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Abstract. In this paper we explore the topological properties
of self-replicating, 3-dimensional manifolds, which are modeled by
idempotents in the (2+1)-cobordism category. We give a classi-
fication theorem for all such idempotents. Additionally, we char-
acterize biologically interesting ways in which self-replicating 3-
manifolds can embed in R3.

1. Introduction

The motivation of this paper is the study of self-replicating 3-manifolds.
Intuitively, a 3-manifold M is self-replicating if it contains a surface F
such that cutting along F yields two components, each homeomorphic
to M . Kauffman previously suggested that the natural model for gen-
eral self-replication is that of idempotents in appropriately topological
categories [6]. Previous classification of idempotents in topological cat-
egories include the Temperley-Lieb category [1] and the tangle category
[2]. In this paper we model self-replicating 3-manifolds as idempotents
in the (2 + 1)-cobordism category and classify all such morphisms.
We also explore questions of the embedability of self-replicating 3-
manifolds in R3.

An idempotent of a category is a morphism that is idempotent with
respect to composition, i.e. a morphism M such that M = M ◦ M .
Idempotents have applications to the theory of quantum observation
[8], self-replication in biology [6], and algebraic structures associated to
quantum theory [4]. An idempotent M splits if there are morphisms
P and Q such that M = P ◦ Q and Q ◦ P is an identity morphism.
Any morphism M that splits is idempotent (if Q◦P is an identity, then
(P ◦Q)◦(P ◦Q) = P ◦(Q◦P )◦Q = P ◦Q). However, in many categories,
not all idempotents split. Let C denote the (2 + 1)-cobordism category.
In this paper, the objects in C are compact, orientable surfaces. The set
of morphisms of C from F1 to F2 is denoted Mor(F1, F2) and consists of
compact, orientable 3-manifolds M for which F1∪F2 naturally embeds
in ∂M .

Theorem 1.1. If M ∈ Mor(G,G) is an idempotent such that M and
G are connected as manifolds, then M splits.
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The above theorem establishes the first goal of this paper, a clas-
sification of self-replicating 3-manifolds. Idempotents that split are
particularly simple since they are in one-to-one correspondence with
decompositions of the identity morphisms. It was previously shown
that all idempotents in the category of unoriented tangles up to iso-
topy split [2]. Our proof of the above theorem is inspired by the strat-
egy employed in that paper. However, there are several key technical
differences.

The second goal of this paper is to explore the concept of realizability
of self-replicating 3-manifolds in R3. As we will show in Proposition 4.1,
all idempotents embed in R3. However, when we view self-replicating
3-manifolds as a model for biological life some examples of embeddings
of idempotents in R3 seem to violate the key biological property of
dispersal, the process by which individuals move from the immediate
environment of their genetic relatives to establish in an area more or less
distant from them. For example, each copy of D2 × I in the bottom
right of Figure 1 can “move” away from the other by, for example,
translating the top copy of D2 × I upward. Thus, this embedding
as a model for a type of biological life seems to have a mechanism
for biological dispersal. Alternatively, the two genus 2 handlebodies
depicted in the upper right of Figure 2 and on the right of Figure 3 are
linked together and thus cannot be “moved” apart. So, this embedding
seems to have no mechanism for biological dispersal.

Although there is a rich history of analytically modeling dispersal in
a living population, here we are interested in a topological definition
that captures the idea that two subsets of R3 can “move” away from
each other. The natural choice seems to be the notion of unlinked
subspaces. Given two compact, connected, disjoint subspaces X and
Y in R3 we say that X and Y are unlinked if there exists an embedded
2-sphere S in R3 that separates X from Y . On the left of Figure 3 we
give an example of two unlinked handlebodies. On the right of Figure
3 we give an example of two handlebodies that are linked. To our
knowledge, this is the first time that the concept of biological dispersal
has been modeled topologically.

We adapt our topological model of biological dispersal to self-replicating
3-manifolds in the following way. Given a decomposition of a morphism
M of C as M = M1 ◦M2, the decomposing surface F is the properly
embedded surface in M corresponding to the codomain of M2 and the
domain of M1. An idempotent 3-manifold M ∈ Mor(F, F ) has an
effective embedding into R3 if the image of M in R3 can be surgered
along the decomposing surface F corresponding to M = M ◦ M to
produce two embeddings of M , denoted M1 and M2, such that M1 and
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M2 are unlinked. Figure 3 gives an example of an effective embedding
and an example of an embedding that is not effective.

→ →

→ →

Figure 1. Above: A model of cellular division as a 3-
ball self-replicating by splitting into two 3-balls. Below:
D2×I splitting into two copies of D2×I as an idempotent
in the (2+1)-cobordism category. Note that since D2×I
is homeomorphic to a 3-ball, we can think of these two
models of self-replication as being topologically equiva-
lent.

We say an idempotent in C is trivial if it is the identity morphism
on some compact surface F . In particular, an identity morphism is
homeomorphic to F×I. We call a surface planar, if it embeds in S2. All
identity morphisms on planar surfaces have effective embeddings into
R3. However, the identity morphism on the torus does not. See Figure
2 for an example of a trivial idempotent with an effective embedding
and an example of a non-trivial idempotent realized by an embedding
that is not effective.

The following theorem gives a characterization of self-replicating 3-
manifolds with effective embeddings into R3.

Theorem 1.2. Suppose G is a connected compact orientable surface
and M is a connected idempotent with M ∈ Mor(G,G). The 3-
manifold, M , effectively embeds into R3 if and only if M is an identity
morphism and G is planar.
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Figure 2. Two representations of the genus 2 handle-
body as an idempotent in the (2+1)-cobordism category.
The top representation is not an effective embedding.
The bottom representation is a trivial idempotent and
an effective embedding.

The paper is organized as follows. In Section 2 we give a rigorous
definition of the (2+1)-cobordism category and establish the 3-manifold
machinery needed for the subsequent proofs. In Section 3 we prove
Theorem 1.1. In Section 4, we prove Theorem 1.2.
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Figure 3. Left: Two unlinked genus 2 handlebodies
in R3 representing an effective embedding of a trivial
idempotent in the (2 + 1)-cobordism category. Right:
Two linked genus 2 handlebodies in R3 representing an
embedding of an idempotent in the (2 + 1)-cobordism
category that is not effective. Note that we have isotoped
the top-right handlebody slightly so that we can better
see that it is linked to the bottom-right handlebody.

2. Preliminaries

2.1. Idempotents in the (1 + 1)-Cobordism Category. We begin
with a discussion of the (1 + 1)-cobordism category as a means of
developing intuition for our results in the (2 + 1)-cobordism category.
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Here we take a somewhat informal perspective. However, we carefully
build the definition of the (2+1)-cobordism category in the next section.

The (1+1)-cobordism category has objects consisting of disjoint col-
lections of finitely many circles. A morphism in this category is a com-
pact surface with boundary components partitioned into two groups
corresponding to the domain and range of the morphism. We can vi-
sualize composition of these morphisms as “stacking” one on top of
another.

Suppose F is an orientable connected idempotent in the (1 + 1)-
cobordism category. Since F is homeomorphic to F ◦ F , an Euler
characteristic computation tells us that χ(F ) = 2χ(F ) and χ(F ) =
0. By the classification of surfaces, it follows that F is an annulus,
representing the identity morphism on S1.

As we will see, the classification of idempotents in the (2 + 1)-
cobordism category is much more involved. In particular, although
there is only one orientable connected idempotent in the (1+1)-cobordism
category, there is a rich infinite family of orientable connected idempo-
tents in the (2 + 1)-cobordism category.

2.2. The (2 + 1)-Cobordism Category. We begin this section with
a description of the (2 + 1)-cobordism category. For additional details
on this category see [3] and [7]. A triad is a triple (M,F,G) where M
is a smooth compact 3-manifold and F and G are smooth, compact,
orientable 2-manifolds such that ∂M = (FqG)∪X with X ∼= (∂F )×I.
When ∂F is empty, ∂M = F qG. Otherwise, M is a smooth manifold
with corners along ∂F and ∂G. However, we will often suppress the
manifold with corners structure on M since we will often be content
to classify M up to homeomorphism. Given fixed surfaces F and G, a
cobordism from F to G is a triple (M, jF , jG), where M is a compact
smooth 3-manifold and jF : F → ∂M , jG : G → ∂M are embeddings
such that (M, jF (F ), jG(G)) is a triad. When appropriate, we will
sometimes suppress the additional structure and refer to the cobordism
(M, jF , jG) as M .

Two cobordisms (M1, jF1 , jG1) and (M2, jF2 , jG2) are equivalent if
there is a diffeomorphism h : M1 → M2 such that h ◦ jF1 = jF2 and
h ◦ jG1 = jG2 . The set of equivalence classes of cobordisms from F to
G is denoted by Mor(F,G). In this more precise definition the trivial
cobordism form F to G is (F × I, j0F , j1F ) where jiF : F → F × I is the
standard inclusion map such that jiF (F ) = F × {i}.

Let M ∈Mor(F,G) and M ′ ∈Mor(G,H) be represented by cobor-
disms (M, jF , jG) and (M ′, j′G, j

′
H). The topological manifoldM∪j′G◦(jG)−1
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M ′ admits a smooth structure compatible with those of M and M ′, giv-
ing rise to a smooth manifold M ◦M ′, and (M ◦M ′, jF , j

′
H) represents

a well-defined class M ◦M ′ ∈ Mor(F,H). Then, an idempotent is an
equivalence class of cobordism M ∈Mor(F, F ) such that M = M ◦M .

2.3. Decomposing Surfaces. Let M ∈Mor(F,G) be represented by
the cobordism (M, jF , jG). A surface H ⊂M is a decomposing surface
for M if:

(1) H is a smooth, compact, orientable 2-manifold.
(2) jH : H →M is a proper smooth embedding.
(3) If ∂F 6= ∅, then for each annular component Ai of ∂M \(jF (F )q

jG(G)) there exists a unique connected component αi in ∂H
such that αi is an essential loop in Ai.

(4) The exterior of H in M is A
∐
B, where A and B are 3-

manifolds such that F ⊂ ∂A and G ⊂ ∂B. Moreover, A ∈
Mor(F,H), B ∈ Mor(H,G), and B ◦ A is equivalent to M as
an element of Mor(F,G).

Note that a consequence of this definition is that for any decomposing
surface H for M ∈ Mor(F,G), each of ∂H, ∂F and ∂G contain the
same number of components.

A decomposing surface H for M ∈Mor(F,G) is minimal if there is
no decomposing surface H ′ for M with −χ(H ′) < −χ(H).

2.4. Essential Surfaces. A surface F properly embedded in a 3-
manifold M is boundary-parallel if there is an isotopy of F in M which
fixes ∂F and takes F to a subsurface contained in ∂M . Otherwise,
we say F is non-boundary parallel. A loop γ embedded in a surface
F is essential if it does not bound a disk in F . A surface F is com-
pressible in M if F is a 2-sphere bounding a 3-ball or if there exists a
disk D embedded in M such that D ∩ F = ∂D and ∂D is essential in
F . Such a disk is called a compressing disk. Otherwise, we say F is
incompressible. A surface in M is essential if it is incompressible and
non-boundary parallel.

Given a properly embedded surface F in a 3-manifold M , we can
compress F along a compressing disk D to form a new properly em-
bedded surface F ∗. Let D2 × I be a small fibered neighborhood of D
in M such that D = D2 × {1

2
} and ∂(D2)× I is an embedded annulus

in F . Then we define F ∗ to be the surface isotopic to (F \ (∂(D2) ×
I)) ∪ (D2 × {0, 1}).

The number of non-isotopic, disjoint, essential surfaces properly em-
bedded in a compact 3-manifold is bounded due to the following clas-
sical result.
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Theorem 2.1. [Page 49 of [5]] Let M be a compact 3-manifold. If
{F1, . . . , Fn} is a collection of pairwise disjoint, incompressible surfaces
in M so that for some integer χ0, χ(Fi) > χ0, 1 ≤ i ≤ n, then there
is an integer N0(M,χ0) such that either n < N0(M,χ0), some Fi is an
annulus, or a disk parallel into ∂M , or for some i 6= j, Fi is parallel
to Fj in M .

Note that the conclusion of Fi being parallel to Fj in the above
theorem implies that Fi

∼= Fj
∼= F and that Fi ∪ Fj bounds a 3-

manifold homeomorphic to F × I in M such that Fi = F × {0} and
Fj = F × {1}.

3. Idempotents Split

Lemma 3.1. Let M ∈Mor(G,G) be a nontrivial idempotent such that
M and G are connected as manifolds. If F is a minimal decomposing
surface for M , then F is essential.

Proof. Suppose F is compressible. Then we can compress F once to
obtain a surface F ∗. The surface F ∗ may have more connected com-
ponents than F . However, ∂F = ∂F ∗ and χ(F ∗) = χ(F ) + 2 > χ(F ).
Moreover, F ∗ continues to be a separating surface in M with ∂+M to
one side and ∂−M to the other. Hence, F ∗ is a decomposing surface for
M with −χ(F ∗) < −χ(F ), contradicting the minimality of F . Thus,
F is incompressible.

Now we show F cannot be boundary parallel. We begin by proving
the following claim:

Claim. Suppose M ∈ Mor(G,G) is a nontrivial idempotent. Then
either ∂+M or ∂−M is compressible in M .

Proof. Suppose for contradiction both ∂+M and ∂−M are incompress-
ible. By Theorem 2.1, there exists integers N0 and χ0 such that if
F1, . . . , Fk is a collection of pairwise disjoint incompressible surfaces
with k > N0 and χ(Fi) > χ0, for all 1 ≤ i ≤ k, then some Fi is
a boundary parallel annulus, boundary parallel disk, or there exists
i 6= j such that Fi is parallel to Fj. Fix such integers N0 and χ0 with
χ0 < χ(G).

Since M is an idempotent, M ∼= M ◦M ◦M . . .M where we have
composed M with itself N0 + 2 times. Therefore, we can find N0 + 1
disjoint decomposing surfaces, G1, . . . , GN0+1 in M , each of which is
homeomorphic to G. See Figure 4 for the case when N0 = 1. Since each
Gi is homeomorphic to G, then χ0 < χ(Gi) for all 1 ≤ i ≤ N0+1. Since
both ∂+M and ∂−M are incompressible, then each Gi is incompressible.
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Figure 4. A schematic decomposition of an idempotent
M as M ◦M ◦M where M = B ◦ A.

Since the collection of surfaces, G1, . . . , GN0+1 meets the hypothesis
for Theorem 2.1, then one of the following hold: some Gi is a boundary
parallel annulus, some Gi is a boundary parallel disk, or there exists
i 6= j such that Gi is parallel to Gj. In each of these cases M is of the
form surface× I. But M was assumed to by a nontrivial idempotent,
so we get our desired contradiction. �

Suppose F is boundary parallel. Then F ∼= G, and χ(F ) = χ(G).
By our claim, we can assume one of ∂−M and ∂+M is compressible.
Without loss of generality, assume ∂+M is compressible. Let G × I
denote a collar neighborhood of ∂+M with ∂+M = G × {1}. Set
N := G × {0}. Then N is a decomposing surface such that χ(N) =
χ(∂+M) = χ(F ). Since F is a minimal decomposing surface, then N is
also a minimal decomposing surface. Since ∂+M is compressible, then
N is also compressible. But minimal decomposing surfaces were shown
to be incompressible. This gives our desired contradiction. Hence, F
is essential. �

The following is the proof of Theorem 1.1.

Proof. Let F be a minimal decomposing surface for M . By Lemma
3.1, F is essential. The surface F decomposes M into cobordisms
A ∈Mor(G,F ), B ∈Mor(F,G), such that M ∼= B ◦ A.

By Theorem 2.1, there exists integers N0 and χ0 such that if F1, . . . , Fk

is a collection of pairwise disjoint incompressible surfaces with N0 < k
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and χ0 < χ(Fi) for 1 ≤ i ≤ k, then some Fi is a boundary parallel
annulus, boundary parallel disk, or there exists i 6= j such that Fi is
parallel to Fj. Fix such integers N0 and χ0.

Since M is an idempotent, M ∼= M ◦M ◦M . . .M where we have
composed M with itself N0 + 1 times. Since F is an essential minimal
decomposing surface, we can find N0 + 1 disjoint essential minimal de-
composing surfaces F1, . . . , FN0+1 for M , each representing the copy of
F in each copy of M . The collection of surfaces F1, . . . , FN0+1 decom-
pose M into one copy of A, one copy of B, and N0 copies of A◦B. See
Figure 4 for the case when N0 = 2.

Note that each surface Fi in the collection F1, . . . , FN0+1 is a minimal
decomposing surface for M and essential by Lemma 3.1. In particular,
each surface Fi is not a boundary parallel annulus and not a boundary
parallel disk. By Theorem 2.1, there exist two surfaces Fi and Fj

in our collection of essential minimal decomposing surfaces that are
parallel. This shows that the cobordism bounded by Fi and Fj in M ,
which is equivalent to (A ◦ B)l for some 1 ≤ l, must be equivalent to
the trivial cobordism F × I. Thus A ◦ B is the identity morphism in
Mor(F, F ). �

4. Effective Embeddings

Proposition 4.1. If M ∈Mor(G,G) is an idempotent in C such that
such that M and G are connected as manifolds, then M embeds in R3

Proof. Let M ∈Mor(G,G) be an idempotent. By Theorem 1.1, there
exists a decomposing surface F for M and morphisms A ∈Mor(G,F ),
B ∈Mor(F,G) such that A◦B ∼= F ×I ∈Mor(F, F ) and B ◦A ∼= M .
Since F is a compact orientable surface, both F and F × I embed in
R3. Hence, M embeds as B ◦A in A ◦B ◦A ◦B. In turn, A ◦B ◦A ◦B
can be identified with any embedding of F × I in R3. So, M embeds
in R3. �

In light of Proposition 4.1, we instead focus on which idempotents
embed effectively.

Definition 4.2. An idempotent 3-manifold M ∈ Mor(F, F ) has an
effective embedding into R3 if the image of M in R3 can be surgered
along the decomposing surface F corresponding to M = M ◦ M to
produce two embeddings of M , denoted M1 and M2, such that there is
an embedded 2-sphere in R3 separating M1 from M2.

The following is the proof of Theorem 1.2.
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Proof. If G is planar and M ∈ Mor(G,G) is trivial, then an effective
embedding of M in R3 is given by the product of an embedding of G
in R2 with an embedding of [0, 1] in R.

Suppose a connected idempotent M ∈ Mor(G,G) has an effective
embedding f : M → R3. Let G′ be a decomposing surface in M which
realizes M = M ◦M . Let N ∼= G× I be a fibered neighborhood of G′

in M such that G′ = G×{1
2
} and N ∩∂M = ∂(G)× I is a collection of

annuli. Then we can surger M along G′ to construct a new 3-manifold
M \ [G× (0, 1)], which has two connected components. We denote the
image of these connected components in R3 by M1 and M2. Since f is
an effective embedding of the idempotent M , each of M1 and M2 are
homeomorphic to M , and there exists an embedded 2-sphere S in R3

such that S separates M1 from M2.
Over all spheres in R3 that separate M1 from M2, choose S to mini-

mize the number of curves of intersection with ∂f(N). If S ∩ ∂f(N) is
empty, then f−1(S) is a properly embedded sphere in N ∼= G× I that
separates G × {0} from G × {1}, which is impossible unless G ∼= S2.
Since every smoothly embedded 2-sphere in R3 bounds a 3-ball to one
side and ∂f(M) is the disjoint union of two 2-spheres, then f(M) is
homeomorphic to S2 × I and M is an identity morphism. Hence, we
can assume S ∩ ∂f(N) is a non-empty collection of curves.

Suppose S ∩ f(N) is compressible in f(N) with compressing disk D.
Since S is a sphere, then S∩f(N) is planar and ∂D separates boundary
components in S ∩ f(N). Surgering S along D produces two embed-
ded 2-spheres in R3, each intersecting ∂f(N) in strictly fewer curves
than S. At least one of these two 2-spheres also separates M1 from M2,
contradicting the minimality of S∩f(N). Hence, S∩f(N) is an incom-
pressible surface properly embedded in a 3-manifold homeomorphic to
G× I which separates G×{0} from G×{1}. Since all incompressible
surfaces in (surface) × I are vertical or horizontal, then S ∩ f(N) is
horizontal and, hence, every component of S∩f(N) is properly isotopic
to f(G× {0}) in f(N). Thus, G is a planar surface.

In the following paragraph we identify R3 with its one point com-
pactification, S3 so that the sphere S bounds a 3-ball to each side.
Since every component of S ∩ f(N) is properly isotopic to f(G× {0})
in f(N), then there is an isotopy of S after which M1 is embedded in
a 3-ball B bounded by S and M1 ∩ S = ∂+M1

∼= G. Suppose ∂+M1

is compressible in M1 with compressing disk D. Since ∂D is essential
in ∂+M1 and ∂+M1 is planar, then ∂D separates the boundary compo-
nents of ∂+M1. Let E1 and E2 be the two disks in S bounded by ∂D.
The disk D cuts B into two 3-balls B1 and B2 such that ∂B1 = E1∪D
and ∂B2 = E2∪D. Since ∂−M1 is connected, then we can assume ∂−M1
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is embedded in B1, up to relabeling. Let α be a boundary component
of ∂+M1 contained in E2. The curve α together with some boundary
component β of ∂−M1 cobound an annulus A ⊂ ∂M1. See Figure 5.
However, int(B1) and int(B2) induce a separation on A, contradicting
the fact that the annulus is connected. Hence, ∂+M1 is incompressible
in M1. By isotoping S so that M2 is embedded in the other 3-ball
bounded by S and M2 ∩ S = ∂−M2

∼= G and repeating the above ar-
gument, we can show ∂−M2 is incompressible in M2. Taken together
this implies that both ∂+M and ∂−M are incompressible in M . By the
claim in the proof of Lemma 3.1, M is a identity morphism.

�

A

S

D

B1

B2

Figure 5. M1 is embedded in the 3-ball B with the
compressing disk D for ∂+M1 in blue and the annulus A
in red.
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