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Abstract

Accurate predictions from models based on physical principles
are the ultimate metric of our biophysical understanding.
Although there has been stunning progress toward structure
prediction, quantitative prediction of enzyme function has
remained challenging. Realizing this goal will require large
numbers of quantitative measurements of rate and binding
constants and the use of these ground-truth data sets to guide
the development and testing of these quantitative models.
Ground truth data more closely linked to the underlying phys-
ical forces are also desired. Here, we describe technological
advances that enable both types of ground truth measure-
ments. These advances allow classic models to be tested,
provide novel mechanistic insights, and place us on the path
toward a predictive understanding of enzyme structure and
function.
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Introduction

Scientists can now predict and design protein structure
with dngstrém accuracy, a triumph culminating from
decades of experimental and computational efforts
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[1,2]. In this perspective, we describe why the ap-
proaches that have been so successful in protein design
are unlikely to lead to analogously predictive models for
protein function, and we introduce concepts and
experimental approaches that address these limitations
and move us toward the ultimate goals of accurately and
quantitatively predicting and designing function.

Structure broadly and deeply informs our understanding
of function — consider the striking visualizations of
motor proteins that have revealed the lever arms of
myosin, dynein, and kinesin and their ATP-dependent
power strokes [3], and the myriad of proteins whose
shape is integral to their function, such as the B-clamp
that encircles DNA to enhance polymerase processivity
[4]. Nevertheless, more than structure is needed to
describe, understand, and quantitatively predict func-
tion. Indeed, many proteins with the same fold differ in
function, quantitively and even qualitatively [5].

Function involves a series of states, such as the confor-
mations through the myosin reaction cycle or the states
in chemical reactions catalyzed by enzymes (substrate
binding (EeS), transition state (EoSi), product complex
(EeP), and release (E + P) to regenerate free enzyme
ready for another round of catalysis). A minimal
description of protein function therefore requires
describing these states and determining the rate and
equilibrium constants that define their transition prob-
abilities and relative populations, respectively.

But still, more is required to understand and ultimately
predict and design new functions — an ability to specify
the functional consequences of sequence changes. En-
zymes are large, with residues beyond the active site
required for function, minimally to fold into and stabi-
lize the correct binding and active site configurations
[6]. But regions far from the active site can also have
considerable functional consequences [7], as evidenced
by allosteric modulation [8,9] and remote mutational
effects frequently identified in high-throughput screens
[10—12]. To find and describe which residues, sets of
residues, and substructures affect function, as well as
the particular aspects of function that are affected, we
need approaches to systematically interrogate all resi-
dues and to determine the effects of perturbing them
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260 Catalysis and Regulation

through each step of the enzyme’s reaction cycle. In
other words, we need to measure many rate and equi-
librium constants for many mutants. Here, we highlight
a breakthrough approach that allows these measure-
ments to be made.

In principle, with sufficient empirical data, machine and
deep learning approaches could be used to provide ac-
curate, predictive models of enzyme function. However,
sequence space is vast — so vast that nature has only
sampled a miniscule corner of it [13]. And whereas
pairwise residue information is largely sufficient to
predict protein structure [14], enzyme function is much
more complex, with multiple distal residues exerting
functional effects on one another. These effects corre-
spond mathematically to higher-order terms to account
for the effects from combinations of multiple
residues and are thus terms that are needed to quanti-
tatively describe function. Because of this complexity,
vast amounts of data would likely be required to define
the relationship between sequence and function, and
we suspect that the scale of data needed to predict
enzyme function via machine learning and deep learning
approaches may greatly exceed what is measurable, even
with recent breakthroughs.

In contrast, physics-based approaches are scalable, so
that simple rules can be used to describe the behavior of
arbitrarily complex systems [15,16]. These models
relate atomic forces and motions, captured by the
preferred substates in conformational ensembles, to
thermodynamic and kinetic constants. From the
perspective of statistical mechanics, the constants that
define function arise from the energy landscapes that
define an ensemble of enzyme substates and the tran-
sition and reaction probabilities for each substate,
represented mathematically in Figure 1 [17,18].

Thus, we need to go beyond structures to ensembles, and
beyond structure—function relationships to ensemble—
function relationships, and we will need to use experi-
mental determinations of these relationships to test and
build the physics-based models needed to quantitatively
and accurately predict enzyme function. Here, we
describe emerging X-ray crystallographic approaches that
can provide this needed ensemble information.

Current design efforts yield enzymes that require cycles
of randomization and selection to begin to approach
natural enzymes. Perhaps the tortoise rather than the
hare is needed to win this race [19], wherein large-scale
quantitative and in-depth data are first collected and
used to test and build models that will ultimately have
the accuracy to predict and design enzyme function. We
expect accurate enzyme functional prediction to remain
a grand challenge of 21st-century biophysics — it is a
still distant goal. Systematic blind tests of models built

from large-scale quantitative data provide a promising,
and perhaps necessary, path forward.

Ground truths are needed for model development

To develop and establish a model, ‘ground truths’ are
needed. Ground truths are experimental data in a form
that can be predicted by and thus compared to a model,
without ground truths, there is no way to definitively
test a model.

The most sophisticated models in enzymology combine
quantum mechanics and molecular mechanics (QM/
MM) and have been used to predict reaction rate con-
stants [20,21]. However, in nearly all instances, the rate
constants predicted by OQOM/MM were already
measured and thus do not represent actual predictions
that foretell a future event and that are incontrovertibly
independent of the existing experimental findings [22].
The importance of predictions before measurement is
underscored by the fact that the inability of protein
folding models of the 1970s—1990s to predict structures
was not apparent till they were challenged with truly
blinded predictions (CASP, Critical Assessment of
Structure Prediction); [1,23,24]). Ultimately, the algo-
rithms and models that accurately predict structure
were built using information from the large number of
solved structures in the Protein Data Bank (PDB) [25],
mining this information, and combining it with vast in-
formation from sequence conservation along with
simplified energy potentials or rules derived via machine
or deep learning [14,26—29,2].

Analogously, we need many measurements of Kinetic
and thermodynamic constants as ground truths to build
and test predictive models of enzyme function, but
current approaches are severely limited in their ability to
deliver these essential data. Changes in residues
throughout an enzyme can affect kinetic and thermo-
dynamic constants, and combined changes will often not
give additive effects; from a mathematical perspective,
this property corresponds to a need for many terms in a
model that can predict the effects from all sequence
changes. With only a handful of measurements, there
will not be enough data to constrain the model — from a
simple algebraic standpoint, one needs the number of
measurements to equal or exceed the number of vari-
ables in an equation to solve for those variables.
Although we are unlikely to ever obtain sufficient
measurements to fully define all of the variables of a
master equation for function, we need many measure-
ments to guide model development and then many
predictions from these models — followed by many
additional quantitative measurements — to provide a
robust test of the models.

Structural ensembles can provide orthogonal ground
truths.  The relative occupancy of different
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Enzymes function on a high-dimensional energy landscape. (a) Enzymes form a set of states specified by energy wells on a free energy landscape,
with dimensionality defined by the thousands of degrees of freedom from each rotatable bond of each residue. (b) An example ensemble of near-energy
substates in which State 1 (brown) and State 2 (blue) lie within the lowest energy basin (‘native state basin’) and equilibrate at room temperature. These
substates have different intrinsic reactivities, reflecting barrier heights along the reaction coordinate that differ when projected from different conforma-
tional coordinates. (c) A mutation that does not affect intrinsic reactivity (red) can nevertheless diminish catalysis by redistributing equilibrium populations
in the native state basin to favor less-active conformers (i.e. with higher free energy barriers to reaction; State 2 vs State 1). Mathematically, the apparent
rate of the wild type (k%i%) and mutant (ky) toward a substrate (S) is the probability-weighted (occupancy-weighted) sum of the intrinsic rate constants of
each microscopic substate. In this two-state example, kq > ko, s0o KT > gt (d) Observed enzymatic activity is the summed activity of each microscopic
substate (kj) weighted by its fractional occupancy (P;). Mutations can alter the free energy landscape and change apparent activity (kops), Or binding (Ky),
by altering P;, as shown in the figure, or by altering the reaction barrier (not shown).

The need for quantitative enzymology at scale

Recognizing the need for an immense amount of data to
describe and understand enzymes and their function,
high-throughput apéproaches have been used to inter-
rogate up to ~10° sequence variants in parallel. In

conformational states reflects a balance of physical
forces and thus provides ground truths that can be used
as tests of models that account for these forces. Of
further value, each ensemble provides a wealth of data
— the distribution of states for each residue and around

each backbone and sidechain bond, as well as infor-
mation about their hydrogen bonds and electrostatic
and van der Waals interactions. In contrast, average
structures can be predicted without these ‘details’
being accurate, as evidenced by the rather simple force
models present in successful Rosetta structural pre-
diction algorithms [26,30].

The sections that follow describe recent advances in
obtaining these ground truths for enzyme function.

particular, deep mutational scanning (DMS) approaches
have been applied to all possible single mutants for
dozens of unique proteins [31,32].

Some DMS studies report the effects of mutations in a
particular protein on organismal fitness, a convolution of
multiple factors [33,34]. These experiments can also be
designed to report more specific aspects of function,
including catalytic efficiency, substrate specificity, stabil-
ity, and interaction with binding partners [10,11,35—39].
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Although valuable and sometimes of immediate practical
benefit, these functional readouts still represent a
convolution of contributing factors. For example, for
observed catalytic function, a mutant enzyme down 100-
fold in catalysis can be 99% unfolded, 99% partitioned to
an alternative misfolded state, have a misaligned catalytic
residue, have a binding interaction removed, or exhibit
some combination of these factors. Thus, these functional
readouts fall short of delivering the needed ground truths.

At the other end of the spectrum, traditional enzy-
mology provides kinetic and thermodynamic constants
that describe the catalytic cycle and have been com-
bined with incisive mechanistic probes (e.g. alternative
substrates, isotope effects, and so on) to provide deep
mechanistic insights. However, these approaches are
only feasible for a small number of variants of each
enzyme. Past efforts to quantify properties of many
variants in T4 lysozyme, pyruvate kinase, and B-gluco-
sidase B underscore that data for many mutants can be
collected when heroic means are used [40—43]. But
even in these cases, the time and cost to carry out the
additional measurements required to probe the mech-
anistic origins of the observed effects would
be prohibitive.

It is hard to identify a discipline that has not been
transformed at one time or another by a breakthrough
technology. Here, technology was needed to efficiently
provide the rich and quantitative data of traditional
enzymology at a much larger scale for many variants and
multiple enzymes.

Quantitative enzymology on a chip

Advances in microfluidics provided the opportunity to
marry the strengths of traditional enzymology with
automated high-throughput data collection and bring
enzymology into the genomic age [44—46]. High-
throughput microfluidic enzyme kinetics (HT-MEK;
Figure 2) allows 1500 enzyme variants to be produced,
purified, and subjected to multiple quantitative assays
in days, at a miniscule fraction of the cost of traditional
approaches [47].

Figure 2 outlines how HT-MEK experiments are
performed. HT-MEK uses a microfluidic device with
chambers aligned to a DNA microarray of 1500 isolated
variant plasmids (Figure 2a). Expression and purification
of enzyme variants are carried out in parallel, so that all
1500 enzymes can be purified, quantified, recruited to
antibody-patterned surfaces, and ready for assay in hours
(Figure 2b). Pneumatically controlled valves allow the
user to protect the enzyme from flow-induced shear
forces, while the expression solution is removed and an
assay solution containing substrate is added to the
chambers, followed by opening of the valves to simul-
taneously initiate reactions in all chambers (Figure 2c).

Product formation is quantified over time via fluores-
cence, either directly using a fluorogenic substrate or
indirectly using a coupled assay (Figure 2c). Once
complete, reaction product is flowed out, and a new
substrate stock is flowed in so that a series of assays can
be performed iteratively. Figure 2d shows example
Michaelis—Menten and inhibition curves obtained in
HT-MEK experiments.

Each HT-MEK device can be used to carry out tens of
reactions, and a single researcher can fabricate tens of
devices in a day. These properties make it possible to
carry out hundreds of assays — with multiple substrates,
inhibitors, and solution conditions, as used traditionally
in mechanistic enzymology — but to do so across
thousands of enzyme variants and to do so in a few
weeks. Thus, the properties of HI-MEK allow mea-
surements of many kinetic and thermodynamic con-
stants that provide valuable information about an
enzyme and can serve as ground truths for
model testing.

For PafA [48], a phosphate monoesterase and our test
case, we obtained >6000 kinetic and thermodynamic
constants from >650,000 kinetic measurements for
1036 mutants. HT-MEK provides a wide dynamic
range, ~10° in rate for PafA, which allows measure-
ment of large active site effects and reaction rates for
noncognate substrates. High measurement precision is
obtained with rigorous error estimates using boot-
strapping, which is possible because of the many rep-
licates acquired within each HT-MEK assay.

In addition to providing a large number of ground truth
measurements that can be used to evaluate and guide
the development of quantitative models, the initial PafA
data provided extensive mechanistic information not
previously accessible. The observation that mutations at
most of the 526 PafA positions altered one or more ki-
netic and thermodynamic parameters underscores the
need for measurements throughout an enzyme to map
its function. Further revealing and displaying the in-
tricacy of enzyme function, different sets of residues
affected different reaction steps and underlying cata-
lytic mechanisms as well as folding, as illustrated in the
functional maps of Figure 3. The largest mutational ef-
fects were seen at the active site and directly around it,
as expected, but effects extended from the active site all
the way to the enzyme surface, with large effects many
angstroms from the active site and different remote
regions affecting different aspects of function
(Figure 3a). We do not think that these effects could
have been predicted a priori using current approaches.
Regardless, researchers with predictive algorithms can
now use those algorithms on any of the multiple en-
zymes amenable to HT-MEK, so that we can determine
the algorithm’s predictive power.
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Application of HT-MEK to study catalysis and inhibition. (a) HT-MEK uses a valved microfluidic device containing >1500 chambers to (b) in vitro
express, purify, and assay 1500 enzyme variants in days. Iteratively varying substrates, inhibitors, and conditions give kinetic and thermodynamic pa-
rameters of function. (¢) Reactions are performed by introducing fluorogenic substrate (light blue) into reaction chambers and synchronously exposing
surface-immobilized enzyme to the substrate with pneumatic valving. Product (darker blue) is quantified by fluorescence over time, using direct (fluo-
rogenic) or indirect (coupled) assays. The assays shown are for phosphatase activity or for any enzyme that directly or indirectly generates inorganic
phosphate. (d) Example on-chip fluorogenic substrate turnover curves for the PafA phosphatase with fit initial rates (left) and Michaelis—Menten curves
(right) for wild type (blue, WT) and mutant (orange) PafA variants. A per chamber standard curve is used to convert fluorescence to product concentration.
(e) Many replicates (within separate chambers) for each variant (Mutant 1: Y74V, Mutant 2: Y112G) over multiple chips are used to calculate bootstrap
errors on fit Michaelis—Menten (left) and competitive inhibition (right) parameters (reproduced from Markin, Mokhtari, et al. (2021) [47]). HT-MEK, high-

throughput microfluidic enzyme kinetics.
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Consider, as an example, the active site arginine and
lysine residues that contact one of the substrate
phosphoryl oxygen atoms and are responsible for reac-
tion specificity for phosphate monoesters over diesters
(which are substrates of related superfamily members;
[48—52]) (Figure 3b and c). Although mutation of most
residues contacting these active site residues

Figure 3

diminished specificity, a majority of the affecting resi-
dues were remote, including residues at the junction of
three auxiliary domains (Figure 3d; auxiliary domains
are structural regions present in subsets of Alkaline
Phosphatase superfamily members [52]). The auxiliary
domain junction sits ~20 A from the active site and on
the opposite side of the enzyme from the catalytic
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Spatial patterns of PafA mutational effects on specific functions. (a) Alkyl phosphate hydrolysis (k.at/Kwu) for glycine and valine substitutions at each
position in PafA. Significant effects are shown as spheres, color-coded by the size of the effect. (b) The PafA-active site (PDBID: 5TJ3) showing contacts
between covalently bound phosphate (T79) and active sites K162 and R164 (yellow sticks). (c) Schematic of PafA-active site residue contacts to bound
phosphate monoester (left) versus diester (right) substrates. (d) Substrate specificity effects upon valine and glycine mutation of PafA positions, visualized
as in (a). Large mutational effects (spheres) cluster primarily around R164 and K162, extending distally to a three-domain junction (circled) more than
20 A away. Panels (a), (c), and (d) are adapted from Markin, Mokhtari, et al. (2021) [47].
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pocket but nevertheless exhibits mutational effects of
up to 60-fold [47]. These observations suggest that the
auxiliary domains and their positioning are critical for
catalytic function by the active site arginine and lysine,
but we would not have predicted these or other remote
effects for mutations throughout PafA.

One would be tempted to conclude, in the absence of
data to the contrary, that most distal functional effects
arose from destabilizing the active enzyme. With H'T-
MEK (and related approaches under development),
we can independently assay folding [47,53]. We found
that none of the PafA effects arose from equilibrium
unfolding (PafA is a secreted enzyme and is highly
stable). Nevertheless, our ability to assay PafA with
multiple substrates and under multiple expression and
reaction conditions allowed us to uncover the presence
of an unanticipated long-lived misfolded state of the
enzyme. Without accounting for the effects of
misfolding and unfolding on observed reaction rates,
functional models cannot be unambiguously made
or tested.

As noted previously, an immediate challenge is to pre-
dict distal effects for multiple enzymes and to use H'T-
MEK to determine what is correctly predicted, quanti-
tatively or qualitatively. We can also directly use data
from HT-MEK to aid enzyme engineering at a practical
level. Functional maps generated by HT-MEK can
inform where mutations should be made to enhance the
chance of altering and tuning specific functional pa-
rameters. In addition, HI-MEK can rapidly assess
human alleles to reveal the biophysical bases of muta-
tions associated with disease and to inspire new and
precise therapeutic strategies. For instance, the discov-
ery of surface residues (through mutation) allosterically
linked to function may allow druggable enzyme activa-
tion as well as inhibition [54].

Conformational ensembles for evaluating and

building physical and catalytic models

Ultimately, we want to predict kinetic and thermody-
namic constants for a particular reaction with a speci-
fied sequence. We can measure many of these values
via HT-MEK as ground truths and compare them to
values predicted by models, but these functional con-
stants are emergent properties that result from the
enzyme’s underlying physical properties. We would like
to have ground truths more closely connected to the
enzyme’s physical properties; these measurements
would provide more direct tests to evaluate and
improve physics-based models. In particular, we want
to know an enzyme’s conformational landscape and
how this varies with bound ligands and through the
enzyme’s reaction, and we want to determine the af-
finities and reactivities of the states that constitute the
landscape (Figure la—c).

High throughput and quantitative enzymology Mokhtari et al. 265

The value of and need for ensemble information to
understand protein folding and function have been
recognized for decades [17,55,56]. For catalysis, the
clear evidence for remote effects — from allosteric li-
gands and post-translational modifications — and ef-
forts to understand how enzymes so efficiently navigate
their reaction paths have led to a panoply of functional
models that invoke dynamics (e.g. studies reported by
Hammes et al., Schwartz, Hanoien et al., Kochen, and
Warshel and Bora [57—61]). Experimentallyy, NMR
provides relevant information about the rates of tran-
sitions between conformational states and information
(e.g. order parameters) on the relative conformational
freedom of residues (e.g. studies reported by Palmer
and Alderson and Kay [62,63]). However, detailed
atomic information that provides more direct tests of
models, such as the extent and direction of motion and
which motions are coupled or independent, is difficult
to obtain via NMR. Fortunately, emerging X-ray crys-
tallographic approaches can provide extensive and
detailed information about conformational ensembles
that can be more directly related to predictions from
physics-based models.

A key technological breakthrough in X-ray crystallog-
raphy was cryofreezing crystals to reduce their suscep-
tibility to radiation damage and make crystal handling
more reliable. Indeed, at least 90% of more than 150,000
protein X-ray structural models in the PDB were ob-
tained under cryogenic conditions (diffraction source
temperature <125 K) [25]. Nevertheless, X-ray struc-
tures can be obtained at ambient temperatures as well,
conditions that do not quench a protein’s inherent dy-
namic motions [64]. Ambient or ‘room-temperature’
(RT) X-ray crystallography requires high resolution
(typically sub-1.5 A) to provide reliable and extensive
information about conformational heterogeneity at the
atomic level and requires larger-than-average crystals to
limit X-ray damage during data collection. Fortunately,
many enzymes of interest yield crystals of the desired
size and quality, and recent methodological improve-
ments allow RT X-ray crystallography to be broadly
implemented [65].

Conformational ensembles can also be generated from
cryo X-ray structures, by combining multiple static
structures into a so-called pseudoensemble [66,67]. In
brief, it is assumed that individual cryogenic X-ray
structures of proteins sharing the same or highly similar
sequences (e.g. with one or a few mutations) provide
conformers trapped in different low-energy wells on the
protein’s energy landscape, so that combining many
cryo-structures can approximate the protein’s accessible
ensemble of states (for pseudoensemble computational
tools, see studies reported by Monzon et al., Li et al.,
Zhang et al., and Grant et al. [68—71]). Although mo-
tions are restricted, and some are changed on freezing,
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several lines of evidence and direct comparisons support
a close correspondence of the flexibility within pseu-
doensembles and the motions present at ambient tem-
peratures [67,72].

Pseudoensembles and RT data are complementary —
the latter providing the most reliable information about
conformational heterogeneity and the former retaining
information about correlated motions within the con-
stituent conformers. These approaches have provided
insights into multiple systems, including HRas G'TPase,

protein tyrosine phosphatase, proline isomerase, soy-
bean lipoxygenase, P-lactamase, dihydrofolate reduc-
tase, isocyanide hydratase, herpes virus protease, and
designed and laboratory-evolved Kemp eliminases [73—
83]. The most extensive X-ray ensemble data to be
collected and analyzed is for ketosteroid isomerase (KSI;
Figure 4a). For KSI, pseudoensembles and high-
resolution RT ensembles have been obtained for com-
plexes representing the states in the enzyme’s reaction
cycle, for KSIs from two different species, and for WT'
and mutant KSIs [72].

Figure 4
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Ensemble crystallography provides mechanistic insights toward enzyme catalysis and engineering. (a) KSI reaction mechanism and ensemble
crystallography of multiple states in the reaction cycle. Active-site residues from experimental RT multiconformer models are shown for apo, ground-state
(GS) bound, and transition state analog (TSA) bound KSI. (b, ¢) Pseudoensembles for KSI oxyanion hole residues Y16 and D103 (b) and the general
base (D40, wild type, or mutant D40N) (c), derived from cryo-structures containing bound transition state analogs (TSA, equilenin and phenols). Bound
TSAs were superimposed, aligned on phenol (‘A’) rings and shown as a single structure for simplicity. (d) Pseudoensemble for the KSI general base
(D40 or mutant D40N) and neighboring residues for KSI (F56, W120) and a KSlhomoiog (F56, F120). KSI and KSlhomolog Kcat measurements for both the
WT and the position 120 reciprocal mutants (KSI W120F; KSlnomolog F120W) demonstrate a 4-fold (KSI) and 8-fold (KSlhomolog) rate increase for
phenylalanine versus tryptophan-containing variants. (e) Cartoon depiction of the relationship between KSI rate and general base (D40) flexibility. (f)
Increase in active-site rigidity during directed evolution of a designed Kemp eliminase (from HG3 to HG4). B-factor Z-scores are plotted for each heavy
atom of the position 50 side chain (K, H, or Q). Structural views of the Kemp eliminase residues 87—-90 loop from room-temperature crystallography, with
B-factor Z-scores colored as per legend and increasing with sausage plot thickness (inset). Panels (b) to (e) adapted from Yabukarski et al. (2020) [72];
panel (f) adapted with changes from Broom et al. [83] (http://creativecommons.org/licenses/by/4.0/). Kl, ketosteroid isomerase; RT, room temperature.

Current Opinion in Structural Biology 2021, 71:259-273 www.sciencedirect.com


http://creativecommons.org/licenses/by/4.0/
www.sciencedirect.com/science/journal/0959440X

Insights from KSI ensembles

The function of a catalytic residue depends not only on
its presence in the vicinity of the substrate but also on
the adoption of conformational states with the correct
distance and orientation to the substrate and/or other
residues. Indeed, positioning is universally invoked or
assumed in descriptions of enzyme catalysis, but
without ensemble information, we cannot know the
nature and extent of this positioning. Ensemble infor-
mation is also needed to understand the motion
inherent in all chemical reactions, minimally to go from
van der Waals distance to form a bond, a change on the
order of 1 A, and how or whether this is affected by the
enzyme environment. Furthermore, many enzymes
catalyze multistep reactions and use the same functional
groups in different poses to carry out successive reaction
steps. Again, ensemble information is needed to un-
derstand how enzymes navigate these challenges.

KSI, a steroid isomerase, abstracts a proton from its
steroid substrate with a general base, transferring the
proton to a different position of the resulting interme-
diate to give the more stable conjugated product, using
an oxyanion hole to stabilize negative charge accumu-
lation on the intermediate (Figure 4a). Oxyanion holes
for serine proteases have been suggested to contribute
catalytically via ground-state destabilization, by forming
suboptimal, geometrically constrained hydrogen bonds
that sit out of the plane of the ground state sp2 oxygen
[84—87]. The KSI ensembles reveal motions of the
oxyanion hole hydrogen bond donors on the scale of
~1A and an absence of discrimination between the sp

and sp’ oxygen electronic configurations (Figure 4b).
Instead, the oxyanion hole seems to provide catalysis by
forming hydrogen bonds that are stronger than those to
water in solution [6,72,88—90].

Extensive site-directed mutagenes1s studles revealed an
astounding effective molarity of 10°—10° M for the KSI
aspartate general base [91]. Although the simplest
explanation for this large catalytic effect is precise
positioning, positioning at multiple sites would be
required to accommodate KSI’s multiple substrates and
successive reaction steps. As previously mentioned, KSI
ensembles allowed this model to be tested, revealing a
broad distribution of general base positions (Figure 4c),
as needed to abstract and donate protons at multiple
positions and indicating that alternative models are
needed to account for the highly efficient observed
general base catalysis [91—93]. In addition, the flexi-
bility in the oxyanion hole, while precluding ground-
state destabilization, contributes to the conformational
plasticity of the general base and substrate with respect
to one another (Figure 4b and c¢).

One might expect there to be a balance between posi-
tioning and flexibility: clearly, too much flexibility of the
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KSI general base would hamper catalysis while too-
restricted positioning could as well, by limiting access
to the multiple states needed to carry out the full re-
action cycle. Remarkably, functional results and en-
sembles for wild type and mutant KSIs provide evidence
for the balance: an aromatic—anion interaction provides
greater flexibility of the general base than a hydrogen
bond and faster reaction, whereas mutations in the
general base loop that disorder it substantially impair
catalysis (Figure 4d and ¢).

In addition, comparisons of how conformational en-
sembles of KSI side chains change from mutations in
nearby residues provide information about the balance
of forces, including conformational entropy, that deter-
mine where and how much the oxyanion hole tyrosine is
positioned [72] (Figure 4b). Effects such as these will
provide rich testing grounds for force fields in physics-
based models. Finally, the observation that, at least in
this case, ensemble rearrangements remain local sug-
gests at least some limitation to the complexity of
models needed to account for energy landscapes of en-
zymes (Figure la and b; see also “The complexity of
functional models’ in the following).

Rules for enzyme design from ensemble crystallography
A major challenge is to understand why the perfor-
mance of de novo enzyme designs falls short of natural
enzymes [94—96], and how to rationally engineer so-
lutions that nature (or researchers) discover through
evolution. Early de novo design of Kemp eliminases
(KE) yielded some success [97], but the same fold rate
enhancement, or more, for the eliminase reaction is
achieved in the active site of KSI, an enzyme evolved to
carry out different chemistry with different substrates.
"This result suggests that designed KEs accomplish only
coarse positioning against a general base within a
binding pocket [98]. With laboratory evolved im-
provements (17 substitutions), a ~ 10°-fold increase in
kear/ Knv was achieved [99]. Recent work from the Chica
and Fraser groups sought to understand the mecha-
nistic bases for these improvements, interrogating four
variants along the mutational trajectory via RT crys-
tallography [83,100]. This effort revealed that apo-
state catalytic elements rigidified along the muta-
tional trajectory, favoring catalytically preorganized
poses, consistent with classical proposals for origins of
catalysis from positioning of substrates and catalytic
groups (Figure 4f) [93,101,102].

More generally, crystallographic ensembles can be used
to test models of catalysis that attempt to link motions
or positioning to function, identifying the types and
scales of motions that may be relevant to progress along
the reaction coordinate. This ability allows the
structure—function paradigm to be supplanted by
ensemble-function analyses.
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Ensemble measurements versus the reaction coordinate
The X-ray ensemble approaches described previously
are needed to relate structure to energetics and function
but also have limitations. Most centrally, they provide
information about the ‘lower levels’ of the enzyme’s
conformational landscape. States that are uphill by
> ~2 kcal/mol, representing <5% of the total popula-
tion, are unlikely to be observed. This limitation alone is
not severe, as one can decipher much of the underlying
energetics by having lots of data — as is provided by X-
ray ensembles — in the ~0—2 kcal/mol energy range.
But what is missing is information about the conforma-
tions and motions as one climbs further toward the re-
action’s transition state. Iransition states are by
definition fleeting states, lasting <1 ps, and highly
improbable. To assess what happens at these rarified
regions of the energy landscape and whether the data
obtained closer to the base of these mountains are
adequate to model the reaction coordinate, we need
additional ground truths for these transient, high-energy
states. Although such information cannot (yet) be ob-
tained in high throughput, several methods exist to
provide this critical information.

The highest time resolution structural data use laser
pulses to initiate a process and serial high-resolution X-
ray data collection. X-ray free-electron lasers and cutting-
edge synchrotron sources capture crystallographic snap-
shots at ambient temperatures by supplying intense
femtosecond X-ray pulses [103,104]. Tenboer et al. [105]
used nanosecond laser pulses in conjunction with X-ray
free-electron laser crystallography to isomerize the
double bond of the photoactive yellow protein chromo-
phore and to measure protein and chromophore confor-
mational changes after time delays of 10 ns and 1 ps.
These experiments revealed the significant side-chain
displacements associated with photocycle transients at
high resolution. Schlichting et al. [106] used a 150 fs laser
pulse to dissociate CO from myoglobin and were able to
follow in real-time the synchronous nonequilibrium
picosecond oscillations of the heme ring that arise from
the CO dissociation energy and dissipate on the order of
10—100 ps. Vibrational spectroscopy, although not
directly measuring atomic positions, is particularly
powerful because frequencies can be assigned to specific
bonds located within proteins or bound reactants and can
provide information about changes in the strength and
properties of those interactions. Dyer and Callender
[107] used temperature-jump infrared spectroscopy on
the microsecond timescale to identify multiple distinct
and noninterconverting substrate-binding conformations
with different reactivities in lactate dehydrogenase,
providing a detailed energetic map of reaction trajectories
unavailable with traditional methods. It may also be
possible to carry out time-resolved vibrational studies on
enzyme libraries in high throughput. A critical next step
will be to apply these synchronized approaches more

broadly so that motions and transitions are not averaged
among the population of molecules in the crystal [82].

The complexity of functional models

Residues are functionally, and thus energetically, inter-
dependent. This interconnection is most simply
appreciated by recognizing that without the ‘right’ res-
idues surrounding the catalytic and binding residues
those active site residues do not yield significant
catalysis and vice versa [108]. Consequently, de-
scriptions of ‘residue function’ cannot be made from
single-mutant variants alone. The extent of residue
connectivity — how many residues affect the function
of a particular residue and by how much — defines the
complexity of the model that is needed to mathemati-
cally describe an enzyme’s function [109,110]. Although
this complexity is likely to vary — for enzymes with
different folds, with allostery, and so on — we want to
know the scale and range of this complexity as it will
dictate the form of models and how they are developed
and tested [111,112].

We also know that residues are not fully interdependent
(epistatic), as if this were the case any single mutation
would shatter the active site and fully abolish activity.
Classical mutational studies have found some regions,
including active sites, with limited energetic de-
pendencies among sets of three or fewer residues [113—
115]. In one striking case, a single residue change was
predominantly responsible for improved activity in
psychrophiles versus improved stability in thermophiles
[116]. Phylogenetic comparisons, verified experimen-
tally, identified two nearby residue changes needed to
fully shift stability and activity but with much small-
er effects.

Phylogenetic comparisons across many enzyme families
containing psychrophilic, mesophilic, and thermophilic
variants suggested instances of limited epistasis in
temperature adaptation [116]. Most of these covarying
sets of residues corresponded primarily to pairs of resi-
dues that correlate with temperature adaptation and
likely confer function within divergent sequence back-
grounds of a given enzyme family. These observations
suggest substantial simplifications in residue in-
terdependences and model complexity in many cases.
Nevertheless, there are also larger co-occurring sets, and
our initial HT-MEK experiments in PafA have also
identified functional interconnections among tens of
residues in regions extending from the active site to
the surface.

Experimentally, even measuring effects of all possible
triple-mutant substitutions within a single small (100
residue) enzyme is intractable as it would require >10°
variants. Instead, it will be necessary to prioritize higher-
order mutants most likely to be informative, guided by
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maps of enzyme architecture identified in initial H'T-
MEK surveys and additional phylogenetic information
such as that described to understand temperature
adaptation [117]. This is an area that will likely require
innovative ideas and rigorous tests to identify paths
toward predictive models. The lengths of those paths
and the difficulty in traversing them will be determined
by how rapidly partially predictive physics-based models
can be developed and used as guides.

Conclusion and outlook

Accurate quantitative prediction of protein and enzyme
functions from amino acid sequence is the ultimate
litmus test of our biophysical understanding. But as
other disciplines have experienced, breakthroughs
frequently arrive later than hoped, and only with sus-
tained effort at the nexus of a deep need,
technological development, and an empirical or theo-
retical framework.

The need for accurate and general quantitative models
of functional prediction is clear — they would transform
medicine, industry, and biotechnology. But what re-
mains uncertain is whether we possess the requisite
theoretical and technological foundation. Where we
stand is likely to be clarified only through careful tests of
current general predictive models and algorithms,
particularly physics-based ones, using blinded compari-
sons to large-scale empirical measurements. With H'T-
MEK and crystallographic ensembles, we are starting
to acquire the needed quality and quantity of data to
compare with predictions.

Most immediately, HI-MEK can be used to study new
enzymes, as it can be applied to any enzyme with a direct
or coupled fluorogenic assay. HI-MEK, and extensions to
it currently under development, can assay protein sta-
bility as well as function, and important applications
include dissecting the functional effects of human alleles
that do or may cause disease; providing foundational in-
formation to guide protein engineering and design efforts
using current approaches; and combining enzymes to
efficiently engineer metabolic pathways.

We envision a future wherein large-scale mutational
studies are routinely performed with HT-MEK. In this
future, analysis, interpretation, and modeling are the
rate-limiting steps of advancing protein biochemistry,
instead of experimentation. To drive future advances in
these models, conformational ensembles will provide
ground-truth atomic positions and motions and describe
how these are altered in mutants of differing functions.
Ensembles can be assembled for many enzymes from
the vast data available in the PDB [72], and ensemble
information can now be readily attained for new enzyme
complexes and variants through advances in room tem-
perature data collection [65].
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We suspect that a ‘critical assessment of quantitative
protein function’ will be needed. Although blind protein
function prediction challenges exist, these contests
typically use in vivo coarse phenotypic data
(e.g. whether or not particular mutations are delete-
rious) as targets, reflecting the absence of and need for
large-scale in vitro quantitative measurements of spe-
cific functional parameters [118,119]. A new effort
would involve solicitation of large-scale quantitative
functional data sets ahead of publication and creation of
objective metrics for success that scale across different
parameters and sizes of data sets. We look forward to
contributing to this effort by basic scientists, engineers,
and theoreticians.

Finally, with deep functional data in hand, it will also be
possible to extend predictive models to the systems
level, connecting the basic enzyme properties respon-
sible for selective advantages observed in DMS experi-
ments and in natural and laboratory evolution. Here,
comparisons of effects predicted from metabolic models
for particular kinetic perturbations with experimental
measurements of fitness and of metabolite levels will
provide a path to develop robust models to understand
cellular metabolism and to engineer new meta-
bolic pathways.
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