is a subman-
ifold of X, we let N(Y) and N(Y) denote closed and open regular neighborhoods of ¥ in
X. The interval [—1,1] is denoted I.

A simple closed curve v in a disk or sphere 3 with marked points (called punctures)
is essential if it is disjoint from the punctures, does not bound an unpunctured or once-
punctured disk in X, and does not cobound an unpunctured annulus in ¥ with 0X. Isotopies
of essential curves are proper ambient isotopies of X relative to the punctures. We will often
conflate the isotopy class of a collection of essential curves with its representatives. In our
context, this should cause no confusion. The surface X is admissible if there are at least
3 punctures, when ¥ is a disk, and at least 4 punctures when ¥ is a sphere. A connected
subsurface P C ¥ is a pair of pants if it is either a disk with 2 punctures, an annulus with
one puncture, or is unpunctured and has y(P) = —1.

Suppose that M is a 3—manifold (in our case, the 3-sphere or 3-ball) and that T" C M is
a properly embedded 1-manifold and S C M is an embedded surface transverse to 7. We
consider the points T'N .S to be punctures on S. Suppose also that D C M is a disk with
0D C S an essential curve and with interior disjoint from S and transverse to 7. Then
D is a compressing disk if DN'T = @ and a cut disk if |[D NT| = 1. A disk that is a
compressing disk or a cut disk is a c-disk. If D is a c-disk for M, then we also say that
D is a c-disk in (M, T). If 7 is a 1-manifold properly embedded in Z = D? x I, then an
annulus properly embedded in Z, disjoint from 7 and with one boundary component a curve
on each of D? x {#1} is called a spanning annulus. For convenience we will often say that
one component of the boundary of a spanning annulus bounds the annulus (even though it
actually cobounds the annulus with the other boundary component).

1.3. Acknowledgments. Blair was supported by NSF grant DMS-1821254. Campisi was
supported by a San José State University RSCA Grant. Taylor was supported by a Colby
College Research Grant. We are grateful to Roman Aranda, Chuck Livingston, Jeffrey
Meier, Maggie Miller, Alex Zupan, and the anonymous referee for helpful comments on the
manuscript.

2. BRIDGE TRISECTIONS

We first define a (genus 0) trisection of S* and then a (genus zero) bridge trisection of a
smooth surface in S*. After that we move on to the definition of relative trisections.

Remark 2.1. All of the trisections we discuss have trisection surfaces that are either the
sphere or the disk. We usually omit the adjective “genus 0” in what follows.

Definition 2.2 (Gay-Kirby). A 0-trisection of the 4-sphere S* is a decomposition into
4-balls S4 = X1 Us X2 Us, X3 with

(1) B;j = X;NXj,i,5€{1,2,3} and ¢ # j, a 3-ball, and

(2) X = X1 N X2 N X3 = Bm N Bg3 N Bgl a 2—sphere.

A trivial tangle (B, k) is a 3-ball B containing properly embedded arcs x such that, fixing
the endpoints of k, we may isotope k into dB. We consider 0B to be a 2|k|-punctured
surface, with the points Ok being the punctures. For expositional convenience, we also

set 0, B = OB and 0_B = @. A bridge splitting for a knot K C S% is a decomposition
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(83, K) = (By, ;1) Us (By, as) with (B, a;) trivial tangles and ¥ = 9B;, for i = 1,2. The
surface ¥ is the bridge sphere of the splitting. A trivial disk system (X, D) is a 4-ball X
containing a collection D of properly embedded disks which are isotopic, relative to their

boundary, into 0.X.
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FIGURE 1. A schematic depiction of a bridge trisection. The circle in the
center represents the trisection surface, the sphere Y. It is the boundary of
three 3-balls, depicted with dashed black lines. The union of any two of those
is a copy of the 3-sphere which is the boundary of a 4-ball. The union of the
4-balls is S* and is depicted with the dashed blue circle. In each 3-ball is a
trivial tangle, depicted with red arcs. The disks in each 4-ball are not depicted.

Definition 2.3 (Meier-Zupan). A (b;cy, co, c3)-bridge trisection T of a surface S C S* is a
0-trisection S* = X; Uy Xy Uy X3 with b = |S N X|/2 such that for all {4, 5, k} = {1,2,3},
we have:
(1) (S;,Lj) = (Bij Us Bji, (Bij Us Bji) NS) is an unlink with ¢;-components in S*
(henceforth, just unlink).
(2) X is a bridge sphere for (S}, L;), decomposing it into the trivial tangles (B;;, T;;) and
(Bjk, Tr)-
(3) (X;,D;) = (X, X; N S) is a trivial disk system.
We call § = (Bia, T12) U (Bas, Tag) U (Bs1, T31) the spine of the bridge trisection. We define
B;; = Bj; and «y; = ay; for all 4,5 € {1,2,3} such that ¢ # j. The minimum b(S) of the
bridge number b of T over all bridge trisections T of S is called the bridge number of S.
Note that b is a positive integer.

See Figure 1 for a schematic depiction of a bridge trisection and its spine. For ease

of exposition when we simultaneously handle relative trisections, in the case of a bridge
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trisection of a surface in S* as above, we will set V' = @ and also say that
S = (Bi2, a12) U (Bag, ag3) U (Bs1, az1) U (V, V N IX)

is the spine of the trisection.

We now turn to trisections of surfaces properly embedded in B*. The definition is in-
spired by the definition of Heegaard surfaces for 3-manifolds with boundary, trisections of
4-manifolds with boundary, and of course bridge trisections of surfaces in S*. See Figures 2
and 3 for a schematic depiction of the main components.

For a 3-ball Z parameterized as D? x I, we define the positive (negative, resp.) boundary
to be 0.7 = D* x {£1}. The vertical boundary is 8,7 = 0D* x I.

Definition 2.4 (Gay-Kirby). A 0-trisection of B* is a decomposition into 4-balls B* =
Xl UE X2 UE X3 with

(1) Zij = X; N X;, 4,5 €{1,2,3} and i # j, a 3-ball parameterized as D? x I, and

(2) X = X1 N X2 N X3 = 8+Z12 = 84_223 = 8+Z31 a disk.

For later use, we observe the following. In B* N(X) is homeomorphic to ¥ x D?. The
intersection N(X) with B* is a solid torus V' = (9X) x D? C dB*. The complementary
solid torus V' which is the closure of 9B*\ V' contains the three disks 0_Z15, O_Zs3, and
0_ 7,3 as properly embedded meridian disks. Similarly, for {7, j, k} = {1,2,3}, the 3-sphere
0X; is decomposed into two solid tori V; and V. The solid torus V; is the union of the 3-balls
Z;;j and Z;; along ¥ together with the component of V' \ (0_-Z12 U 0_Zs3 U 0_Z13) between
0_Z;; and 0_Z;;,. The solid torus V; is the closure of 0.X; \ V;. The solid torus V"’ is formed
by taking the union of the solid tori V{, V3, and V3 along the annuli 0,715, 0,223, and 0,Z3.

A relative tangle (Z,T) is a 3-ball Z = D? x I containing a properly embedded 1-manifold
T such that 0T is contained in the interior of 0_Z U 0, Z. It is trivial if there is a properly
embedded arc o« C 04 Z (necessarily containing the punctures) such that 7' can be isotoped,
relative to OT', into o x I. The arc « is called a trace arc. A relative tangle is strictly trivial if
T is trivial and has no closed components and no components with both endpoints on 0_Z.
A relative tangle is spanning, if each arc component of 7" has one endpoint on each of 0_Z7
and 0, Z. Spanning relative tangles may have closed components. If T is a trivial tangle, a
component of T is a wvertical arc if it has an endpoint on each of 0+ Z and a bridge arc if it
has both endpoints on 0, Z. Figure 2 shows an example of a strictly trivial relative tangle.

A disk ¥ = D? x {tq} for some tq € I\ OI is a relative bridge surface for a relative tangle
(Z,T) (with Z = D? x I) if the closure of each component of (Z,T) \ X is a strictly trivial
tangle with positive boundary . If (By, a;) and (Bs, ap) are the closures of the components
of (Z,T)\ %, we also say that (By, o) Ux (B2, as) is a relative bridge splitting of (Z,T).

A link in a solid torus S! x D? is an n-braid if its winding number is n and if it can be
isotoped so that the restriction of the map S' x D? — S to the link is monotonic. See
Figure 3 for a schematic depiction of the following definition.

Definition 2.5. A (genus 0 relative) bridge trisection T of a properly embedded surface
S C B*is a O-trisection B* = (W;) Us, (Wy) Us, (W3) such that for all {i, j, k} = {1,2, 3}, we
have:
(1) 9S € S% = OB* is an n-braid in the solid torus V that is the exterior of 9% C S
where n = |S N J_Z;;]
(2) (Z;,T;) = (Zij Us Zji, (Z;; Us, Zj) N S) is a trivial spanning relative tangle.
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FIGURE 2. An example of a strictly trivial relative tangle (Z,T'). It has two
bridge arcs and two vertical arcs. One example of a trace arc a along with the
disk v x I are shown.

(3) X is a bridge disk for (Z;,T}), decomposing (Z;,T}) into the strictly trivial relative
tangles (Z;;, Ti;) and (Zjx, Tj)-
(4) In the solid torus V;, each component of S NV} is either isotopic to a core of V; or is
disjoint from 0_Z;;
(5) In the 3-sphere OW;, the link S N OW,; is an unlink.
(6) (W;,D;) = (W;,W;nS) is a trivial disk system.
We call § = (Zlg,Tlg) UE (Z23,T23) UZ (Zgl,Tgl) U (V,V N 05) the spine of the brldge
trisection. The disk X is the trisection surface of the trisection and b(X) = |X N S|/2 is the
bridge number of the trisection. Note that it is a positive integer or half-integer.

Example. In Figure 4, we show how to plug diagrams of certain tangles into a template to
create a bridge trisection for a slice disk for the square knot. When gluing the tangles 73
and Z,3 together in the process of verifying that the conditions in Definition 2.5 are satisfied,
remember to take the mirror image of one of the indicated diagrams, as in [13]. Since Zio
has no crossings, we do not need to bother mirroring when it is one of the tangles being
glued. To verify that the resulting bridge trisection is a trisection of a disk, we can compute
the Euler characteristic. In general, if S is an n-braid and if there are b’ bridge arcs in each
tangle Z;; and ¢; closed components of T}, we have x(S) = ¢; +co+c3+n—0". In our case,
n =3, =2, and each ¢; = 0.

The proof of [13, Lemma 2.5] shows that, even in the relative case, we have the following
result.

Lemma 2.6 (Lemma 2.5 of [13]). If two surfaces in S* or B* have trisections with the same
spine, then they are isotopic to each other by a smooth proper isotopy relative to the spine.

As a consequence, we consider two trisections to be equivalent if their spines are smoothly
properly isotopic via isotopies taking the trisection surfaces to each other.
Finally, we need the following lemma concerning spines without bridge arcs.

6
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FI1GURE 3. A schematic depiction of the spine of a relative bridge trisection,
shown without the gluings, without the 4-dimensional pieces, and without a
solid torus in the boundary of the 4-ball. The outer three trivial tangles (in
blue) form the solid torus V' and the braid (V' N dS). The three inner tangles
are the strictly trivial tangles (Z;;, T;;). The trisection disk is in the center.

Lemma 2.7. Suppose that T is a relative bridge trisection for a surface S C B* with spine
(Z12,Th2) Us, (Zas, Toz) Us: (Z31,T51) U (V,05 N V). Suppose also that each T;; consists only
of vertical arcs. Then S is the union of 0-parallel disks, each having bridge number 1/2 with
respect to 2.

Proof. Suppose that p € >N .S is a puncture. Since each T}; consists only of vertical arcs,
p is incident to a vertical arc 7;;(p) in 7j;. Since in each solid torus V;, the components of
the link S'NV; intersecting V' is an n-braid where n is the number of components of S NV,
in V;, there is an arc 7;(p) C (S NV, NV) joining the endpoint of 7;;,) on 0_Z;; to the
endpoint of 7;;(p) on 0_Z;,. Observe that L;(p) = 7;;(p) U 73(p) U Tix(p) is a component of
SNV, and, thus, is isotopic to a core of V;. By the definition of bridge trisection it bounds a
properly embedded disk D;(p) in the 4-ball W;. This disk is a component of SNW;. Finally,
observe that D;(p) U Do(p) U D3(p) is a disk component D(p) of S and that it has bridge
number 1/2 with respect to . Also, D(p) is O-parallel, as can be seen by piecing together

the J-parallelism of each third. Since this is true for all p € ¥ NS, the result holds. O
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F1GURE 4. A relative bridge trisection of a slice disk for the square knot.
This particular trisection was found by ad hoc methods. Meier [12] gives a
systematic approach.

3. SURGERY ON SPHERES

In this section, by way of establishing terminology we review the connected sum of mani-
folds, knots and bridge disks/spheres and establish lemmas that will be of importance later.
The next section extends this to trisections.

In general, if X is a smooth n-manifold and Y C X is a smooth submanifold diffeomorphic
to the sphere S"~!, we can perform surgery on X along Y, by cutting X open along ¥ and
patching in two copies of the n-ball B™ via homeomorphisms from dB" to the two copies of

Y in the boundary of the cut-open manifold. Several cases will be of particular interest:
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(1)

If L is a properly embedded 1-manifold in a 3-manifold M and if P C M is a
separating 2-sphere that is disjoint from L, then surgery along P produces two distinct
3-manifolds M; and Ms, obtained from M by cutting open along P and pasting two
copies By and By of a 3-ball. The 3-manifolds M; and Ms contain 1-manifolds
Ly C My and Ly C M, that are the (possibly empty) union of components of L.

If L is a properly embedded 1-manifold in a 3-manifold M and if P C M is a
separating 2-sphere that intersects L in exactly two points (i.e. a O-sphere), then
again we obtain distinct 3-manifolds M; and M, containing 1-manifolds L; and Ls.
However, in this case L; U Ly is obtained from L by cutting open L along PN L and
pasting in two boundary-parallel intervals properly embedded in By and B.

If M =83 or D? x I and ¥ C M is a bridge sphere or disc for a 1-manifold L C¢ M
and if P intersects Y in a simple closed curve s, then surgery along P also produces
surfaces ¥y C M; and ¥y C M, obtained by cutting open ¥ along s and pasting
disks properly embedded in By and Bs. If P intersects L in two points, we choose
those disks to intersect in a single point each of the boundary-parallel intervals in By
and By that are glued to L\ P to form L; and L,. It is easy to check that each of
Y1 and Y is a bridge sphere or disk for L; and Ls. See Figure 5.

In any of the above cases, if |[PNL| = 0, we say that P is an unpunctured summing sphere.
If |P N L| =2 we say that P is a twice-punctured summing sphere. In the third situation, a
summing sphere where the curve s is essential in X is called a reducing sphere for X.

21 22 |

FIGURE 5. Above: A twice-punctured summing sphere P that is a reducing
sphere for 3. Below: The bridge spheres or disks ¥; and X5 resulting from
surgery on P.

We can generalize the construction slightly by also surgering along annuli. This gives a

fourth

case of particular interest:

(4) Suppose that (Z, L) is a relative spanning tangle with Z = D? x [ having bridge

disk ¥ and that P C Z is a properly embedded annulus disjoint from (9D?) x I and
intersecting ¥ in a single simple closed curve s essential in both ¥ and P. Assume

also that P is disjoint from L. We call P a reducing annulus. It is even if it bounds
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a solid cylinder in Z containing an even number of arcs. A reducing annulus P can
be isotoped to be vertical in the product structure on Z.

We can perform surgery on a reducing annulus P as follows. Cut Z open along P to obtain
Z1 and Zy. Without loss of generality, assume that 0¥ C Z]. Then X intersects Z] in a
properly embedded annulus 3} and Z, in a properly embedded disk ¥o. Observe that ¥, is
a bridge disk for (Zy, LN Z5). To s x I C 0Z}, glue a copy B of D? x I via a homeomorphism
of (D?) x I to s x I making the fibers match. This creates Z;. In B, choose a properly
embedded disk whose boundary is glued to s C Z] and let ¥; be the union of ¥} with that
disk. Then ¥} is a bridge disk for (7, L N Z;).

Recall that the bridge number of a bridge surface for a properly embedded 1-manifold is
equal to half the number of punctures. In either situation (3) or (4), let b be the bridge
number of ¥ and b; be the bridge number of ¥; for i = 1,2. Observe that if P is a twice-
punctured summing sphere, then b; + by = b+ 1; otherwise b; 4+ by = b. In any case, if P is
a reducing sphere (i.e. s is an essential curve on X), then by, by < b. Similarly, let ¢; be the
number of closed components of L; and let v; be the number of arc components of L;. Let ¢
and v be the number of closed components and arc components of L, respectively. If P is a
twice-punctured sphere, then (¢ +v1/2) 4 (c2 +v2/2) = (¢ +v/2) + 1; otherwise, since P is
an unpunctured summing sphere or annulus, (¢; + v1/2) 4 (2 + v2/2) = (¢ +v/2).

Expanding our viewpoint, suppose W is either B* or S* and that S C W and ¥ C W
are smooth surfaces. Suppose P C W is a smooth 3-sphere that is either disjoint from S
or intersects S in a single simple closed curve and similarly for 3. Then we can surger W,
S, and ¥ along P simultaneously to obtain 4-manifolds W; and W5 and properly embedded
surfaces S;,3; € W; and Sy, X5 C Ws. One of W, or Wy is S* and the other is either S*
or B% The next section explores the situation when ¥ is a trisection surface for S. First,
however, we establish a few lemmas.

Lemma 3.1. Suppose that (Z, L) is either a link in S® or a spanning relative tangle with
bridge sphere or disk ¥ dividing (Z, L) into tangles (Z,, L,) and (Z,, L,). Suppose also that
s C X is an essential curve such that in each of (Z,,L,) and (Z,,L,) s bounds either a
c-disk or (with a curve in 0_Z, or 0_Z,) a spanning annulus disjoint from L. Then one of
the following holds:

(1) In each of (Z,, L,) and (Z,, L,), the curve s bounds a compressing disk.
(2) In each of (Z,, L,) and (Z,, L), the curve s bounds a cut disk.
(3) In each of (Z,,L,) and (Z,, L,), the curve s bounds a spanning annulus.

Furthermore, it is not the case that both (1) and (2) hold. If, in (Z,,L,) or (Z,,L,), the
curve s bounds a reducing annulus with an essential curve in 0_Z, or 0_Z, then (8) holds
and neither (1) nor (2) hold. If in either (Z,, L) or (Z,, L), the curve s bounds a reducing
annulus with an inessential curve in 0_Z, or 0_Z,, then both (1) and (3) hold or both (2)
and (3) hold.

Proof. Let E C ¥ be a disk with boundary s and suppose D is a c-disk in (Z,, L, ) or (Z,, L)

with boundary s. Then D U E is a 2-sphere in S® or B? and, therefore, separates. Thus,

if £ has an odd number of punctures, then D is a cut disk and if £ has an even number

of punctures D is a compressing disk. Therefore, if s bounds a c-disk in both (Z,, L,) and

(Z,, L,) then exactly one of (1) or (2) holds. Consequently, without loss of generality, we

may suppose that s bounds a c-disk D in (Z,, L,) and a spanning annulus P in (Z,, L,) that
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is disjoint from L with a curve s’ C 0_Z,. Let E' C 0_Z, be the disk with boundary s'.
Then E'UPUD is a sphere in Z bounding a ball containing the properly embedded disk F.
Since (Z, L) is a spanning relative tangle, £’ and D must both have one puncture or both
have no punctures. In particular, s’ is inessential. After a small isotopy to make it properly
embedded, E' U P is a c-disk in (Z,, L, ), so either (1) or (2) holds. Hence, we can assume
(3) holds. Then s bounds vertical annuli P, and P, in (Z,, L,) and (Z,, L,) disjoint from L
with curves s, C 0_Z, and s, C 0_Z,, respectively. Let E, C 0_Z, and E, C 0_Z, be the
disks bounded by s, and s,. If s also bounds a c-disk D in (Z,, L,) (say) then DU P, U E,
is a sphere in Z and we see that s, is inessential. Thus, if one of s, or s, is essential, neither
(1) nor (2) holds, while if both are inessential then (1) or (2) also holds. O

Corollary 3.2 (The Consistent Bounding Corollary). Suppose that (Z1, L1), (Z, Ls), and
(Zs, Ls) are all either trivial tangles in B or strictly trivial tangles in D?* x I such that for
each i # j, 0+2Z; = 0+ Z; = Z; N Z; and (Z;, L;) U (Z;, Lj) is either an unlink or a spanning
trivial relative tangle with bridge sphere or disk ¥ = 0. Z; = 04+ Z;. Suppose that in X there
exists an essential curve s such that in each of (Z1, L), (Z2, La), and (Zs, L3), the curve s
bounds either a c-disk or spanning annulus. Then one of the following holds:

(1) In each (Z;, L;), the curve s bounds a compressing disk.
(2) In each (Z;, L;), the curve s bounds a cut disk.
(8) In each (Z;, L;), the curve s bounds a spanning annulus with a curve of 0_Z;

Proof. This is almost immediate from Lemma 3.1. For i,7 = 1,2,3 with ¢ # 7, use the
notation (ij.N) to indicate that conclusion (N) from Lemma 3.1 holds for (Z;, L;) and
(Z;, Lj). Suppose that (12.1) or (12.2) holds. If (13.1), (13.2), or (23.1), or (23.2) hold, we
are done by Lemma 3.1. So suppose that (13.3) and (23.3) hold. This implies Conclusion
(3). Suppose, therefore, that (12.3) holds and (12.1) and (12.2) do not. If (13.3) or (23.3)
hold, then we again have Conclusion (3). Thus, (13.1) or (13.2) hold and also (23.1) or
(23.2). Again, by Lemma 3.1, we are done. O

In our quest to find spheres or annuli to surger along, we will make use of the following
lemma. In the case when 7 is the unknot, this is essentially due to Otal [15]. In the case of
relative tangles, after applying a trick, described below, Hayashi and Shimokawa [5] handled
the case when every component of 7 is either an arc with both endpoints on 9, Z or an arc
with one endpoint on each of 0.Z. The case when Z \ 7 contains an essential sphere is also
due to Hayashi-Shimokawa [6, Theorem 1.4].

Lemma 3.3. Suppose that (Z,7) is either an (S3, unlink) pair or a spanning relative trivial
tangle with T # @ and that ¥ is a bridge sphere or disk, respectively. Then the following
hold:

(1) If Z\ T contains an essential sphere, then there exists an unpunctured reducing sphere
for %.
(2) If one of the following holds:
e 7 is the unknot and ¥ is a sphere such that |t N X| =4, or
e 7 is a single arc and ¥ is a disk such that |T N 3| = 3,
then there exist compressing disks for the tangles on either side of ¥ with boundaries
on Y intersecting exactly twice.

(3) If one of the following holds:
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e 7 is the unknot, ¥ is a disk and |T N Y| > 4,
e 7T is the unknot, X is a sphere and |t 0| > 6, or
e 7 is a collection of arcs, ¥ is a disk, and T contains an arc intersecting > in 3
or more points,
e 7 is a collection of arcs, ¥ is a disk, and |t N 3| > 4,
then there exists a twice-punctured reducing sphere for X.
(4) If T is the union of three or more arcs, ¥ is a disk, and each arc of T intersects ¥ in
exactly one point, then there exists an even reducing annulus for 3.

Proof. We defer to [6] for the case when Z\ 7 is reducible. For (2) and (3), we will show that
Y is “perturbed” and that this implies produces the desired conclusion. Assume, therefore,
that Z \ 7 is irreducible.

A bridge disk for a bridge arc 7y C 7\ X with endpoints on ¥ is an embedded disk with
interior disjoint from ¥ U7 and whose boundary is the union of 7y with an arc on 3. We say
that X is perturbed if there exist bridge disks (called a perturbing pair) on opposite sides of
whose arcs on Y are disjoint except for sharing a single endpoint. Observe that the boundary
of a regular neighborhood of the union S of two such bridge disks is a twice-punctured
sphere in Z intersecting 3 in a single simple closed curve. Thus, if X N 7|+ [0X] > 5
and X is perturbed, then there is a twice-punctured reducing sphere for . Similarly, if
XN 7| +]0%] > 4 and ¥ is perturbed, then there exist compressing disks for the tangles on
either side of ¥ with boundaries intersecting on ¥ exactly twice.

If Z = 53 since 7 is the unlink and Z \ 7 is irreducible, 7 is the unknot. By [15], it is
perturbed and so the lemma holds. Henceforth, assume that Z = D? x [. Since Z \ 7 is
irreducible, T contains arc components. Attach a copy of D? x I to (0D?) x I C 8Z so that
the product structures match. This converts Z into 7 = S*x 1. In the newly attached
D? x I, choose a vertical arc and call it 7/. Let 7 = 7 U 7. Notice that we can recover (7, T)

from (Z,7) by drilling out 7. Attach a disk of the form D? x {to} to % to form 3. Since

¥ intersects 7' only once, there is no perturbing pair for 7. Conclusions (2) and (3) now
follow from [5].

Finally, suppose that 7 is the union of three or more arcs, each intersecting > in a single
point. From the definition of spanning relative trivial tangle, we see that 7 can be properly
isotoped, by an isotopy preserving > so that the arcs 7 are vertical in the product structure
on Z. We may then find an essential curve s C ¥ bounding a disk in ¥ containing an
even number of punctures. Such a curve bounds even spanning annuli to both sides and
their union is an even reducing annulus. Reversing the isotopy, we find the desired reducing
annulus in (Z, 7). O

4. CONNECTED SUMS AND DISTANT SUMS OF BRIDGE TRISECTIONS

Given two properly embedded smooth surfaces S; and S, such that one of them is in S*
and the other is in either B* or S*, we can form either their connected sum S;#S, or their
distant sum S; LSy, which will be a surface in either B* or S*. On the ambient 4-manifolds,
both the connected sum and the distant sum function as connected sums; the difference is
that for the connected sum the summing points are chosen to lie on S; and Sy and for the
distant sum the summing points are chosen to be disjoint from S; and S;. Whether we

perform a connected sum or distant sum, if 7; and 75 are bridge trisections for S; and S
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with trisection surfaces ¥; and X, respectively, and if the summing points are chosen to
lie on ¥; and s, then the connected sum > = Y1#3, is a trisection surface for a bridge
trisection 7 of S = S1#S55 or S = 57 LU Sy. When we perform the connected sum or distant
sum, we also say that the trisection 7 is a connected sum or distant sum, respectively. In
either case, the trisection surface for 7 is the connected sum of the trisection surfaces for 7Ty
and 7T3. See [13, Section 2.2] for more details on connected sum.

Observe that in a trisection surface X for a trisection 7 that is a connected sum or distant
sum, there is a simple closed curve s C X such that the summing 3-sphere P in the ambient
4-manifold intersects ¥ in s. In the case of the connected sum, P also intersects S;1#Ss
in a single simple closed curve. This 3-sphere P has the property that performing surgery
along P allows us to recover S; and Ti, as well as Sy and 73. In each trivial tangle in
the spine of 7T, the curve s bounds either a disk disjoint from S; LI Sy (in the case of a
distant sum) or a disk intersecting S;#S55 in a single point (in the case when the sum is a
connected sum). If the sum is a distant sum, then the curve s is essential in ¥ as neither
S1 nor S, is empty. If the sum is a connected sum, then s is essential in X if and only if
neither 77 nor 75 have bridge number 1/2 or 1. Moreover, we will show that if the loop s is
inessential, then S; or S, is an unknotted 2-sphere in S* or d-parallel disk in B*. Thus, if
s C X is an essential simple closed curve, we say that the trisection 7 and trisection surface
Y are a nontrivial connected sum or distant sum. Modelling our terminology on that of
Heegaard splitting theory, we say that a bridge trisection 7 with trisection surface ¥ and
spine § = (Z19, T12)U(Zag, To3)U(Zs1, T31)U(V, V' NIS) is reducible if there exists an essential
simple closed curve s C ¥ such that either for each choice of distinct 7, j € {1,2,3} the curve
s bounds a compressing disk in (Z;;,T;;) or for each choice of distinct 7,5 € {1,2,3}, the
curve s bounds a cut disk in (Z;;, T};).

Lemma 4.1. A bridge trisection T of a surface S in either B* or S* is a nontrivial connected
sum or distant sum if and only if it is reducible.

Proof. The “only if” direction was addressed in the previous paragraph. To prove the “if”
direction, suppose that 7 is reducible. Let s C ¥ be an essential curve in the trisection
surface for T such that s bounds either a compressing disk in each tangle (Z;;, T;;) forming
the spine for 7 or s bounds a cut disk in each tangle (Z;;,7;;) forming the spine for 7.
In either case, let D;; C Z;; be the c-disk. In both the punctured and unpunctured cases,
cutting the trivial tangle (Z;;, T;;) along D;; produces two trivial tangles, and surgering along
the union D;; U Dj;, in the 3- sphere or 3-ball Z;; U Z;;, decomposes the unlink or relative
spanning trivial tangle T} = T;; UTj; into the disjoint union of links or tangles. Since 7T was
the unlink or a relative spanning trivial tangle, these links or tangles are unlinks or relative
spanning trivial tangles. Thus, we have spines for bridge trisections 7; and 75 of surfaces
Sy and Sy, with one surface being in S* and the other being in B* or S*. Performing the
distant sum or connected sum of these trisections produces a trisection 7' with the same
spine as that of 7. By Lemma 2.6, this means that the original trisection is the distant or
connected sum of these two other trisections. O

In a similar spirit, we have the following characterization of trisections of surfaces in B*
that are either closed or whose boundary is disjoint from or a 1-braid with respect to the
boundary of the trisection surface.
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Lemma 4.2. Suppose that T is a relative trisection of S C B* with spine 8 = (Z1, T12) U
(Zag, Toz) U (Z31, T51) U (V,VNOS). If OS is a 0-braid or 1-braid in V' (equivalently, if each
T;; contains at most one vertical arc), then T is the distant sum or connected sum of a
trisection for a surface S'" C S* of bridge number |X N S|/2 with either the relative bridge
trisection of the empty surface in B* or a bridge number 1/2 relative bridge trisection of a
O-parallel disc in B*.

Proof. Let s C X be a 0-parallel simple closed curve. Since each 7T;; contains at most one
vertical arc, the curve s bounds a zero-punctured or once-punctured disk in each (Z;;,T;;).
(It must be the same type of disk in each.) As in the proof of Lemma 4.1, we can surger
the spine for 7 along those zero-punctured or once-punctured disks and this extends to a
surgery on S and ¥ in B*. The result is a trisection 7; of a surface S; C B* and a trisection
T of a surface Sy C S*. The trisection 77 has bridge number 0 or 1/2, as s was O-parallel
in 3. The trisection 75 has bridge number equal to that of 7. By Lemma 2.7, the surface
S, is either empty or a O-parallel disk. O

5. THE PANTS COMPLEX AND EFFICIENT DEFINING PAIRS

Suppose that ¥ is a compact surface with punctures. A pants decomposition of ¥ is a
collection of pairwise disjoint essential curves (up to isotopy) cutting ¥ into pairs of pants.
The cases that are of most interest to us are when ¥ is an admissible punctured sphere
or disk. If ¥ is a sphere with 2b > 4 punctures, then each pants decomposition of ¥ has
2b — 3 curves. If ¥ is a disk with 2b > 3 punctures, then each pants decomposition of 3 has
2b — 2 curves. Define P(X), the pants complex of 3, as follows. Each pants decomposition
of ¥ is a vertex of P(X). Two vertices are connected by an edge if the two corresponding
pants decompositions have all but one (isotopy class of ) curve in common and the two curves
where they differ (have representatives that) intersect minimally in exactly two points. The
distance d(x,y) between two collections of vertices x and y in P(X) is the minimum number
of edges in a path in P(X) between a vertex of x and a vertex of y. The pants complex for
admissible surfaces is connected and has infinite diameter, using the metric d [4]. We say that
a curve s C X is a common curve for a given path in P(X) if, for each pants decomposition
on the path, s is isotopic to one of the curves in the pants decomposition.

We will be using curves in pants decompositions to find reducing spheres and annuli. The
combinatorics in Lemma 5.8 are the reason for insisting that our reducing annuli be even.

If ¥’ is a disk with punctures (not necessarily admissible), a collection of pairwise disjoint
essential simple closed curves is a weak pants decomposition of ¥’ if it is either empty and
Y has two or fewer punctures, or if it cuts ¥’ into pairs of pants and annuli, such that at
most one of the pairs of pants is a once-punctured annulus and that annulus, if it exists, has
0% as one of its boundary components. For both trivial tangles and strictly trivial tangles
(B, k) with ¥ = 0, B, we define a certain subset of the vertices of P(X) to be the disk set
D,.. The case when (B, k) is a trivial tangle is the simplest.

Definition 5.1. Suppose that (B, k) is a trivial tangle with ¥ = 0B admissible. A vertex
x € P(X) lies in D, if and only if there is a collection of c-disks D C B such that z = dD.
Now suppose that (B, k) is a strictly trivial relative tangle with ¥ = 0, B admissible. A
vertex x € P(X) lies in D, if and only if there is a collection of properly embedded disks

and annuli D C B, transverse to x such that:
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) Each disk component of D is a c-disk for (B, k)
) Each annulus component of D is an even spanning annulus for (B, k).
)OoDNY ==z

1
2
3
4) 0D N 0_B is a weak pants decomposition of .

(
(
(
(
t

It is a well-known fact (and easy to prove) that if ¥ = 0B is an admissible sphere for
the trivial tangle (B, k), then D, is nonempty. We need the corresponding result for bridge
disks. See Figure 6 for an example.

042 o

FIGURE 6. The thin blue curves at the top of Z = D? x I form a pants
decomposition in the disk set of the strictly trivial relative tangle constructed
according to our recipe. We have labelled the curves v_ and 7" used in the
construction in the proof of Lemma 5.2.

Lemma 5.2. Suppose that (B, k) is a strictly trivial relative tangle such that |0 BN k| > 3.
Then D, # .

Proof. Let a C 0. B = X be the trace arc. By choosing « carefully we can guarantee that
as we traverse «a (in some direction) we encounter the endpoints of all vertical arcs prior to
encountering the endpoints of all bridge arcs and also that there is no nesting of the bridge
arcs of k in the trace disk a x I. The bridge arcs cut off bridge disks from a x I. And we can
pair up the adjacent vertical arcs so that, in pairs, they form two edges of the boundary of a
rectangle o/ x I where o is a subarc of o and int(o/ x I) Nk = &. We call such a rectangle
a parallellism. If the number of vertical arcs is odd, there will be one vertical arc left over
and we arrange for it to be the vertical arc whose endpoint is the first we encounter as we
traverse «.

Let 6 be the union of the bridge disks and parallelisms. Let o' C « be the subarc
containing exactly those punctures of k N d, B belonging to bridge arcs. Let a, =0 NI, B.
The boundary of a regular neighborhood of o is a collection of simple closed curves v, in
0. B, each bounding a twice-punctured disc in 0, B and each bounding an unpunctured disc
in (B, k).

If there are no vertical arcs, set 7/ = 0(0;B) and E = 0, B. Otherwise, let 7/ be the
boundary of a regular neighborhood of o and isotope it as necessary so that it bounds a
disc F in 0, B containing 7, in its interior. Observe that 4" bounds an unpunctured disc D
in (B, k).

Suppose, for the moment, that there are at least three vertical arcs. After boundary-
reducing (B, k) along D, it becomes (B’, k') = (D? x I, points x I). Using that product
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structure, the remnant of the disc D in 0, B’ projects vertically to an unpunctured disc
D' € 0_B" = 0_B. The parallelisms in o x [ survive to parallelisms between the arcs
of k'. Let 0_ be the arcs that are the intersections between these parallelisms and 0_B’.
Let v_ be the boundary of a regular neighborhood of _. Then each curve of v_ bounds a
twice-punctured disc in d_ B’ and additional curves can be added to v_ so that it is a pants
decomposition of d_B’ and is disjoint from D’. Extend ~_ vertically through the product
structure on (B’, k) to arrive at curves 7_ in 04 B disjoint from E. The curves 7_ bound
even spanning annuli. Additional curves can then be added to 7_ U~ U~y to turn it into
an element of D,.. The curves that are added either lie in £ and bound unpunctured discs
in (B, k) or are external to £ and bound even spanning annuli. If; on the other hand, there
are two or fewer vertical arcs, the construction of an element in D, is easier as the empty
set of curves is a weak pants decomposition of 0_B. ([l

Definition 5.3. Suppose that (Z, 7) is either an unlink or a relative spanning trivial tangle
with bridge surface ¥ dividing (Z, 7) into trivial tangles or strictly trivial relative tangles
(B,k) and (B’;\). A pair of pants decompositions = € D, and y € D, is said to be an
efficient defining pair if d(x,y) = d(D, Dy). (That is, if = and y are vertices in D, and D,
whose distance in the pants complex of ¥ is minimal.)

We can now define the Kirby-Thompson invariant of a bridge trisection. See Figure 7 for
a schematic representation of the efficient defining pairs for a trisection.

Definition 5.4. Suppose that S C B*or S C S* is a properly embedded surface with bridge
trisection 7 having trisection surface X and spine (Z2, Th2)Us;(Zas3, To3)Us (Z13, Th3)U(V, SN
V). For {i,7,k} = {1,2,3}, let (pgj,p;:k) be an efficient defining pair for (Z;;, T;;)Us (Z;k, Tik)-
If 32 is not admissible, define £(7) = 0. Otherwise, define £(7) to be the minimum of

d(pig: Pia) + d(phy, Ph) + d(D35. P3s)

over all such choices of efficient defining pairs. Define £(.S) to be the minimum of £(7") over
all trisections T of S with b(T") = b(.5).

Remark 5.5. Our definition of £ is not an exact parallel of that of Kirby and Thompson
[10] in three main regards. The first is that we use the pants complex, rather than the cut
complex, which is empty for punctured spheres and disks. Secondly, we calculate the distance
between pﬁj and pgj in the whole pants complex, rather than in the disk set. This is not a
serious point, but it allows us to avoid discussing the geometry of the disk set. Finally, in
defining £(.5) we minimize £(7) only over those trisections achieving the bridge number of S,
rather than over all trisections of S. In the context of bridge trisections, this may be the more
sensible definition for the following reason. Gay and Kirby show that any two trisections
of a 4-manifold become equivalent after stabilizing each some number of times. Kirby and
Thompson’s invariant does not increase under stabilization; thus, Kirby and Thompson’s
definition of their invariant as a minimum, is equivalent to taking its limit under trisection
stabilization. Bridge trisections, on the other hand, behave differently. Meier and Zupan
[13] show that any two trisections of a surface in S* become equivalent after some number
of perturbations and unperturbations, applied to each. (This was extended to higher genus
bridge trisections in [9].) Consequently, minimizing £ over all bridge trisections may no

longer be equivalent to taking a limit.
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FIGURE 7. Defining L£(7) via efficient defining pairs. The dots represent
pants decompositions of ¥ and the dark ellipses represent the disk sets. The
line joining pj, to pj, represents a geodesic path in the pants complex.

The remainder of this section is taken up with developing the properties of efficient defining
pairs and the geodesics in P(X) between them. Our analysis draws heavily from that of
Zupan [17, Lemmas 4.1 and 4.2]. We give the complete proofs since our setting is somewhat
different and since Zupan does not address the relative case.

5.1. The distance between an efficient defining pair. In this subsection, we establish
the distance in the pants complex between x and y forming an efficient defining pair for some
unlink or spanning relative trivial tangle.

Lemma 5.6. Let (S% L) be a link with bridge sphere 3 such that b = |S N L|/2 > 2 and
having ¢ > 1 components. Let (B,k) and (B, \) be the tangles on either side of 3. For
all x € Dy, and y € Dy, we have d(x,y) > b — c. Furthermore, if L is an unlink, then for
any efficient defining pair x € D, and y € Dy, equality holds. Additionally, 1f b > 3 and
d(x,y) = b— ¢, then for any geodesic in P(X) between the efficient pair there is a common
curve.

Proof. We first show that if L is the unlink of ¢ components, then there exist x € D, and
y € Dy with d(z,y) = b—c. If b = 2 and ¢ = 2, by part (1) of Lemma 3.3, there is
an unpunctured sphere intersecting X in a single essential simple closed curve z. Observe
that setting = y, we have © € D,, y € Dy and 0 = d(z,y) = b—c. If b = 2 and
¢ = 1, then by part (2) of Lemma 3.3, there exist compressing disks D, in (B, k) and D,
in (B, \) with = 0D, and y = 0D, intersecting twice. Thus, x € D, and y € D, and
we have 1 = d(x,y) = b — c¢. Assume, therefore, that b > 3 and that for any unlink L’ of ¢/
components having a bridge sphere with 4 < 2V’ < 2b points of intersection with L/, we have

pants decompositions for the trivial tangles on either side of the bridge sphere of distance
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at most b — ¢ from each other and lying in the corresponding disk sets. By parts (1) and
(3) of Lemma 3.3, there exists an unpunctured or twice-punctured reducing sphere S for X.
Surger (S%,L) and ¥ along S to obtain links (5%, L;) and (S®, Ly) with bridge spheres 3
and Yy. Let by and by be the corresponding bridge numbers and ¢; = |L;| and ¢y = |Ls|.
Recall that by + by — (¢1 + ¢2) = b — ¢ and both b; and by are at most b — 1, since SN Y
is essential in ¥. Notice also that if we transversally orient X, then >; and 3, also inherit
transverse orientations. For ¢ = 1,2, if b; > 2, let x; and y; be pants decompositions for ¥;
with z; lying in the disk set for the tangle below ¥; and y; lying in the disk set for the tangle
above ¥;. By our inductive hypothesis, we may choose z; and y; so that d(x;,y;) < b; — ¢;.
Ifb, =1,set ; =y; = &. The curves z =z U U (X NS) and y = y; Uy U (XN S) are
pants decompositions for ¥ lying in D,, and D, respectively. Geodesic paths in P(3;) and
P(35) from z; to y; and from x5 to y» can be concatenated to produce a path from x to y
in P(X) of length at most b — ¢, as desired.

Now suppose that L is any link. Since (B, k) and (B’, \) are trivial tangles, each with at
least two arcs, the sets D, and D, are non-empty. Thus, d(D,, D,) is well-defined. Choose
x € D, and y € D, so that d(z,y) = d(D,,D,). We will show that d(x,y) > b — ¢ by
induction on b > 2.

Consider first the case when b = 2, so x and y each correspond to a single curve on the
4-punctured sphere . If x and y correspond to the same curve, this curve must bound
compressing disks on both sides, so L is a two component unlink and 0 = d(z,y) = b — ¢,
as desired. If the curve is not the same for both vertices, then d(z,y) > 1. Since b = 2 and
¢ > 1, we have d(z,y) > b—c.

Suppose the result is true for all bridge spheres with bridge number less than b, and b
is at least 3. Each vertex of P(X) corresponds to 2b — 3 curves and b > ¢. Choose a
geodesic path in P(X) from x to y and let C C ¥ be the collection of common curves for
the geodesic. Adjacent vertices in P(X) differ by a single curve. Thus, if C = @, we have
d(x,y) > 2b—3>b— ¢, as desired. Suppose, therefore, that C # .

Let v € C. Since 7 is a component of both z and y, it bounds a c-disk in each of (B, k)
and (B’,)\). Since every sphere in S* separates, these are both compressing disks or both
cut disks. The union of these disks is either an unpunctured reducing sphere or a twice-
punctured reducing sphere S for ¥. Surger (53, L) and ¥ along S, to obtain links (S3, L)
and (S%, Ly) and bridge spheres ¥; and ;. Let b; and by be the corresponding bridge
numbers and ¢; = |Ly| and ¢ = |Lsy|. Recall that by, by < b and (by +by) — (¢1 +¢2) =b—c.
Let x;,y; be the restrictions of z and y to ¥;, and observe that either they are empty
or they are pants decompositions lying in the disk sets for the tangles above and below
Y;. If they are nonempty, since v C C, the geodesic in P(X) from z to y, restricts to a
geodesic in P(Y;) from z; to y;. Let D; be the length of this geodesic, or 0 if x; and y;
are empty. Observe that d(z,y) = D; + D,. Consequently, by our inductive hypothesis,
d(x,y) > (by — 1) + (b — c2) = b — ¢, as desired. O

We now turn to the relative case. For a bridge disk ¥ we let b be half the number of
punctures and for a tangle (Z,7) we let ¢ be the number of closed components and v the
number of arc components of 7. Note that § = b — (¢ + v/2) is a non-negative integer since
each closed component of 7 contributes a positive even number of punctures to X and each
arc component of 7 contributes an odd number of punctures to ¥. Recall that when b > 3/2,

by Lemma 5.2, the disk sets on either side of 3 are nonempty.
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Lemma 5.7. Let (Z,7) be a spanning relative tangle having bridge disk > such that b > 3/2.
Let (B,k) and (B', \) be the tangles on either side of ¥. For all x € D, and y € D,
d(x,y) > B. Furthermore, if (Z,T) is trivial then for any efficient pair x € D, and y € D,
equality holds. Additionally, if b > 2 and d(x,y) = 3, then for any geodesic in P(¥) between
the efficient pair there is a common curve.

Proof. This proof is much like that of Lemma 5.6, and we refer to that proof for several steps.
In particular, if each of x and A either contains no vertical arc or a single vertical arc, then
as in the proof of Lemma 4.2, we may decompose along a twice-punctured sphere P C (Z, 7)
intersecting X in a curve parallel to 3. The result will be a bridge disk ¥; of bridge number
0 or 1/2 for a (possibly empty) tangle in D? x I, together with a bridge sphere X of bridge
number b for a link in S®. In this case, the analysis of Lemma 5.6 applies directly to 3, and
our lemma can be easily derived from that. Suppose, therefore that at least one of k and A
contains at least two vertical arcs.

Suppose first that (Z,7) is trivial. We induct on the half integer b > 3/2. Suppose
b = 3/2. By our remarks above, at least one of xk or A contains at least two vertical arcs,
and is, therefore, the union of three vertical arcs. If the other contains a bridge arc, then we
contradict the fact that (Z, 7) is spanning. So both x and A are the union of three vertical
arcs. Each curve in ¥ bounding a twice-punctured disk in 3, lies in both D, and D,. In
particular D, = D) = P(X). Consequently, d(D,, D)) = 0 = [ and the result holds.

Suppose, therefore, that b > 2 and the result holds for all bridge disks of bridge number at
least 3/2 and less than b. By Lemma 3.3, (Z,7) contains an unpunctured reducing sphere,
twice-punctured reducing sphere, or even reducing annulus. In the proof of Lemma 5.6, we
handled the reducing spheres and the analysis here is essentially the same, so we do not
repeat it. Consider, therefore, the case when there is an even reducing annulus A. Let
(Zy1,m) and (Zs,72) be the relative tangles resulting from surgery along A, and let ¥; and
Y5 be the bridge disks. Let b; = |¥; N 7;| and let ¢; be the number of closed components
of 7; and v; the number of arc components. Observe that b; + by = b, ¢; + ¢ = ¢, and
vy + vy = wv. If by > 3/2, let z; and y; be the pants decompositions of ¥; provided by the
induction hypothesis. If b; < 3/2, set x; = y; = &. Then, as in the proof of Lemma 5.6,
Uz U(SNE) and y3 Uy U (SNX) are the desired pants decompositions with d(x,y) < f.

Suppose now that (Z,7) is any spanning relative tangle with b > 3/2. Let = € D, and
y € D,. We again induct on b. As before the case when b = 3/2 can be handled by reducing
to Lemma 5.6. So assume b > 2. We will show that d(x,y) > 8 and that if equality holds
then there is a common curve on each geodesic from x to y.

Choose a geodesic in P(X) from x to y and let C be the set of common curves for the
geodesic. Recall that every pants decomposition of ¥ contains 2b — 2 curves. Note that
b > ¢+ v/2. Equality holds if and only if each closed component intersects ¥ exactly twice
and each arc component intersects exactly once. Thus, if b > 2, then b+ (¢ +v/2) > 2, and
so 2b—2 > f. If C = @, then d(x,y) > || = 2b — 2 since every curve of x must be moved
while traversing the geodesic. In which case, d(x,y) > f.

Suppose, therefore, that there is a curve v € C. As v C x Ny, it bounds a c-disk or
even spanning annulus to each side of ¥. By Lemma 3.1, it bounds the same type of disk
or annulus to both sides. If v bounds compressing disks or cut disks for both (B,, ) and
(By, o), their union is an unpunctured or twice-punctured reducing sphere for ¥, and we

proceed as in Lemma 5.6. Suppose that v bounds an even spanning annulus A, in B, and an
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even spanning annulus A, in B,. Recall that as z € D,, there are curves 2/ C 0_B, giving
a weak pants decomposition of 0_ B, so that there are annuli joining 2’ to a subset of . All
other curves of x bound compressing or cut-disks in (B,, ). By the definition of disk set,
each curve of 2/ bounds a disk in J_B, containing an even number of punctures. Similar
statements hold for the curves of y. Thus, A = A, U A, is an even reducing annulus. The
argument now mimics that of the reducing sphere case to achieve the desired conclusion. [

5.2. Common cut disks. In this section, we study the properties of geodesics between the
terms of an efficient defining pair. The goal is to show that if the distance is positive, then
all curves in either pants decomposition of the efficient defining pair that bound cut disks
are cCoOmmon curves.

Lemma 5.8. Suppose that (Z, L) is either (S, unlink) or a spanning trivial relative tangle
and that ¥ C Z is a bridge sphere or disk dividing (Z, L) into tangles (Zy, L1) and (Zs, Ls).
Let S be a collection of pairwise disjoint unpunctured reducing spheres or even reducing
annuli for 3 such that no two curves of S N3 bound an unpunctured annulus in ¥\ S. Let
¢ be the number of closed components of L and v the number of arcs. Then

2c+v—34 03] > |S].

Proof. Let T be the dual tree to S in ¥. If X is a disk, let r be vertex of I' corresponding
to the component containing 9% and consider it to be the root of I'. If S is sphere, then I’
does not have a root. For n = 1,2, let V,, be the number of non-root vertices of I' of degree
n. Let V3 be the number of non-root vertices of degree at least 3. By the degree formula for
graphs,

215 > Vi + 2V5 + 3V3 + deg(r) |0X].
Since the Euler characteristic of a tree is 1, V; + Vo + V3 = 1 4 |S| — |0%|. Thus,

21S] > 3(1 4 |S| = |95)) — Vs — 24 + deg(r) |05,

Hence,
2V1 + Vo + [0%[(3 — deg(r)) — 3 > |9

Suppose that >’ C ¥\ S corresponds to a non-root degree one vertex of I'. Since each
curve of SN is essential, |[L N Y| > 2. Thus, as each component of S is unpunctured,
the region of B\ S containing ' contains a component of L. Furthermore, if it contains an
arc component, then as all the annuli in S are even it contains at least two arc components.
Consequently, if ¢; (resp. v1) is the number of closed components (resp. arcs) of L lying in
regions of B\ S corresponding to non-root degree one vertices of I' then ¢; +vy/2 > V. If r
has degree one, then the corresponding region of B\ L contains at least one component of
L, which could be either a closed component or an arc.

Suppose that ¥’ C 3\ S corresponds to a non-root degree two vertex of I'; let B’ C B\ S
be the region containing 3. Since no two curves of SNY are parallel in the punctured surface
Y, |LNY'| > 1. Thus, B’ contains at least one component of L. Suppose that component is
an arc. Let 71 and 9 be the components of 9% and choose the notation so that v; bounds
a disc in ¥ containing 5. Since B’ contains an arc, -; is contained in an annulus component
A of S. Suppose, first, that 7, is contained in a sphere component S’ C S, then S’ bounds
a 3-ball in B disjoint from all the arcs of L. Since A is an even reducing annulus, we see
that B’ contains at least two arcs of L. If v, is contained in an annulus component A" of S,

then as both A and A’ are even, we see that again B’ contains at least two arcs of L. Let
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o (resp. vg) be the number of closed components (resp. arcs) of L lying in regions of B\ S
corresponding to non-root degree two vertices of I'. We see that ¢y + v9/2 > V5. Thus, if
|0%| = 0, we have:

2c+v—3>2c1+v1+ca+v/2—-3> |95
If |0X| =1 and deg(r) = 1, then as mentioned there is at least one arc not contributing to
v1 + v9. Thus, if ¥ is a disk, we have

2c+v—=34+1>142¢;+v;+co+v3/2—34 (3 —deg(r)) >|5],
as desired. n

Lemma 5.9. Let (Z, L) be an unlink or spanning trivial relative tangle. Let ¢ be the number
of closed components and v the number of arc components of L. Suppose ¥ C Z is a bridge
sphere or disk of bridge number b. If ¥ is a sphere, assume b > 3; if ¥ is a disk, assume
b>2. Let (B, k) and (B’,\) be the tangles to either side of 3. Suppose that x € D, y € D,
are an efficient pair. If d(x,y) > 0, then for any geodesic from x to y, there exists a common
curve s such that s bounds cut disks in both (B, k) and (B, \).

Proof. Suppose d(x,y) > 0. By Lemmas 5.6 and 5.7, d(z,y) = b— (c +v/2). Let 6 = |0X].
Fix some geodesic from x to y and let C be the collection of all common curves of the
geodesic. Since b > 3 — ¢, Lemmas 5.6 and 5.7 show that C is nonempty.

Since a vertex in P(X) corresponds to 2b — 3 + 0 curves on ¥, and adjacent vertices on
the geodesic differ by exactly one curve,

d(z,y) >2b—3+6—|C|.
Hence,
IC| > (2b—3+0) —d(z,y) =b+ (c+v/2) —3+4.
By Lemma 3.1, each component of C either bounds a compressing disk to both sides, a

spanning annulus to both sides, or bounds a cut disk to both sides. If no component of C
bounds a cut disk to both sides, then by Lemma 5.8,

2c+v—3+5>|C|>b+c+v/2—-3+4.

Now, b > ¢+ v/2 since each closed component of L intersects ¥ at least twice and each
arc component at least once. Thus,

2c+v—3+0>1C| >2c+v—3+0.

Consequently,

C=2b—3+0.
This is the number of curves in = (equivalently, in y) so z = y. But this implies that
d(x,y) = 0, contradicting our hypothesis. d

Lemma 5.10. Let (Z, L) be an unlink or spanning relative trivial tangle. Let ¢ be the number
of closed components and v the number of arc components of L. Suppose ¥ C Z is a bridge
sphere or disk of bridge number b. If ¥ is a sphere, assume b > 3; if ¥ is a disk, assume
b> 2. Let (B,k) and (B, \) be the tangles to either side of ¥.. Suppose that x € D, y € D,
are an efficient pair. A curve vy in x bounds a cut disk in (B, k) if and only if it is also a
curve in y and bounds a cut disk in (B, \). Furthermore, such a curve is a common curve

for every geodesic from x to y.
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Remark 5.11. Notice that if = and y are an efficient defining pair with d(z,y) = 0, then
x =y and a curve in z = y bounds a cut disk to one side if and only if it bounds a cut disk
to the other side by Lemma 3.1. The only geodesic from x to y is the constant geodesic,
so such curves are again common curves for any (i.e. the only) geodesic from x to y. The
difference between this situation and that when d(x,y) > 0 is that such a curve need not
exist. If d(x,y) > 0, then such a curve exists by Lemma 5.9.

Proof of Lemma 5.10. Suppose, first, that v is a curve common to x and y which bounds
a cut disk in (B, k). By Lemma 3.1, it also bounds a cut disk in (B’, A). Thus, it suffices
to show that if v is a curve in x bounding a cut disk in (B, k), then it also lies in y and is
a common curve to every geodesic from x to y. If d(x,y) = 0, then x = y and the result
follows trivially. Assume d(z,y) > 0 and that v C z is a curve bounding a cut-disk in (B, k).
Fix some particular geodesic « from x to y in P(X). By Lemma 5.9, there exists a common
curve s C X for the geodesic that bounds a cut-disk to both sides of . If s = v we are done,
so suppose that s # 7.

We induct on b+ |0%|. We consider two base cases. First, ¥ is a disk and b = 2. Second,
Y. is a sphere and b = 3. Suppose ¥ is a disk and |¥ N L| = 4. The curve 7 must bound
a disk in ¥ which contains 3 punctures. Any pants decomposition of the 4-punctured disk
contains at most one such curve, so in both z and y that curve is v = s, contrary to our
assumption. Suppose X is a sphere and b = 3. The curve v must cut X into two disks each of
which contains exactly three punctures. Any pants decomposition of the 6-punctured sphere
contains at most one such curve. Hence, v = s. This argument applies symmetrically to
curves bounding cut disks in (B’, A). Again, the uniqueness of s in x and y implies the result.

Suppose b+ [03] > 2. Surger (Z, L) and X along the twice-punctured sphere S such that
S NY =s. This results in two trivial pairs (Z;, L) and (Z2, Lo) containing bridge surfaces
¥, and 5. Choose the notation so that 9% C 0%5. Note that Z; = S? while Z, is either S
or D? x I. Let b; and by be their bridge numbers respectively and recall that by +by = b+ 1.
We show that we can apply our inductive hypothesis to whichever of ¥; or ¥, contains 7.

The curve s bounds a disk in ¥ containing an odd number (at least 3) of punctures. If
3 is a sphere, then it bounds two such disks. Thus, in either case, >, is a sphere with at
least 4 punctures and b; > 2. Thus, by < b and by + |0%s| < b+ [0X]. If by = 2, then v does
not lie in ¥, as both it and s bound disks in ¥ containing an odd number (at least 3) of
punctures and they are not isotopic (by assumption).

Similarly, if 3 is a sphere, then Y, is also a sphere with at least 4 punctures, by > 2, and

by =b; + |821| <b+ ‘82‘ =b.

If by = 2, then, as above, v does not lie in Y.
If ¥ is a disk, then Y5 is a disk with at least two punctures and X; is a sphere. Thus,
b, > 1 and v; = 0. Consequently,

If b = 1, then s bounds a once-punctured annulus in ¥ with 0¥. In which case, v does not
lie in 3. If by = 3/2, then s bounds a twice-punctured annulus in ¥ with d%. Since both ~
and s bound disks in 3 with an odd number of punctures, again v does not lie in 3.
We conclude that if 7 lies in ¥;, then b; + |0%;| < b+ |0%], and b; > 2 if ¥; is a disk and
b; > 3 if X; is a sphere.
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Let ¢; and ¢y be the number of closed components of L; and Ly respectively and vy the
number of arc components of Ly. Recall that ¢; + (c2 + v2/2) = ¢ + (v/2) + 1. Let d; be
the distances in P(%;) between the the induced pants decompositions for ¥;. The original
geodesic path a from z to y restricts to a geodesic path «; in P(3;). Likewise, « restricts
to a geodesic path ay in P(Xs). Since s is a common curve for the geodesic from z to y,
d = dy + dy. By Lemma 5.6 and Lemma 5.7, d; > by — ¢; and dy > by — (co + v2/2).

Consequently,

b—(C+U/2):(bl—cl)+(bg—(02+vg/2)) §d1+d2:d:b—(c+v/2)

ThU.S, d1 = bl — C1 and d2 = bg — (02 + U2/2).

Suppose that v C %;. If d; = 0, then 7 is also a common curve for «; (and thus for «), as
desired. If d; > 0, we apply the inductive hypothesis to conclude that v is again a common
curve for a; (and thus for a), as desired. O

6. REDUCIBLE TRISECTIONS

In this section, we begin by considering the case when £(7) = 0. A similar analysis could
likely be used to classify trisections with £ < 2. Afterwards, we establish a relationship
between L, b(7T), and the topology of S. We use the classification of bridge trisections of
surfaces in S* having bridge number at most 3 by Meier and Zupan [13, Theorem 1.8]. Such
surfaces are unknotted. Furthermore if the bridge number is equal to 1, then the surface is
an unknotted 2-sphere.

Theorem 6.1. Suppose that T is a bridge trisection of a surface S in W, with W equal
to S* or BY, such that L(T) = 0. Then S is a connected sum or a distant sum of some
number of copies of unknotted spheres, unknotted projective planes, and boundary-parallel
disks. Furthermore, T is the connected sum and distant sum of trisections for those surfaces.

Proof. Suppose the spine for T is (Z12, T12) Us, (Zag, To3) Us (Z13, Th3) U (V, V. N OS).

We induct on b. However, we treat the cases when b is small separately since many of the
results from Section 5 require a lower bound on b.

First, suppose that ¥ is a sphere. There is a unique trisection of bridge number one, that
of the unknotted sphere. If b = 2, then by [13, Theorem 1.8] S is unknotted. Moreover,
for a (b;cy, co, c3)-bridge trisection of S, —b + ¢; + 2 + ¢3 = x(5). So, x(S) > 1. Since
a bridge number two surface can have at most two components, S is either an unknotted
sphere, unknotted projective plane, or the distant sum of unknotted spheres. In the latter
case, T is the distant sum of bridge number one trisections.

Next, suppose ¥ is a disk. If each T}; has zero or one vertical arcs, then by Lemma 4.2, T
is the distant sum or connected sum of a bridge trisection of the same bridge number of a
surface in S® with either a bridge trisection of the empty surface in B or a bridge trisection
of bridge number 1/2 of a d-parallel disk in B®. Assume, therefore, that each T}; has at least
two vertical arcs. In particular, b > 1.

If b =1, then each 7} is a trivial spanning tangle. Since each T;; contains at least (and,
therefore, exactly) two vertical arcs, every 7 is a 2-strand braid and the result follows by
Lemma 2.7. If b = 3/2, then each Tj; is the union of 3 vertical arcs, since each T;; contains

at least two vertical arcs. The result again follows from Lemma 2.7.
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Henceforth, we assume that if 3 is a sphere, then b > 3 and if ¥ is a disk, then b > 2. We
also assume that the result holds for all trisections of bridge number strictly smaller than 7
having £ = 0.

Choose efficient pairs (pgj,p;:k) in the disk sets for the tangles (Z;;,T;;) and (Z;i, Tjx) as
in the definition of £(7) so that

0= ﬁ(T) = d(p%mpiz) + d(P%&ng) + d(Pigapi?,)-

We conclude that pi, = p?y, P33 = p3s, and pi; = pi;. For simplicity call these points p, g,
and r, respectively. Fix geodesics between them.

Case l: p=q=r.

In this case, each curve s of p bounds a c-disk or spanning annulus in each of (Z;, T12),
(Zas, Tn3), and (Z13,T13). By The Consistent Bounding Corollary 3.2, s satisfies one of the
following:

(1) s bounds a compressing disk in each of (Z12,T12), (Za3, Ta3), and (Z13,113).
(2) s bounds a cut disk in each of (Z12,T12), (Zas, Ta3), and (Z13,113).
(3) s bounds a spanning annulus in each of (Z19,T1s), (Zas, To3), and (Z13, T'3).

By Lemma 4.1, if any curve s of p satisfies (1) or (2), the trisection 7 is a distant sum or
connected sum of two other trisections 7; and 75 with bridge surfaces >; and ¥, respectively.
If ; is admissible, then the restriction p; of p to the side of s in ¥ corresponding to »; is
nonempty. In that case, p; lies in the disk sets for all three tangles forming the spine of 7;
and so L(7;) = 0, as desired. If ¥; is not admissible, then £(7;) = 0, by definition. Recall
that b(7;) < b(T) for i = 1,2. Apply our inductive hypothesis to 7; to conclude that 7 also
satisfies the conclusion of the theorem.

Suppose, therefore, that every curve s of p satisfies (3) and no curve of p satisfies (1) or
(2). This implies that each T}; contains only vertical arcs. By Lemma 2.7, S is the union
of boundary parallel disks, each having bridge number 1/2 with respect to ¥ and the result
again follows.

Case 2: No two of p, ¢, and r are equal.

Let a(pq), a(gr) and a(pr) be the chosen geodesics between p and ¢, between ¢ and r,
and between p and r, respectively. Since d(p,q) > 0 and d(p,r) > 0, by Lemma 5.10 and
Remark 5.11, every curve in p that bounds a cut disk in (Z12,712) (and there is at least one
such curve) is a common curve for both a(pg) and a(pr). In particular if s is such a curve,
then s bounds a cut disk in all three of (Z19,T12), (Za3, Ta3), and (Z13, T13). Observe it must
also be a common curve for a(gr) by Lemma 5.10. Consequently, by Lemma 4.1, the result
holds for 7, as in Case 1.

Case 3: Exactly two of p, ¢, and r are equal.

Without loss of generality, assume that p = ¢ and p # r. Since d(p,r) > 0, by Lemma
5.10 and Remark 5.11, there is a curve bounding a cut disk in (Z32,T72) that is a common
curve for both a(pr) and a(gr) and there is at least one such curve s. Since a(pq) is the
constant geodesic, s is also a common curve for a(pg). The result now follows as in Case
2. L]

Applying this result to a trisection witnessing £(.5) and using the fact that the connected
sum and distant sum of unknotted 2-spheres and unknotted nonorientable surfaceis the
distant sum of unknotted 2-spheres, we have the first theorem advertised in the Introduction.
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Theorem 6.2. Suppose that S C S* is a smooth, closed surface with £(S) = 0. Then S is
the distant sum of unknotted 2-spheres and unknotted nonorientable surfaces.

For the statement and proofs of the next theorems, let S be a surface in S* and consider a
bridge trisection T of S having bridge number b. Let S = (Z12, T12) Us (Za3, To3) Us (Z31, T31)
be the spine of 7 and let ¢; be the number of closed components of L; = a;; U aj;. Set
L = L(T). For each {i,j,k} = {1,2,3}, choose efficient pairs (pgj,pgk) for the tangles
(Zi;, T;;) and (Z;i, Tji) so that

L = d(p1y, pla) + d(p33, 33) + (P13, p13).
For each {i, j, k} = {1,2,3} choose a geodesic (i) from pfj to pi, and a geodesic a(ij) from
pi; to pgj. Let C(i) be the set of common curves for a(i) and C(ij) be the set of common
curves for a(ij).

Theorem 6.3. Suppose that T is a bridge trisection of a smooth, closed surface S C S*
with b > 3. If
LSQ(Cl—I—CQ—I—Cg)—g,

then T is a nontrivial connected sum or distant sum.

Proof. Since X is a sphere and b > 3, the surface X is admissible.

Case 1: There exists a curve s common to two of C(1), C(2), and C(3).

Without loss of generality, suppose it to be common to C(1) and C(2). In this case, the
curve s is a curve of the pants decompositions ply, pl; and p3; (as well as p,). Thus, it
bounds a c-disk in all three tangles (Z12,T12), (Z13,T13) and (Za3,Ts3). By the Consistent
Bounding Corollary 3.2, it bounds a compressing disk in all three tangles or a cut disk in all
three tangles. By Lemma 4.1, T is a connected sum or distant sum.

Case 2: There is no curve common to any two of C(1), C(2), and C(3).

As at the start of the proof of Lemma 5.9, for each i € {1, 2,3}

IC(i)| > b+¢; — 3.
Thus, as we traverse a(ij), no curve of C(i) can persist to C(j). Since C() contains at least
b+ ¢; — 3 curves and C(j) contains at least b + ¢; — 3 curves, then the image of C(7) under
a(ij) and C(j) must intersect in at least ¢; + ¢; — 3 curves. Thus, d(pﬁj,pgj) > ¢ +cj — 3.
Consequently,
LZ2(01—|—62—|—63)—9.

As a corollary we have a theorem advertised in the introduction.

Theorem 6.4. Suppose that S C S* is smooth, closed, and prime. Then
L(S) > 2b(S) +2x(S) — 9.

Proof. Suppose S is smooth, closed, and prime. Let 7 be a (b; ¢y, co, c3)-bridge trisection of
S with b= b(S) and L(T) = L(S). Recall that ¢; +co+c3 = b+ x(S5). If b < 3, then by [14],
S is unknotted, contradicting primality. Thus, b > 3. By the contrapositive of Theorem 6.3,

we have our inequality. U
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Theorem 6.5. Suppose b > 4, and that S is connected and not an unknotted 2-sphere or
unknotted projective plane. If

(1) L(T) < %(b+cl Festes)— 3,

then there is a nontrivial connected sum decomposition of T into bridge trisections Ty and
Ty for surfaces S1 and Sy such that:

(1) b(T1),b(Tz) > 2,

(2) L(Th) + L(T2) = L(T), and

(8) Either both Sy and Sy are nonorientable or So is unknotted.

Remark 6.6. As remarked in [13], if T is a (b; ¢y, g, c3)-trisection for a surface S C S*,
then x(S) = ¢1 + ¢2 + ¢3 — b. Thus,

b—FCl—l-CQ—l-Cg:X(S)—FQb.

In particular, if S is orientable, then the right hand side of Inequality (1) is an even integer.

Proof. Meier and Zupan showed that every bridge trisection of bridge number at most 3 is a
bridge trisection of an unknotted surface [13, Theorem 1.8]. We prove our result by induction
on b, handling the base case and inductive case simultaneously. Assume that b > 4 and that

1
L§5(6+01+02+03)—3.

Note that ¥ is admissible and that 7 cannot be a distant sum as S is connected. Assume
also that the result holds for any trisection with bridge number at least 4, strictly less than
b, and satisfying the corresponding Inequality (1).

Case 1: There is a curve s common to all six of C(1), C(2), C(3), C(12), C(23), and C(13).

By the Consistent Bounding Corollary 3.2, s bounds a cut disk in all three tangles (Z;;, T};)
for distinct 7,5 € {1, 2,3} or that curve bounds a compressing disk in all three tangles. By
Lemma 4.1, 7 is a nontrivial connected sum with factors 77 and 7. For i = 1,2, the
bridge number b(7;) satisfies 2 < b(7;) < b since the connected sum is nontrivial and by the
properties of connected sum. If b(7;) < 3, for i = 1 or ¢ = 2, then by Meier and Zupan’s
result, we are done. So also suppose that b(7;) > 4, for ¢ = 1,2. This implies that the
trisection surface ¥; for 7; is admissible. Consequently, each of the six geodesics a(i) and
a(ij) for distinct 4, j € {1,2, 3}, restrict to geodesics in P(%;). Hence, L(T;)+L(Tz) = L(T).

Suppose that 7T; is a (b;; x;, y;, z;)-trisection. Recall that

b = bi+b—1

1T = 1’1—|—1E2—1
2 = Y1ty —1
C3 = Zl—|—22—1.

Fori=1,2, let B, = %(bz + x; + y; + z;) — 3. By Remark 6.6, for orientable surfaces it is a
positive integer. We have
L(Ti)+ L(T3) < By + By + 1.
Since L is an integer, either both S; and S, are non-orientable (with odd Euler characteristic)
or L(T;) < By or L(T3) < Bsy. If both S; and S, are non-orientable, we have our theorem.
If not, the result follows by applying the inductive hypothesis to whichever 7; satisfies the
inequality.
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Case 2: There is no curve common to all six of C(1), C(2), C(3), C(12), C(23), and C(13).

Let £(i) = b — ¢; be the length of a(i) and £(ij) = d(pﬁj,pgj) be the length of a(ij). Recall
that L = ((12) 4+ £(23) + ¢(13).

Consider a curve s of p}, as we traverse the loop A defined by the geodesics (1), «(13),
a(3), a(23), and «(2). By the hypothesis of the case, the curve s must be moved as we
traverse one of the edges of the loop. When it does so for the first time, it becomes a new
loop s/ C X intersecting s exactly twice. At the conclusion of our traversal of the loop, we
arrive back at pl,, a collection of pairwise disjoint curves. Thus, s’ must be moved again as
we traverse some subsequent edge of the loop. As pi, has 2b — 3 curves,

0(1)+0(2) +£(3)+ L >2(20— 3).
Consequently,
3b—(c1 +co+c3)+ L >4b—6.
Thus,
L>b+ (1 +ca+c3) —6.
By Inequality (1),

1
§(b—|—cl+c2+03)—3ZLZb+(01+02—|—03)—6.

Thus, L = 0 and so by Theorem 6.1, S is an unknotted 2-sphere or nonorientable surface
and 7T is the connected and distant sum of trisections of unknotted 2-spheres and projective
planes. In the latter case, if there is more than one projective plane in the sum, we see that
the result still holds. 0

Theorem 6.7. If S C S* is a smooth, closed, connected, orientable, irreducible surface then
L(S) > b(S) = g(5) = 2,
where g(S) is the genus of S.

Proof. Suppose that S is smooth, closed, connected, orientable, and irreducible. By [13,
Theorem 1.8, b = b(S) > 4. Let T be a (b; ¢1, ¢a, c3)-trisection of S such that L(T) = L(S5).
Recall that 2 — 2¢(S) = x(S) = ¢1 + co + ¢3 — b. If T is a nontrivial connected sum with
factors 77 and 75 that are bridge trisections of surfaces S; and S, with Sy being trivial, then
S, must be an unknotted sphere, since S is irreducible and orientable. But the fact that the
connected sum is nontrivial contradicts the choice of T to satisfy b(7) = b(S). Thus, by
Theorem 6.5,

L(S) = L(T)
> %(b—FCl—FCQ—FCg) -3
= 5(26 +2—29(5)) -3
= b—g(S)—2.
O
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